

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLAN

ESTUDIO PARA EL ESTABLECIMIENTO DE UNA PLANTA ELABORADORA DE PASTA DE CAJETA, EN EL MUNICIPIO DE COMONDU - BAJA CALIFORNIA SUR.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

				PAGINA
I.	INT	RODUCC:	ION	1
II.	ANT	ECEDEN'	TES	3
III.	MAT	ERIALE	S Y METODO DE TRABAJO	6
IV.	PRO	DUCCIO	N PECUARIA Y TECNOLOGIA REGIONAL	9
	1.	RECUR	SOS NATURALES	9
		1.1.	Localización geográfica y polí- tica	9
		1.2.	Climatología	12
		1.3.	Régimen pluviométrico	12
		1.4.	Orografía	15
		1.5.	Geología	15
		1.6.	Hidrología	18
		1.7.	Edafología	19
		1.8.	Vegetación	21
	2.	PRODU	JCCION AGRICOLA	26
		2.1.	Superficie dedicada a la agricul tura	26
		2.2.	Tenencia de la tierra	26
		2.3.	Uso actual del suelo	27
		2.4.	Principales áreas agrícolas	27

		PAGINA
	3. GANADERIA	. 30
	3.1. Potencial ganadero	30
	4. PRODUCTIVIDAD EN EL RAMO CAPRINO	31
	5. LOCALIZACION DE LAS UNIDADES DE PRODUCCION	31
v.	ASPECTOS SOCIOECONOMICOS	34
	1. POBLACION	34
	1.1. Población total y número de familias	34
	1.2. Población económicamente activa	34 .
	2. VIAS DE COMUNICACION	34
	2.1. Terrestres	34
	2.2. Aereas	36
	2.3. Maritimas	38
	3. SISTEMAS DE COMUNICACION	40
	3.1. Correos	40
	3.2. Telégrafos	40
	3.3. Teléfono	40
	· ·	
VI.	ESTUDIO DE MERCADO	41
	1. ANTECEDENTES	41
	1.1. Objetivos	41
	1.2. El mercado de la leche de cabra	41
	2. CENERALIDADES	42

				PAGINA
		2.1.	Descripción del producto	42
		2.2.	Productos sustitutos	43
	3.	COMPO	RTAMIENIO DE LA OFERIA	43
		3.1.	La oferta nacional del producto	43
		3.2.	La oferta regional del producto	43
		3.3.	Tendencia	44
	4.	COMPO	RIAMIENIO DE LA DEMANDA	44
		4.1.	Demanda nacional del producto	44
		4.2.	Demanda regional del producto	44
		4.3.	Tendencias	45
	5.	BALAN	KCE DEMANDA - OFERTA	45
	6.	CANAI	LES DE COMERCIALIZACION	45
	7.	UBICA	ACION DE LOS CENTROS DE CONSUMO	45
VII.	ro	CALIZAC	CION Y TAMAÑO	47
	1.	MACRO	DLOCALIZACION	47
		1.1.	Generalidades	47
		1.2.	Disponibilidad de la materia pri- ma e insumos	48
		1.3.	Facilidades del mercado	48
		1.4.	Capacidad de aumentar la produc ción de materia prima	49
		1.5.	Análisis de macrolocalización	50
	2.	MICR	OLOCAL IZACION	51

			·.		PAGINA	
		2.1.	Generalidades		51	
		2.2.	Características		51	
		2.3.	Infraestructura básica		53	
		2.4.	Servicios		53	
	3.	TAMAR	to .		54	
		3.1.	Generalidades		54	
		3.2.	Limitaciones de materia prima		55	
		3.3.	Restricciones legales, institucio- nales y/o tecnológicas		55	
		3.4.	Alternativas de producción		56	
		3.5.	Selección de tamaño		56	
		3.6.	Programa de producción		58	
		3.7.	Días de trabajo por mes y año		59	
VIII.	ANA	LISIS	TECNICO		60	
	1.	EL PR	RODUCTO		60	
		1.1.	Características		60	
		1.2.	Normas de calidad		6 0	
	2.	EVALU	VACION DE LA MATERIA		62	
		2.1.	Calidad		62	
		2.2.	Disponibilidad de materia prima		63	
	3.	PROCE	SO	•	63	
		3.1.	Selección del proceso		63	
		3.2.	Diagrama de flujo		64	

			PAGINA
	3.3.	Descripción del proceso	64
	3.4.	Balance de materia	68
	3.5.	Balance de energía	71
4.	EQUIP	0	74
	4.1.	Selección de equipo	75
		4.1.1. Cálculo de la paila	75
		4.1.2. Determinación del tamaño de la caldera	78
		4.1.3. Equipo de refrigeración	82
	4.2.	Costos y especificaciones	91
		4.2.1. Equipo de recepción y proceso	· 92
		4.2.2. Generación de vapor	94
		4.2.3. Equipo de refrigeración	96
	4.3.	Costos de instalación	98
		4.3.1. Equipo de recepción y — proceso	98
		4.3.2. Generación de vapor	98
		4.3.3. Equipo de refrigeración	98
	4.4.	Distribución	98
5.	OBRA	CIVIL	98
	5.1.	Generalidades	98
	5.2.	Areas y costos	99
		5.2.1. Areas	99
		5.2.2. Costos	100

			PAGINA
	5.3. Ampli	aciones futuras	101
	5.4. Progr	rama constructivo	101
	6. INSTALACION	IES	101
	6.1. Eléct		101
	6.2. Hidra	iulica y sanitaria	103
	6.3. Espec	ciales	103
	6.3.1	. Aislamiento cámara de al macenamiento	103
	7. Requerimier	ntos de insumos y servicios	109
	7.1. Mater	cias primas especiales	109
	7.1.1	. Azúcar	109
	7.1.2	2. Carbonato de calcio	110
	7.1.3	3. Agua	110
	7.1.4	. Energía eléctrica	113
	7.1.5	. Combustibles	114
IX.	INVERSION		117
	1. INVERSION E	FIJA	117
	2. INVERSION D	DIFERIDA	119
	3. CAPITAL DE	TRABAJO	119
	4. CUADRO DE I	INVERSIONES	120
	5. CALENDARIO	DE INVERSIONES	121

				PAGINA
х.	cos	TOS E	INGRESOS	123
	1.	COSTO	S DE PRODUCCION	123
	2.	COSTO	S DE OPERACION	123
	3.	INGRE	SOS	125
	4.	PROYE	CCION DEL ESTADO DE RESULTADOS	125
	5.	PUNTO	DE EQUILIBRIO	128
		5.1.	Determinación del punto de equilibrio	131
xI.	ANA	LISIS	FINANCIERO	134
	1.	FINAN	CIAMIENTO	134
		1.1.	Aporte de capital	134
		1.2.	Créditos	134
			1.2.1. Crédito para infraes tructura	135
			1.2.2. Crédito refaccionario	135
			1.2.3. Crédito de avío	135
	2.	EVALU	JACION	138
		2.1.	Indicadores económicos utilizados	138
		2.2.	Relación beneficio - costo	140
		2.3.	Tasa interna de retorno	140
7		2.4.	Análisis de sensibilidad	140
XII.	OR	GANI ZAG	CION DE LA EMPRESA	146

		PAGINA
XIII.	CONCLUSIONES	149
XIV.	BIBLIOGRAFIA	152
xv.	ANEXOS	154

MAPAS

No.		PAGINA
1	Estado de Baja California Sur	10
2	División política	11
3	Factores climáticos	13
4	Isotermas	14
5	Isoyetas	16
6	Topografía	17
7	Cuencas hidrológicas	20
8	Suelos	22
9	Tipos de vegetación	25
10	Actividades productivas	29
11	Ubicación de unidades pecuarias caprinas	33
12	Vías de comunicación terrestres	37
13	Vías de comunicación marítimas y aéreas	39
	FIGURAS	
1	Método de trabajo	8
2	Estructura ocupacional	35
3	Canales de comercialización	46
4	Proceso de elaboración de pasta de cajeta	65
5	Diagrama de flujo y balance de materiales	70
6	Diseño de la paila	76
7	Producción de pasta de cajeta (isométrico)	77
8	Generación de vapor (isométrico)	81
9	Instalación frigorifica (isométrico)	90
10	Definición del punto de equilibrio	129
11	Punto de equilibrio. Operación del mes 11 al 24	132
12	Punto de equilibrio. Operación del mes 25 en adelante	133
13	Organigrama de la empresa	148

CUADROS

No.		PAGINA
1	Producción Agrícola 1981	28
2	Programa constructivo	102
3	Requerimientos mensuales de insumos	116
4	Calendario de inversiones	122
5	Resumen de costos	124
6	Ingresos por venta	126
7	Proyección de flujo de fondos	127
8	Amortización de crédito para infraestructura	136
9	Amortización de crédito refaccionario	137
10	Beneficios totales	141
11	Costos totales	142
12	Determinación de la T.I.R.	143
13	Análisis de sensibilidad	145

INTRODUCCION

Durante décadas la explotación de la cabra en Baja California Sur seha realizado en forma rudimentaria, a nivel de supervivencia, resistiendolos embates de depredadores, sequías, enfermedades y mal manejo. Lo anterior, aunado a salidas masivas de ganado ha ocacionado fluctuaciones en la población caprina, sin tener una dínamica de crecimiento sostenido.

Ios caprinocultores transforman la leche en queso que se caracteriza por ser de calidad variable y lo venden, al igual que el ganado en pie, a los intermediarios, los que se quedan con la mayor parte del ingreso. - Sin embargo, esta actividad representa un medio económico importante para la obtención de satisfactores para miles de habitantes del Municipio de Comondó.

En el Estado de Baja California Sur dadas sus características agroclimatológicas no es posible desarrollar una agricultura de temporal ni una ganadería de bovinos, ya que esta se encuentra muy limitada y solo se explota en pequeñas áreas. El Municipio de Comondú, para su desarrollo agropecuario, requiere de aprovechar los grandes agostaderos y las pequeñas su perficies de riego con que cuenta, lograndose esto solo a través de la explotación de la cabra.

Durante los últimos tres años el Cobierno Federal ha canalizado fuertes inversiones para fomentar y apoyar a los productores de bajos ingresos en lo referente a la caprinocultura, lo cual ha originado que en el presente año se inicie la operación de diez Unidades Pecuarias Caprinas de mil - vientres productivas cada una.

A fin de evitar problemas en la comercialización de los productos que se obtendrán en estas Unidades e incrementar el valor agregado de la leche, es necesario el establecimiento de una planta que la procese y que garantice su mercado.

El objetivo del presente trabajo es el de determinar la viabilidad - técnico-económica de un proyecto que aproveche la leche para la producción de pasta de cajeta.

ANTECEDENTES

En las zonas áridas y semiáridas que representan apróximadamente el 70% de la superficie total del País, el desarrollo de las actividades pecuarias se encuentra límitado ya que para aprovechar los recursos disponibles se requiere de especies animales adaptadas a las mismas como pueden ser bovinos de carne y caprinos.

Un ejemplo de lo anterior lo constituye el Estado de Baja California-Sur en donde, por sus bajas precipitaciones, no existe la agricultura de -temporal, por lo que solo subsiste la agricultura bajo riego. Las actividades pecuarias se concentran básicamente en la parte Sur del Estado dejan do a la parte Centro - Norte la explotación de la cabra, especie a la queno se le ha dado importancia en México y que puede explotarse eficientemen te en zonas con estas características.

Las posibilidades de desarrollo pecuario de la región Centro - Norte de Baja California Sur provienen del uso de grandes extensiones de agostadero con pequeñas superficies de riego y con especies que como la cabra - resistan las condiciones imperantes.

La cabra además de producir leche y productos derivados de ella que-

van desde quesos frescos a quesos de alto valor nutritivo y económico producen carne ya sea como cabrito destetado o como "cabrito añojo", básandose para ello en la alimentación que reciben del pastizal nativo propio de las zonas semidesérticas.

Para apoyar el desarrollo pecuario de esta región el Gobierno Federal a través del Programa de Ingeniería Agrícola inicio, en 1978, la construcción de Módulos Caprinos consistentes en la explotación de 2 500 Has. de pastizal nativo apoyados con pequeñas superficies de riego (10 Has.) en la que se establecieron praderas de invierno y/o de verano. En estos Módulos se pueden mantener 1 000 cabras productivas divididas en dos rebaños, de 500 cada uno, con la finalidad de producir leche durante todo el año. Al primer proyecto se le denominó "Baturi" e inició su operación en 1981 - sirviendo como base para la obtención de parámetros y como demostración — del manejo de estas unidades.

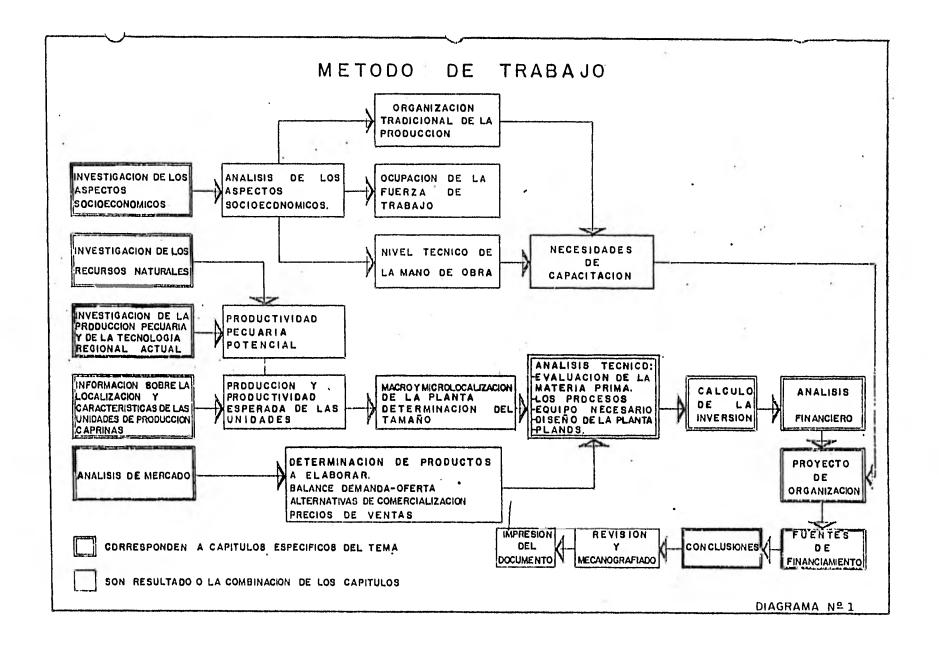
Con este proyecto se inició la promoción de este tipo de unidades por lo que durante 1979-1982 se incrementó la inversión en el Estado y para - el presente año se espera la terminación y el inició de operación de cinco proyectos en el Municipio de Comondú y otros tantos en el Municipio de - La Paz. Actualmente se tienen trece sitios en estudio y su construcción - se iniciará en 1983.

En la planeación de las actividades agropecuarías del Estado se tiene contemplado el aprovechamiento de la producción primaria de estas unida des mediante la industrialización. Con la producción de leche que se obtiene actualmente se elabora que so fresco el cual tiene problemas de comercialización por la hetereogeneidad en su calidad, tamaño y peso, aunándose a esto la falta de infraestructura para la conservación del mismo. Por lo anterior, se planteó aprovechar la leche producida en esta Subregión (Municipio Comondú), tanto de ejidatarios como de pequeños propietarios mediante una planta elaboradora de pasta de cajeta, la que tiene una gran demanda como materia prima para la elaboración de cajetas y dulces.

Esta planta tiene la finalidad de aprovechar la leche producida por - las Unidades Pecuarias Caprinas del Programa de Ingeniería Agrícola funda mentalmente, adicionando la que se pueda captar de los pequeños propieta-- rios y comuneros cercanos a Villa Constitución.

MATERIALES Y METODO DE TRABAJO

En el diagrama I se muestra una descripción simplificada del método - de trabajo que se utilizó para la elaboración del proyecto.


En términos generales se expone el método que se siguío:

Se efectuó recopilación de información, investigación de campo y trabajo de gabinete.

La investigación de campo se efectuó en dos fases: La primera consistió en visitas a la zona de estudio a fin de recopilar datos sobre la producción pecuaria, productividad y tecnología regional actual. En la segun da fase, se visitaron centros de producción de leche y pasta de cajeta, para obtener información sobre el proceso de elaboración de esta última. - Así como también se visitaron Dependencias Oficiales y Compañías de Promoción y Desarrollo con la finalidad de recabar cifras estadísticas y desercion de los aspectos socioeconómicos, recursos naturales y localizarción de las unidades de producción caprina en la zona de estudio.

Para el capítulo de mercado se recurrió a estudios elaborados por la S.A.R.H.

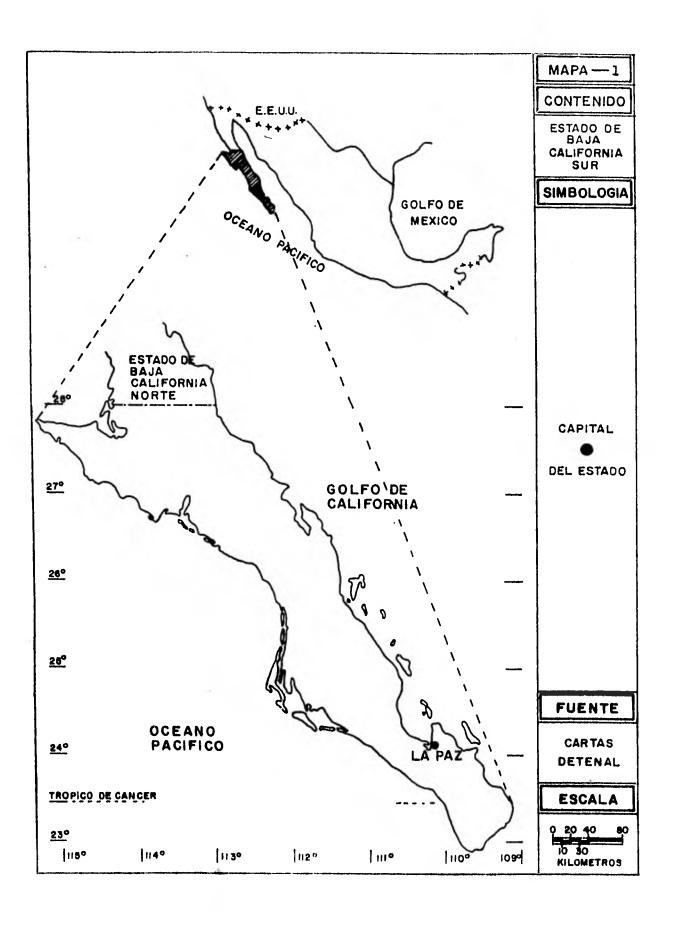
- Con el material recopilado se procedió al trabajo de gabinete en -- donde se analizaron los datos obtenidos a fin de determinar el proceso del producto por elaborar, el tamaño de planta, el cálculo y selección de equipo.
- Con lo anterior se elaboraron los planos respectivos y se procedió al cálculo de la inversión. Con esto se tuvo elementos suficientes para elaborar el análisis financiero de la Empresa.

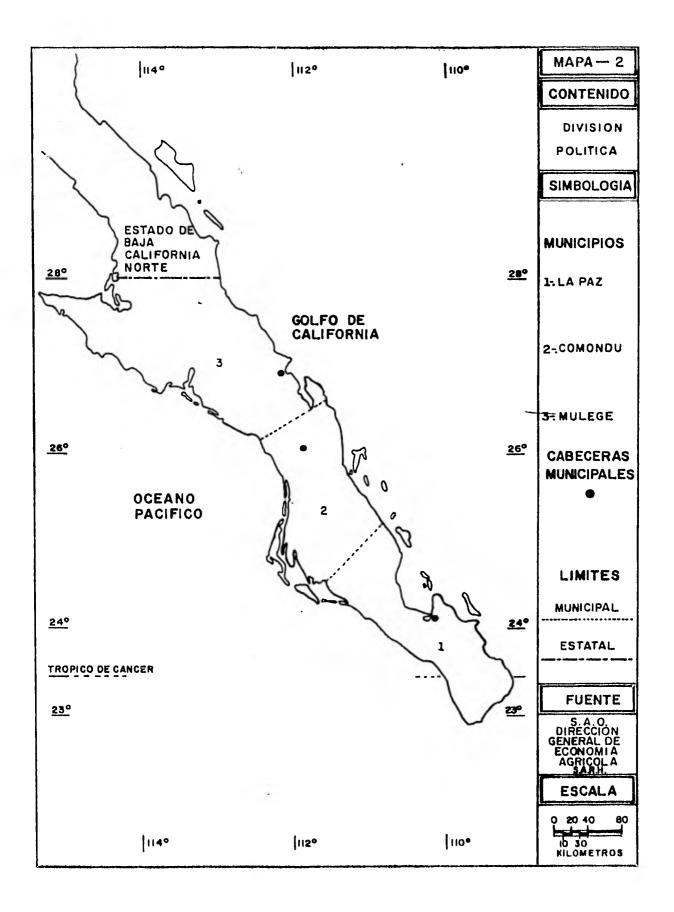
PRODUCCION PECUARIA Y TECNOLOGIA REGIONAL

1. RECURSOS NATURALES

1.1. Localización geográfica y política. Extensión

El Estado de Baja California Sur se ubica en el Noroeste de la-República Méxicana entre las coordenadas:


Latitud Norte 22°52' 28°00'


Longitud Oeste 109°00' 115°00'

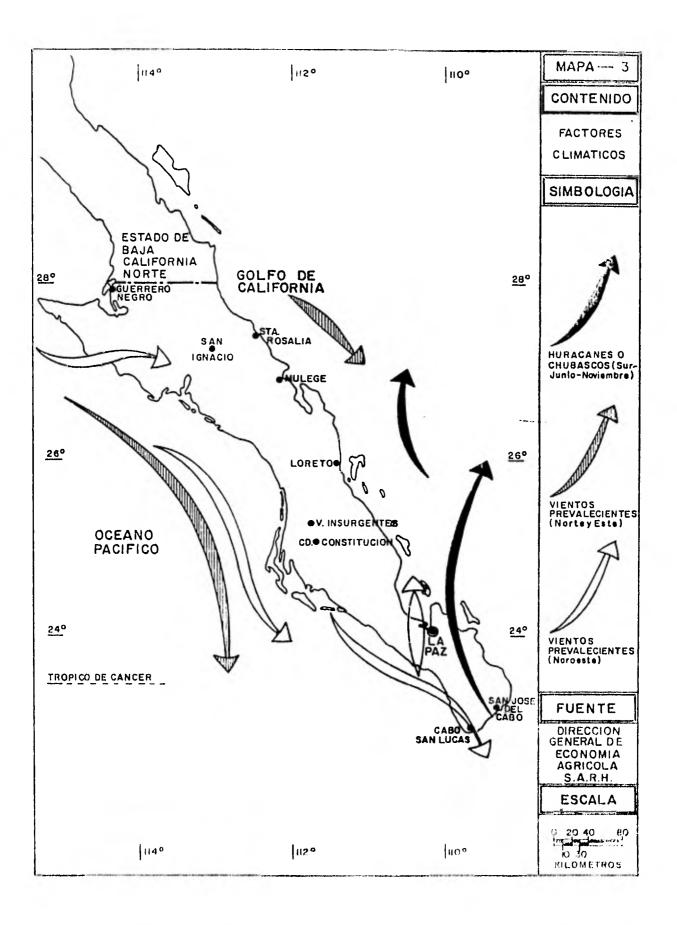
Sus límites territoriales son: al Norte y Noroeste, la Bahía - de San Sebastián Vizcaíno, el Estado de Baja California Norte y el Golfo - de California; al Oriente limita con el Golfo de California y al Poniente-y Sur con el Océano Pacífico.

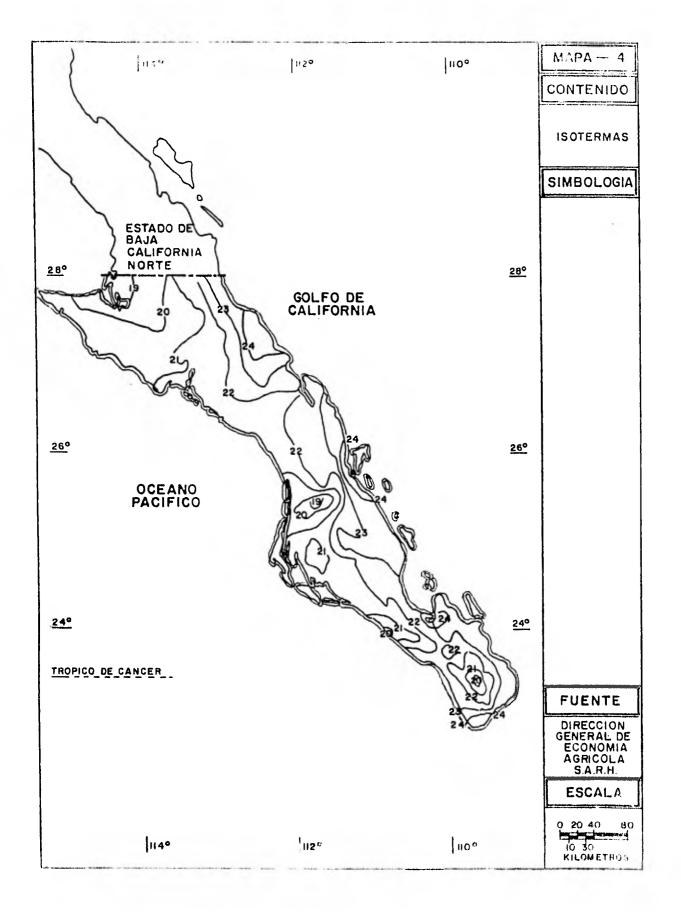
Tiene una superficie de 73,677 Km2 abarcando un 51.2% de la extensión territorial de la Península de Baja California. Su Longitud es de 750 Km. con un ancho que va de 42 a 200 Km. con un promedio de 100 Km.

Políticamente se encuentra dividido en 3 Municipios: Mulegé, - Comondú y la Paz, con una superficie de 33,092.21 Km2, 16,858.30 Km2 y -- 23,726.49 Km2 respectivamente.

1.2. Climatología

El clima en general, según Koppen modificado por E. García es,seco, desértico en su mayor parte, con algunas zonas de seco estepario y con variaciones en las temperaturas y precipitaciones. Especificamente se
tiene la presencia de los siguientes tipos de clima:


Mulege. - Clima muy seco o desértico, de semicálido a cálido, - con lluvias en Invierno y Verano, de temperatura media anual entre 18° y - 22°C, la del mes más caliente superior y la del mes más frío inferior, con una oscilación térmica de 7°a 14°C, de tipo extremoso.


comondú.— Clima seco desértico o estepario, con régimen de llu vias en Verano y lluvias aisladas en Invierno; con temperatura media anual entre 18° y 22°C, con una media máxima superior y una media mínima mensual inferior, extremoso, con oscilación térmica mensual de 7° a 14°C.

La Paz. - Clima seco desértico o estepario, de semicálido a cálido, con régimen de lluvias en Verano y lluvias aisladas en Invierno, - temperatura media del mes más caliente mayor de 22°C y del más frío menorde 18°C, con oscilación térmica de 7° a 14°C, de tipo extremoso.

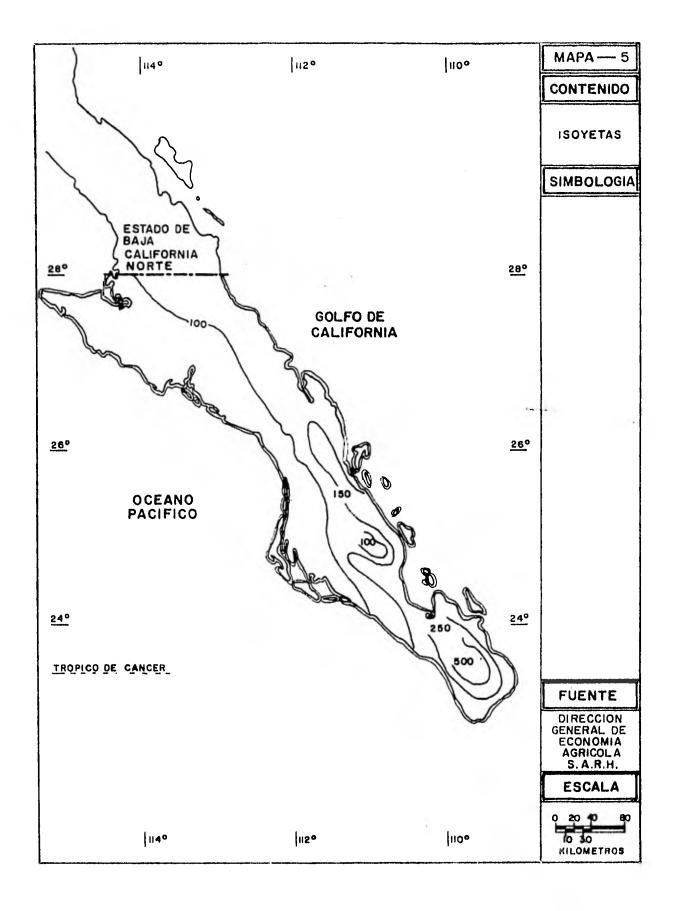
1.3. Régimen pluviométrico

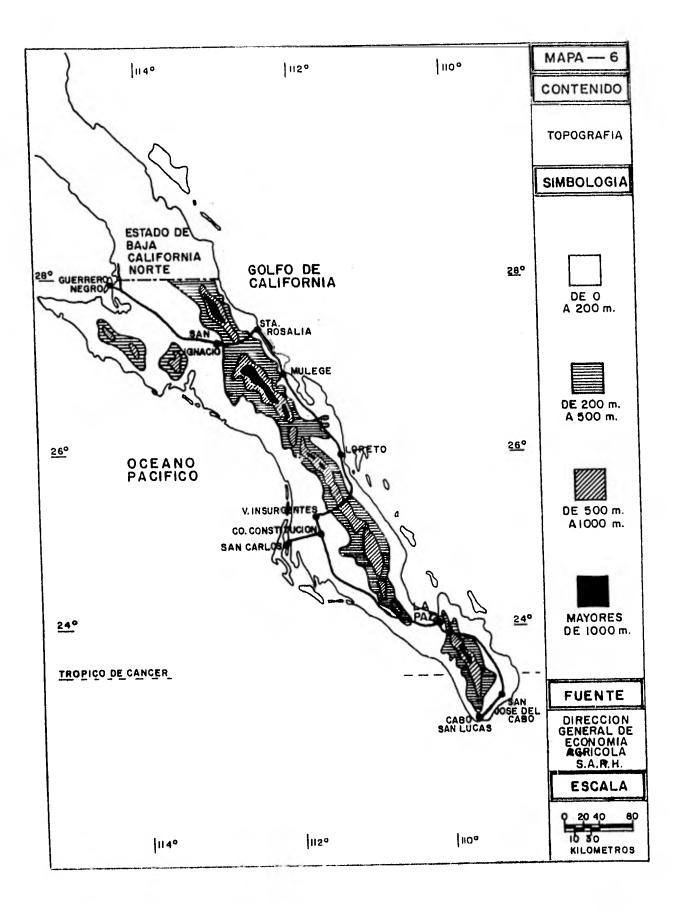
Se encuentran definidos 2 regimenes de lluvia, uno que comprende los meses de Julio, Agosto, Septiembre y Octubre, en el que se concentra el 75% de la precipitación total anual y otro, que se presenta en los meses de Diciembre, Enero y Febrero y en el que se concentra el 25% restante.

Norte, de 50 a 150 mm en la parte central y de 50 a 450 mm en la parte - Sur, presentándose un máximo de 750 mm en la zona de la Sierra de La Laguna. La evaporación potencial anual promedio es superior a los 2,000 mm.

1.4. Orografía

El Estado está cubierto por 8 macizos montañosos: el de San Pedro Martir que surge en los Estados Unidos de América y va hasta las Sierras de Calmalli y Purificación con su altura máxima en el pico de la Providencia cerca de 3,000 m.s.n.m.


La Sierra Gigante que se inicia en la Sierra de San Borja y culmina en la región de los Cabos, con altura de 700 a 2,000 m.s.n.m.


La Sierra de la Victoria (La Laguna y San Lázaro), de más de - 2,000 m.s.n.m. corre de Norte a Sur limitada por fallas, por la erosión da un aspecto abrupto con altos picos y cañones profundos.

La costa Oriental es abrupta debido a la internación de las cadenas montañosas en el mar con pocas playas y un promedio de 5 km. de - - ancho, la costa Occidental es más ancha; pero son planicies desérticas y - semidesérticas.

1.5. Geología

La Península se forma en el paleozoico y después se hunde en - las aguas del Océano, en el cretácico se levanta y la cordillera toma cuer po dejando un hundimiento en la zona Oriental que da origen al Golfo de Ca

lifornia.

El parteaguas de Baja California se encuentra cargado hacia laparte Oriental, observando una suave inclinación en el Occidente y acantilados y fuertes pendientes al Oriente, algunas terrazas en esta zona atestiguan la rápida erosión de la costa del Golfo en el pleistoceno y el reciente.

1.6. Hidrología

No existen ríos de importancia en la Península, únicamente arro yos de poco caudal que en la época de lluvias causan trastornos a causa de la rapidez de sus corrientes; muchas no llegan a sus desembocaduras por la sequedad del suelo de sus cauces y la rápida evaporación.

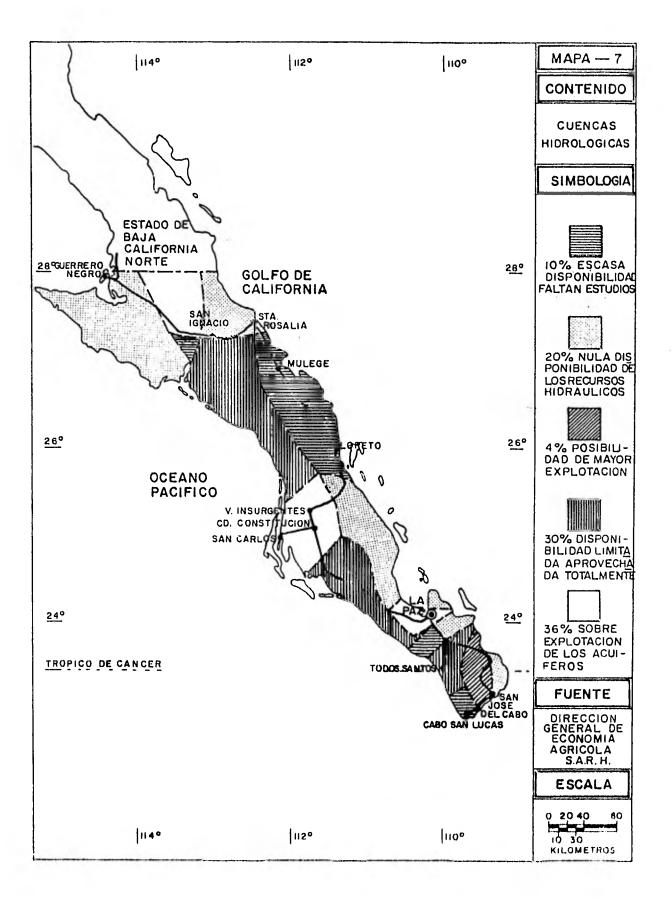
En la vertiente del Golfo las corrientes son cortas, rápidas, - escasas, de contornos irregulares, mientras que en la del Pacífico son más frecuentes a veces con carácter torrencial en sus orígenes, de caudal mediano y constante en la parte media, sin llegar a la playa y a veces con - cursos subterráneos de poca profundidad.

Las corrientes principales son: La Purísima, San Ignacio y Mulegé.

Santo Domingo, Las Bramonas, Guadalume, Initú, Todos Santos, -Pescadero, San José y Santiago son corrientes que en época de lluvias llevan mucho caudal que se pierde en el mar.

Los aculferos subterráneos se encuentran sobreexplotados y algunos son tan escasos que se están empleando desalinizadoras experimentales.

Los más importantes acuíferos se encuentran en la Región Cen--tral del Desierto de Vizcaíno, Santo Domingo, La Paz y Los Planes. Así -mismo se tienen potenciales en las zonas de los Cabos y Santiago y como es
casos en la zona de Santa Rosalía, San Ignacio, Comondú, La Purísima, Mule
gé, Concepción, Loreto y San Bartolo.


% SUPERFICIE	APROVECHAMIENTOS SUBTERRANEOS
30 %	Nula capacidad
30 %	Limitado aprovechamiento
ુ 36 ક	Sobreexplotación
4 %	Alto potencial

Del cuadro anterior se deduce que es necesario mejorar la forma de aprovechamiento y conservación de los acuíferos para evitar su agota--miento y obtener su más alto rendimiento.

1.7. Edafología

Existen en el Estado dos principales tipos de suelo y uno más - que es una mezcla de varios tipos.

Sierozem: suelos de color café grisaceo en los horizontes superficiales, gris y verduzco en la profundidad, descansan en un horizonte
o capa caliza, pobres en materia organica y nitrógeno, ricos en cal de tex
tura ligera. Se les encuentra en todo el Estado y las principales zonas -

agrícolas se ubican en ellos. 🗀

Litosoles: son rocosos, de poca profundidad, de color gris claro, pobres en materia orgánica y nitrógeno, de escaso valor agrícola; se encuentran en las sierras con baja precipitación y altas temperaturas principalmente entre la sierra Ligui y Loreto.

De montaña: combinación de diferentes tipos de suelo que se lo calizan en la cordillera a lo largo del Estado.

1.8. Vegetación

De acuerdo a los datos de la Comisión Técnico-Consultiva para - la Determinación de los Coeficientes de Agostadero se tienen 9 tipos de vegetación:

Selva baja caducifolia, se localiza en el Municipio de la Paz, en la parte Sur del Estado y se encuentra en las estribaciones de la Sierra de la Victoria, las especies principales son:

Palo blanco

Hysiloma candida

Palo mauto

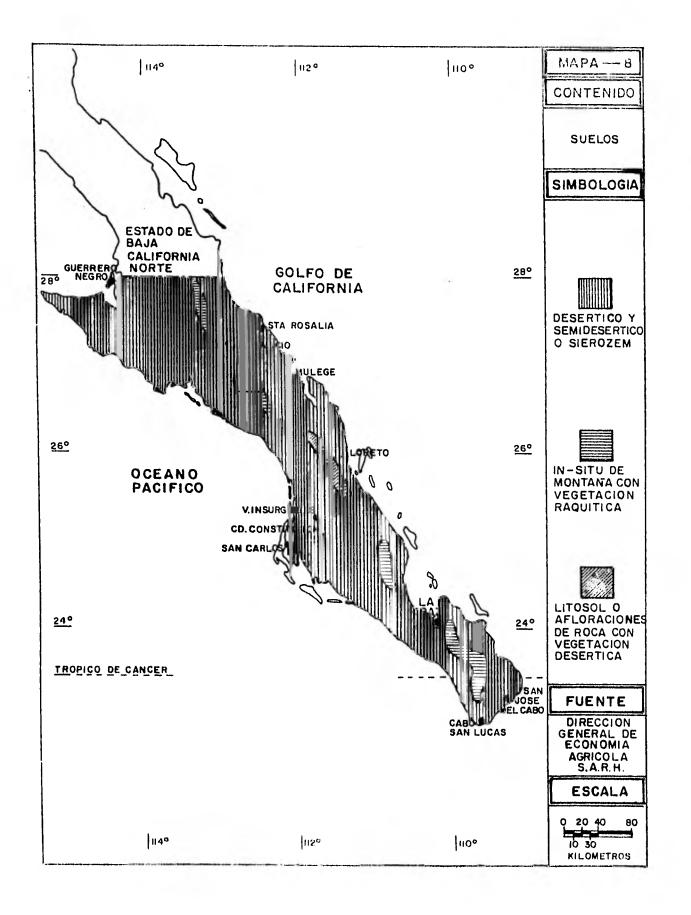
Hysiloma brivaricata

Torote

Bursera sp

Palo escopeta

Albizzia occidentalis


Palo zorrillo

Cassia emarginata

Higuera

Ficus palmeri

Matorral Sarcocaulescente, se localiza en la misma zona que el-

anterior y sus especies principales son:

Palo de arco

Tecoma stans

Lomboi

Jathopha cinerea

Matorral Sarcófilo, se localiza al Norte, en el Municipio de Mulegé, las especies dominantes:

Chamizo

Atriplex ambrosia

Choyas

Opuntia sp

Matorral Sarcocaulescente, se localiza al Sur, en el Municipiode la Paz, destacan las especies:

Torote blanco

Bursera microphylla

Torote colorado

Bursera hidsiana

Palo adán

Fougieiria diguetti

Palo verde

Carcidium floridum

Matorral Arbocrasicaulescente, se ubica en el sistema montañoso abarcándo parte de los Municipios de Mulegé y La Paz y casi la totalidad - de Comondú dominando las especies:

Palo adán

Foufieiria diguetti

Pitahaya

Machaero cereus gomosus

Cactaceas

Opuntia sp

Matorral Arbosufrutescente, se localiza al Sur del Trópico de -

Cáncer, en el Municipio de la Paz, son sus principales especies:

Encino

Quercus dumosa

Pino

Pinus cembroides

Palo blanco

Hysiloma candida

Palo mauto

Hysiloma divaricata

Matorral Arbosufrutescente, se extiende en todo el sistema montañoso desde los 400 hasta las 1,000 m.s.n.m., las especies más comunes son:

Palo verde

Cercidium floridum

Palo brea

Cercidium sonorae

Dipua

Cercidium mucrophyllum

Palo de San Juan

Forchameria watsoni

Manglar, se ubica en zonas pequeñas en las costas del Estado:

Mangle

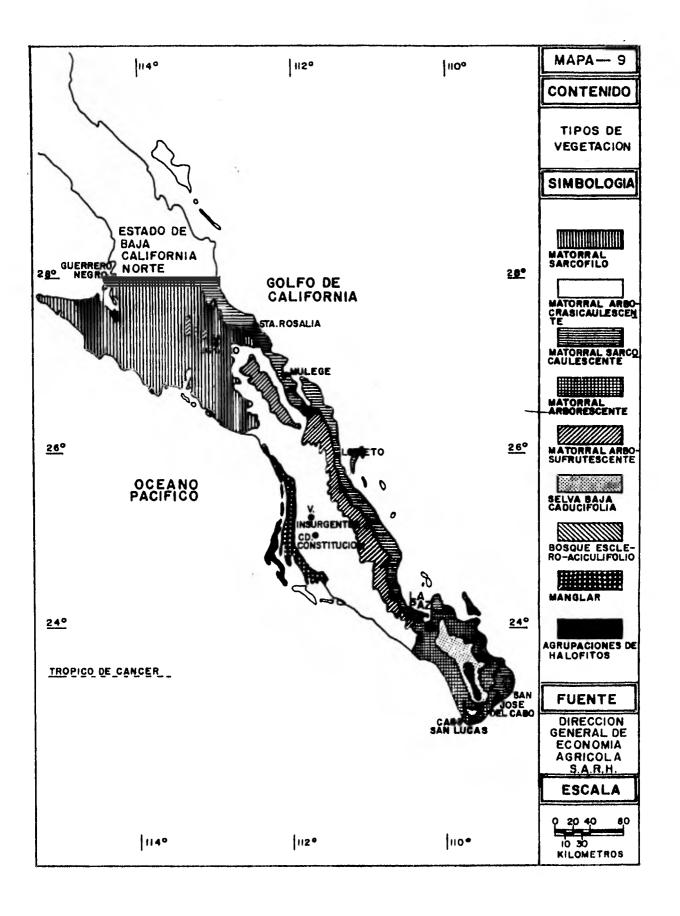
Rhizophora mangle

Mangle negro

Avicennia germinasn

Mangle blanco

Laguncularia racemosa


Agrupaciones de halofitos, se localizan a todo lo largo de las costas, en zonas pequeñas:

Mangle dulce

Maytenus phyllanthoides

Allenroltea occidentalis

Frankenia plamen

2. PRODUCCION AGRICOLA

2.1. Superficie dedicada a la agricultura

La superficie total del Estado es de 7,367 700 Ha, de las cua-les, 73 200 Ha se dedican a la agricultura de las 504 000 Ha que son - - susceptibles a explotarse. De esa superficie, 54 600 Ha son de riego, en
contrando que 35 000 Ha pertenecen al Distrito de Riego No. 66 del Valle de Santo Domingo y las restantes a 69 obras de unidades de riego.

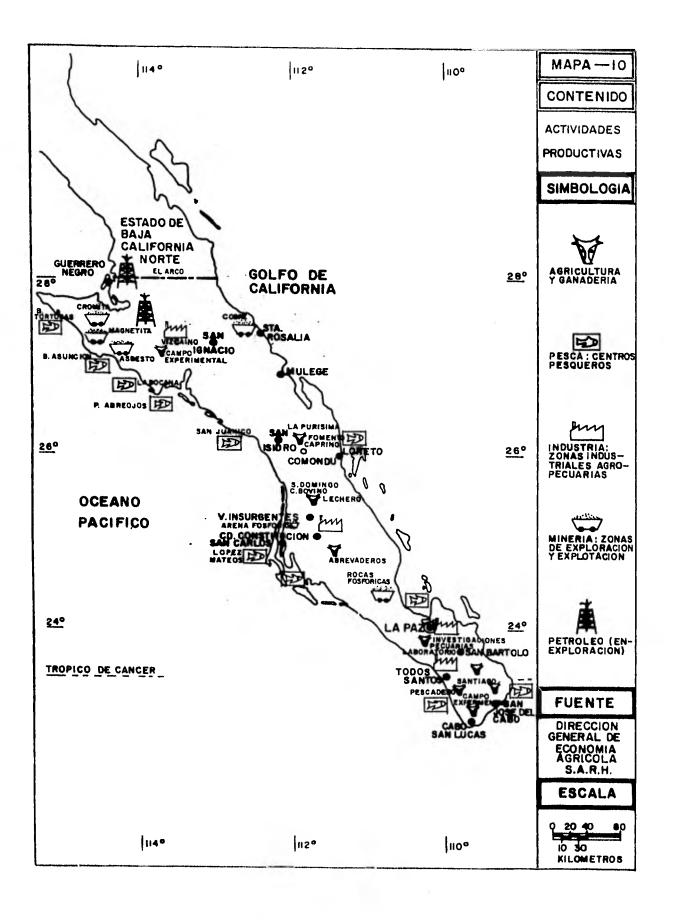
La tecnología agrícola es, en general, de las más avanzadas de la República, recurriendo a las más altas tecnologías disponibles para poder lograr buenas producciones.

2.2. Tenencia de la tierra

TIPO DE TENENCIA	HA.
	**
otal	7 367 700
idal (91 ejidos)	5 195 755
lonias agrícolas	146 300
edios ganaderos	181 260
rrenos nacionales	892 085
ropiedad privada	938 396
rreteras pavimentadas y caminos	13 904
4	

2.3. Uso actual del suelo

	LABOR	PASTOS	BOSQUES Y SELVAS	OTROS	TOTAL
La Paz	741.0	2 262 789	51109	51 341	2 372 649
Comondá	3700.0	1 602 610		46 220	1 685 830
Mulegé	683.1	3 044 921		257 469	3 309 221
TOTAI	: 5124.1	6 910 320	51109	355 030	7 367 700


2.4. Principales áreas agrícolas

AREA	MUNICIPIO	HECTAR	EAS
Valle de Vizca î no	Mulegé	2 2	50
Valle de Mulegé	Mulege	8	50
San Bruno-San Lucas	Mulegé	3	59
Valle de San Juan L	Comondú	9	60
NCPE Ley Federal de Aguas	Comondú	1 5	00
Valle de Santo Domingo	Comondú	35 0	00
Valle de La Paz	La Paz	1 2	00
Valle de los Planes	La Paz	1 5	80
Cuenca de Santiago	La Paz	8	70
Cuenca de San José del Cabo	La Paz	9	10
Otros		27 7	21
TOTAL:		73 2	00

CUADRO No. 1

PRODUCCION AGRICOLA 1981

CULTIVO	SUPERI SEMBRADA Ha.	CULTIVADA Ha.	RENDIMIENTO Ton. / Ha.	PRODUCCION TOTAL Ton.	P. M. R. \$/Ton.	VALOR DE LA CO SECHA (MILES - DE PESOS)
Trigo	25 400	25 300	4.8	121 000	4 600	558 313.00
Maíz	1 932	1 742	2.5	4 355	5 540	24 127.00
Frijol	4 788	4 200	1.1	4 620	17 316	80 000.00
Cártamo	6 323	3 170	1.2	3 804	7 800	29 671.00
Sorgo grano	7 964	7 964	5.0	39 820	3 200	127 000.00
Algodón	17 052	15 060	3.2	48 192	14 000	674 668.00
Ajonjol í	22	22	0.9	20	17 000	340.00
Chile	422	350	15.0	5 250	5 400	28 350.00
Forrajes (maíz y sorgo)	315	315	40.0	12 600	800	10 080.00
Garbanzo	1 378	1 376	1.6	2 201	20 000	44 000.00
Hortalizas	324	280	12.0	3 360	15 0 0 0	50 400.00
Jitomate	370	350	15.0	5 250	14 800	77 700.00
Melőn (semilla)	20	20	0.3	6	350 000	2 100.00
Aguacate	262	195	3.0	5 85	15 000	8 775.00
Alfalfa	2 050	2 050	15.0	30 750	2 800	86 100.00
Citricos	375	375	12.0	4 500	9 800	44 100.00
Frutales	1 602	1 602	3.1	4 966	6 000	29 797.00
Mango	504	300	2.0	600	9 300	5 580.00
Vid	1 789	825	2.0	1 650	35 000.	57 750.00
Varios	238	238	5.0	1 190	3 000	3 570.00
TOTAL:	73 200	65 734		294 719		1'941,246.00

3. GANADERIA

La ganadería, salvo pequeñas excepciones, se ha visto limitada por - las condiciones del medio por lo que la explotación se realiza en forma extensiva y tradicional y su incremento ha sido muy lento.

POBLACION Y PRODUCCION GANADERA
(AÑO 1980)

ESPECIE	POBLA	ACION	 PROD	UCCION
			 PRODUCTO	VOLUMEN
Bovino	164	133	Leche	1 5229.0 Lt
Porcino	48	839	Carne	4134.4 Ton
Ovino		157	Carne	0.4 Ton
Caprino	183	600	Leche	49.6 Lt
Aves	216	107	Huevo	1896.0
Aves	378	654 .	Carne	1538.0 Ton
Caballar	174	341		
Mular	10	671		
Asnal	14	562		
Meleagrícola	6	120	Carne	20.0 Ton
Colmenas	3	221	Miel	59.6 Ton
Cunicula	15	341	Carne	49.0 Ton

3.1. Potencial ganadero

De acuerdo a las características climatológicas y fisiográficas de la Península de Baja California se determina que la agricultura está l \underline{i}

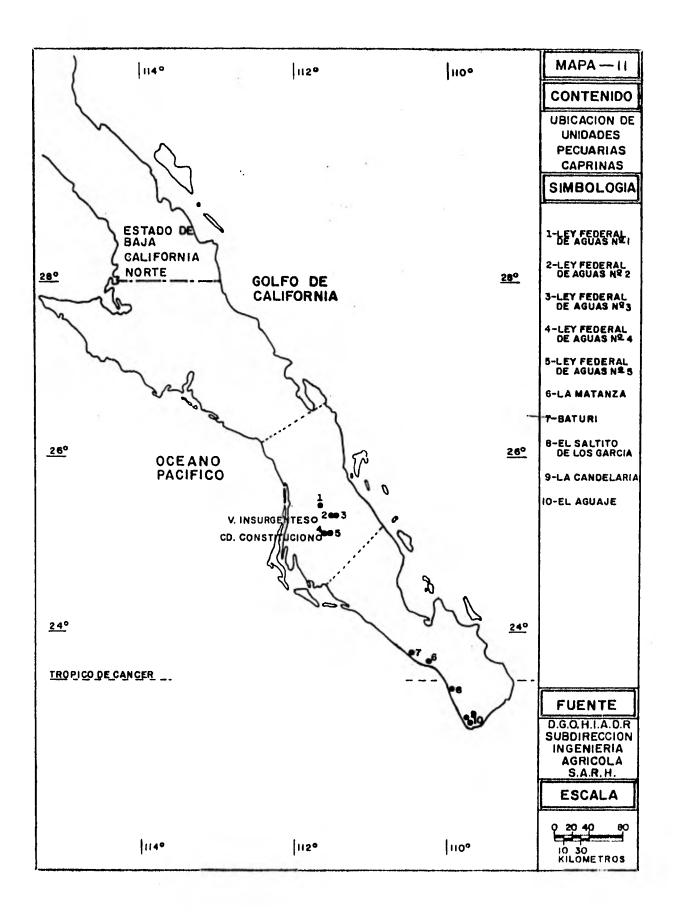
mitada al aprovechamiento del agua para riego, existiendo una sobreexplota ción, por lo que es recomendable dar un giro a la producción hacia el ramo pecuario, destacando el aprovechamiento del pastizal nativo apoyado de pequeñas zonas irrigadas para la explotación de ganado caprino y en algunos casos de bovinos.

Cabe destacar que se pueden explotar recursos faunísticos con - fines comerciales, turísticos y ecológicos.

4. PRODUCTIVIDAD EN EL RAMO CAPRINO

La ganadería caprina se ha incrementado en un ritmo muy lento debidoprincipalmente a la falta de abrevaderos y de obras complementarias de infraestructura, así como a una tecnología tradicional improductiva.

Así tenemos que la producción de leche por cabra es de 0.54 Lt/día --con un período de 6 meses de lactancia.


Actualmente se tienen clasificados 200 proyectos para desarrollo caprino y/o bovino consistentes en módulos que utilizan el agostadero y con apoyo, en algunos casos, de pequeñas áreas de riego, acompañados de obras de infraestructura sencillas.

Con estos proyectos, de los cuales se tienen dentro del programa de - Ingeniería Agrícola 10 unidades terminadas y 36 en estudio, se pretende obtener una producción por cabra de 1.6 Lt / día con una lactancia de 7 meses.

5. LOCALIZACION DE LAS UNIDADES DE PRODUCCION

Las unidades de producción ya terminadas se encuentran ubicadas en el Centro y Sur del Estado y se observan en el Mapa No. 11 siendo las siguientes:

UNIDAD	MUNICIPIO
Ley Federal de Aguas No. 1	Comondú
Ley Federal de Aguas No. 2	Comondú
Ley Federal de Aguas No. 3	Comondú
Ley Federal de Aguas No. 4	Comondú
Ley Federal de Aguas No. 5	Comondú
La Matanza	La Paz
Baturí	La Paz
El Saltito de los García	La Paz
La Candelaria	La Paz
El Aguaje	La Paz

ASPECTOS SOCIOECONOMICOS

1. POBLACION

1.1. Población total y número de familias

La población total del Estado asciende a 215 139 de los cuales-109 550 son hombres y 105 589 son mujeres.

El número de familias tiene un total de 42 956.

1.2. Población económicamente activa

Es de 69 954 personas, de las cuales 13 538 pertenecen a la rama de agricultura, ganadería, caza, etc. 592 a la explotación de minas y-canteras; 5 226 a industrias manufactureras; 292 a electricidad, gas y agua; 4 876 a construcción, 8 289 a comercio mayor y por menor; 3 362 - transporte, almacenamiento, etc; 1 264 a establecimientos financieros, — 12 143 a servicios comunales, 20 015 a actividades insuficientemente específicadas y 357 a desocupados que no han trabajado.

2. VIAS DE COMUNICACION

2.1. Terrestres

Se cuenta con 4 906 km. de Carretera en el Estado, los cuales - se encuentran distribuídos en líneas principales y secundarias. Las prin-

ESTRUCTURA OCUPACIONAL

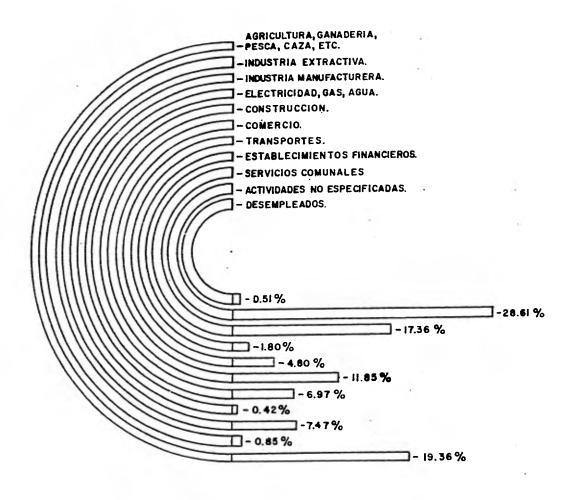
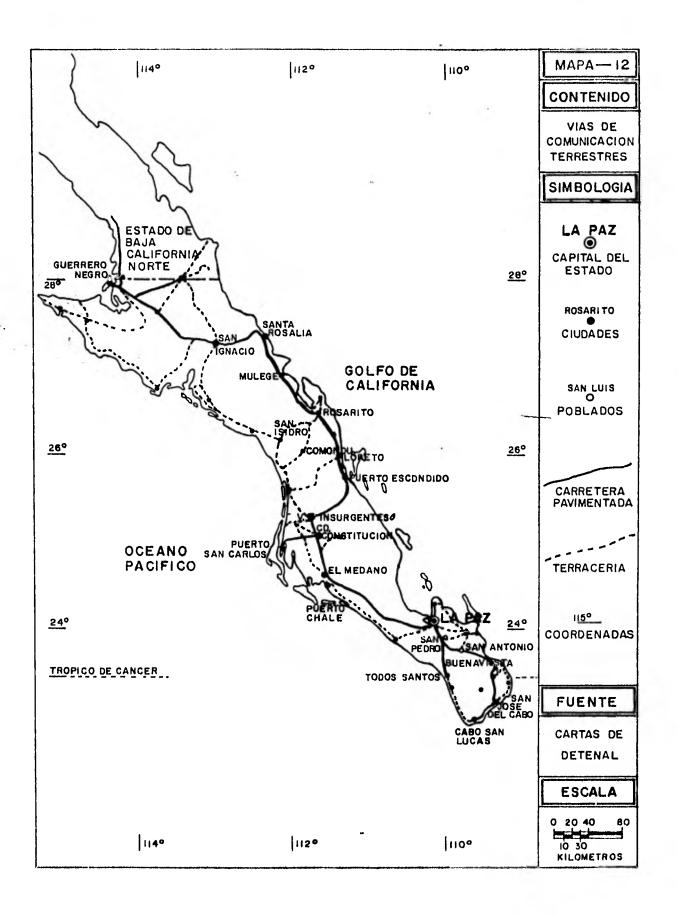


FIGURA Nº 2

cipales son:

Carretera Federal No. 1: Tijuana - La Paz, comunicando a Guerre ro Negro, El Vizcaíno, San Ingnacio, Santa Rosalía, Mulegé, Rosario, Loreto, Ejido Insurgentes, Los Inocentes, San Hilario y Los Aripas.

Carretera Federal No. 11: La Paz - San José del Cabo, comuni-cando a San Pedro y El Triunfo.


Carretera Estatal No. 9: La Paz - San Lucas, comunicando a Todos Santos con P. Elías Calles.

La Carretera Federal No. 1 junto a la No. 11 es conocida como - Transpeninsular. Esta Carretera facilita el incremento turístico, pesquero, agropecuario e industrial, lo que ha servido para aprovechar más integralmente los recursos naturales y mejorar la economía del Estado.

2.2. Aereas

Las diez ciudades principales cuentan con el siguiente servicio aéreo:

La Paz	Aeropuerto	Internacional
San José del Cabo	Aeropuerto	Internacional
Loreto	Aeropuerto	Internacional
Cabo San Lucas	Aeropuerto	Local
Todos Santos	Aeropuerto	Local
Cd. Constitución	Aeropuerto	Local
Insurgentes	Aeropuerto	Local
Comondú	Aeropuerto	Local
Mulegé	Aeropuerto	Local
El Vizcaino	Aeropuerto	Local

Las vías aéreas nacionales que existen en el Estado son:

La Paz - Cd. Obregón

Ia Paz - Culiacán

La Paz - Guadalajara

La Paz - Puerto Vallarta

La Paz - Mazatlan

La Paz - Tijuana

La Paz - México

Las vías locales que existen en el Estado son:

Villa Constitución - Loreto

Villa Constitución - La Paz

La Paz - San José del Cabo

Santa Rosalía - Guerrero Negro

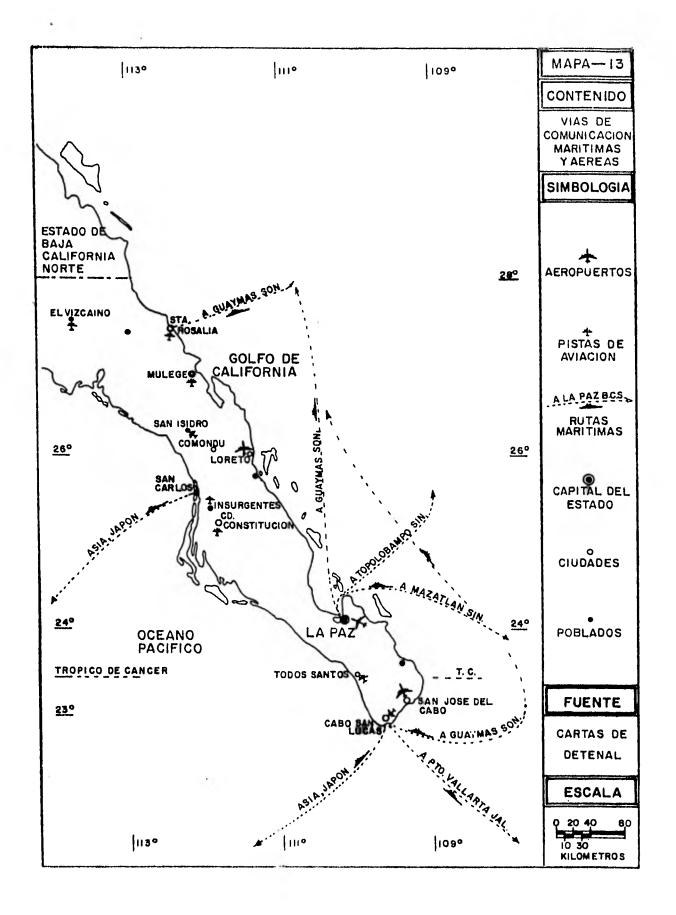
2.3. Maritima

Las rutas marítimas más importantes son las siguientes:

Santa Rosalía - Guaymas, Sonora

La Paz - Guaymas, Sonora

La Paz - Topolobampo, Sonora


La Paz - Mazatlán, Sinaloa

Cabo San Lucas - Guaymas, Sonora

Cabo San Lucas - Puerto Vallarta, Jalisco

Cabo San Lucas - Asía, Japón

San Carlos - Asía, Japón

Actualmente en el Estado existen dos puertos de altura; San Carlos, en la Costa del Pacífico, y Santa Rosalía, en el Golfo de California. Existen también muelles de menor calado en La Paz, Cabo San Lucas, Puerto-López Mateos, Bahía de Tortuga así como diversos atracaderos de menor — — importancia.

3. SISTEMAS DE COMUNICACION

3.1. Correos

Se cuenta con el servicio de 36 oficinas de correos. De ellas, 14 son administraciones y el resto agencias.

3.2. Telégrafos

Funcionan 19 administraciones y oficinas radiotelegráficas. La longitud de la línea telegráfica simple es de 560 Km; además de 576 Km delíneas desarrolladas con que se cuenta.

Las principales oficinas telegráficas se encuentran en: Bahía — Tortugas, Cabo San Lucas, Comondú, Guerrero Negro, La Paz, La Purísima, Lo reto, Mulegé, Lic. Adolfo López Mateos, Punta Brejos, San Antonio, San — Ignacio, San Isidro, San José del Cabo, Santa Rosalía, Santiago, Todos Santos, Villa Constitución y Villa Insurgentes.

3.3. Teléfono

El número de teléfonos en el Estado hasta 1970, era de 7 775 — con una extensión de 9 720 km. Existen además 12 estaciones telefónicas — incorporadas a la red Nacional.

ESTUDIO DE MERCADO

1. ANTECEDENTES

1.1. Objetivos

El estudio de mercado de un proyecto cualquiera tiene por objetivo primordial la detección de la capacidad de la población objetivo para adquirir el producto o servicio que se va a producir en la unidad que sepretende establecer.

Así mismo sirve para determinar otras características que atañen a la unidad como son: tamaño, localización, precios de venta y sistemas de comercialización.

1.2. El mercado de la leche de cabra

En nuestro País el 60% de la leche de cabra se transforma en queso, un 35% es preparada como dulces regionales y solo el 5% se consume como leche fresca.

En 1977 se estima que existía una población caprina de poco más de 8'000,000 de cabezas, el cual correspondían a los ejidatarios un 66.5%, observandose una disminución en la población caprina en los últimos 7 años. Esta población caprina producía del orden de 565,000 Lt al día de leche de

los cuales se transformaban aproximadamente 197,000 Lt. en productos comocajeta y dulces. El resto se consumía básicamente en forma de queso.

La población caprina en México, durante 1977, se distribuía de la manera siguiente:

REGIONES	POBLACION	*
Noroeste	350,059	4.33
Norte	1'890,608	23.27
Pacífico Centro	403,367	4.99
Centro Norte	1'116,896	13.81
Noreste	2'011,439	24.87
Pacífico Sur	1'163,258	14.38
Centro	1'027,492	12.70
Golfo	120,030	1.48
Península de Yucatán	5,415	0.07
TOTAL:	8'088,564	100.00

2. GENERALIDADES

2.1. Descripción del producto

El producto de interés es la pasta de cajeta, la que se obtiene mediante la concentración de leche de cabra hasta un 50% de su volúmen inicial, adicionada de azúcar en un 20% y 2% de carbonato de calcio como --

neutralizante; de color café característico y sabor agradable.

2.2. Productos substitutos

Para este tipo de producto existe un substituto y este es la pasta de cajeta obtenida de una mezcla de leche de cabra y leche de vaca,de menor calidad, más claro que el anterior y de regular aceptación por parte del productor de cajeta y dulces.

3. COMPORTAMIENTO DE LA OFERTA

3.1. La oferta Nacional del producto

La oferta Nacional de la pasta de cajeta ha decrecido en formaproporcional a la reducción de la producción lechera caprina, pasando de 54 000 Ton. producida en 1970 a 47 000 Ton. en 1977, esperándose, para -1982, un déficit de producción de 37 000 Ton.

El déficit que actualmente se tiene en la producción de pasta - de cajeta como materia prima para la elaboración de cajeta y dulces se - - esta contrarrestando mediante el empleo de leche de vaca lo cual demerita- la calidad del producto final.

3.2. La oferta regional del producto

A nivel estatal no se tiene producción de pasta de cajeta ya que los dulces o productos derivados de ella no se consumen regionalmente.

Básicamente la transformación de la leche obtenida en Baja California Sur y especificamente en el Municipio de Comondú es a queso fresco, el cual se comercializa en el continente estando el precio del mismo sujeto

a fuertes fluctuaciones como respuesta a canales inadecuados de comercialización.

3.3. Tendencia

A nivel Nacional la tendencia de la oferta es poco alagadora es perandose que continué en su declive o bien se establezca en un nivel queserá deficitario con respecto a la demanda.

En el aspecto regional y debido a programas de Fomento y Apoyoa las Unidades de Producción Caprina emprendidas por el Gobierno Federal se espera incrementar, en corto plazo, la oferta Nacional de pasta de caje ta en aproximadamente 1,500 Ton. al año.

4. COMPORTAMIENTO DE LA DEMANDA

4.1. Demanda Nacional del producto

De acuerdo con los datos observados en los principales centrosde producción (Nuevo León, Coahuila y San Luis Potosí) y de consumo (San -Luis Potosí y Guanajuato) de pasta de cajeta, se detecta un déficit tantode esta como de leche de cabra que asciende a 37 000 Ton.

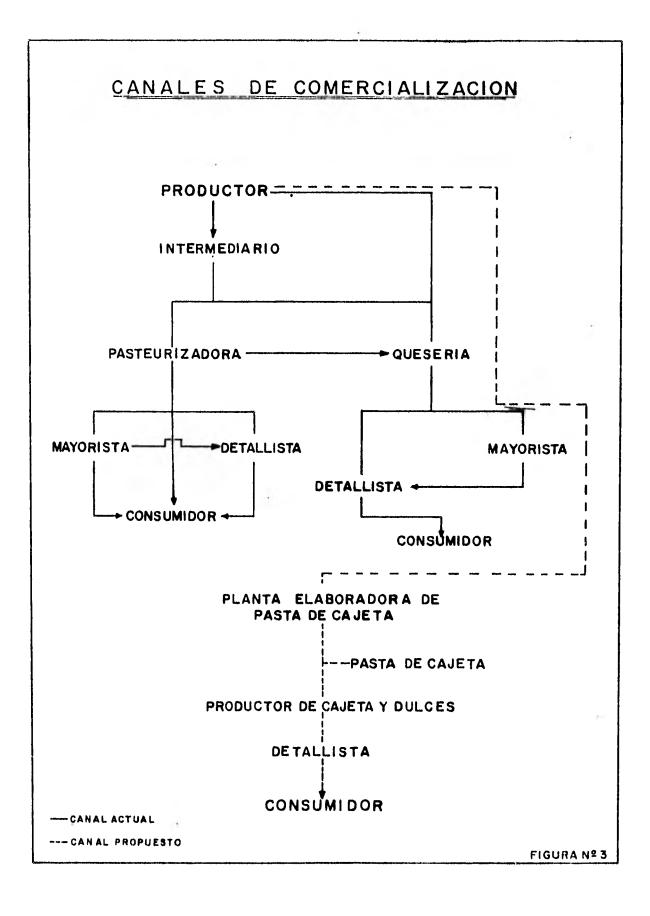
4.2. Demanda Regional del producto

Esta demanda es nula en la actualidad por lo que la planta se instalará para satisfacer la demanda Nacional, planteando para un futuro la utilización de esta pasta para la elaboración de cajeta y dulces, una vez que los socios de la empresa se hayan identificado con el proceso y se haya abierto el mercado de estos productos.

4.3. Tendencia

La tendencia de la demanda es ascendente en comparación con la oferta por lo que cualquier unidad de producción caprina que incremente la disponibilidad de leche así como de plantas que aprovechen su transformación son de gran rentabilidad.

5. BALANCE DEMANDA - OFERTA


De los datos analizados anteriormente se llega a la conclusión de que la demanda es superior a la oferta en un porcentaje mayor al 100% ya que - la principal producción se ubica en el Centro y en el Norte de la República y no siendo esta suficiente para cubrir la demanda Nacional.

6. CANALES DE COMERCIALIZACION

Los canales actuales de comercialización de la leche de cabra así como los propuestos para la pasta de cajeta se observan en la Figura No. 3.

7. UBICACION DE LOS CENTROS DE CONSUMO

Los principales centros de consumo de la pasta de cajeta se ubican en el Centro de la República, siendo las localidades más importantes Matehua-la y San Luis Potosí, S.L.P. y Celaya, Gto., ofreciéndose estos a transportar del Centro de producción de la pasta de cajeta a estas localidades — toda la producción que se obtenga.

LOCALIZACION Y TAMAÑO

1. MACROLOCALIZACION

1.1. Generalidades

Para conseguir el éxito esperado con una unidad agroindustrialo un complejo agroindustrial se hace necesario ubicar una localidad en la
cual existan las condiciones óptimas para su operación. Io anterior se consigue mediante un análisis de localización en el cual se evalúan diferentes zonas y ciudades con el fin de encontrar la que más se adapte a las necesidades.

La información necesaria para la ubicación proviene de los análisis fisiográfico, socioeconómico y de mercados realizados anteriormente.

Para este caso en particular se consideran tres regiones equivalentes a los municipios del Estado de Baja California Sur y dentro de estos se estudiarán varias localidades.

		
REGION	MUNICIPIO	SITIO
Norte	Mulegé	Santa Rosalía
Centro	Comondú	V. Insurgentes
		Cd. Constitución
Sur	La Paz	La Paz
		San José del Cabo

1.2. Disponibilidad de materia prima e insumos

De acuerdo a la ubicación de las unidades de producción caprinas ya terminadas y la distribución de los posibles proyectos, las zonas más aptas para la localización de la planta son la centro y la sur pues es en ellas donde se encuentran la mayoría de las unidades.

De estas dos sería más recomendable la centro pues 5 de las unidades terminadas se encuentran localizadas en una sola zona de esa región-y también se encuentran la mayoría de las unidades ya en estudio.

Con respecto a los insumos la región más favorecida es la sur;sin embargo, la región centro también tiene centros de población importantes donde se pueden conseguir los insumos necesarios.

1.3. Facilidades de mercado

A este respecto las tres zonas se encuentran en las mismas condiciones, sin considerar que el mercadeo al país se hace por barco, que - saldría de La Paz o Santa Rosalía; pero para el manejo del producto tantoprimario como terminado la más favorecida sería la región centro. Esta -cuenta con suficientes medios de transporte que se pueden mejorar con un sistema de comercialización adecuado que pueda llegar a la construcción de
una red de mercadeo eficiente.

1.4. Capacidad de aumentar la producción de materia prima

Es la región centro la más adecuada por el momento para incre-mentar la producción de materia prima y si en el futuro se mejoran las condiciones para explotar la cabra en las regiones de Mulegé y la Paz sería fácil comercializarla hacia la zona de Comondú.

Según datos informativos se tiene que se encuentran en estudio-13 unidades caprinas para el municipio de Comondú y 2 para Mulegé.

UNIDADES CAPRINAS EN ESTUDIO

No.	SITIO	MUNICIPIO
1	San Lucas	Mulegé
2	Emiliano Zapata	Mulegé
3	El Choyal	Comondú
4	Ios Naranjos	Camonda
5	San José de Guajademi	Camondú
6	San Juan Londo	Comonda
7	Cadeje	Comondú
8	Tepentu	Comondú

	UNIDADES CAPRINAS EN ESTUDIO	(Continuación)
No.	SITIO	MUNICIPIO
9	Josefa Ortiz de Dominguez	Comondú
10	El Zorrillo	Comondú
11	Bebelama	Comondú
12	San Isidro/San Vicente	Camondú
13	San Ramón/San Isidro	Comondú
14	San Raymundo/El Potrero	Comondú
15	Poza Seca	Comondú

1.5. Análisis de macrolocalización

	FACTOR	NORIE	CENTRO	SUR
			CIRTINO	
Suministro de materias primas	100	60	85	70
Mercado	100	50	60	70
Suministro de energía y combustible	100	90	90	90
Suministro de agua	100	80	85	85
Clima	100	60	60	60
Transportes	100	80	80	80
Disposición de desperdicios (basura, agua usada, etc.)	100	80	80	80
Mano de obra	100	60	90	70
Leyes reguladoras	100	90	90	90
Impuestos	100	90	90	90
	1 000	720	800	775

El cuadro anterior se elabora ponderando cada concepto en relación con los posibles centros de producción y centros de captación. Los valores se obtienen en base al criterio del valuador.

De este se deduce que la región más adecuada es la centro, es - decir el Municipio de Comondú.

2. MICROLOCALIZACION

2.1. Generalidades

Para que la microlocalización conduzca a una máxima tasa de ganancia o a un mínimo costo unitario se considera posible la ubicación de la empresa con respecto a factores como terreno y edificios, tributación y
problemas legales, condiciones generales de vida, clima, facilidades administrativas, política de descentralización, disposición de aguas residuales, etc.

Tomando en cuenta estos factores y la cercanía de las unidadesde producción se ha escogido a Villa Constitución.

2.2. Características

Villa Constitución esta cercana a los primeros cinco módulos de producción caprina que dan origen a esta empresa - Ley Federal de aguas -- No. 1 al 5 - . Además, esta localizada en el área de influencia de los -- proyectos en estudio, lo que garantiza la materia prima para la planta.

Se tiene gran actividad ganadera en la Región Centro del estado de Baja California Sur. La Agricultura se localiza en el Valle de Santo Do mingo al Norte del Municipio, con 30 000 Ha. por lo que la actividad agricola de Constitución también es considerable.

En el caso de pesca funcionan dos empacadoras localizadas en — las poblaciones de Matancitos y Puerto Alcatráz.

En comunicaciones cuenta con una red integrada a partir de la -carretera transpeninsular. El movimiento marítimo se circunscribe a dos -puertos principales: Puerto Escondido y San Carlos .

La población de Villa Constitución asciende a 57 720 habitantes, siendo el 30.62% población económicamente activa.

Población económicamente activa en la Delegación de Comondú.

RAMA DE ACTIVIDAD	POBLACION .	8
Total	17 682	100.00
Agricultura, ganadería, caza, etc.	5 183	29.31
Explotación de minas y canteras	4 5	0.25
Industrias manufactureras	1 304	7.3
Electricidad, gas y agua	5 7	0.32
Construcción	914	5.1
Comercio mayoreo y menudeo	1 635	9.2
Transporte, comunicaciones	795	4.4
Establecimientos financieros, etc.	242	1.3
Servicios comunales, etc.	2 584	14.6
Actividades insuficientemente especificas	4 828	27.3
Desocupación, no han trabajado	93 {	0.52

FUENTE: X Censo General de población y vivienda 1980. Estado de Baja - California Sur. Vol. I Tomo 38 México, 1982.

2.3. Infraestructura básica

Villa Constitución está comunicada al Norte y Sur de la entidad por la Carretera Troncal del Estado y con las demás poblaciones por caminos vecinales.

Cuenta también con campo aéreo equipado para recibir hasta equipo DC-3. Así mismo dispone de servicio telefónico, radio, telegráfico y de correos. En la localidad hay hoteles, casas de huéspedes y restaurantes. No existe ningún problema en cuanto al abastecimiento de energía eléctrica para consumo doméstico e industrial.

2.4. Servicios

La mayor parte de las actividades comerciales en Villa Constitución, se orientan a satisfacer los requerimientos de los productos agrícolas de la región. Esta es la razón fundamental de que allí opere el Banco Nacional de Crédito Pural, S.A.

Los bancos que tienen sucursales en esta localidad son el Banco Nacional de México, Londres y México, S.A. y el Banco de Comercio de Baja California Sur.

Finalmente, Villa Constitución tiene 23 escuelas de nivel prima ria y una escuela secundaria y de capacitación técnica que satisfacen adecuadamente la demanda de la población escolar de esta ciudad.

3. TAMAÑO

3.1. Generalidades

El tamaño de un proyecto se suele aludir a su capacidad de producción durante un período de funcionamiento que se considera normal para las circunstancias y tipo de proyectos de que se trata.

Dentro de las relaciones recíprocas generales existentes entre los diferentes aspectos de un proyecto con respecto al tamaño están: en -- primer término; la relación tamaño-mercado, en cuyo análisis adquiere especial interés el dinamismo de la demanda y su distribución geográfica y en segundo lugar, la relación tamaño-costo de producción, en donde se incluye el flete hasta el lugar de uso.

La distribución de los centros de consumo también afecta al tamaño por las repercusiones que se tiene en el precio de venta de los productos.

Se ha mencionado, en el estudio de mercado, que la demanda de productos derivados de la leche de cabra está insatisfecha, debido fundamentalmente a que los centros de producción tradicionales de leche de cabra han disminuído considerablemente la oferta de la misma. Debido a lo
anterior, los principales fabricantes de dulce y cajetas se han visto en la necesidad de traer la materia prima de centros de producción alejados e
inclusive, en los últimos años, de sustituirla por leche de vaca lo que -ocaciona que el producto no sea de la calidad demandada.

3.2. Limitaciones de materia prima

Para analizarse este punto es necesario referirse al objetivo - del presente proyecto que es el de presentar un módulo de aprovechamiento- de leche de cabra para obtener, en principio, pasta de cajeta y a largo - plazo, dulces derivados de la misma.

La leche de cabra se traera directamente de los centros de producción al módulo, inmediatamente después de la ordeña, sin ningún tratamiento; por lo tanto, una limitante es el tiempo de transporte. El número de proyectos que están en operación o construcción del plan de Desarrollo-Agropecuario del Estado de Baja California Sur, darán la disponibilidad de materia prima en las diversas etapas de desarrollo del módulo.

Con respecto a los insumos, que prácticamente son pocos (azúcar, carbonato de calcio y tambores) es importante señalar que la única restricción es el tener que comprarlas fuera del Estado lo que acarreará un incremento (del 1.5 al 2%) en los costos de producción. Para la adquisición de los mismos deberá establecerse un programa mensual.

3.3. Restricciones legales, Institucionales y/o Tecnologícas

No existen restricciones de tipo tecnológico, legal o material—
(equipo necesario) debido a la sencillez del proceso.

Con respecto a las restricciones institucionales los reglamen-tos a seguir son los de la Dirección General de Normas de Calidad de la Se
cretaría de Comercio y la Secretaría de Salubridad y Asistencia.

3.4. Alternativas de producción

Para un módulo de esta naturaleza el tamaño es muy variado. —
Puede ser desde rural ó rústico hasta industrial ya que básicamente el proceso de obtención de la pasta es sencillo. Sin embargo, para volúmenesgrandes es necesario tomar en consideración todos los conceptos de higiene
y sanidad ya que se trata de un producto perecedero y de fácil descomposición.

No se puede considerar que existan, como en otras industrias, - equipos de diferentes escalas de producción. Este módulo consiste basícamente en seleccionar adecuadamente el número de pailas, caldera, tanque de enfriamiento y equipo de refrigeración para la capacidad de establecida; - por lo tanto, la escala de producción es bastante flexible.

3.5. Selección de tamaño

la materia prima que se empleará en este módulo proviene de proyectos pecuarios que en 1982 terminarán su construcción y que para 1983 estarán operando en su totalidad. Estos proyectos fueron construídos con presupuesto del Gobierno Federal y a través del programa de Ingeniería Agrícola. El ganado que se utilizará durante el primer año de operación es criollo, cuya producción es de 1.2 lt/día por cabra, con 210 días lactan tes.

De este rebaño se seleccionarán las cabras más productivas, las cuales serán empadradas con sementales de registro de la raza Nubia con el fin de mejorarlo genéticamente e incrementar la producción.

Cada unidad de producción caprina consiste en la explotación de 1 000 cabras divididas en 2 rebaños de 500 cabras cada uno con el propósito de obtener leche todo el año.

En el cuadro siguiente se presenta la proyección de la produc--ción de leche de las unidades que surtirán al módulo:

AÑO	PROYECTO No.	en operacion Lt/d1a	PROYECTO I	EN ESTUDIO Lt/dla	TOTAL
1983	5	3 000	5		3 000
1984	5	3 600	5		3 600
1985	5	4 000	5	3 000	7 000
1986	5	4 000	5	3 600	7 600
1987	5	4 000	5	3 750	7 750
1988	5	4 000	5	4 000	8 000

En base a la producción anterior la selección de tamaño deberáhacerse desde 2 puntos de vista:

- a. Selección de la obra civil, red hidráulica, sanitaria, eléctrica y cámara de refrigeración.
- b. Selección del equipo, compuesto por pailas, calderas y tan que de enfriamiento.

Estos se hace porque la inversión de la obra civil se cargará -

en un 70% a la S.A.R.H. y el 30% con cargo a los socios de la empresa. El segundo rubro, que consiste en equipo, lo pagaran estos ultimos mediante - créditos de la banca.

Las alternativas son 3 600 lt/día y 7 200 lt/día de acuerdo a - la disponibilidad de la materia prima.

Por consiquiente, la obra civil se hará para contener el equipo necesario para procesar 7 200 lt/día el cual se adquirirá en dos etapas, - cada una de ellas para una capacidad de 1 800 lt/turno lo que da una capacidad total de 7 200 lt/día en dos turnos, con el doble del equipo inicial.

De acuerdo al análisis basado en la proyección de la producción de leche de la unidad se observa que la capacidad óptima es, en este caso, de 7 200 lt/día considerándo que será el aprovechamiento óptimo de la matería prima y que se planteará un programa de producción adecuado.

3.6. Programa de producción

La producción de leche se irá incrementando a medida que se vaya mejorando genéticamente el gando. Por lo tanto el programa de producción debe de hacerse tomando en cuenta el entrenamiento del personal, el ajuste de los equipos y sobre todo la estabilización de la matería primaen su aspecto de producción.

En tanto se logra la producción total se propone para llevar a cabo este programa, que se establezcan las siguientes etapas de producción:

Etapas de Producción

ETAPA	CAPACIDAD Lt/dfa	TIEMPO
1 <u>a</u>	600	1 mes
2 <u>a</u>	1 200	1 mės
3 <u>a</u>	1 800	1 mės
4 <u>a</u>	3 600	12 meses
<u>5a</u>	7 200	Estabilizada

3.7. Días de trabajo por mes y año

Se trabajan 25 días al mes lo que dan un total de 300 días al -año, no tomando en cuenta vacaciones y épocas de baja productividad.

ANALISIS TECNICO

1. EL PRODUCTO

1.1. Caracteristicas

La pasta de cajeta se obtiene mediante la eliminación del agua de la leche de cabra por evaporación y la adición de sacarosa.

La adición de azúcar a la leche para su concentración garantiza la conservación del producto acabado. El azúcar crea en el medio una presión osmótica muy elevada que impide el desarrollo de microorganismos.

En la pasta debe existir cristalización del azúcar como consecuencia del estado de sobresaturación, pero esto debe de estar controladopor un enfriamiento de la pasta hasta alcanzar una temperatura de 30 - - - 35°C. A esta temperatura la velocidad de cristalización es máxima y la -- viscosidad del producto no es suficiente para retrazar el fenómeno, como - ocurre cuando se enfría por debajo de esta temperatura.

1.2. Normas de calidad

a. Fisicoquímicas

Húmedad	59 %
Solidos de leche	26 %
Lactosa	1.0 %

Proteinas 7 %

Grasa 7.5 %

Cenizas 2.0 %

 \mathcal{G} = 1.3 Kg/lt a una temperatura de 30°C

Cp = 0.8 Kcal/g°C a una temperatura de 30°C

b. Microbiológicas

La cuenta standard es de 50,000 Col/gr. de microorganismos-coliformes y patógenos sembradas en medio gelosatriptona glucosa, incubada a 35.5°C + 1.5°C por 48 horas.

c. Organolépticas

c.1 Consistencia

La consistencia deberá ser uniforme

c.2 Color

El color característico, café claro

c.3 Sabor

Sabor dulce y agradable

c.4 Olor

El olor de la pasta de cajeta es característico del - producto.

c.5 Textura

No debe ser arenosa (cuenta de cristales superior a - 3000,000/mm de leche).

Las normas de calidad y las características fisicoquímicas no están registradas en la Dirección General de Normas de la Secretaría de Comercio. Estas fueron tomadas de investigaciones a plantas que se dedican a la elaboración de este producto.

2. EVALUACION DE LA MATERIA PRIMA

2.1. Calidad

La leche de cabra consiste en una mezcla compleja, formada — principalmente por la grasa (en forma de emulsión), por las proteínas (en forma coloidal) junto con la lactosa (en disolución verdadera); además — de esos componentes principales, existen los minerales, sobre todo el calcio y el fósforo, así como vitaminas v enzimas. La leche de cabra normal mente tiene un extracto seco total (EST) más elevado que el de leche de vaca.

Leche de vaca = 12.25 %

Leche de cabra = 14.12 %

La grasa de leche de cabra presenta, aún desde el punto de vista bioquímico, diferencia con la de leche de vaca. Contiene cerca de 18 % de ácidos grasos de cadena corta, o sea, el doble de la cantidad que la le che de vaca, siendo los ácidos grasos representados sobre todo por los—ácidos capróicos, caprílico y cáprico.

En la leche de cabra es característico el pigmento clorotilia no que es liposoluble y es el responsable de la coloración amarillenta típica de la misma.

Los datos análiticos de la leche de cabra son los siguientes:

Composición g/lt:		Nitrógeno total	40
Extracto seco total	130.242	Caseina	30,33
Materia grasa	43,52	Cenizas	6.46
Lactosa	42.62	Acido láctico	1.58
Sales	8	Húmedad	870

Propiedades físicas:

$$P = 1,0301 \text{ Kg/lt a T} = 25^{\circ}\text{C}$$

$$=1.6 - 2.15$$
 cp a T = 25°C

K =electrica 45×10 mhos a T = 25 °C

 $Cp = 0.93 \text{ Kcal/g}^{\circ}\text{C}$ a $T = 25^{\circ}\text{C}$

Pto de congelación ==0.55°C

2.2. Disponibilidad de materia prima

Con esta no se tienen problemas ya que la producción de la planta se ha planeado conforme el desarrollo de las unidades de producción caprinas que están construídas y por construir en la zona aledaña a donde se instalará el módulo de procesamiento.

3. PROCESO

3.1. Selección del proceso

Se pueden tener las siguientes alternativas

- 1. Proceso intermitente con evaporación a presión atmosférica
- 2. Proceso intermitente con evaporación al vacío.

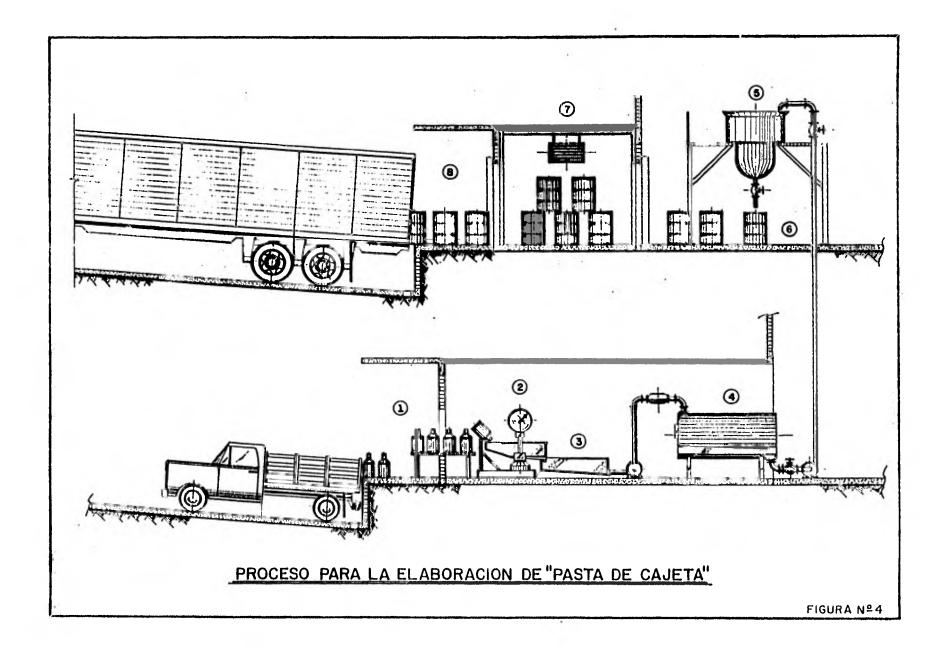
La primera alternativa se basa en que cuando la presión de va-

por se iguala a la presión total que actúa sobre la superficie tiene lugar la ebullición y es usada en líquidos estables.

La segunda es usada para la evaporación de líquidos sensiblesa temperaturas elevadas y puede ser necesario reducir la temperatura de —
evaporación trabajando a presión reducida. Las presiones reducidas necesarias para que el líquido ebulla a temperaturas más bajas se obtienen por—
bomba de vacío.

El empleo de vacío tiene como finalidad principal proteger los líquidos que se perjudicarían (sabor y aroma) con las temperaturas elevadas.

En este caso se tienen materiales que no son sensibles al ca--lor, por lo tanto la selección del proceso se inclina por el intermitente
a presión atmosférica y presión de vapor de 7 kg/cm2.


3.2. Diagrama de flujo

El diagrama de flujo se observa en la Figura No. 5

3.3. Descripción del proceso

La leche es transportada a la planta en camión de redilas con carga de 30 botes de 40 lítros cada uno ① figura No. 4.

La tecnología de la recepción de la leche dice que a ésta se - le deben efectuar determinaciones para establecer el precio de la misma en cuanto a la calidad química y microbiológica.

Las pruebas de plataforma que se realizan son:

Prueba de grasa (5.2 %), Húmedad (87 %) Alcohól (negativa)

Una vez realizadas las pruebas anteriores la leche se pasa a la báscula de recepción que establece el peso de la leche 2

Posteriormente pasa a un tanque de balance 3. Este almacena - la leche para que pueda ser bombeada en forma continua, una vez que ha -- sido pesada.

La leche se envía al tanque de enfriamiento 4 el cual se tiene una capacidad de 3 000 litros, la temperatura del tanque de almacenamiento es de 5°C. El tiempo de residencia será el necesario para recolectar 800 - 1 000 lt. durante el día e iniciar el proceso.

La leche se bombea del tanque a las pailas (5) de 200 litros — de capacidad, en estas, se le agregan 40 kg. de azúcar y 2 % de carbonato-de calcio como neutralizante, manteniéndose a una temperatura constante de 150°C con agitación manual hasta reducir el 50 % de su volúmen. Esto ocurre aproximadamente en dos horas.

La acidez de la leche no alcanza a eliminarse con la evaporación y la concentración del ácido láctico va en aumento a medida que pierde agua. Debido a ésto, es indispensable efectuar una neutralización parcial con bicarbonato de calcio que ayuda a evitar que se corte la pasta.

Durante casi todo el proceso el pH se mantiene cerca de la neutralidad, lo que favorece las reacciones de carbonilamino y de caramelización debido a la alta proporción de grupos epsilón amino protonados - --

(- NH₂) de la lisina los cuales reaccionan fácilmente ya que los azúca-res presentan menor estabilidad que en los valores del pH entre 4 y 5.

Se sabe que en los alimentos que contienen proteínas, aminoácio dos libres y azúcares y se procesan utilizando temperaturas altas, producen las reacciones de oscurecimiento no enzimático, los cuales incluyen caramelización de azúcares y reacciones de carbonilamino o "Maillard".

Mediante estas reacciones se desarrollan polímero o melaneoidinas que dan el color café oscuro característico y además productos volátiles, principalmente aldehidos provenientes de la transformación de aminoácidos que le dan al producto un sabor y aroma agradables.

En las reacciones llamadas de carbonilamino o "Maillard". Los grupos amino libres de los aminoácidos y proteínas reaccionan con un grupo aldehído cetona proveniente de los azúcares reductores. Este tipo de reacción de oscurecimiento es el que sucede más frecuentemente cuando los alimentos se calientan a altas temperaturas. El color va aumentando conforme va transcurriendo el proceso.

El contenido de azúcares durante la elaboración de la pasta de cajeta es el resultado de la hidrólisis de la sacarosa a sus correspondien tes monosacáridos.

Una vez efectuada la evaporación se obtiene la pasta de cajeta con las características anteriores.

Esta es vaciada por gravedad en tanques de 200 kg. de capaci--

dad 6 .

Posteriormente, estos pasan al almacén refrigerado ⑦ a una temperatura de 5°C y ahí permanece hasta que son introducidos en transporte frigorífico ⑧ para expedición.

3.4. Balance de materia

Masa de alimentación = 600 lt. de leche

 \mathcal{P} de la leche = 1,0301 kg/lt.

Convirtiendo los litros de leche a Kg.

600 lt.
$$(1,0301 kg)$$
 = 618.06 kg. de leche

Composición de la leche:

Agua 87 %

Sólidos totales 13 %

Lactosa 4.2 %

Obteniendo los Kg. de cada uno de los componentes:

Aqua

618.06 (0.87) = 537.7122 Kg. de agua / 600 lt. de leche

Sólidos sin lactosa

618.06 (.088) = 54.38928 Kg. de solidos / 600 lt. de leche

Lactosa

618.06 (0.42) = 25.95852 Kg. de lactosa / 600 lt. de leche

Azúcar

Como se explicó anteriormente en el proceso se vierten a la — paila 40 kg. por cada 200 lt. de leche o sea el 20 %.

600 (.20) = 120 Kg. de azúcar / 600 lt. de leche

Carbonato de calcio

Se le añade el 2 % como neutralizante

 $600 (.02) = 12 \text{ Kg. de } \text{Ca } \text{CO}_3 / 600 \text{ lt. de leche}$

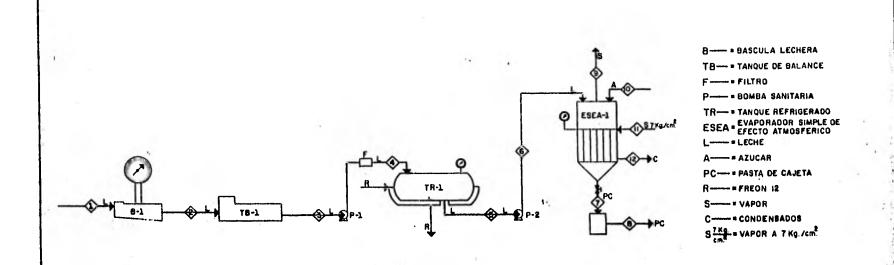
Pasta de cajeta

En el proceso de elaboración de pasta de cajeta se evapora la leche hasta el 50 % de el volumen inicial. Por lo tanto quedan 300 lt. - de leche.

Cantidad de leche en la pasta = 300 lt.

9 de la pasta de cajeta = 1.3 Kg/lt.

Masa de producto (Cantidad de pasta de cajeta)


300 (1.3) = 390 Kg. de pasta de cajeta / 600 lt. de leche.

Agua evaporada

Se obtiene de la diferencia entre la masa de alimentación y la masa de producto.

Ma - Mp = E

618.06 - 390 = 228.06 Kg. de agua evaporada / 600 lt. de leche

	F	IGI	JRA	N×	0
-	_	_	_	_	_

COMPONENTE CORRIENTE	(②	3	②	⑤	6	\Diamond	(8)	③	49	(1)	(2)
AGUA	537.71	537.71	537.71	537.71	537.71	537.71	309.65	309.65				-
SOLIDOS TOTALES	54.39	54.39	54.39	54.39	54.39	54.39	54.39	54.39				-
LACTOSA	25.96	25.96	25.96	25.96	25.96	25.96	25.96	25.96				
AZUCAR-							120	120		120		
CARBONATO DE CALCIO							12	12		-12		
AGUA EVAPORADA-									228.06			
VAPOR VIVO											380.76	
CONDENSAGO												380.76
TOTAL	618.06	618.06	618.06	618.06	618.06	618.06	522	522	228.06	132	380.76	380.76
TEMPERATURA-	25°C	25°C	25°C	25°C	5°C	5°C	150°C	30°C	150°C	25°C	164.35℃	164.35°C
PRESION (Kg./cm²)	1.0332	1.0332	1.0332	1.0332	1.0332	1.0332	1.0332	1.0332	1.0332	1.0332	7,00	7.00

UNIDADES = Kg. /600Lt.de Leche

NOTA:

ESTE DIAGRAMA ES PRELIMINAR NO SE USE PARA DISENO DIAGRAMA DE FLUJO Y BALANCE DE MATERIALES

ELABORO:

ADRIANA SALDIVAR LOPEZ

REVISO:

HECTOR CAMPBELL R.

Agua en la pasta

537.71 - 228.06 = 309.65 Kg. de agua / 600 lt. de leche.

Sólidos que entran = Sólidos que salen

54.39 kg. de solidos/600 lt. = 54.39kg. de sólidos/ de leche 600 lt de leche

Lactosa que entra = Lactosa que sale

25.96 kg. de lactosa = 25.96 kg. de lactosa

Azúcar en la pasta

120 Kg. de azícar / 600 lt. de leche

Carbonato de calcio en la pasta

12 Kg. de Ca CO_3 / 600 lt. de leche

3.5. Balance de energía

Ecuación general del balance de calor

M leche Cp leche (T_1 - To) + M azücar Cp azücar (t_x - To)

+ M Ca CO₃ Cp Ca CO₃ (ty - To) + M vapor
$$\lambda$$
 vap + Mvap Cp1

(Tsat To)

= Mpasta Cp pasta (T2 - To) = M'vap Cp vap (T2-Tsat)+M'vap \(\lambda\) vap

+ M'vap Cp 1 (Tsat - To) + M vap Cp 1 (Tsat - To) (a)

M leche Cp leche (T_1 -To) + M azúcar Cp azúcar (t_x - To)

+ $^{M}CaCO_{3}$ $^{Cp}CaCO_{3}$ $^{(t_{y} - To)}$ + $^{M}Vapor$ λ Vap

= M pasta Cp pasta
$$(T_2^- - T_0) + M'vap Cp vap (T_2 - Tsat)$$

+ M'vap λ vap $M'vap + M'vap Cp 1 (Tsat - To) (b)$

Nomenclatura:

M leche = Masa de leche = 613.06 Kg.

Cp leche = capacidad calorífica de la leche = 0.93 Kcal/kg °C (1)

t₁ = Temperatura de entrada de la leche = 5°C

To = Temperatura de referencià = 0 °C

M azúcar = Masa de azúcar = 120 Kg.

Cp azúcar = Capacidad calorífica del azúcar = 0.301 Kcal/kg
°C (6)

Tx = Temperatura de entrada del azicar = 25 °C

M_{CaCO₃} = Masa de carbonato de calcio = 12 Kg.

 Cp_{CaCO_3} = Capacidad calor**i**fica del CaCO₃ = 19.76 Kcal/kg. °C... (6)

Ty = Temperatura de entrada del Caco, = 25 °C.

Mvapor = Masa de vapor

 λ vap = Calor latente de vaporización (P=7 Kg/cm²) = 493.8 Kcal/kg. (7)

Mpasta = Masa de la pasta = 390 Kg.

Cp pasta = 0.8 Kcal/kg. °C

El Cp pasta fué calculado por la ecuación de Siebel $Cp = a Cp H_2O + b^0.6$

Substituyendo

$$Cp = (0.59) (1) + (0.41) (0.6)$$

 $Cp = 0.83 \text{ Kcal/kg. }^{\circ}C$

Se puede tomar como referencia el Cp de la pasta de chocolate = 0.8 Kcal/kg. °C

T₂ = Temperatura de la pasta = 150 °C

M'vap = Masa evaporada = 228.06 Kg.

Cp vap = Capacidad calorífica de vapor = 0.45 Kcal/kg. °C (6)

Tsat = Temperatura de saturación = 100 °C

Kq. (7)

Cpl = Capacidad calorífica del agua = 1 Kcal/kg. °C (7)

Despejando la Mv

$$Mv = \left[\begin{array}{ccc} M \text{ pasta Cp pasta } (T_2 - T_0) + M'vap Cp vap \\ (T_2 - Tsat) + M'vap \left(\begin{array}{ccc} \lambda & \lambda & \lambda \\ M'vap & \lambda \end{array}\right] + M'vap Cp 1 (Tsat - T_0)$$

Substituyendo:

$$\mathbf{MV} = \begin{bmatrix} 390 & (0.8) & (150-0) & + & 228.06 & (0.45) & (150-100) \\ + & 228.06 & (539.1) & + & 228.06 & (1) & (100-0) & - & (618.06) & (0.93) \end{bmatrix}$$

$$(5-0) - 120 (0.301) (25 - 0) - 12 (19.76) (25 - 0)$$

$$\left(\frac{1}{659.59 - 165.79}\right)$$

$$Mv = \begin{bmatrix} 46 800 + 5 131.35 + 122 947.14 + 22 806 - 2 873.97 - 903 - 5 928 \end{bmatrix} \left(\frac{1}{493.8}\right)$$

Se tiene 3 pailas. La masa de vapor introducida a estas es por hora. La concentración se obtiene en 2 horas, por lo tanto:

4. EQUIPO

Mv = 380.76 Kg.

De acuerdo al proceso descrito anteriormente se requiere de:

- a. Equipo para el manejo de la leche compuesto de báscula, tanque de balance, tanque de enfriamiento y bomba sanitaria.
- b. Una caldera que proporcione el calor necesario para evaporación
 del agua y lograr la concentración de la leche al 50 %.
 - c. Equipo para la evaporación, formado por pailas
- d. Equipo de refrigeración para almacenar la pasta de cajeta consolidando la carga, a fin de enviarla al continente en transporte de gran tonelaje.

4.1. Selección de equipo

4.1.1. Cálculo de la paila

Con la masa de vapor (63.46 kg/hr) y las entalpias del mismo se determina la cantidad de calor necesario.

$$Q = Mv (hv - hvc)$$

$$Q = 63.46 (659.59 - 165.79) = 31 336.55 Kcal/h$$

$$Q = 31 \ 336.55 \ Kcal/h$$

De la ecuación $Q = \mathcal{U} A \Delta T$ se tiene:

$$A = Q$$

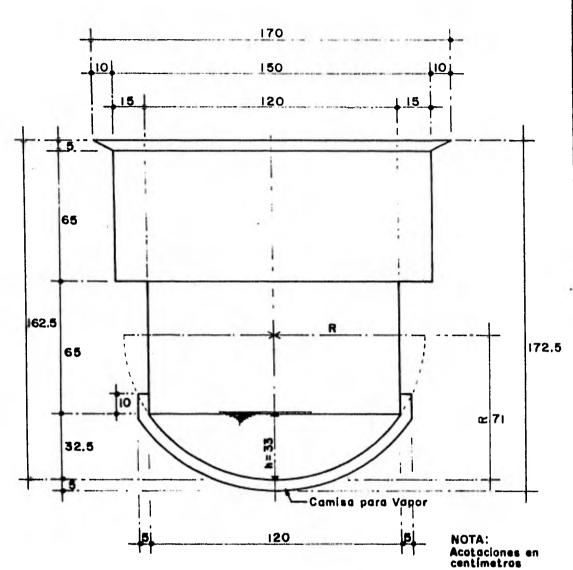
$$Q$$

Donde:

$$U = 1.460 \text{ Kcal/h} \text{ m}^2 \text{ °C}$$
 (6)

$$\Delta T = (164.35 - 150) = 14.35 \, ^{\circ}C$$

$$Q = 31 \ 336.55 \ Kcal/h$$


Substituyendo:

$$A = \frac{31\ 336.55}{1460\ (14.35)} = \frac{1.47}{1.45}$$

A=1.47 m2. Area necesaria para la transmisión de calor en la paila.

De acuerdo con lo anterior se seleccionó una paila cuyas características se anotan en la figura No. 6. La parte inferior de la paila corresponde a el área de transmisión de calor (para 200 lt de leche).

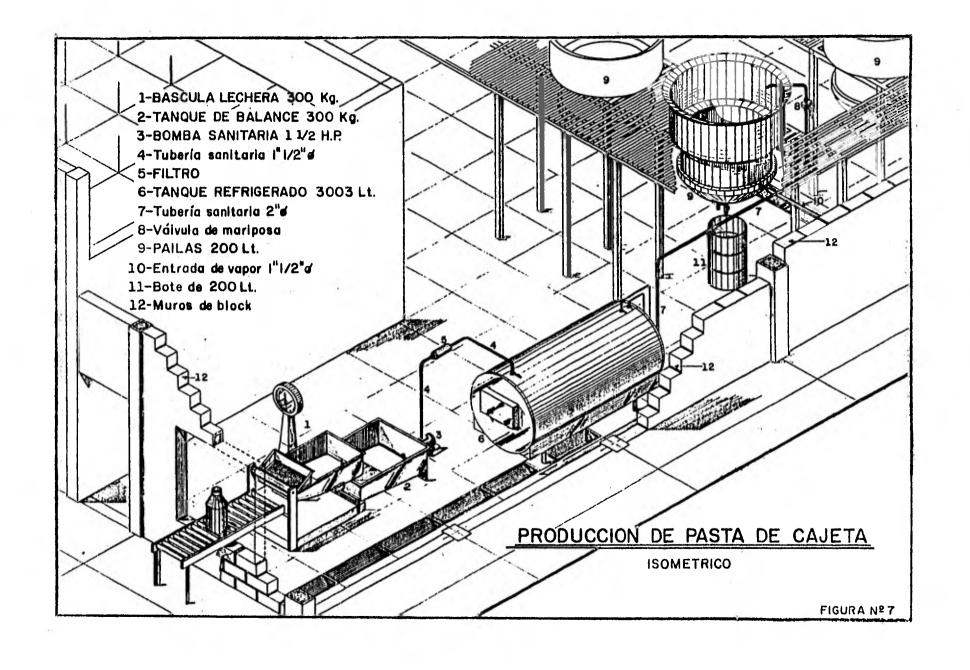
VOLUMEN

$$V = \frac{1}{3} \pi h^2 (3R - h)$$

$$V = \frac{1}{3} \pi'(0.33)^2 [3(0.71) - 0.33]$$
 A = 2 \pi (0.71) (0.33)

V=0,205 m. = 205 Lt.

AREA


A=211 R h

 $A = 1.47 \, \text{m}^2$

DONDE:

h=0.33 Nivel del producto R=0.71 Radio de la esfera

FIGURA Nº 6

Se tiene 2 secciones por arriba de esta, que permiten la elevación de la espuma de la leche durante la concentración evitando que esta se derrame.

4.1.2. Determinación del tamaño de la caldera

Para seleccionar adecuadamente la caldera es necesa-rio tomar en cuenta varios factores, como son:

- a. Cálculo preciso de la demanda de vapor
- b. Disponibilidad y calidad del agua
- c. Tiempo de ocupación diaria
- d. Tipo de caldera y número de unidades
- e. Combustible a utilizar
 - e.1 El combustible en si mismo
 - e.2 Facilidad de mantenimiento y operación
 - e.3 Mantenimiento del quemador

a. Cálculo de la demanda de vapor

Considerando las necesidades de vapor en las -- pailas y vapor para servicio se tiene:

Qt = Qe + Qs

Donde:

Qt = calor total

Qe = calor necesario en las pailas

Qs = calor para servicios

Qe = 31,336.55 Kcal/h

 $Qs = W Cp \Delta T$

De donde:

W = Masa a calentar

Cp = Calor específico de la masa (agua)

ΔT= Diferencia de temperatura inicial y final de la masa.

W = 125 Kg. de agua

Cp = 0.99

 $\Delta T = 60^{\circ} - 15^{\circ} = 45^{\circ} C$

Qs = 125 (0.99) (45) =

Qs = 5 568.75 Kcal/h

 $Qt = 31 \ 336.55 + 5 \ 568.75$

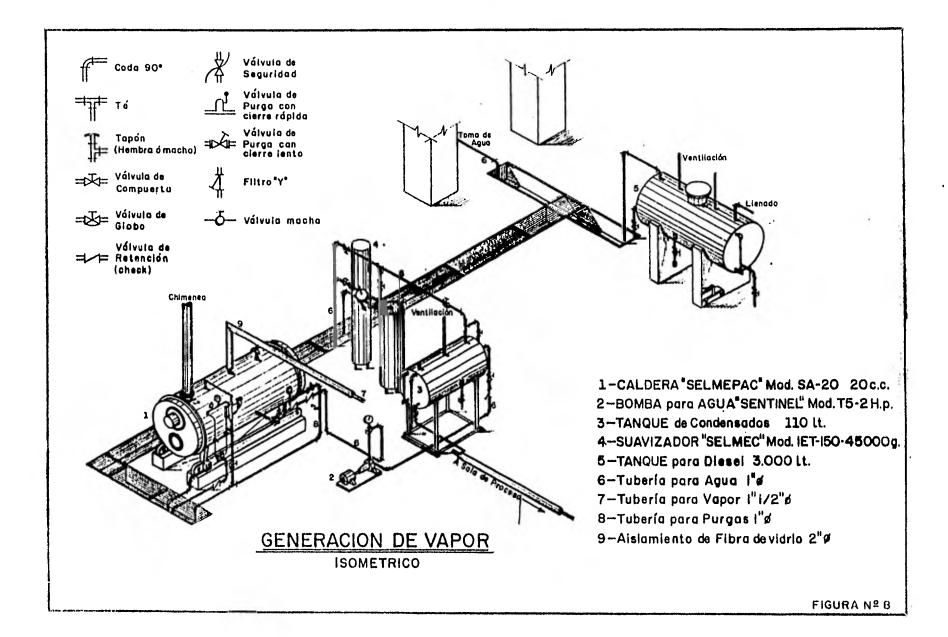
 $Qt = 36 \ 905.30 \ Kcal/h$

Determinando los kilogramos de vapor mediante la relación.

$$\underline{Kg}$$
 de vapor \underline{Qe} (7)

Kg de vapor = 84.03

Multiplicándo por el número total de pailas, 3. 252.08 Kg. de vapor


Convirtiendo a caballos caldera

$$\begin{array}{ccc} & = & \frac{252.09}{15.65} \end{array}$$

cc = 16.10

Se requiere una caldera de 16.10 cc por diseño. Comercialmente se selecciona una de 20 cc ya que esta es la que existe en el mercado.

- b. No se considera limitante al agua pues se contará con cisterna y tanque elevado, y con un suavizador.
 - c. Se operará la caldera un máximo de 14 horas al día.
- d. Se utilizará una caldera horizontal de tubos de fuego, de dos pasos y totalmente automática.
- e. Se empleará combustible diesel, de fácil conservación, de fácil manejo y limpio, así como fácil de almacenar.

4.1.3. Equipo de refrigeración

CALCULO DE LAS ENTRADAS DE CALOR

a. Por producto

Datos básicos:

Capacidad máxima de la Planta = 7 200 lt. leche.

= 3 600 lt. de pasta

de cajeta

La \mathcal{P} de la pasta de cajeta es de 1.3 por lo que transformando los litros a Kg. se tendrá una capacidad total de la planta-de 4 680 kg. por día.

La temperatura de diseño es de 36°C y la húmedadrelativa del 50 % (18).

La temperatura de almacenamiento es 5°C y una húmedad relativa variable (no es importante ya que el producto se encuentra en envase metálico cerrado).

$$Q_{p} = W C_{p} (T_{2} - T_{1})$$
 $Q_{p} = 4 680 (0.8) (36-5) = 116 064 \text{ Kcal/dia}$
 $Q_{p} = 116 064 \text{ Kcal/dia}$

b. Por empaque

1 Tambor almacena 260 kg. de pasta de cajeta por lo que se requieren 18 tambores/día. El peso del tambor es de aproximadamente 15 kg.; el $C_{\rm p}$ (fierro) es de 0.12 Kcal/kg. $^{\circ}$ C (18).

Qe =
$$(18 \times 15)$$
 (0.12) (36-5) = 1 004
Qe = 1 004 Kcal/dia

c. Por transmisión por paredes

Para calcular las entradas de calor por paredes - (muros, piso y techo), es válido tomar como base el factor utilizado como el "Espesor Económico del Aislamiento" (20). Este factor equivale a 10 - Kcal/hora por m^2 .

De acuerdo a las dimensiones de la cámara frigorífica (planta general, anexo 2) se determinan las superficies correspondientes a cada muro y se procede al cálculo.

PARED	м2	g/A . Kcal/h m2	HORAS	Kcal/día Total
Norte	21	10	24	5 040
Sur	21	10	24	5 040
Este	18	10	24	4 320
Oeste	18	10	24	4 320
Piso	42	10	24	10 080
Techo	42	10	24	10 080
		то	TAL:	38 880

 $Q\Gamma = 38 880 \text{ Kcal } / \text{dfa}$

d. Por cambios de aire

El volúmen de la cámara es de 126 m3 (6 x 7 x 3), utilizándo el anexo 2 se determinan el número de cambios 7 . Con la carta psicométrica se obtiene:

Las condiciones del aire del exterior

Te = 36°C

HR = 50 %

he = 24.7 Kcal/kg

El aire en el interior de la cámara tendrá las siguientes condiciones:

 $Ti = 5^{\circ}C$

HR = variable 70-80% (se fija 80% para cálculo)

hi = 8 Kcal/kg.

La densidad del aire se obtiene haciendo un promedio entre estas dos condiciones. P = 1.15 Kg/m3.

Qa = W (he - hi)

 $Qa = (126 \times 7 \times 1.15) (24.7 - 8) = 16 939$

Qa = 16 939 Kcal/dfa

e. Por ocupantes

Se estima que 2 personas son suficientes para elmanejo del producto, con un tiempo efectivo de trabajo de 3 horas al día. Tiempo efectivo de trabajo/día = 3 horas

Equivalente calorífico (4) = 212 Kcal/hora

$$Q_{pe} = (2 \times 3) (212) = 1 272$$

f. Por ilumincación

Wait
$$/ m2 = 10$$

$$m2 = 42$$

Horas efectivas = 3

1 watt desprende 0.86 Kcal/hora

$$Qi = (10 \times 42 \times 3) (0.86) = 1.084$$

Qi = 1.084 Kcal/d1a

q. Por motores

Tomando en consideración las dimensiones de la cámara y la potencia frigorífica, así como las características de temperatura y húmedad que se alcanzarán en el interior, se seleccionarán 2 evaporadores. Cada uno con 2 motores de 1/4 H.p. Los motores trabajarán 22 horas. Las 2 horas restantes se emplearán para descongelamiento.

El equivalente calorífico de los motores (4) es 1 071 Kcal/H.p./hora.

$$Qm = (2 \times 2 \times \frac{1}{4})$$
 (1 071) (22) = 23 562

Qm = 23 562 Kcal/dfa

RESUMEN DE ENTRADAS DE CALOR

c o	NCEPTO		Kcal /	'D í a
1.	Por producto		116	064
2.	Por empaque		1	004
3.	Transmisión de paredes	•	38	880
4.	Cambios de aire		16	939
5.	Ocupantes		1	272
6.	Iluminación		1	084
7.	Motores		23	562
		SUBTOTAL:	198	805
		IMPREVISIOS 10%:	19	880
	n may ng ng ng ng ng mg mg ng	TOTAL:	218	685Kcal/ d í a

Los evaporadores trabajan sólo 22 horas

$$Q = \frac{218 \ 685}{22} = 9 \ 940$$

Qo = 9 940 Kcal/hora

SELECCION DE EQUIPO

a. Evaporadores

Qo = 9 940 Kcal/hora = 39 760 BTU/H

Se seleccionarán 2 evaporadores, por lo cual se - divide la Qo entre 2 .

Qo = 19 880 BTUH/evaporador

Ia H.R. no importa, el recipiente va cerrado. Por lo tanto la Δ t = 12°F.

Por las características del agua se empleará para descongelar vapor recalentado del mismo compresor. Para esto se requiere de evaporadores tipo Vapomatic.

Se seleccionan 2 evaporadores RECOLD VAPOMATIC VL 1 148 (19) cuyas características son:

Capacidad = 19 900 BTUH

Motores = $2 \frac{1}{4}$ Hp) 115 volts, 4 amps.

Ancho = 33 3/4"

Largo = 39 1/2"

Alto = $20 \ 1/4$ "

Separación minima

a la pared = 19"

Ø Tuberia succión = 1 3/8"

Ø Tuberia liquido = 1/2"

Ø Tuberia gas = 1"

b. Unidad de condensación enfriada por aire.

Se utilizará un conjunto compresor - condensador-

recipiente que viene montado en una sola unidad.

Qo = 9 940 Kcal/hora

T = 36 °C

To = -5 °C

Fluido frigorigeno = F 12

Para estas características se selecciona una uni-dad MBCM-0750 marca Copeland (18) o su equivalente.

Funcionando 35°/5°C: Funcionando 40°/-5°C:

Qo = 11 651 Kcal/h Qo = 10 848 Kcal/dia

Características de la unidad MBCAM-0750

M = Constante

B = Tipo abierto

C = Compresor grande deseño normal

A = Condensador enfriado por aire

M = Temperatura de succión mediana (-5°a - 29°C) $0.750 = 7 \frac{1}{2} \text{ H.p.}$

Compresor modelo 85. Este modelo tiene las si-guientes características:

> Número cilindros = 3

Ø = 82.6 m.m.

= 82.6 m.m.1

Válvula succión \emptyset = 15/8"

Válvula descarqa Ø = 1 1/8"

 \cdot Ø volante = 457 m.m.

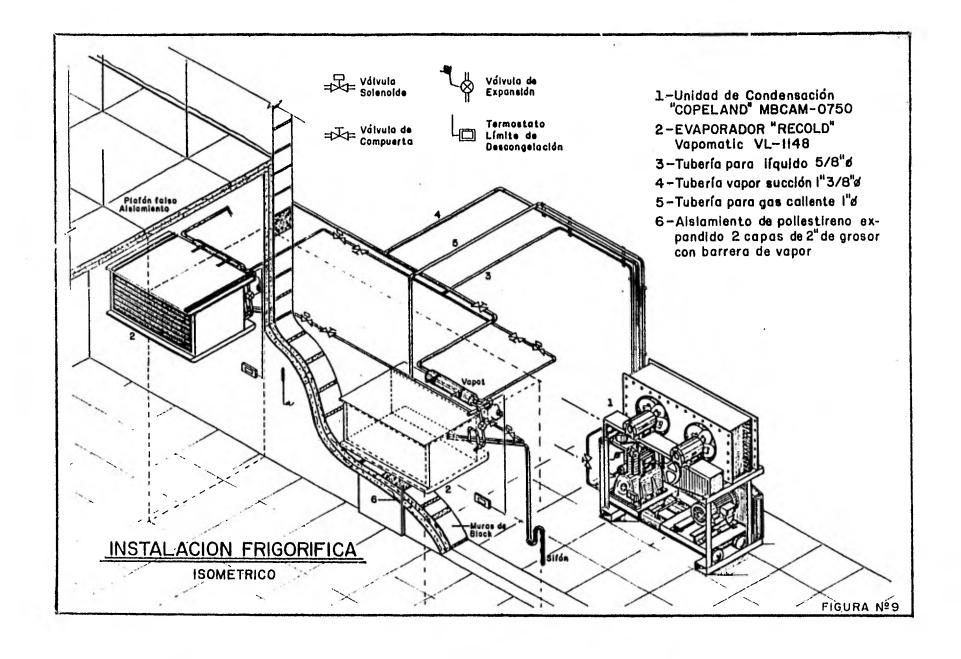
El motor del compresor trabaja a 220 volts, 60 ci clos, 3 fases.

La unidad de condensación MBCAM-0750 tiene las si guientes características.

Ancho = 66 cm.

Largo = 125 cm.

Alto = 135 cm.


El condensador es enfriado por aire con 2 motores

El peso neto de la unidad es de 392 Kg. y con empa que 450 Kg.

c. Accesorios

de 1/4 H.P.

- 1 Separador de aceite
- 2 Válvulas de expansión termostáticas
- 2 Vapots modelo No. UP-110-11
- 2 Válvulas Check de 1/2"
- 2 Solenoides para linea liquido 1/2"
- 2 Solenoides para gas caliente 1"

- 2 Termostatos límite (descongelamiento)
- 1 Termostato para cámara
- 1 Reloj paragón
- 6 Válvulas de paso 1/2"
- 2 Válvulas de paso 1 3/8"
- 2 Válvulas de paso 1"
- 1 Deshidratador

Lote tubería de 1/2"

Lote tubería de 1 3/8"

Lote tubería de 1"

- 1 Arrancador (7.5 H.P.)
- 1 Interruptor (7.5 H.P.)
- 1 Lote materiales eléctricos
- 6 Interruptores térmicos (1/4 H.P.)

4.2. Costos y específicaciones

En los cuadros siguientes se presentan los costos y las específicaciones de cada uno de los equipos.

4.2.1. Equipo de recepción y proceso

No. DE ORDEN	CONCEPTO	ESPECIFICACIONES	No. DE UNIDADES	PRECIO UNITARIO	TOTAL
1	Transportadora de rodi	Rodillos de fierro, montados en baleros acabado de			
	llos.	esmalte anticorrosivo y volteadora de botes.	ı	\$ 10,809.00	\$ 10,809.00
2	Báscula lechera	Acero inoxidable hasta 300 kg. de peso.	1	125,000.00	125,000.00
3	Tanque de balance	Capacidad 300 lt. en acero inoxidable esquinas redon		-	
		deadas, con colador desmontable.	1	50,170.00	50,170.00
4	Tanque de enfriamiento	Capacidad de 800 galones (3003 litros) con unidad de			
	Alfa Laval "Ranchero"	enfriamiento. Compresor semihermetico de 5 HP. ace-		407 404 00	607 406 00
		ro inoxidable sanitario.	1	627,426.00	627,426.00
5	Pailas	Capacidad 200 lt, acero inoxidable casquete esféri co, pulido y sanitario.	3	210,000.00	630,000.00
	7		3	210,000.00	030,000.00
6	Bomba sanitaria	Marca Puriti-Triclover. Centrífuga construída en - acero inoxidable tipo 316 Mod. Cl14. Acoplada direc			
		tamente al motor electrico de 1 HP. 3500 R.P.M. 200			
		volts, 60 ciclos.	ı	55,000.00	55,000.00
7	Bomba sanitaria	Similar a la anterior, pero acoplada a motor de			
		2 HP.	1	58,692.00	58,692.00
8	Válvula de mariposa	Pl54-BMP de 2" Puriti	5	11,234.00	56,176.00
9	Válvula de marmita	De 2" acero inoxidable	3	38,086.00	114,258.00
10	Filtro	Acero inoxidable Puriti Mod. FM2-2	1	27,309.00	27,309.00
11	Ferrulas	14 MP-2"	22	474.00	10,428.00
		- 1	12.		·

No. DE ORDEN	CONCEPTO	ESPECIFICACIONES	UNIDADES	PRECIO UNITARIO	TOTAL
12	Codos	Acero inoxidable. Puriti Mod. 2 CAMP-2	9	\$ 1,908.00	\$ 17,172.00
13	Tee	Puriti. Acero inoxidable. Mod. 7 MP-2	3	2,161.00	6,483.00
14	Reducciones	Acero inoxidable. Mod. 31-14MP 2 x 1 1/2"	2	2,286.00	4,572.00
15	Abrazadera	Acero inoxidable Mod. 13 MH-2	25	1,369.00	34,225.00
16	Empaques	Mod. 40 MP-2"	25	77.00	1,925.00
17	Tubo	Acero inoxidable. Cal 16,2" T-304 (MTS)	30	1,094.00	32,820.00
		0.40		SUBTOTAL:	\$ 1'862,465.00
				10% I.V.A.	186,246.50
				TOTAL:	\$ 2'048,711.50
		-		Į	
					(a.):
				- 7	
1					

4.2.2. Generación de vapor

No. DE ORD EN	CONCEPTO	ESPECIFICACIONES	No. DE UNIDADES	PRECIO UNITARIO	TOTAL
i	por, marca Selmepac- Mo delo SA-100-20	Capacidad evaporativa máxima desde y a 100°C, 313 — Kg/H. 20 caballos caldera efectivos. Combustible — Diesel. Con una superficie de calefacción de 9.lm2, presión de diseño 10.5 Kg/m2, presión de operación — 7.5 Kg/cm2. Revestimiento exterior de fibra de vidrio de 2". Sistema de ignición automática. Co—rriente necesaria 3 fases, 60 ciclos, 220 volts.	1	\$ 354,300.00	\$ 354,300.00
2	Tanque receptor de co<u>n</u> densados.	Capacidad 110 litros, de lámina de acero No. 14, diámetro 330 mm, longitud 1 070 mm. bomba de alimenta—ción de agua de turbina, 2 HP. con capacidad de — 1 320 Lt/H. Válvula principal de vapor para 10.5 — Kg/cm2 de 38 mm. Válvula para alimentación de agua de compuerta para 10.5 Kg/cm2. 2 válvulas de retención para 14 Kg/cm2. Válvulas de purgas.	1	110,000.00	110,000.00
3	Suavizador marca Selmed modelo IET-150	Capacidad de intercambio de 45 000 granos. Flujo máximo de 36 Lt/Min. Capacidad de 7 290 Lt/día de agua suave. Columna de suavización de 28 cm. diámetro por 150 cm. de alto. Con tanque para salmuera - 38 cm Ø 91 cm. alto. Retrolavado y regeneración.	1	47,500.00	47,500.00
4	Chimenea	Recta, con un diametro de 9", altitud 6 m. Construí da en lamina negra calibre 12.	1	16,700.00	16,700. 00

NO.DE ORDEN	CONCEPTO	ESPECIFICACIONES	No. DE UNIDADES	PRECIO UNITARIO	TOTAL
5	Tanque para Diesel	Cilíndrico, horizontal. Capacidad para 3 000 lt construído en lámina de acero calibre 12, diámetro 1.07 m. Longitud 3.60 m. Registro de 0.5 m. de diá- metro.		\$ 25,700.00 SUBTOTAL: 10% I.V.A. TOTAL:	\$ 25,700.00 \$ 554,200.00 55,420.00 \$ 609,620.00

4.2.3. Equipo de refrigeración

No.DE ORDEN	CONCEPTO	ESPECIFICACIONES	NO DE UNIDADES	PRECIO UNITARIO	TOTAL
1	enfriada por aire marca	Para Freon 12. Potencia frigorífica de 11 500 Kcal/H Compresor de 3 cilindros. Abierto con motor de 7.5 HP 220 volts, 60 ciclos, 3 fases. La válvula de succión Ø 15/8", válvula de descarga Ø 1 1/8". Condensador enfriado por aire, circulación forzada, motores (2) de 1/4 HP.	1	\$ 98,940.00	\$ 98,940.00
2	-	Potencia frigorífica de 5 000 Kcal/H. Dos motores - de 1/4 HP. cada uno. 115 volts, 60 ciclos. Descon-gelamiento por medio de gas caliente. Tubería de - succión $\emptyset = 1$ 3/8". Tubería de líquido 1/2" \emptyset . Tubería de gas \emptyset 1".	2	41,000.00	82,000.00
3	Separador de aceite		1	5,300.00	5,30 0. 00
4	Válvula de expansión - Termostatica Ta-312-12	Para Freon 12 . Capacidad de 2 toneladas de refrige ración.	2	2,009.00	4,018,00
5 6	Válvula Check de 1/2" Solenoides para línea - de líquido 1/2" RMV100		2	750. 00	·
7	4 BR Solenoide para gas ca- liente RMV1909 ESR.	Diámetro de 1"	2	3,032.73 6,760.00	·

No.DE ORDEN	CONCEPTO	ESPECIFICACIONES	No. DE UNIDADES	PRECIO UNITAPIO	TOTAL
8	Termostato limite Al9	De descongelamiento	2	\$ 4,500.00	\$ 9,000.00
9	Termostato para cámara Al SC 1020		1	1,320.00	1,320.00
10	Reloj paragón 8145-00	110 volts, 60 ciclos	ı	6,700.00	6,700.00
11	Deshidratador R 750-16	De silica Gel.	1	2,463.64	2,463.64
		·		SUBTOTAL:	\$ 230,827.09
		-		10% I.V.A.	23,082.70
<u> </u>		0		TOTAL:	\$ 253,909.79
					100
				14	
		·			
y.					

4.3. Costos de instalación

4.3.1. Equipo de recepción y proceso

De acuerdo a las cotizaciones presentadas, los costos para la instalación de este equipo ascienden a \$ 403,613.02 lo cual representa un 19.7 % del costo total del mismo.

4.3.2. Generación de vapor

Los costos para la instalación de caldera y equipo -complementario ascienden a \$ 152,405.00 incluyendo tuberías. Esto representa un 25 % del costo total del equipo.

4.3.3. Equipo de refrigeración

En este caso, debido a la sencillez del sistema, los - costos de instalación son de \$63,477.45 lo que representa aproximadamente- el 25 % del costo de este equipo.

4.4. Distribución

La distribución del equipo anteriormente seleccionado y cotizado, se presenta en el plano correspondiente (anexo 4).

5. OBRA CIVIL

5.1. Generalidades

Para el diseño de la planta se consideraron algunos críterios - sobre economía en tiempo y materiales. Se determinaron las áreas necesa--rias y se procedió a su ubicación dentro del plano de conjunto.

Los materiales que se proponen son de facil adquisición en la -

zona, lo que disminuye considerablemente la inversión.

La técnica en construcción es la tradicional por lo que no se requiere de mano de obra especializada.

5.2. Areas y costos

5.2.1. Areas

El área de la planta es de 288 m2 (16 x 18), la cual se subdivide de la siguiente forma:

Area	m2
Proceso	108
Recepción	47
Cámara frigorífica	25
Calderas y equipo refrigeración	33
Bodega	12
Anden de trabajo	63
Total:	288 m2

El área para las oficinas, laboratorio y servicios generales es de 33.6 m2 distribuidos así:

Oficina administrativa		13.44 m2
Laboratorio		8.96
Servicios generales		11.20
	Total:	33.60 m2

Para el almacen de tambores de 200 lt. se ha asignado -

un area de 60 m2 (3 x 20).

El patio de maniobras y andadores tiene un área de 210 m2 mientras que el de estacionamiento, viraje y jardines de 1,150 m2.

El total de la superficie requerida para la planta es - de 1,800 m2 de la cual el área de construcciones asciende a 650 m2.

5.2.2. Costos

El costo de la obra civil se determinó empleandose losplanos (anexo 2), calculándose las áreas de construcción y utilizando precios unitarios de la S.A.R.H. (21).

No.	CONCEPTO	UNIDAD	CANTIDAD	PRECIO UNITARIO	IMPORTE \$
1	Area necesaria para al bergar el equipo de re cepción y proceso. Incluye camara frigorifica, bodega de insumos y anden de trabajo.	m2	288	13,000	3'744,000.00
2	Area para oficinas, la boratorio y servicios- generales.	m2	33.60	8,700	292,320.00
3	Almacén de tambores	m2	60	5,700	342,000.00
4	Patio de maniobras	m2	210	2,500	525,000.00
5	Tanque elevado y cis- terna.	Pza	1		289,914.19
	Total:			\$	5'193,234.19

El costo total de la obra civil ascendió a \$5'193,234.19.

5.3. Ampliaciones futuras

En lo referente a la obra civil, esta se diseño a fin de contener 2 equipos de evaporación (formados por una caldera y 3 pailas) con una capacidad de 3 600 lt/día cada uno. En un inicio, la planta operará con un solo equipo de evaporación, es decir, la capacidad máxima será de 3 600 lt/día. De acuerdo a la planeación de las unidades de producción caprina, la capacidad deberá incrementarse hasta 7 200 lt/día, por lo que se adquirirá posteriormente el otro equipo de evaporación y un segundo tanque de enfriamiento. La obra civil no tiene área para ampliación pero si esta considerado el espacio necesario para contener el 2º equipo de evaporación, lo anterior se puede observar en el plano de distribución de equipo. (anexo

El equipo de refrigeración y cámara frigorífica también fue diseñado para 7 200 lt/día lo que varía es el espaciamiento en la expedición del producto ya que la cámara tiene la finalidad de consolidar carga exclusivamente.

Programa constructivo Se presenta en el cuadro No. 2.

6. INSTALACIONES

6.1. Eléctrica

En este rubro se consideran tanto la instalación de la energíaeléctrica necesaria para el equipo como la de iluminación.

PROGRAMA CONSTRUCTIVO

MESES		1	1 2	2	1	3	-	1		5		6		7		3		9
QUINCENAS	-	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
ESTUDIOS PRELIMINARES																	1	1
LIMPIEZA TRAZO Y NIVELACION			1	1														
EXCAVACION			1									ĺ						
PLANTILLAS		-	-															
HABILITANDO ACERO EN ESTRUCTURAS																		
CIMBRADO EN ESTRUCTURAS			-	1														
COLADO DE ESTRUCTURAS																		
RELLENO EN CIMENTACION	-			_		_												
ACARREOS			Ì	į.								Ì						
REGISTROS Y TENDIDO DE TUBERIA				-														
DESCIMBRADO																		
CURADO CONCRETO						_	_					-	-					
MUROS																		
COLADO DE PISOS EN NAVE				1	_													
HABILITANDO PERFILES Y SOLDADURA								o Serentes.		-		1						
COLOCACION DE LAMINAS								•	•		-							T
COLOCACION DE ARMADURAS EN COLLINNAS																		
INSTALACION HIDRAULICA					į		1	1	ļ		1		1	1		1	1	İ
INSTALACION ELECTRICA								-				1	-	1	100			
COLOCACION DE MOSAICO EN OFICINA		T						-		1		1	1	1	1			T
PINTURA Y ACABADOS				1								1	-	-	-			1
COLOCACION DE ACCESORIOS												-	-					T
PLOMERIA													-					
ADQUISICION DE EQUIPO													-					
INSTALACION DE EQUIPO				1				1		T	-	-		-				
COLOCACION DE PIEDRA EN RAMPA					T				-	1	-	1	1	T	1		1	I
COLOCACION DE PUERTAS Y VENTANAS				1			T			1	1	1	1		T	1	T	T
COLOCACION DE VIDRIOS Y CHAPAS			I				T	1		T	1	1	T	1-	1	1	1	1
LIMPIEZA GENERAL		1	T	T		1	1		Ì	1	1	-	1	1	Ì	1	1	İ
ENTREGA]	T	İ	1	1		1	İ	1	1	1	1	1	1	1	<u> </u>	1	1

En los siguientes cuadros se presentan los costos y especificaciones.

6.2. Hidráulica y sanitaria

Se presentan en los cuadros siguientes los costos y especificaciones de la red hidráulica y sanitaria, tomando como base el plano corres pondiente. (anexo 6).

6.3. Especiales

6.3.1. Aislamiento cámara de almacenamiento

Para determinar el espesor del aislamiento, se tomó - como base el factor 10 Kcal/h m2 considerando como el "Espesor Económico - de Aislamiento" (20).

La ecuación del coeficiente global de transmisión de - calor.

U 1 Kcal h m2 °C hi
$$K_1$$
 K_2 kn he

Donde:

hi = Conductancia superficial pared interior

he = Conductancia superficial pared exterior

xi = Espesor de los componentes del muro

Ki = Conductividad térmica de los componentes del muro

6.1.1. Material electrico

No. DE ORDEN	CONCEPTO	DESCRIPCION	UNIDA- DES	CANTIDAD	PRECIO UNITARIO	TOTAL
1	Interruptor termomagné- tico.	Square D, No. Cat. AIE 340G	Pza	1	\$ 6,975.00	\$ 6,975.00
2	Interruptor termomagn 6 -	Square D, No. Cat. Qo - 115	Pza	6	378.00	2,268.00
3	Interruptor termomagné- tico.	Square D, No. Cat. Qo - 220	Pza	1	1,050.00	1,050.00
4	Interruptor termomagné- tico.	Square D, No. Cat. Qo - 230	Pza.	2	1,050.00	2,100.00
5	Arrancador magnético	Square D, Clase 8536 Tipo CG - 3	Pza	1	7,425.00	7,425.00
6	Arrancador magnético	Square D, Clase 8536 Tipo BG - 1	Pza	-9	5,625.00	50,625.00
7	Elementos térmicos	No. B - 36	Pza	2	907.00	1,814.00
8	Elementos térmicos	No. B 6.25	Pza	6	907.00	5,442.00
9	Elementos térmicos	No. B - 7.7	Pza	2	907.00	1,814.00
10	Elementos térmicos	No. B - 15.5	Pza	4	907.00	3,628.00
11	Lámparas	Slim - Line, Tipo Industrial, 120 W. 2 tubos	Pza	20	2,120.00	42,400.00
12	Lámparas de centro		Pza	5	59.60	298.00
13	Contactos sencillos		Pza	15	45.00	675.00
14	Apagadores		Pza	12	56.00	672.00
15	Tablero		Pza	1	4,390.00	4,390.00

lo. de Orden	CONCEPTO	D	E S	С	R	I P	С	r	<i>1</i> O	UNIDA- DES	CANTIDAD	PRI	ecio unitario		TOTAL
16	Interruptores									Pza	4	\$	600.00	\$	2,400.0
17	Conductor calibre 14									Rollo	4		575.00		2,300.0
18	Conductor calibre 12									Rollo	3		810.00		2,430.
19	Conductor calibre 10									Rollo	2		1,150.00		2,300.
20	Tubo conduit "1"									Tramo	17		350.00		5,950.
21	Tubo conduit 3/4"									Tramo	14		226.60		3,164.
22	Tubo conduit 1/2"									Tramo	14		177.50		2,485.
													SUBTOTAL:	\$	152,605.
													10 % I.V.A.		15,260.
													TOTAL:	\$	167,865.
											!				
											10				
														ì	

6.2.2. Costo de la instalación hidráulica y sanitaria

CLAVE	CONCEPTO	UNIDAD	CANTIDAD	PRECIO UNITA RIO	IMPORTE
S-1	Inodoros	Pza	1	\$ 5,115.41	\$ 5,115.41
S-2	Lavabos	Pza	1	3,745.42	3,745.42
S-3	Juego de regaderas	Pza	2	1,690.34	3,380.68
S-4	Juego de llaves	Pza	1	1,904.51	1,804.51
S-5	Accesorios	Iote	1	1,804.51	1,804.51
S-6	Ramaleo de muebles (Hidráulica)	Muebles	4	4,641.00	18,564.00
S-7	Ramaleo de hidráulica (Muebles)	Salida	6	5,975.00	35,850.00
S-8	Tubería de Cu.	M.L.	80	431.61	34,528.80
S9	Tubería de f'c galvanizada	M.L.	40	631.61	25,264.40
S-10	Flotadores	Pza	2	1,358.45	2,716.90
s-11	Llaves de paso	Pza	5	650.95	3,254.75
S-12	Llaves de globo	Pza	5	412.50	2,062.50
S-13	Bomba de 1 1/2" H.P.	Pza	1	15,000.00	15,000.00
S-14	Tubo fofo o P.V.C. 100	Ml.Pza	40	1,453.62	58,144.80
S-15	Tubo fofo o P.V.C. 50	Ml.Pza	30	767.00	23,010.00
S-16	Llaves de naríz para manguera	Pza	5	412.50	2,062.50
S-17	Conexiones fofo o P.V.C. 90°	Pza	10	210.00	2,100.00
S-18	Conexiones fofo o P.V.C. 45°	Pza	5	210.00	1,050.00
S-19	Conexiones fofo o P.V.C. Ye	Pza	2	828.93	1,657.86

CLAVE	CONCPTO	UNIDAD	CANTIDAD	PRECIO UNITA PIO	IMPORTI
S-20	Coladeras	Pza	3	\$ 1,196.50	\$ 3,589.6
S-21	Conexión de agua potable	Lote	1	15,000.00	15,000.0
S-22	Calentador	Pza	1	3,522.75	3,522.79
				SUBTOTAL:	\$ 263,229.4
				7%IMPREVISIOS	18,426.0
		-			
				TOTAL:	\$ 281,655.5
		į			
			1.00		
				1	

En tecnología frigorífica, se desprecian, a nivel práctico, los componentes del muro a excepción del aislamiento ya que este representa más del 80 % de resistencia al paso del calor.

$$Xa = \frac{Ka \triangle T}{10}$$
 Espesor aislamiento en metros

Para obtener el aislamiento en centímetros:

$$Xa = \frac{Ka \quad \Delta T}{10} \quad x \quad 100 \quad = \quad 10 \quad Ka \quad \Delta T$$

$$Xa = 10 \quad Ka \quad \Delta T$$

La Ka del poliestireno expandido es de 0.027 Kcal/H°Cx cm. La ΔT es de 31°C (36°-5°) en promedio. Si a esta ΔT se le adi--cionan 6°C de corrección por exposición a la radiación solar se tendrá una

 $\Delta \text{ Tc} = 37^{\circ}\text{C}$.

Xa = 10 (0.027) (37) = 10 cm de poliestireno expandido.

Lo anterior equivale aproximadamente a 4" de espesor -del aislamiento (poliestireno expandido), el cual se instalará en 2 capas
alternadas de 2" c/u con su correspondiente barrera de vapor.

El costo del aislamiento es de \$ 175.00 por metro cuadrado por pulgada de espesor, dando un total de \$ 113,400.00 por los -- 162 m2 que se requieren.

7. REQUERIMIENTOS DE INSUMOS Y SERVICIOS

los insumos requeridos por día y por mes se pueden resumir de acuerdoa las etapas de desarrollo del módulo.

7.1. Materias primas especiales

7.1.1. Azücar

Se requiere de **40 Kg. de azúcar** por cada 200 lt. Se tr<u>a</u> bajarán **25 dí**as por mes.

Requerimientos de azúcar

ETAPAS LITROS/DIA	KG/DIA	KG/MES
600	120	3 000
1 200	240	6 000
1 800	360	9 000
3 600	720	18 000
7 200	1 440	36 000

7.1.2. Carbonato de calcio

Se emplearán 2% de carbonato de calcio por cada 200 lt.

de leche.

etapas Litros/dia	· KG/DIA	KG/MES
600	 12.00	300
1 200	24.00	600
1 800	36.00	900
3 600	72.00	1 800
7 200	144.00	3 600

7.1.3. Agua

El agua es un insumo prácticamente indispensable en latotalidad de las actividades productivas. Se requiere agua tanto para los variados usos humanos como para los industriales (agua para calderas y para proceso propiamente dichos).

El agua que se tomará en cuenta es la necesaria para - alimentar a las calderas y para servicios, de acuerdo a las etapas de producción.

a. Para calderas (7)

ETAPAS	······			·	
LT/DIA		No.CALDERAS	H/TRABAJO	м3/н	M3/DIA
600		1	4	.314	1.256
1 200		1	. 5	.314	1.570
1 800	;	1	7.5	.314	2.355
3 600		2	7.5	.314	4.710
7 200		2	16.6	.314	10.4250

b. Para servicios personales (7)

etapas Lt/dia	no. Personas	M3/PERSCNA/DIA	M3/DIA
600	3	0,25	0.75
1 200	4	0.25	1.00
1 800	. 4	0.25	1.00
3 600	8	0.25	2.00
7 200	12	0.25	3.00

c. Para servicios en la planta (7)

ETAPAS	,		
IT/DIA	No. PAILAS	M3/PAILA	 M3/DIA
600	3	0.475	1.424
1 200	3	0.617	1.85
1 800	3	0.645	1.935
3 600	6	0.645	3.870
7 200	6	0.645	 3.87

d. Resumen consumo de agua

ERSONAL	SERVICIOS	TOTAL	M3/MES
0.75	1.424	3.43	85.91
1.00	1.850	4.42	110.68
1.00	1.935	5.29	132.26
2.00	3.870	10.58	264.52
3.00	3.870	17.29	432.25
	1.00 1.00 2.00	1.00 1.850 1.00 1.935 2.00 3.870	1.00 1.850 4.42 1.00 1.935 5.29 2.00 3.870 10.58

7.1.4. Energía eléctrica

El consumo de energía eléctrica se calculó de la manera

siguiente:

Equipo de refrigeración		Kw
Motor compresor	7.5 HP	5.60
Motor condensador	2 1/4 HP	0.373
Motor evaporador	4 1/4 HP	0.746
	-	6.719Kw
Equipo de recepción		
Bomba sanitaria	1 HP	0.746
Equipo enfriamiento	5 HP	3.730
Bomba sanitaria	2 HP	1.492
4.	e *	5.968Kw
Calderas		
Bomba alimentación agua	2 HP	1.492
Sistema ignición	-	0.150
	-4-	1.642Kw
Bomba para agua de la cis	terna 3 HP	2.238Kw
Iluminación del área de p	roceso 216 m2	5.400Kw
Iluminación de oficinas		0.66Kw
Iluminación externa		2.50Kw

Consumo de energía eléctrica en 8 horas de trabajo.

Factor de potencia =
$$0.84$$
 (7).

total
$$KW = 25.13$$

$$KW = \frac{25.13}{0.84} = \frac{29.92}{}$$

Consumo por día =
$$29.92 \times 8 = 239.4 \approx 240 \text{ Kw}$$

De acuerdo a las etapas operativas el consumo de energía eléctrica será:

TAPAS IT/DIA)	KW/DIA	KW/MES
600	240	6 000
1 200	240	6 000
1 800	240	6 000
3 600	268	6 700
7 200	354.8	88 700

En los dos últimos renglones el incremento en el consumo de energía eléctrica se debe al equipo (caldera ytanque de enfriamiento) que se adquirirá para aumentar la capacidad de 3 600 a 7 200 lt/día en dos turnos.

7.1.5. Combustible

El consumo de combustible se calculó de la manera si--

guiente (7).

Una caldera de 20 c.c. consume a plena carga 28 lt. de diesel por hora de trabajo. Se consideran 25 días de trabajo por mes.

ETAPAS	No.CAI	DERAS	HORAS/TR BAJO	A CONSUMO DI / HORA	LT/DIA	LT/I	MES
600		1	4	28	110	2 '	750
1 200		1	5	28	140	3 !	500
1 800		1	7.5	28	210	5 2	250
3 600		2	7.5	28	420	10 5	500
7 200		2	16.6	28	930	23 2	250

CUADRO NO. 3

REQUERIMIENTOS MENSUALES DE INSUMOS

INSUMOS	UNIDADES	M	M			S .
	ONIDADES	9	10	11	12-24	25 en adelante
Materia prima	Lt.	15,000	30,000	45,000	90,000	180,000
Azúcar	Kg.	3,000	6,000	9,000	18,000	36,000
Carbonato de calcio	Kg.	300	600	900	1,800	3,600
Mano de obra	Jornales	3	4	4	8	12
Agua	м3	85.91	110.6 8	132.26	264.52	424.05
Diesel	Lt.	2,750	3,500	5,250	10,500	23,500
Enérgia eléctrica	Kw.	6,000	6,000	6,000	6,700	8,870

INVERSION

En la decisión de ejecución de un proyecto es necesario tener en cuenta las siguientes inversiones:

- a. La inversión para la instalación del proyecto y
- b. La requerida para la etapa de funcionamiento propiamente dicha.
 Para lo anterior se definen la inversión fija, la inversión diferida y la de capital trabajo.

1. INVERSION FIJA

Es aquella que está destinada a la adquisición de bienes y serviciosque serán empleados durante toda la vida del proyecto. Su valor monetario constituye el capital fijo de la empresa.

Esta comprende la inversión fija tangible que son los edificios, instalaciones, maquinaria y equipo, etc.

INVERSION FIJA

0	NCEPTO .		T O T A L
L.	Obra civil		\$ 5'193,234.19
2.	Instalaciones		562,921.05
	Sanitaria	281,655.55	
	Eléctrica	167,865.50	
R	Aislamiento ,	113,400.00	
3.	Maquinaria y equipo		2'912,241.29
	Recepción	2'048,711.50	
	Vapor	609,620.00	
	Refrigeración	253,909.79	
4.	Costos de instalación del	l equipo	619,495.47
	Recepción	403,613.02	
	Vapor	152,405.00	
	Refrigeración	63,477.45	
5.	Equipo de oficina		68,400.00
6.	Equipo de laboratorio		116,839.00
	TOTAL:		\$ 9'473,131.00

El terreno es parte de la inversión financiera, pero no de la inversión en el sentido de la formación de capital, pues el pago que se haga para obtener su dominio no implica formación de ahorros, ni representa un -- aporte al acervo renovable. En este caso el terreno en el cual se ubicará la planta elaboradora de pasta de cajeta es propiedad de los ejidata--- rios; además, su costo no es significativo en la inversión total.

El costo del equipo y su instalación, el de la Obra Civil y el de ser vicios se computan según las cotizaciones obtenidas a base de las específicaciones de ingeniería.

2. INVERSION DIFERIDA

Esta es la parte intangible del capital fijo que afecta a la producción, se incluye: la elaboración de estudios y entrenamiento de personal.

Elaboración de estudios 1'100,000.00 Entrenamiento de personal 60,000.00

Total: 1'160,000.00

Ia elaboración de estudios será costeado por el Programa de Ingenie-ría Agrícola. Los desembolsos realizados se cargarán a gastos de fomento no recuperable y los resultados de las investigaciones se entregarán sin costo alguno a la empresa que realizará el proyecto.

3. CAPITAL DE TRABAJO

Se llama capital circulante o de trabajo al patrimonio en cuanta co--rriente que necesitan las empresas para atender las operaciones de produc-

ción o distribución de bienes y servicios o de ambos.

Este capital de trabajo se obtendrá por medio de crédito de avío el - cual se pagará en un año.

4. CUADRO DE INVERSIONES

0	NCEPTO	T O T A L
a. I	NVERSION FIJA	
c	bra civil	\$ 5'193,234.19
]	instalaciones	562,921.05
N	Maquinaria y equipo	2'912,241.29
C	Costos de instalación	619,495.47
1	Quipo de oficina	68,400.00
]	Equipo de laboratorio	116,839.00
b. :	INVERSION DIFERIDA	
1	Elaboración de estudios	1'100,000.00
	Entrenamiento de personal	60,000.00
	TOTAL:	\$ 10'633,131.00

5. CALENDARIO DE INVERSIONES

Para determinar la inversión requerida mensualmente se detectaron los tiempos estimados de duración de cada trabajo, de acuerdo al programa cons

tructivo. Este constituye un punto de partida para el estudio de financia miento del proyecto.

El calendario se desglosa en el cuadro No. 4.

CUADRO No. 4

CALENDARIO DE INVERSIONES

CONCEPTO		M			. <u> </u>			··· S		
	1	2	. 3	4	5	6	7	8	TOTAL	
Instalaciones	454,465	864,277	1'004,160	1'156,137	1'499,611	694,738	64,533	18,234	5'756,155	
Maquina ría y equipo			•		1'548,740	1'961,746	206,490		3'716,976	
						то	TAL:		9'473,131	

COSTOS E INGRESOS

1. COSTOS DE PRODUCCION

Dentro de estos costos estan todos aquellos elementos que intervienendirectamente en la fabricación del producto que se elabora destacando: materia prima, materiales auxiliares, mano de obra directa, servicio de - -aqua potable, suministros de energía eléctrica y combustibles.

El cálculo de estos costos se realiza asignando precios a los distintos recursos requeridos físicamente y cuantificados de acuerdo con los estudios de Ingeniería. El desglose de estos costos mensuales se puede observar en el cuadro No. 5.

2. COSTOS DE OPERACION

Son todos aquellos que no intervienen directamente en la obtención del producto pero que afectan haciendo más o menos aliciente al trabajo. Dentro de estos tenemos: mano de obra indirecta, conservación y mantenimiento de instalaciones, conservación y mantenimiento de equipo, depreciación demaquinaria y equipo, depreciación de instalaciones, gastos de ventas e — imprevistos.

De acuerdo al análisis financiero se debe considerar lo siguiente: - -

CUADRO No. 5

RESUMEN DE COSTOS

CONCEPTO		M			E	S	
		9	10	11.	12 - 24	25 en adelant	
OSTOS DE PRODUCCION	30					0.0	
ateria prima	7	195,000	390,000	585,000	1'170,000	2'340,000	
zūcar (\$13.65 Kg)		40,950	81,900	122,850	245,700	491,400	
$_{3}$ \cos_{3} (\$ 16.00 Kg)		4,800	9,600	14,400	28,800	5 7,6 00	
ano de obra directa.		30,525	40,700	40,700	81,400	112,000	
gua (\$ 1.50 m3)		129	166	198	397	636	
iesel (\$ 4.00 Lt)		10,000	14,000	21,000	42,000	93,000	
nergía eléctrica (0.89 a 0.93 Pesos /	KW.)	5,366	5,439	5,513	6,238	8,258	
SUBTOTAL:		286,700	541,805	789,661	1'574,535	3'112,994	
OSTOS DE OPERACION	•						
ano de obra indirecta	7	51,491	51,491	51,491	51,491	51,491	
onservación y mantenimiento de equipo	(4%)	J.,	0-, 10-	10,325	10,325	10,325	
onservación y mantenimiento de instala	ciones (2.7%)			12,951	12,951	12,951	
epreciación de equipo (5%)	(=,,,,			12,906	12,906	12,906	
epreciación de instalaciones (4%)				19,187	19,187	19,187	
astos de ventas (6%)		20,475	40,950	61,425	122,850	245,700	
mprevistos (5 %)		15,902	27,056	40,990	76,405	145,574	
SUBTOTAL:	V	87,368	119,497	210,225	306,115	498,134	
TOTAL:		374,138	661,302	998,886	1'880,650	3'611,128	

2.7% de conservación y mantenimiento de instalaciones, 4% de conservacióny mantenimiento de maquinaria y equipo, 5% de depreciación de equipo, 4% depreciación de instalaciones, 6% de gastos de ventas y 5% de imprevistos.

Los resultados de los costos de operación pueden observarse en el cuadro No. 5.

El resumen total de costos informa los egresos que se tendrán en la - empresa mensualmente.

3. INGRESOS

Los ingresos correspondientes al proyecto quedarán definidos por el - volúmen de producción y por los precios de venta de los bienes y servicios que se producen. El precio fué estimado en el estudio de mercado. El volúmen de ingresos será directamente proporcional a los precios. Esto se - puede observar en el cuadro No. 6.

4. PROYECCION DEL ESTADO DE RESULTADOS

El "Flujo de fondos" o "Estado de resultados" es un documento conta-ble que se elabora con los valores obtenidos tanto de los ingresos como de
los egresos permite presentar en forma concreta la información acerca de la situación y del probable desarrollo financiero de la empresa, como consecuencia de las operaciones que se realizarán.

Del flujo de fondos (Cuadro No.7) se puede obtener información so-bre: los ingresos por ventas, créditos, costos de producción y operación,adquisición de equipo, amortizaciones, utilidad bruta, reinversiones, re--

CUADRO No. 6
INGRESOS POR VENTAS

CONCEPTO	. 7		-	E		s ·	
		9	10	11	12 24	25 en adelante	
Pasta de cajeta (It/día)		300	600	900	1,800	3,600	
Pasta de cajeta (Kg/día)		390	780	1,170	2,340	4,680	
Precio de pasta de cajeta \$ 35.00 / Kg.	\$	341,250	682, 500	1'023,750	2'047,500	4'095,000	
Precio de pasta de cajeta \$ 35.00 / Kg.	. \$	341,250	682,500	1'023,750	2'047,500	4'095,000	

^{*} Se consideran 25 días de trabajo por mes

CUADRO No. 7
PROYECCION DEL FILLIO DE FONDOS

CONCEPTO	A		Ŋ	00	S	
	1.	2	3	4 al 9	10 al 16	
NGRESOS						
,	41005 000	0445770 000	1014 10 000	401440 000	101110 000	
ngresos por venta rédito refaccionario	4'095,000 3'716,976	24'570,000	49'140,000 1'311,618	49'140,000	49'140,000	
rédito de avío	1'000,000		1 311,010		•	
Reinversiones	1 000,000	872,062	1'081,637			
OTAL:	8'811,976	25'442,063	51,533,255	49'140,000	49'140,000	
CRESOS			`			
ostos de producción	3'192,771	18 894,420	37'355,928	37'355,928	37'355,928	
Costos de operación	723,312	3'673,380	5'977,608	5'977,608	5'977,608	
dquisición de equipo	3'716,976	·	2'393,255	·	•	
mortización del refaccionario			2'339,268	2'339,268		
mortización del avío	327,468	982,404				
OTAL:	7'960,527	23'550,204	48'066,059	45'672,804	43'333,536	
tilidad bruta	851,449	1'891,850	3'467,196	3'467,156	5'806,464	
Reinversiones	851,449	1'081,637				
eserva capital	851,449	•	363,001	363,001	596,928	
tilidad distribuible		810,222	3'104,195	3'104,195	5'209,536	
mortización infraestructura		210,300	210,300	210,300	210,300	
TILIDAD NETA		599,922	2'893,855	2'893,895	4'999,236	

serva de capital, utilidad distribuible y finalmente, la utilidad neta.

El flujo de fondos permite dictaminar sobre la capacidad de pago de la empresa y sobre los posibles beneficios que se obtendrán.

5. PUNTO DE EQUILIBRIO

Es el ritmo de operación necesario para que la empresa no tenga pérdidas ni ganancias; es decir, el punto en el cual los ingresos se igualan alos egresos. Para determinarlo se toman en cuenta los costos fijos (son aquellos que permanecen constantes, independientemente del nivel de producción), costos variables (aquellos que cambian de acuerdo al nivel de producción) y ventas totales (son los ingresos que se obtienen por la producción).

a. Por el método gráfico

Para determinar el punto de equilibrio por este método se utiliza un eje de coordenadas, en el de las abscisas se anotan la cantidad de - litros/mes, y en el de ordenadas los ingresos y costos (\$).

Se determinan los costos fijos, variables y totales. Así como - los ingresos. El costo fijo (figura No. 10) se representa con una línea - recta, paralela al eje de las abscisas, ya que este permanece constante. - El costo total se representa por una línea recta que parte del eje de las ordenadas en el punto correspondiente al costo fijo, ya que Ct= Cf + Cv. El ingreso total se representa por una linea inclinada y ascendente que - parte del origen. En el punto donde se cruzan los costos totales y los ingresos corresponde al equilibrio de las dos rectas.

En este caso se analizaron dos situaciones de actividad financiera. La primera corresponde al año dos de operación cuando la planta requiere de créditos de avío, obteniendose un P.E. = 75.36%. El segundo corresponde al año 15, a plena capacidad, donde la empresa es autofinanciable, obteniendose un P.E. = 21.056 %.

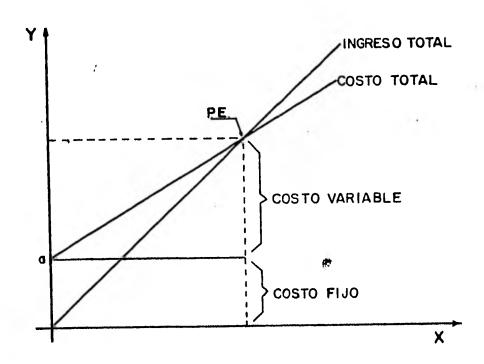


FIGURA - Nº 10

b. Por el método analítico

El ingreso total se determina por PX; donde: P es (1) precio delproducto y "X" la cantidad vendida. (Kg. pasta de cajeta/mes). Corresponde a una línea recta del tipo Y = PX (donde P = 1, es una recta de 45°)-quedando reducida a Y = X.

El costo total representa una línea recta del tipo y=a+bx, don de a=costos fijos y b=la pendiente, es decir costo variable/ventas totales.

En el punto de equilibrio los ingresos totales se igualan a loscostos totales, no se obtienen ni perdidas ni ganancias.

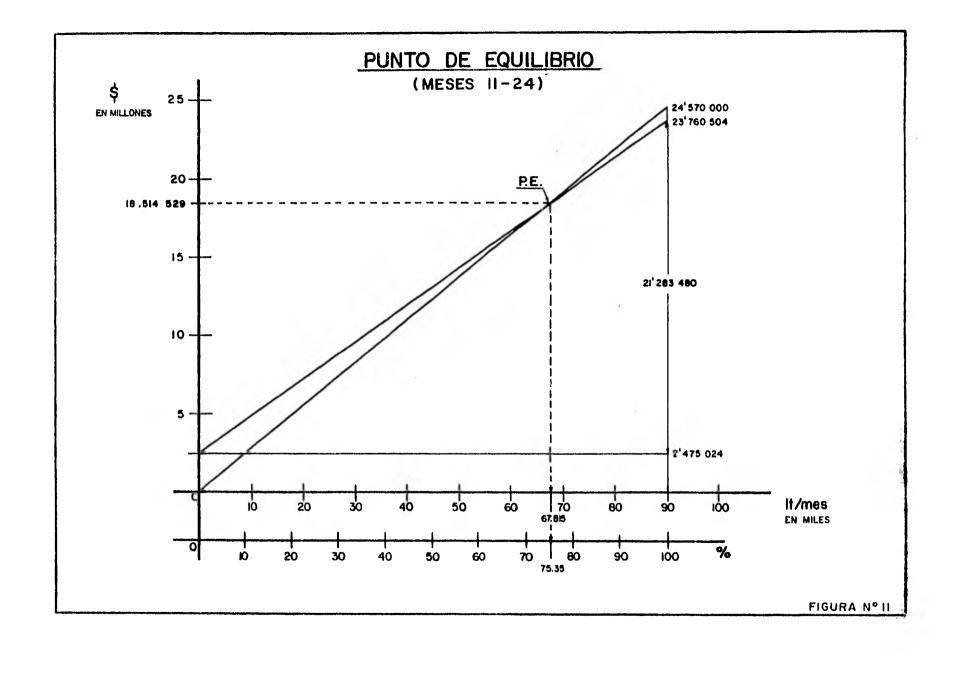
$$Y = X ; Y = a + bx$$

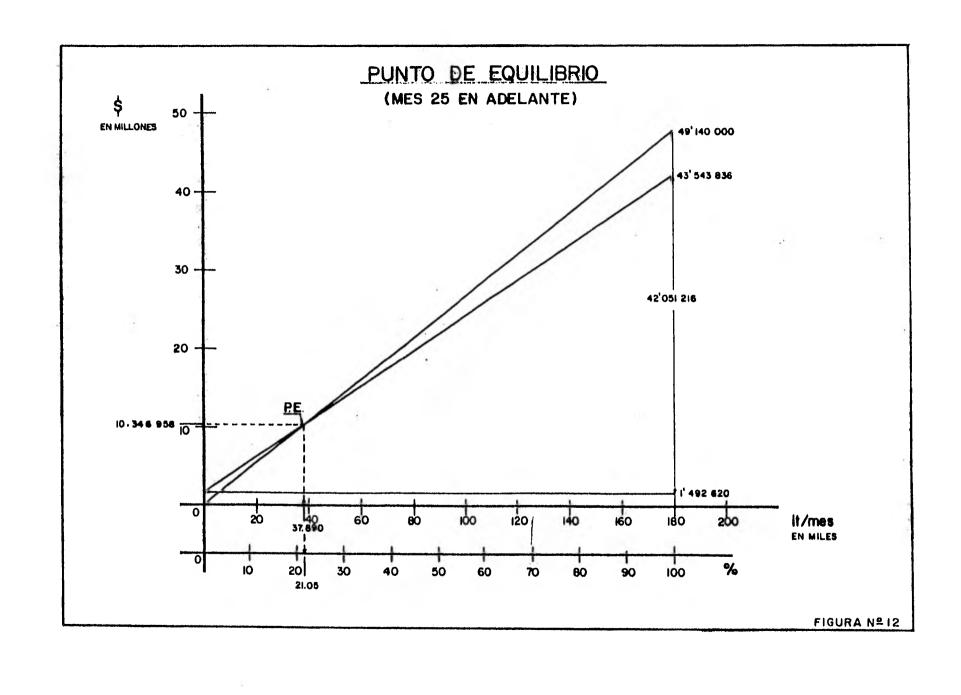
Igualando, Ingresos = Costos totales

$$x = a + bx$$

Donde:

$$x - bx = a$$


$$x (1 - b) = a$$


x Costos fijos

5.1. Determinación del punto de equilibrio

a.	COSTOS FIJOS	\$	2'475,024	\$ 1'492,620
	Depreciación y amortización Conservación y mantenimiento Mano de obra indirecta Amortización infraestructura Amortización crédito de avío		385,116 279,312 617,892 210,300 982,404	385,116 279,312 617,892 210,300
b.	COSTOS VARIABLES		21'283,480	42'051,216
	Materia prima Azúcar Carbonato de calcio Mano de obra indirecta Agua Diesel Enérgia eléctrica Gastos venta Imprevistos		14'040,000 2'948,400 345,600 976,800 4,764 504,000 74,856 1'474,200 916,860	28'080,000 5'896,800 691,200 1'465,200 7,632 1'116,000 99,096 2'948,400 1'746,888
c.	COSTOS TOTALES		23'760,504	43'543,836
đ.	VENTAS TOTALES	.\$	24'570,000	\$ 49'140,000
	I.P.E. Costos Fijos = 1 - Costos variable Ventas totales	\$ <u>s</u>	18'514,529	\$ 10'346,958
	P.E. <u>Costos Fijos</u> x 100	=	75.354 %	21.056 %

Ventas totales - Costos variables

ANALISIS FINANCIERO

1. FINANCIAMIENTO

El financiamiento de la unidad se realizará mediante un sistema tripar tita en el cual intervendrán la Secretaría de Agricultura y Recursos Hidráu licos, la Banca Oficial y los propios beneficiarios del proyecto.

1.1. Aporte de capital

Se puede considerar que este aporte por parte de los ejidatarios es nulo; sin embargo, lo realizan mediante su participación en la construcción de la obra y de manera simbólica con un 30 % del costo total en infra estructura, el cual es físicamente manejado por la Secretaría de Agricultura y Recursos Hidráulicos.

1.2. Créditos

Es necesario el manejo de capital por medio de créditos que provendrán de la Banca Oficial y de la misma Secretaría.

Estos créditos serán de tres tipos:

- a. Crédito para infraestructura
- b. Crédito refaccionario
- c. Crédito de avío

1.2.1. Crédito para infraestructura

Para la ejecución del 30 % restante del costo de la infraestructura, la Secretaría de Agricultura y Recursos Hidráulicos dará alos ejidatarios un crédito total de \$ 1'726,846.00 el cual deberán cubriren un plazo de 15 años a una tasa de interés del 7.5% anual sobre saldosinsolutos. Cuadro No. 8.

1.2.2. Crédito refaccionario

El crédito refaccionario se utilizará para la adquisi-ción de maquinaria y equipo y se tramitará a través de la Banca Oficial. Se tendrá en el curso de la operación dos créditos con los siguientes montos:

Primer crédito: \$ 3'716,976.00

Segundo crédito: \$ 1'311,618.00

Ambos con una tasa de interés del 26 % anual sobre sal---dos insolutos.

La amortización de este crédito se presenta en el cuadro No. 9.

1.2.3. Crédito de avio

Para el inicio de las operaciones de la unidad se requiere de un capital que se obtendrá a través de la Banca Oficial y se pagaráen el plazo de un año con una tasa de interés del 28 % anual y que tendrá-

CUADRO NO. 8

AMORTIZACION DE LA INFRAESTRUCTURA

AÑO	SALDO INSOLUTO	ANUALIDAD	INTERES	AMORTIZACION	TOTAL PAGADO
 	,				
1	1'726,846	100	129,513		
2	1'856,359	210,302	139,227	71,075	71,075
3	1'785,285	210,302	133,896	76,405	147,480
4	1'708,879	210,302	128,166	82,136	229,616
5	1'626,743	210,302	122,006	88,296	317,912
6	1'538,447	210,302	115,384	94,918	412,831
7	1'443,529	210,302	108,265	102,037	514,8 06
8	1'341,492	210,302	100,612	109,690	624,558
9	1'231,802	210,302	92,385	117,917	724,474
10	1'113,885	210,302	83,541	126,760	869 , 23 5
11	987,124	210,302	74,034	136,267	1'005,502
12	850,857	210,302	63,814	146,488	1'151,990
13	704,369	210,302	52,828	157,474	1'309,464
14	546,895	210,302	41,017	169,285	1'478,749
1 5	377,611	210,302	28,321	181,981	1'660,730
16	195,630	210,302	14,672	195,630	1'856,359

CUADRO No. 9

AMORTIZACION DEL CREDITO REFACCIONARIO

ANO	SALDO INSOLUTO	ANUALIDAD	INTERES	AMORTIZACION	TOTAL PAGADO
1	3'716,976		966,414	والمنافقة والمنافقة والمنافقة والمنافقة والمنافقة والمنافقة والمنافقة والمنافقة والمنافقة والمنافقة والمنافقة	
2	4'683,390		1'217,681		7
3	5'901,071	1'913,872	1'534,279	379,594	379,594
	5'521,478	1'913,872	1'435,584	478,288	857,882
4 5	5'043,189	1'813,872	1'311,229	602,643	1'460,525
6	4'440,546	1'913,872	1'154,542	75 9,3 30	2'219,856
7	3'681,216	1'913,872	957,116	956,756	3'176,612
8 9	2'724,459	1'913,872	708,359	1'205,513	4'382,125
9	1'518,946	1'913,872	394,926	1'518,946	5'901,071
3	1'311,618	425,392	341,021	84,371	84,371
4	1'227,247	425,392	319,084	106,308	190,679
5	1'120,939	425,392	291,444	133,948	324,627
6	986,991	425,392	265,618	168,774	493,401
7	818,217	425,392	212,736	212,656	706,057
8	605,561	425,392	157,446	267,946	974,003
9	337,615	425,392	87,780	337,615	1'311,616

un importe de \$ 1.000,000.00 empleandose en el pago de los costos de pro-ducción y operación.

EVALUACION

La evaluación de un proyecto es una ponderación de todos los elementos que intervienen en el para que en función del análisis que se efectúe se tome la decisión de rechazar, posponer o llevar a efecto el proyecto.

La evaluación de un proyecto se puede realizar bajo dos criterios: des de el punto de vista social (o evaluación económica) o desde el punto de - vista privado (o evaluación financiera).

La evaluación social es aquella en que lo importante es conocer la rentabilidad, rendimiento o productividad social del proyecto para la sociedad o para la economía en su conjunto, en base a los recursos destinados - al proyecto, independientemente de que grupo social se beneficie.

La evaluación financiera es aquella en la que el grupo o sector que -aporta o participa con financiamiento en el proyecto le interesa conocer -el rendimiento del capital que ha sido aportado. Su finalidad es determinar si el proyecto es rentable, para poder tomar la decisión de invertir.

Para evaluar este proyecto se utilizarán indicadores que consideran el valor del dinero a través del tiempo.

2.1. Indicadores económicos utilizados

Para analizar este proyecto se utilizarán los siguientes indicadores:

- a. Relación beneficio costo
- b. Tasa interna de retorno

La relación B/C es el cociente que resulta de dividir el valor - actual de la corriente de beneficios entre el valor actual de la corriente de costos, debiendose elegir una tasa de actualización adecuada. En estecaso se emplea una tasa del 12 %, que es la acordada con el Banco Mundial, quien aporta el crédito para financiar las obras de infraestructura. La regla para decisión indica que debería realizarse una inversión solo si la relación B/C es mayor que 1.

La expresión matemática para este indicador es:

$$B/C = \frac{ \underset{t=0}{ \underset{t=0}{ \frac{8r}{(1+r)^t}}}}{ \underset{t=0}{ \frac{8r}{(1+r)^t}}}$$

La tasa interna de retorno (TIR) es la medida en la cual la tasa de actualización hace que el valor de los beneficios actualizados del proyecto, o sea el valor actual neto del flujo de fondos sea igual a cero. - Representa la rentabilidad promedio del capital utilizado durante la vida util del proyecto. También puede decirse que da el rendimiento de la inversión, el cual puede ser comparado con la tasa de interés o con el costo marginal social del capital. Es una medida relativa y no absoluta.

La expresión matemática de este indicador es:

$$\underset{\mathsf{t} = 0}{\underbrace{ \begin{cases} n_{\mathsf{Bt}} - \mathsf{Ct} \\ 1 + r \end{cases}}} = 0$$

2.2. Relación beneficio costo

Para la determinación de esta relación se efectuaron los siguien tes pasos:

- a. Se calcularon los beneficios totales (cuadro No. 10)
- b. Se calcularon los costos totales (cuadro No. 11).

Los beneficios y los costos se actualizaron al 12 % de acuerdo - con lo explicado en el punto anterior.

En este caso la relación B/C resulto ser de:

Relación B/C =
$$\frac{77'739,758}{46'356.842}$$
 = 1.68

Relación B/C = 1.68

2.3. Tasa interna de retorno (TIP)

El cálculo de este indicador se observa en el cuadro No. 12, don de se anota que la TIR es igual al 56.96 %. Esto indica que por cada peso que se invierte se recuperaran, aparte del peso invertido, \$ 0.57 más.

2.4. Análisis de sensibilidad

Este análisis se realiza con el objeto de determinar si la empresa es rentable cuando existen variaciones en los precios de los insumos, - materia prima o de producto terminado.

CUADRO No. 10
BENEFICIOS TOTALES

AÑOS	VALOR DE PRODUCCION	COSTO DE	BENEFICIO GLOBAL	EN LA CONS	VALORES DE RESCATE	MANO DE OBRA EN LA EXPLO- TACION	BENEFICIOS TOTALES	FACTOR DE ACTUALIZACION	BENEFICIOS TOTALES AC TUALIZADOS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	4'095,000 24'570,000 49'140,000 49'140,000 49'140,000 49'140,000 49'140,000 49'140,000 49'140,000 49'140,000 49'140,000 49'140,000 49'140,000 49'140,000 49'140,000	3'192,771 18'94,420 37'355,928 37'355,928 37'355,928 37'355,928 37'355,928 37'355,928 37'355,928 37'355,928 37'355,928 37'355,928 37'355,928 37'355,928	902,229 5'675,580 11'784,072 11'784,072 11'784,072 11'784,072 11'784,072 11'784,072 11'784,072 11'784,072 11'784,072 11'784,072 11'784,072 11'784,072 11'784,072	1'439,039	1'012,452	193,325 976,800 1'465,200 1'465,200 1'465,200 1'465,200 1'465,200 1'465,200 1'465,200 1'465,200 1'465,200 1'465,200 1'465,200 1'465,200	2'534,593 6'652,380 13'249,272 13'249,272 13'249,272 13'249,272 13'249,272 13'249,272 13'249,272 13'249,272 13'249,272 13'249,272 13'249,272 13'249,272 13'249,272	.89296 .79719 .71178 .63552 .56743 .50663 .45235 .40388 .36061 .32197 .28748 .25668 .22917 .20462 .18270 .16312	2'263,036 5'303,211 9'430,569 8'420,177 7'518,034 6'712,479 5'993,308 5'351,116 4'777,820 4'265,868 3'808,901 3'400,823 3'036,336 2'711,066 2'420,642 2'326,372
					•				

CUADRO No. 11 CALCULO DE LOS COSTOS TOTALES

O n A	INVERSIONES	COSTOS DE OPE RACION	COSTOS TOTALES	FACTOR DE ACTUALIZACION	COSTOS TOTALES ACTUALIZADOS
1	10'633,131	723,312	11'356,443	.89286	10'139,681
2	20 000,202	3'673,380	3'673,380	.79719	21928,396
3	2'393,255	5'977,608	8'370,863	,71178	5'958,215
4		5'977,608	5'977,608	63552	31798,878
5		5'977,608	5'977,608	.56743	3'391,855
6		5'977,608	5 ' 977 , 608	.50663	31028,442
7		5'977,608	5'977,608	.45235	21703,966
8		5'977,608	5'977,608	. 40388	2'414,256
9		5'977,608	5'977,608	.36061	2'155,585
10 11		5'977,608	5'977,608	, .32197	1'924,630
		5'977,608	5'977,608	.28748	1'718,419
12		5'977,608	5'977,608	.25668	1'534,303
13		5'977,608	5'977,608	.22917	1'369,913
14		5'977,608	5'977,608	.20462	1'223,137
15		5'977,608	5'977,608	.18270	1'092,087
16		5'977,608	5'977,608	.16312	975,077
					\$ 46'356,842

RELACION B/C
$$\frac{77'739,758}{46'356,842} = 1.68$$

RELACION B/C = 1.68

CUADRO No. 12
DETERMINACION DE LA TASA INTERNA DE RETORNO

vuos	BENEFICIOS TOTALES	COSTOS TO TALES	INCREMENTO DEL CAPITAL DE TRABAJO	RECUPERACION DEL CAPITAL DE TRABAJO	FLUIO DE EFECTIVOS	FACTOR DE AC TUALIZACION 56.97 %	FLUIO DE EFECTIVOS ACTUALIZADOS
4 5 6 7 8 9	2'534,539 6'652,380 13'249,272 13'249,272 13'249,272 13'249,272 13'249,272 13'249,272 13'249,272 13'249,272 13'249,272 13'249,272	11'356,443 3'673,380 8'370,863 5'977,608 5'977,608 5'977,608 5'977,608 5'977,608 5'977,608 5'977,608 5'977,608	77,469 232,400		(8'899,317) 2'746,600 4'878,409 7'271,664 7'271,664 7'271,664 7'271,664 7'271,664 7'271,664 7'271,664 7'271,664	.63712 .40592 .25862 .16477 .10498 .06688 .04261 .02715 .01730 .01102 .00702 .00447	(5'669,908) 1'114,895 1'261,642 1'198,150 763,362 486,351 309,862 197,419 125,779 80,136 51,056 32,529 20,725
15	13'249,272 13'249,272 14'261,724	5'977,608 5'977,608 5'977,608		309,867	7'271,604 7'271,604 8'593,983	.00182 .00116 .00074	13'204 8,412 6,334

TASA INTERNA DE RETORNO (T.I.R.) = 56.96 %

En este caso se consideró un aumento en el precio de la materia prima equivalente al 10 %. (cuadro No. 13).

Los resultados que se obtienen del análisis de sensibilidad indican una relación B/C = 1.28 y una tasa interna de retorno = 34.57%. Lo que demuestra que la empresa, con un incremento en el costo de la materiaprima y permaneciendo el precio de venta constante, aún es rentable.

CUADRO No. 13

ANALISIS DE SENSTBILIDAD

VARIACION EN EL COSTO DE LA MATERIA PRIMA

(INCRIMENTO DEL 10%)

						•	
OFA	BENEFICIOS TOTALES	COSTOS	FILUO NETO	BENUFICIOS TO TALES ACTUALI ZADOS 12%	COSTOS TOD ACTUALIZA 128		FLUJO NETO ACTUAL 12ADO 34.57%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	2'300,594 5'248,380 10'441,272 10'441,272 10'441,272 10'441,272 10'441,272 10'441,272 10'441,272 10'441,272 10'441,272 10'441,272 10'441,272 10'441,272 10'441,272	11'356,443 3'673,380 8'370,862 5'977,608 5'977,608 5'977,608 5'977,608 5'977,608 5'977,608 5'977,608 5'977,608 5'977,608 5'977,608 5'977,608	(9'133,316) 1'342,600 2'070,409 4'463,664 4'463,664 4'463,664 4'463,664 4'463,664 4'463,664 4'463,664 4'463,664 4'463,664 4'463,664 4'463,664 5'593,983	2'054,108. 4'183,956 7'494,745 6'635,637 5'924,690 5'289,861 4'723,109 4'217,020 3'765,227 3'361,776 3'001,660 2'680,065 2'392,826 2'136,496 1'907,620 1'868,332	10'139,0 2'928,3 5'958,2 3'798,8 3'391,8 3'028,4 2'703,9 2'414,2 2'155,5 1'924,6 1'718,4 1'534,3 1'369,9 1'229,0 975,0	96 1'070,307 15 1'473,676 78 2'836,748 55 2'532,816 42 2'261,426 66 2'019,138 56 1'802,784 85 1'609,641 30 1'437,165 19 1'283,214 03 1'145,733 13 1'022,937 37 913,354 87 815,511 77 728,112	(6'787,037) 741,396 849,594 1'361,126 1'011,464 751,626 558,539 415,055 308,930 229,197 170,318 126,565 94,051 69,890 51,936 48,367
				22 223,000	:		(52.7)

RELACION BENEFICIO / COSTO = 59'225,068 46'356,842 = 1.28

T,I.R. = 34.578

ORGANIZACION DE LA EMPRESA

Para la constitución y funcionamiento de la empresa se propone el esta blecimiento de una "Asociación Rural de Interés Colectivo" que estará constituída por los cinco ejidos (Ley Federal de Aguas del 1 al 5).

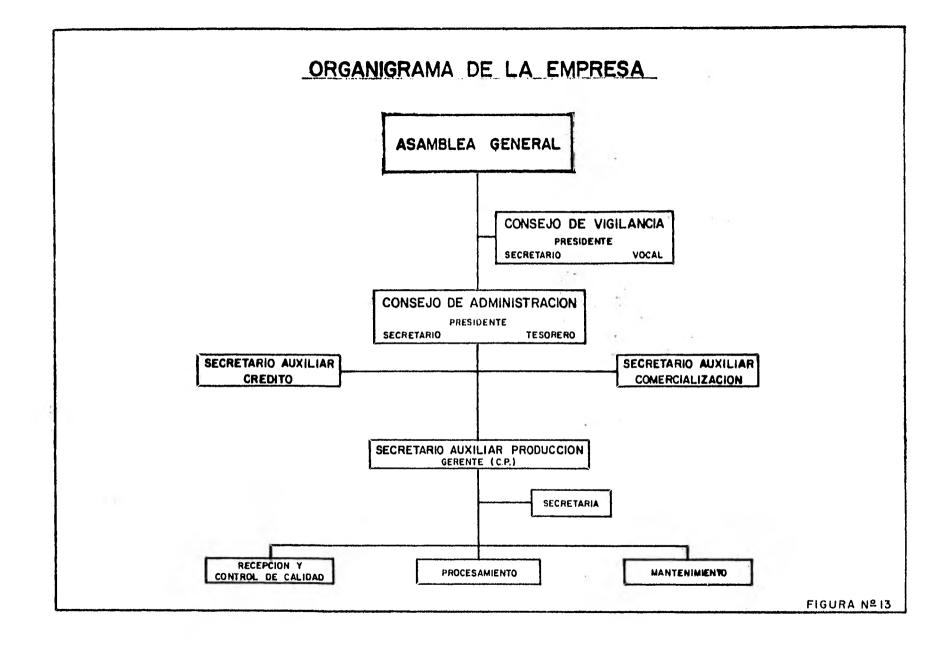
De acuerdo a la Ley General de Crédito Rural este tipo de asociaciones tiene por objeto la integración de los recursos humanos, naturales, técnicos y financieros para el establecimiento de industrias y sistemas de comercialización así como otras actividades económicas que no sea la explotación directa de la tierra.

Su domicilio estará dentro de su adscripción territorial y su duración no podrá ser menor de tres años; en este caso se proponen veintiseis años.

Al crearse la asociación se deberá establecer una serie de estatutos - que requiera su funcionamiento, debiendo contener lo siguiente:

- a. Denominación, domicilio y duración
- b. Objetivos
- c. Capital y régimen de responsabilidad
- d. Lista de miembros

- e. Normas de administración, separación y exclusión
- f. Derechos y obligaciones
- q. Organos de autoridad y vigilancia
- h. Normas de funcionamiento
- i. Ejercicio social y balances
- j. Fondos sociales y reparto de utilidades
- k. Disolución y liquidación


Su funcionamiento será básicamente, en orden de jerarquía, el siguiente:

El órgano supremo será la Asamblea General que se integrará con dos representantes de cada ejido. La dirección estará a cargo de un Consejo de-Administración que se encargará de la representación de la Asociación ante terceros.

Se nombrará además un Consejo de Vigilancia, un secretaria auxiliar de crédito, un secretario auxiliar de comercialización y todos los demás quela Asamblea General considere necesarios.

Los miembros de los consejos y los secretarios auxiliares durarán en - su gestión un máximo de tres años y sus facultades y responsabilidades estarán consignadas en los estatutos de la Asociación.

En la figura No. 13 se presenta un organigrama tentativo para la empresa.

CONCLUSIONES

1. Las características fisiográficas de Baja California Sur aunadas a un clima extremoso con bajas precipitaciones que provocan escasez de recursos hidráulicos y una cubierta forestal de bajo valor forrajero determinan alganado caprino como el recurso más apropiado para explotarlo dentro del Estado, efectuando para ello obras de infraestructura necesaria.

Como resultado del estudio se deduce que en el Estado la superficie - dedicada a la agricultura es reducida y dispersa, mientras que las tierras de agostadero son predominantes por lo que la ganaderia es de vital importancia; los caprinos representan un 30 % del valor de la ganaderia.

- 2. Debido a que actualmente se estan llevando a cabo programas de desa-rrollo caprino es nocesaria la creación de una infraestructura agroindus-trial y comercial que permita el máximo de aprovechamiento de la produc-ción primaria obtenida.
- 3. No obstante que la leche de cabra es más rica en grasa butírica que la de vaca y también tiene mayor cantidad de sólidos su consumo es, en ma- yor porcentaje, industrializado. La leche fresca no tiene un precio justo.

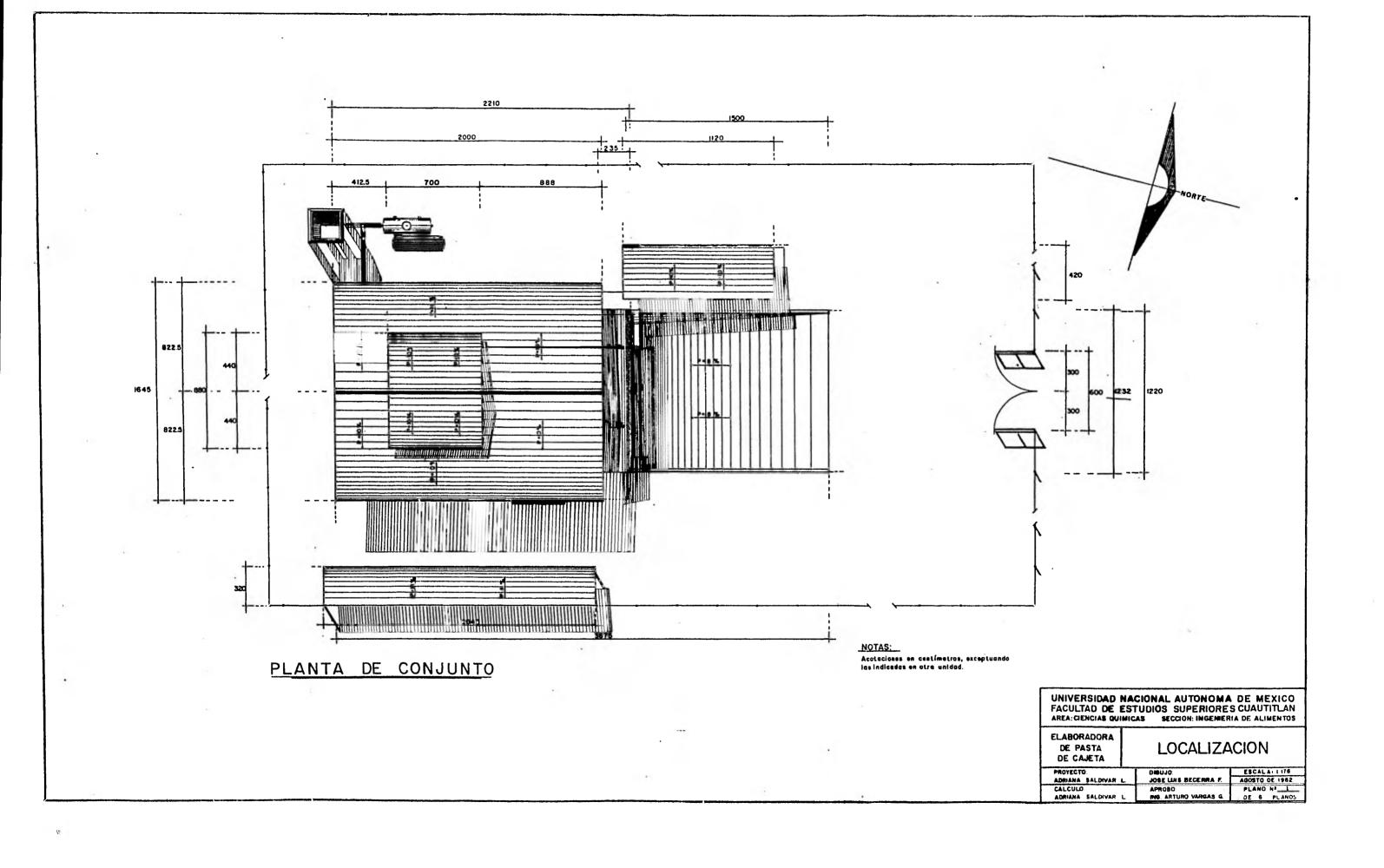
- 4. El producto principal que se comercializa de la leche de cabra es elqueso fresco, el cual por falta de control y adecuados sistemas de comercialización tiene bajo valor nutritivo y económico presentando, en muchos
 casos, mermas a los productos.
- 5. La demanda de pasta de cajeta es alta a nivel Nacional y se puede colocar toda la producción obtenida con facilidad.
- 6. El establecimiento de una unidad elaboradora de pasta de cajeta es técnicamente viable y económicamente factible ya que los resultados de los
 indicadores utilizados así lo indican.
- 7. En la evaluación financiera se obtuvo que la relación B/C = 1.68 y-la T.I.R. = 56.96 % lo que indica la rentabilidad de una planta procesadora de cajeta en el municipio de Comondú.
- 8. En general las condiciones de la zona, de los productores y los compradores permiten confiar en el éxito de la empresa.

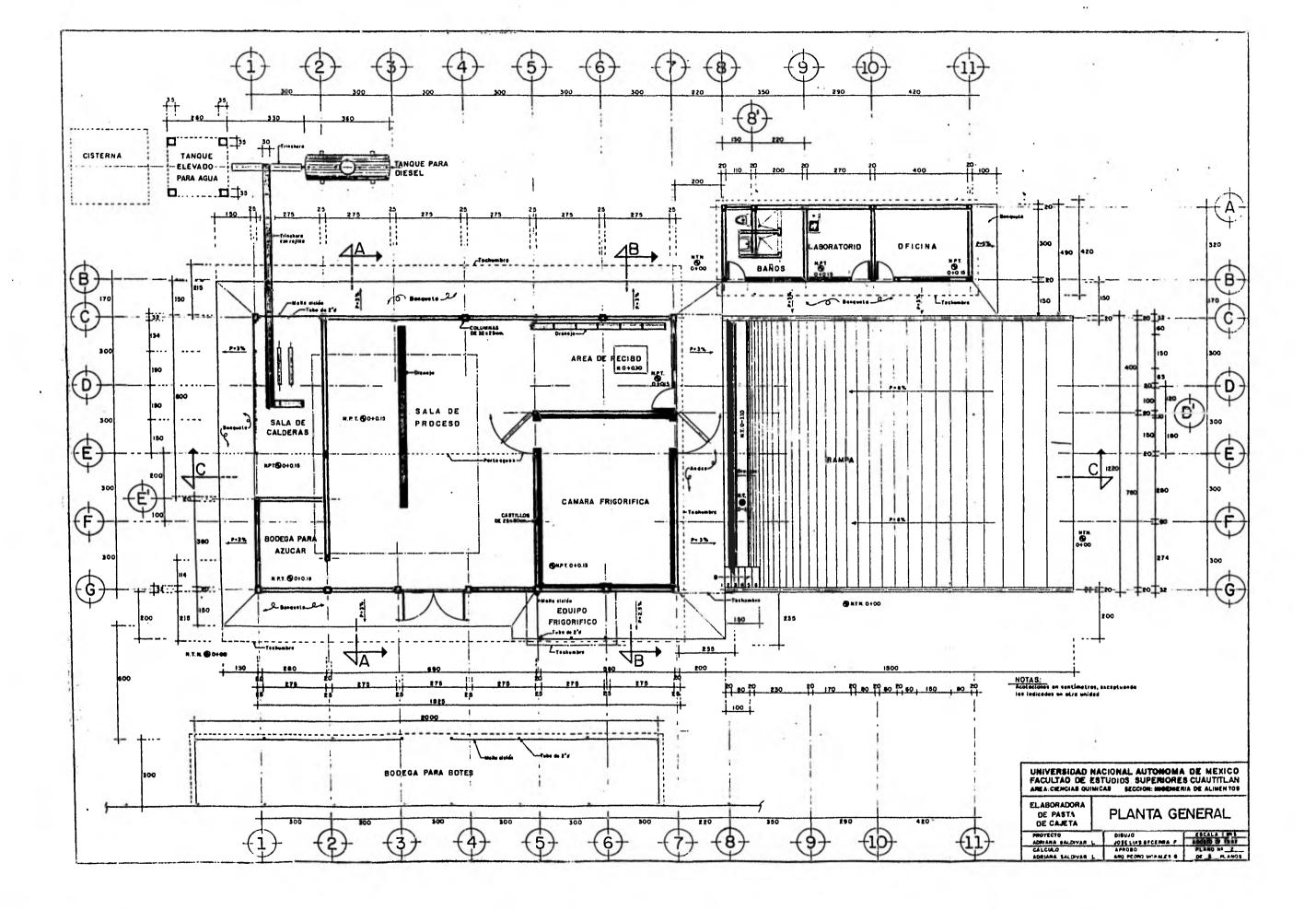
Así mismo se pueden ofrecer, entre otras, las siguientes recomendaciones:

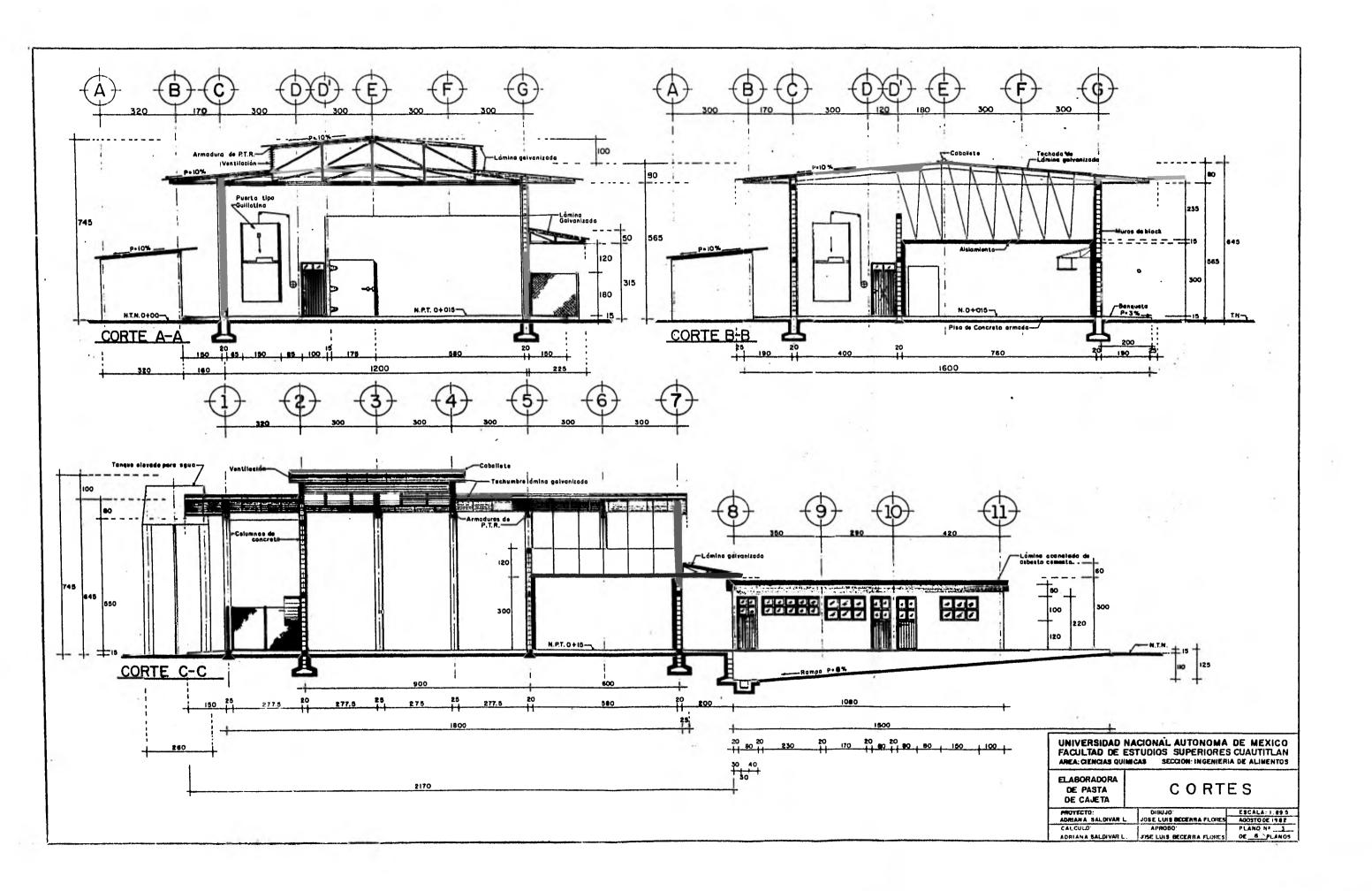
- 9. La capacitación tecnológica del personal que se va a tener laborando en la unidad.
- 10. Organizar a los productores eficientemente con reglamentaciones a las que se apequen los mismos para evitar problemas.

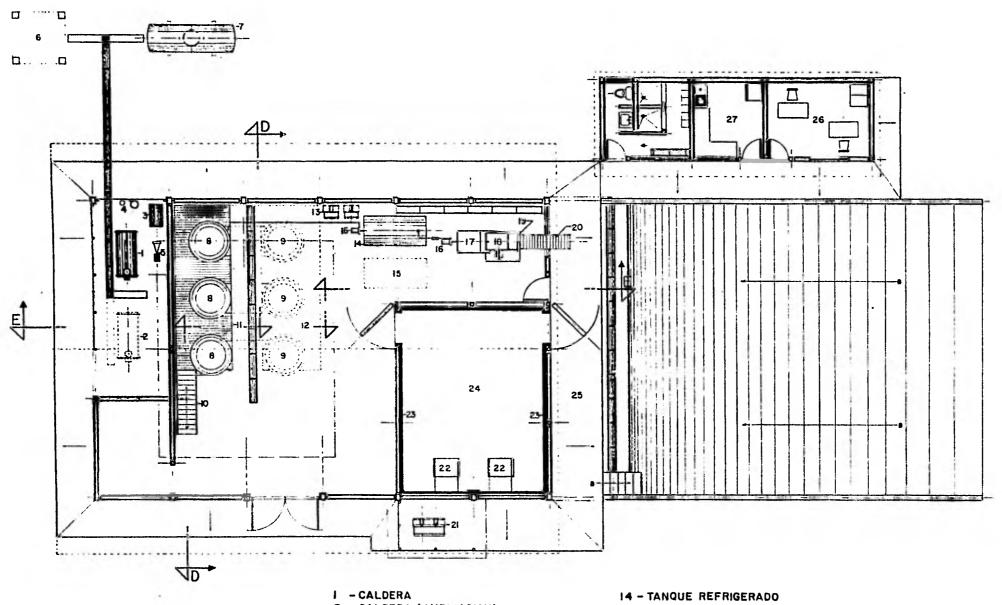
- 11. Establecer adecuados canales de comercialización para lograr un buen funcionamiento del mercado.
- 12. Continuar con los estudios a fin de elaborar el proyecto definitivo para la planta de cajeta que deberá ubicarse en Villa Constitución, Baja California Sur.

BIBLIOGRAFIA


- Alais, Charles.; "Ciencia de la Leche", Editorial Continental, -España (1971).
- 2. Badger V, Banchero J.; "Introducción a la Ingeniería Química", Editorial Mca Graw Hill, México (1977).
- 3. Brennan J.; "Las Operaciones de la Ingeniería de los Alimentos", Editorial Acribia, España (1970).
- 4. Dossat, Roy J.; "Principios de Refrigeración", Editorial Continental, México (1974).
- 5. Gittinger, Price J.; "Análisis Económico de Proyectos Agrícolas", Editorial Tecnos, Madrid (1975).
- 6. Perry, John H.; "Manual del Ingeniero Químico", Editorial UTEMP., Tomo I, México (1979).
- 7. "Manual de Calderas SEIMEC"; Sociedad Electromecánicas, S.A. de C.V. México (1976).
- 8. "Manual de Proyectos de Desarrollo Económico"; Naciones Unidas, - México (1958).
- 9. "Apuntes de Lactología"; Instituto Nacional de la Leche, Subdirección de Ganadería., S.A.R.H. (1982).
- 10. "X" Censo General de Población y Vivienda; Estado de Baja Cali-fornia Sur, Volúmen I., Tomo 3., México (1982).
- 11. "Estadística del Subsector Pecuario en los Estados Unidos Méxica-nos"., Subsecretaria de Agrícultura y Operación., S.A.R.H. (1979).
- 12. "Proyectos Ley Federal de Aguas Números 1 al 5"; Subsecretaría de Infraestructura Hidráulica., S.A.R.H. (1979 1980).
- 13. "Territorio de Baja California"; Nacional Financiera, S.A. - México (1971).
- 14. Gaceta Año 2 Número 23, Enero (1981); Subsecretaría de Ganade--ría. S.A.R.H.
- 15. Gaceta Año 2 Número 18, Agosto (1980); Subsecretaría de Ganadería. S.A.R.H.

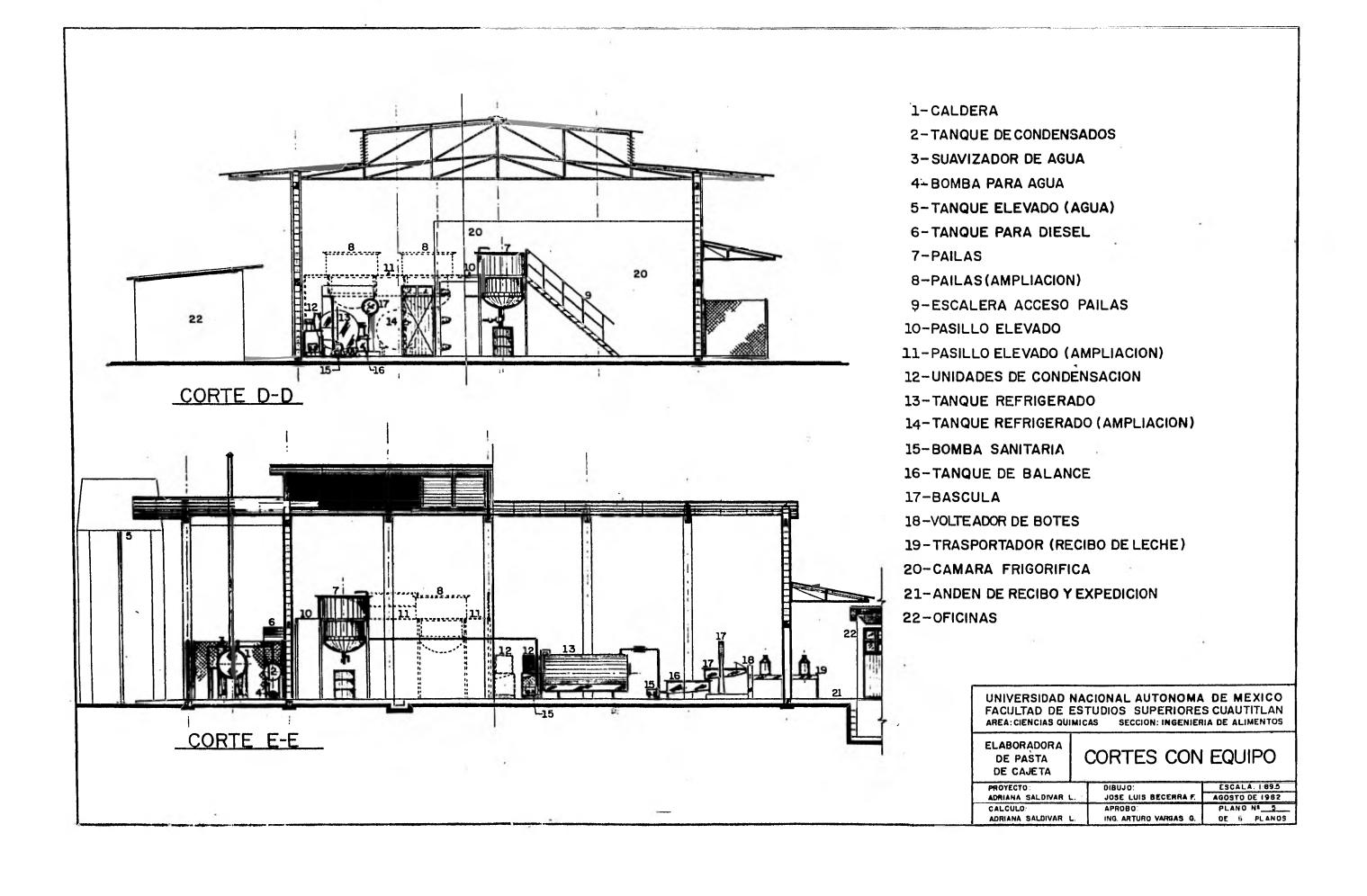

- 16. Moctezuma, López Georgel.; "Evaluación Económica de Díez Años (1967 1976) de Operación del Plan Puebla"; Colegio de Postgraduados, Chapingo, México. TESIS (1977).
- 17. Vargas, Guzmán Arturo.; "Estudio sobre el Establecimiento de una Elaboradora de Carnes Frías y Embutidos". Ciudad Victoria, Tamau lipas. Industrias Agrícolas, Chapingo, México. TESIS (1981).
- 18. "Manual de Refrigeración".; Gilvert Copeland. Parte 3 (secciones 12 a 16). México, (1970).
- 19. Vapomatic Installation Instructions Recold Corporation.; Los Angeles, California. USA (1971).
- 20. Revista Frío- Calor- Aire Acóndicionado.; Agosto / Septiembre (1975).
- 21. Catálogo de precios unitarios; Subdirección de Ingeniería Agrícola; S.A.R.H., México (1981).

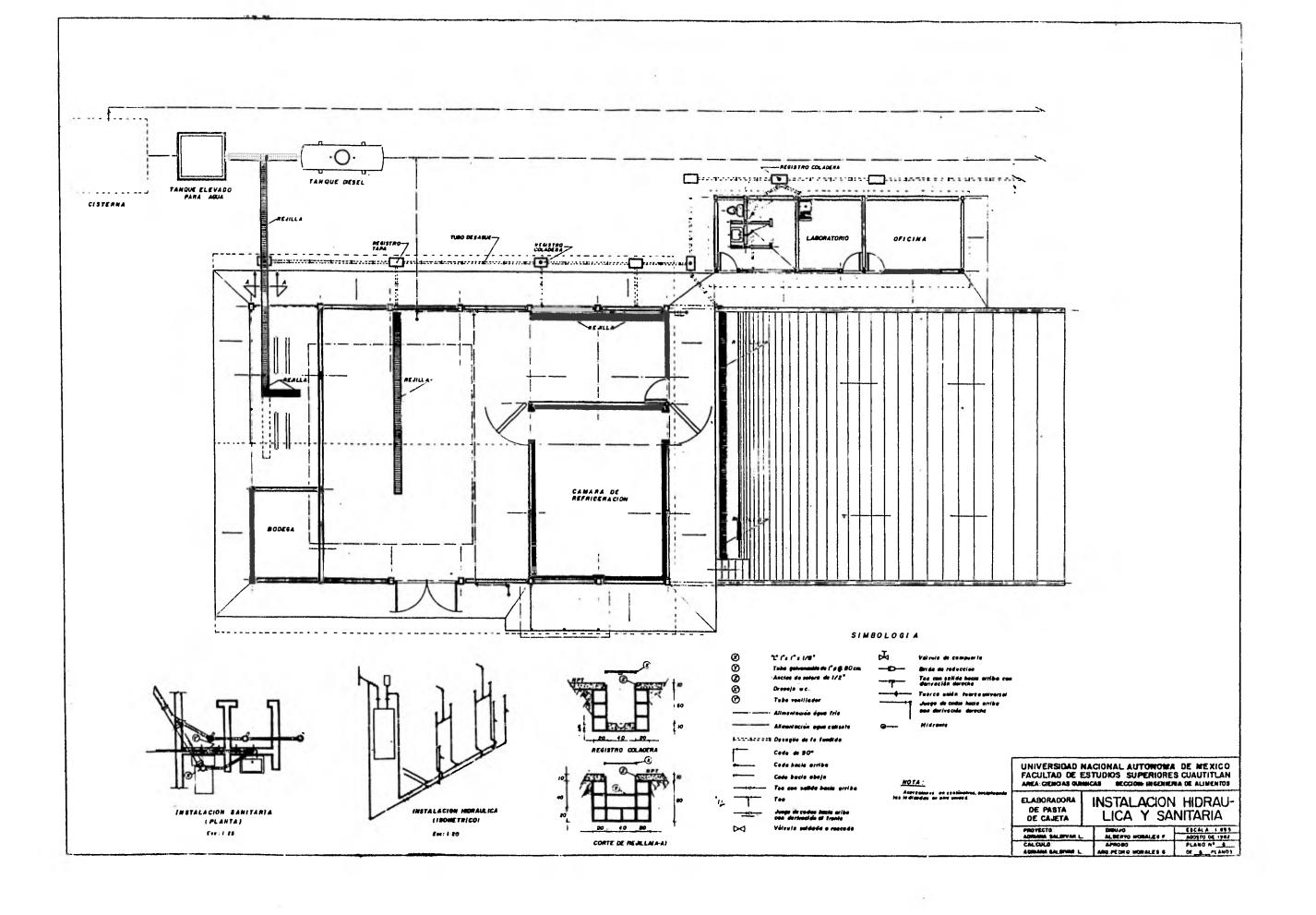

ANEXOS


٠		_		
п	м	_	٠.	

1	Planta conjunto
2	Planta general
3	Cortes y fachadas
4	Distribución de equipo
5	Cortes de equipo
6	Instalación hidráulica y sanitaria

- 2 CALDERA (AMPLIACION)
- 3 TANQUE DE CONDENSADOS
- 4 SUAVIZADOR DE AGUA
- 5 BOMBA PARA AGUA
- 6 TANQUE ELEVADO (PARA AGUA)
- 7 TANQUE PARA DIESEL
- 8 PAILAS
- 9 PAILAS(AMPLIACION)
- 10 ESCALERA ACCESO PAILAS
- II PASILLO ELEVADO
- 12 PASILLO ELEVADO (AMPLIACION)
- 13 UNIDADES DE CONDENSACION


- 15 TANQUE REFRIGERADO (AMPLIACION)
- 16 BOMBA SANITARIA
- 17 TANQUE DE BALANCE
- 18 BASCULA
- 19 VOLTEADOR DE BOTES
- 20 TRANSPORTADOR (RECIBO DE LECHE)
- 21 UNIDAD DE CONDENSACION
- 22 EVAPORADORES
- 23 AISLAMIENTO
- 24 CAMARA FRIGORIFICA
- 25 ANDEN DE RECIBO Y EXPEDICION
- 26 OFICINA
- 27 LABORATORIO


UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE ESTUDIOS SUPERIDRES CUAUTITLAN AREA GENCIAS QUÍMICAS SECCION INGENIERIA DE ALIMENTOS

ELABORADORA
DE PASTA
DE CAJETA

PLANTA GENERAL
CON EQUIPO

PROVECTO CHEUZO FRANCIS AUGUSTO DE LA COMPANA SALDIVAR L ALBERTO DE LA COMPANA SALDIVAR L ALBERTO DE LA COMPANA SALDIVAR L ALBERTO DE LA COMPANA SALDIVAR L ALBERTO L COMPANA SALDIVAR L ALBERTO LA COMPANA SALDIVAR L ALBERTO L COMPANA SALDIVAR L ALBERTO L COMPANA SALDIVAR L ALBERTO L COMPANA SALDIVAR L ALBERTO L COMPANA SALDIVAR L ALBERTO L COMPANA SALDIVAR L ALBERTO L COMPANA SALDIVAR L ALBERTO L COMPANA SALDIVAR L ALBERTO L COMPANA SALDIVAR L ALBERTO L COMPANA SALDIVAR L ALBERTO L COMPANA SALDIVAR L COMPANA SA

			•	