

Cuautitián Izcalli, Edo. de Méx.

1987.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

	÷٤	,	A	4	ä	I	Þ	L	A,	ł	
1											

	CAPITULO I FLUJO "SLUG"	
1.1	Generalidades4	i.
1.2	Métodos Empíricos	
	Lockhart-Martinelli	C. YONNY
1.3	Modelos teóricos	2
	a) Kordyban 10	
	b) Vermeulen 16	
1.4	Crítica de los modelos descritos 20	

CAPITULO II EL MODELO DE HUBBARD-DUKLER PARA EL FLUJO "SLUG"

2.1	Idea general del modelo	21
2.2	Obtención del sistema de ecuaciones	29
	a) Caida de presión	29
	b) Parámetros intermedios	30
	c) Longitud del "slug"	41
2.3	Subrutinas para la solución del sistema	
	de ecuaciones	42
	a) Subrutina para el cálculo de Theta	43
	b) Subrutina para la integración numérica	44
	c) Subrutina para el cálculo de la longi-	
	tud del "slug"	45

2.4	Prueba de corrección del programa de cál-	
	culo	46
	CAPITULO III EXPLOTACION DEL PROGRAMA DE	
	CALCULO	
3.1	Criterio de selección de R _s	49
3.2	Criterio de evaluación de F	52
3.3	Comparación del modelo con dato de la	가 가지 있다. Control control
	bibliografía	57
	a) Tubería horizontal	58
	b) Tuberia inclinada	60
	CAPITULO IV CONCLUSIONES	
4.1	Análisis de las hipótesis del modelo	62
4.2	Intervalos de validez del modelo	6'6
4.3	Sugerencias para mejorar el modelo	66
4.4	Conclusión general	67
	BIBLIOGRAFIA	68
	APENDICE	70
	NOMENGLATURA	76
	· · · · · · · · · · · · · · · · · · ·	
	방법 2017년 - 1918년 1917년 1917년 1917년 - 1917년 1917년 - 1918년 1917년 - 1917년 - 1917년 - 1917년 - 1917년 1917년 - 1917년 - 1917년 - 1917년 - 1917년 - 1917년 - 1917년 - 191	
		- File (1997) San (1997) San (1997)

OBJETIVOS

Los objetivos de este trabajo son:

- Estudiar modelos utilizados con el propósito de establecer diseño de equipos en donde circula flujo bifásico a régimen "slug".1)
- Seleccionar el modelo que proporcione información de las leyes físicas que rigen este tipo de flujo y además sea -útil para el diseño.
- Realizar un programa de computo para el modelo bajo análisis, estableciendo criterios para la selección de los pará metros de entrada.
- Establecer los rangos de validez del modelo, en base a la predicción de datos experimentales tomados de la bibliogra fía.
- 5. Indicar las posibles fallas teóricas del modelo, con el -objeto de mejorarlo. De esta manera se abre la posibili-dad de realizar un estudio posterior, para obtener mejores resultados.

1) No existe traducción adecuada de este vocablo al español.

INTRODUCCION

El incremento en las necesidades básicas de la población y la competitividad industrial provocan la fabricación de nuevos productos y la creación de nuevas tecnologías para optimizar los procesos. Una de las labores importantes que realiza el Ingeniero Químico es la de diseño, el cual tiene un papel muy importante dentro de estos -avances tecnológicos; sin embargo, los fenómenos físicos involucrados en los equipos son extremadamente complejos, y las ciencias básicas, en la mayoría de los casos, no proporcionan la información necesaria para diseñar, a partir de primeros principios. Ante esta problemática el Ingeniero Químico recurre fundamentalmente a la experiencia, apoyada sustancialmente por el sobrediseño.

A pesar de las limitaciones teóricas que existen, es importante establecer las leyes físicas de los fenómenos involucrados en el dis<u>e</u> no, ya que es la única manera de conocer realmente el mecanismo por el cual se efectúan los procesos. Esto permite manejar de una mane ra precisa los problemas que se presentan en el diseño. Sin embargo, el Ingeniero Químico generalmente no se preocupa por entender estos mecanismos y abusa del sobrediseño incrementando los costos de producción.

El presente trabajo tiene por objeto la selección de un modelo que describe el patrón de comportamiento del flujo bifásico a régimen -"slug", el cual proporcione información de la física de este tipo de flujo y sea útil para fines de diseño. Por otro lado se desarro llarán criterios para la utilización del modelo y la selección de sus parámetros de entrada. Con esta manera de trabajar, se abre la posibilidad de refinar el modelo a medida que se conocen mejor los mecanismos que gobiernan este flujo.

Como ejemplo podemos mencionar que en la industria del petróleo --existen gasoductos y oleoductos, ambos pueden reducirse a una sóla línea en donde circulen las dos fases; para ello es necesario comprender el patrón de flujo. Esto provocaría un ahorro considerable de tubería, lo cual se traduce en un menor costo de transporte del crudo y gas. CAPITULO I

FLUJO "SLUG"

. 1.1. GENERALIDADES.

1.2. METODOS EMPIRICOS.

LOCKHART-MARTINELLI.

1.3. MODELOS TEORICOS.

a) KORDYBAN.

b) VERMEULEN.

1.4. CRITICA DE LOS MODELOS DESCRITOS.

- 4 -

I. FLUJO "SLUG"

1.1. GENERALIDADES.

Uno de los problemas que presenta el cálculo de la pérdida de carga en una tubería donde circulan gas y líquido simultáneamente (flujo bifásico), es que su valor depende de la forma en que ambas fases están fluyendo dentro del tubo. Para ilustrar estas diferentes formas de flujo, consideremos inicialmente un tubo donde circula únicamente la fase líquida; a este sistema introducimos un pequeño flujo de gas el cual formará una fase dispersa (burbujas) dentro del líquido (flujo homogéneo). A medida que la relación de gastos de gas a líquido aumenta se van presentado sucesivamente los si guientes patrones de flujo:

a) El gas fluye en la parte superior del tubo, en cambio
el líquido lo hace por la parte interior, es decir la fase
gaseosa estratifica a la líquida (flujo estratificado).

 b) Al aumentar la velocidad del gas se forman olas en la superficie líquida.

 c) La fase gaseosa forma bolsas de aire ("slugs") dentro del líquido (flujo "slug").

 d) Debido a la alta velocidad del gas; la fase líquida quedará distribuida anularmente sobre un núcleo de gas (flujo anular).

e) Finalmente el incremento de gasto de gas es tal que la fase líquida se dispersa dentro de la fase gaseosa.

Los patrones de flujo mencionados se pueden observar en la figura 1-1.

a) La fase gaseces dispèrse en la fase líquida.

b) La fase gaseosa estratificada acbre la líquida.

c) La fase gaseosa separada de la fase líquida por una superficie ondulada.

f) La fase líquida dispersa en la fase gaseosa.

A partir de observaciones experimentales Mandhane, Gregory y Aziz (1973) establecieron los límites de cada tipo de flujo en términos de las velocidades superficiales de cada fase, para agua y aire (figura 1-2), la cual tradicionalmente se conoce como mapa de Mandhane. Algunos autores han corroborado los límites establecidos en este mapa, con fundamentos teóricos y los resultados han sido similares a los obtenidos experimentalmente.

En este trabajo discutimos y analizamos el comportamiento del flujo "slug", que entendemos como el definido por el mapa de Mandhane. La razón de estudiar este tipo de flujo bifásico radica en el hecho de que es el caso que se presenta con más frecuencia en la práctica.

A lo largo del tiempo se han realizado en el estudio de los flujos bifásicos diversos intentos para lograr predecir magnitudes importantes para el diseño en ingeniería, por ejemplo: pérdida de carga por unidad de longitud. En general estos métodos se pueden agrupar en dos: empíricos y te<u>o</u> ricos; no obstante, es importante mencionar que no existe una forma teórica totalmente adecuada para describir el flujo "slug", todas ellas en mayor o menor grado, utilizan aju<u>s</u> tes experimentales para proponer algunas de sus ecuaciones base.

1.2. METODOS EMPIRICOS.

De los métodos empíricos describiremos el propuesto por

- 6 -

Velocidad Superficial de aire pie/seg.

Fig. 1-2 Mapa de Mandhane (agua-aire)

Lockhart Martinelli (1949) ya que por su sencillez y aplic<u>a</u> bilidad a todos los regímenes de flujo bifásico es el más

- 7 -

usado generalmente. Predice la caída de presión, que es el parámetro de mayor interés para el ingeniero. Lockhart y Martinelli proponen inicialmente expresiones para las caídas de presión individuales en cada una de las fases por medio de la ecuación Fanning, con lo que obtienen:

$$\left(\frac{\Delta P}{\Delta L} \right)_{L} = \frac{2f_{L}\rho_{L}V_{L}^{2}}{D_{eq\,L}G} \qquad \left(\frac{\Delta P}{\Delta L} \right)_{G} = \frac{2f_{G}\rho_{G}V_{G}^{2}}{D_{eq\,G}G}$$

en donde:

- AP caída de presión.
- AL longitud considerada.
- ρ densidad. -
- G constante de gravedad.
- f factor de fricción.
- v velocidad (referida al área éfectiva que ocupa cada fase).
- D_{ea} diámetro hidráulico.

y en donde los subíndices L y G se refieren al líquido y al gas respectivamente. Los factores de fricción se obtienen a partir de la relación de Blasius:

$$f = \frac{c}{Re^n}$$

en la cual Re es el número de Reynols y las constantes c y n dependen del régimen de flujo.

En este trabajo se hace el cálculo de la caída de presión bifásica a partir del conocimiento de las pérdidas monofásicas suponiéndolas ligadas por la ecuación:

$$\left(\frac{\Delta P}{\Delta L} \right)_{BIF} = \phi_{\ell}^{2} \left(\frac{\Delta P}{\Delta L} \right)_{LT}$$

en donde $(\Delta P/\Delta L)_{LT}$ es la caída de presión que ocurriría a la fase líquida si ésta ocupase todo el tubo (i.e. si el flu jo fuese monofásico) el término ϕ_{g}^{2} es un parámetro cuyo va lor puede determinarse a partir de las características de los fluidos mediante resultados experimentales tabulados.

El parámetro necesario para el uso de la tabla es X^2 , definido por:

$$X^{2} = (\Delta P / \Delta L)_{L,T} / (\Delta P / \Delta L)_{G,T}$$
 (1-1)

en la cual $(\Delta P/\Delta L)_{G,T}$ tiene el mismo significado que $(\Delta P/\Delta L)_{L,T}$ pero para el caso de la fase gaseosa. El valor de X puede obtenerse a partir de otras variables utilizando expresiones usuales para cada caída de presión individual, es decir:

$$X^{2} = \frac{\operatorname{Re}_{G}^{m} C_{L}}{\operatorname{Re}_{L}^{n} C_{G}} \left(\frac{W_{L}}{W_{G}} \right)^{2} \frac{\rho_{G}}{\rho_{L}}$$
(1-2)

en donde C_{G} , C_{L} , m y n son las constantes asociadas a la ecuación de Blasius y W_{L} y W_{G} son gastos másicos de gas y líquido respectivamente.

Existe un trabajo posterior debido a Chisholm (1963) en donde se ajustan las gráficas experimentales de Lockhart-Ma<u>r</u> tinelli a una expresión analítica como: En la cual:

	Líquido	Gas		
C = 20	turbulento	turbulento		
C = 15	viscoso	turbulento		
C = 10	turbulento	viscoso		
C = 5	viscoso	viscoso		

Mediante esa relación se puede calcular ahora $(\Delta P / \Delta X)_{BIF}$ de una manera más sencilla, que permite la elaboración de un progama de cómputo.

1.3. MODELOS TEORICOS.

a) KORDYBAN.

Primero se expondrá el método de Kodyban (1961), el cual se basa en las ecuaciones resultantes de un modelo aproximado, sustentado en observaciones experimentales. Inicialmente se considera que el líquido que se encuentra en la parte inferior del tubo obedece las leyes de flujo en canales abie<u>r</u> tos y se desplaza a una velocidad V_L , en tanto que el líquido que está en la parte superior del tubo, el cual alterna con el gas (vapor de agua en este caso), se conoce como líquido en el "slug", y se desplaza a la misma velocidad que el gas V_C . (Figura 1-3).

El análisis de Kordyban está limitado a relaciones de

Fig. 1.3. Modelo simplinarado de Kordyban para el flujo "Slug"

gastos másicos de líquido y vapor pequeños (la caída de presión producida por el vapor se considera despreciable) y a flujo turbulento en ambas fases, además se realizan las siguientes aproximaciones:

- El líquido del fondo del tubo, se encuentra afectado por esfuerzos sólo en su superficie libre.

- Para el líquido en el "slug" el esfuerzo cortante que actúa en la interfase es aproximadamente de la misma magnitud que el esfuerzo parietal. - El líquido y el vapor están completamente saturados.

Primero se plantea la ecuación diferencial que representa el balance de cantidad de movimiento para el canal abierto:

$$\frac{dH}{dx} = \frac{1}{\gamma_L} \frac{dP}{dx} + \frac{dy}{dx} + \frac{d}{dx} \left\{ \frac{V_L^2}{2G} \right\}$$
(1-4)

expresión en la cual:

H Pérdida total de carga en el flujo canal abierto.

 γ_{T} Gravedad específica del líquido.

x Distancia a lo largo del tubo

P Presión.

Y Altura del nivel del líquido.

G Constante de gravedad.

V. Velocidad del líquido en el canal.

La pérdida de carga total (dH/dx) por fricción puede ser expresado como:

$$\frac{dH}{dx} = -\frac{f_c}{8G}\frac{V_L^2}{R_c}$$
(1-5)

en donde:

- f_c Factor de fricción asociado con el líquido en flujo canal.
- R_c Radio hidráulico de la fracción del tubo ocupada por el líquido en flujo canal.

Si expresamos la velocidad en términos del gasto másico (W_1) y del área obtenemos la ecuación:

$$-\frac{\mathrm{dP}}{\mathrm{dx}} = \frac{f_{c}}{\mathrm{gG}} \frac{(1-R_{c})^{2}W_{L}^{2}}{R_{c}A_{c}^{2}\gamma_{L}} + \gamma_{L}\frac{\mathrm{dY}}{\mathrm{dx}} - \frac{(1-R_{g})^{2}W_{L}^{2}}{\gamma_{L}GA_{c}^{2}} \left[\frac{1}{W_{L}}\frac{\mathrm{dW}_{L}}{\mathrm{dx}} + \frac{1}{A_{c}}\frac{\mathrm{dA}_{c}}{\mathrm{dx}} + \frac{1}{1-R_{g}}\frac{\mathrm{dR}_{g}}{\mathrm{dx}}\right] \qquad (1-6)$$

en la cual se tiene que:

R Fracción del líquido en el "slug".

A_c Sección de área transveral en la parte inferior del tubo llenada con líquido exclusivamente.

La caída de presión producida por el líquido en el "slug" es:

$$-\frac{dP}{dx} = \frac{f_s}{8G} \frac{V_v^2}{r_v} \gamma_{\ell} \ell + \frac{\gamma_{\ell}}{G} \frac{dV_v}{dx} \ell \qquad (1-7)$$

en esta expresión los términos están definidos como:

- f Factor de fricción asociado con el líquido en el "slug".
- r_s Radio hidráulico de la fracción del tubo donde se encuentra contenido el "slug".
- l Fracción de la parte superior del tubo donde está con tenido el "slug".

Nuevamente expresamos la ecuación resultante en términos del flujo másico del líquido y del área, con lo que se obti<u>e</u> ne:

$$-\frac{dP}{dx} = \frac{f_{g}}{\theta G} \frac{W_{L}^{2}R_{g}}{A_{g}r_{g}\gamma_{L}} \left[R_{g} + \frac{\gamma_{L}}{\gamma_{v}} q \right] + \frac{R_{g}W_{L}^{2}}{GA_{g}^{2}\gamma_{L}} \left[\frac{dR_{g}}{dx} + \left(\frac{\gamma_{L}}{\gamma_{v}} - \frac{\gamma_{L}}{\gamma_{v}} \frac{q}{1+q} - \frac{R_{g}}{1+q} \right) \frac{dq}{dx} - \left(R_{g} + \frac{\gamma_{L}}{\gamma_{v}} q \right) \left(\frac{1}{A_{g}} \frac{dA_{g}}{dx} - \frac{\gamma_{L}}{\gamma_{v}} q \frac{d\gamma_{v}}{dx} \right) \right]$$
(1-8)

en donde:

 $A_{\rm g}$ Sección transversal del tubo lleno con vapor y "slug". $\gamma_{\rm u}$ Peso específico del vapor.

q Relación de flujos másicos de líquido y vapor.

Si consideramos que los términos de aceleración son despreciables, las ecuaciones 1-6 y 1-8 se simplifican de la s<u>i</u> guiente manera:

$$-\frac{dP}{dx} = \frac{f_{c}}{8G} \frac{(1-R_{g})^{2}W_{L}^{2}}{R_{c}A_{c}^{2}\gamma_{L}}$$
(1-9)

$$-\frac{dP}{dx} = \frac{f_s}{RG} \frac{W_L^2}{A_s^2 r_s \gamma_L} \left[R_s + \frac{\gamma_L}{\gamma_v} q \right]$$
(1-10)

usando para f expresiones tipo Blasius:

$$f = 0.316 / Re^{0.25}$$

El núemro de Reynolds para el flujo líquido en un canal

- 14 -

puede calcularse por:

$$Re_{c} = \frac{4\left(1 - R_{B}\right)W_{L}R_{c}}{A_{c}\mu_{L}}$$

y para el líquido en el "slug":

$$\operatorname{Re}_{g} = \frac{4W_{L}r_{g}}{A_{c}\mu_{L}} \left[\operatorname{R}_{g} + \frac{\gamma_{L}}{\gamma_{v}} q \right]$$

sustituyendo estas expresiones en las ecuaciones 1-9 y 1-10 se tiene:

$$-\frac{dP}{dx} = \frac{Q.316}{8G} \left(\frac{\mu_L}{4}\right)^{0.25} \frac{\left(1 - R_g\right)^{1.76} W_L^{1.75}}{\gamma_L A_c^{1.75} R_c^{1.25}}$$
(1-11):
$$\frac{dP}{dx} = \frac{Q.316}{8G} \left(\frac{\mu_L}{4}\right)^{0.25} \frac{R_g W_L^{1.75}}{\gamma_L A_c^{1.75} r_1^{1.25}} \left(R_g + \frac{\gamma_L}{\gamma_v} q\right)^{0.75}$$
(1-12)

Si imponemos además la condición de que R_g tome el valor de la unidad, entonces la ecuación 1-11 se anula y la ecuación 1-12 se simplifica de la siguiente manera:

$$-\frac{dP}{dx} = \frac{0.316 \times 4^{1.25}}{\pi^{1.75}} \frac{\mu_L^{0.25}}{G} \frac{\Psi_L^{1.75}}{D^{4.25} \gamma_L} \left(1 + \frac{\gamma_L}{\gamma_v} q\right)^{0.75}$$
(1-13)

para un flujo líquido exclusivamente la expresión anterior se reduce a:

$$\Delta P_{L} = \frac{O.316 \times 4^{1.25}}{\pi^{1.75}} \frac{\mu_{L}^{0.25}}{G} \frac{W_{L}^{1.75}}{D^{4.25} \gamma_{T}}$$
(1-14)

Finalmente para un flujo bifásico la caída de presión puede

ser representada por:

$$\Delta P_{BIF} = \Delta P_{L} \left[1 + \frac{\gamma_{\tilde{L}}}{\gamma_{v}} q \right]^{0.75}$$
 (1-14a)

El autor encontró que para valores de R_g diferentes de uno el valor predicho de ΔP_{BIF} con la ecuación l-14a tiene un erro máximo de ±30%, pero también hace notar que para valores de R_g cercanos a uno y para (γ_L/γ_v)q grandes los resultados proporcionados por la ecuación propuesta son muy aproximados a los valores experimentales.

b) VERMEULEN.

Existe otro modelo posterior a Kordyban debido a Vermeu len (1971), el cual se basa en la representación de un "slug" idealizado, cuya forma está basada en observaciones experimen tales (figura 1-4). Para establecer el modelo, se efectúan las siguientes aproximaciones:

1.- El flujo de gas es incompresible.
2.- No hay caída de presión en la fase gaseosa.
3.- El "slug" se mueve a una velocidad constante.

Si se efectúa un balance de cantidad en movimiento entre los puntos 1 y 2 de la figura:

 $\sum F = O = (P_1 - P_2)\pi R^2 - 2\pi R \ell_B \tau_W - (\rho Q_1 V_1 - Q_2 \rho V_2)$ (1-15)

realizando un balance de materia entre los mismos puntos:

$$\rho Q_1 V_1 = \rho Q_2 V_2 \tag{1-16}$$

Fig. 1-4 "Slug" idealizado.

En las ecuaciones anteriores los términos que aparecen tienen el siguiente significado:

F Fuerza.

P Presión.

Longitud del "slug".

ρ Densidad.

 τ_{u} Esfuerzo a la pared.

Q Gasto volumétrico.

R Radio del tubo.

V Velocidad de la película.

El esfuerzo cortante del tapón líquido contra la pared del tubo puede ser evaluado por una expresión de flujo monofásico:

$$\tau_{W} = \frac{1}{2} \rho_{s} V_{s} f \qquad (1-17)$$

en esta relación la densidad, velocidad y factor de fricción son relativas al "slug". El término f se obtiene mediante la expresión usual:

$$f = 0.079 / \text{Re}^{1/4}$$
 (1-18)

para un flujo turbulento. La diferencia de presión a través del "slug" es:

$$P_1 - P_2 = \frac{2k_s \tau_W}{R} + \frac{\rho Q_1}{\pi P^2} (V_1 - V_2)$$
 (1-19)

El cálculo del momento ganado por la película líquida puede simplificarse si se asume que: $V_2 = 0$ y $V_1 = V_g$ do<u>n</u> de V_ es la velocidad del "slug" definida como:

$$V_{g} = \frac{Q_{L} + Q_{G}}{2\pi R^{2}}$$
(1-20)

Si los efectos finales son despreciables la caída de presión es:

$$\Delta P = \frac{2f_g \ell_g V_s^2}{D} + \rho S V_s^2$$

En la expresión anterior D es el diámetro y S es la sección transversal ocupada por la película al frente del "slug". Para calcular este parámetro se multiplica el área del tubo por la fracción de área ocupada por la película líquida C; este término puede ser evaluado por el parámetro de Lockhart-Martinelli.

Existen otro tipo de términos semejantes a e, como el "holdup", que es la fracción de área ocupada por el líquido en el "slug" unitario; y R_s (definida en el trabajo de Hubbard-Dukler (1975)), el cual representa una fracción semejante al "holdup", pero ahora referida únicamente al tapón. Estos parametros son importantes porque surgen en la mayoría de los modelos empleados para describir el flujo "slug".

Para obtener la caída de presión por unidad de longitud en toda la tubería la ecuación 1-19 queda como:

$$\frac{\Delta P}{L_t} = \frac{2f_s \sum L_s v_s^2}{L_t} \frac{\rho S v_s^2}{L_t}$$
(1-21)

En donde L_t es la longitud total del tubo. Si ahora definimos la frecuencia del "slug" (F) como el número de "slugs" que pasan en un punto del tubo por unidad de tiempo; podemos, para una frecuencia conocida, saber el número de "slugs" en una sección de longitud L.:

$$N_{g} = \frac{V_{g}}{F} L_{t} \qquad (1-22)$$

La longitud de "slugs" sobre la longitud en cuestión:

$$\sum_{s} \mathbf{L}_{s} = \mathbf{L}_{t} \left[\frac{\mathbf{Q}_{L}}{\mathbf{Q}_{L} + \mathbf{Q}_{G}} \right]$$
(1-23)

Sustituyendo estas expresiones en la ecuación 1-21 tene mos:

$$\frac{\Delta P}{L_{t}} = \frac{2fV_{g}^{2}\rho_{g}}{D} \left(\frac{Q_{L}}{Q_{L}} - Q_{g}\right) + F\rho \in \pi R^{2}V_{g} \qquad (1-24)$$

Esta ecuación permite evaluar el término buscado $\Delta P/L_t$

en función de los datos habituales de entrada $(Q_L, Q_G \ y \ D)$ y de un parámetro experimental F. Esto representa un serio problema, ya que esta cantidad se debe conocer a priori.

Existe un trabajo debido a Gregory-Scott (1969) que permite obtener una relación para la frecuencia en términos de los gastos de cada fase y que aparentemente resuelve el probiema que se presenta en el modelo de Vermeulen; este hecho se discute ampliamente en el capítulo III.

1.4. CRITICA DE LOS METODOS DE CALCULO DESCRITOS.

A lo largo del presente capítulo se han discutido breve mente algunas formas de obtener parámetros de interés prácti co para el estudio del flujo "slug" cada uno de ellos presen ta ventajas y desventajas que ahora pasaremos a analizar:

El método de Lockhart-Martinelli tiene la enorme ventaja de ser extremadamente sencillo tanto en su concepción como en su metodología de cálculo. Por otro lado, no presenta la dificultad de conocer el régimen en el que se encuentra el flujo bifásico; sin embargo por tratarse de un método empírico no se puede extraer de él información acerca del meca nismo físico del fenómeno y las leyes que lo rigen, por lo cual es riesgoso realizar extrapolaciones a regiones no exp<u>e</u> rimentadas. Debido a lo anterior no puede considerarse como un modelo; es el estudio de un caso particular. Es imposible conocer a priori la exactitud del método. En este punto es conveniente mencionar que los trabajos de diseño realizados fuera de la región de validez de los métodos empíricos utilizados, son muy empleados por el ingeniero. Esta manera de proceder se debe a la falta de conocimiento de las bases en que se sustenta el método y a los fundamentos físicos del f<u>e</u> nómeno; esto conlleva a recurrir a factores de seguridad altos (sobrediseño) que en la mayoría de los casos se manifie<u>s</u> tan en mayores costos de proceso.

El modelo de Kordyban es una descripción del fenómeno, en base a balances de pérdida de carga, efectuados en el líquido contenido en el "slug" y en la película. No obstante de ser correctas las ecuaciones de balance, el defecto que exhibe el modelo, es el despreciar términos importantes en estas expresiones, por no poder evaluarlos. Estos términos no considerados, traen las siguientes consecuencias físicas, en el mecanismo del fenómeno: i) el "slug" y la película no intercambian masa, lo que ocasiona despreciar efectos de aceleración y desaceleración del líquido, ii) considerar la altura de la película constante; iii) no hay variación en la fracción de área ocupada por el líquido¹ alo largo del tubo; iv) el área ocupada por el "slug" es constante. Estas simplificaciones dan como resultado una descripción excesivame<u>n</u> te simplificada del flujo "slug".

Las ecuaciones propuestas por Vermeulen son el resultado de una descripción simple del mecanismo físico que rige cl fenómeno, las aproximaciones utilizadas son demasiado bur das y provocan que el modelo se aleje sensiblemente de la

¹ en flujo canal.

in

- 21 -

situación física (por ejemplo $V_2 = 0$ y $V_1 = V_g$). Por otro lado las ecuaciones resultantes se encuentran en términos del parámetro experimental F, cuya obtención presenta las dificultades ya enunciadas anteriormente. Por tratarse de un modelo semiempírico nuevamente su dominio de validez se ve limitado por las condiciones en las cuales se realizan los experimentos.

Una comparación de los resultados obtenidos por los métodos descritos se muestra gráficamente en la figura 1-5.

En esta figura se puede observar que los tres modelos predicen bien los datos experimentales, para bajas caídas de presión. Sin embargo a medida que se incrementa la pérdida de carga el modelo de Kordyban presenta una gran desviación, en tanto que el método de Lockhart-Martinelli se ajusta un poco mejor a los resultados del laboratorio. El modelo de Vermeulen resulta adecuado para todo el intervalo considerado, esto se comprende fácilmente, ya que este modelo se realizó en base a estos resultados experimentales.

Debido a lo anterior se plantea la necesidad de establ<u>e</u> cer un mejor modelo teórico que proporcione además de los p<u>a</u> rámetros necesarios para el diseño, información de la hidrodinámica del flujo bifásico, para así intentar comprender el mecanismo de formación y propagación del flujo tipo "slug". El modelo debido a Hubbard y Dukler responde a esta necesidad. Este método expondrá ampliamente en lo que resta de e<u>s</u> te trabajo, discutiendo sus fundamentos, explotación y límites de validez frente a resultados obtenidos experimentalmente.

- 22 -

+ Kordyban

* Locknart-Hartinell1

o Vermeulen

Fig. 1-5. Comparación entre los valores calculados mediante diferentes modelos y los obtenidos experimental-mente por Vermeulen.

CAPITULO II

EL MODELO HUBBARD-DUKLER PARA EL FLUJO "SLUG"

2.1. IDEA GENERAL DEL MODELO.

2.2. OBTENCION DEL SISTEMA DE ECUACIONES.

- a) CAIDA DE PRESION.
- b) PARAMETROS INTERMEDIOS.
- c) LONGITUD DEL "SLUG".

2.3. SUBRUTINAS PARA LA SOLUCION DEL SISTEMA DE ECUACIONES.

- a) SUBRUTINA PARA EL CALCULO DE THETA.
- b) SUBRUTINA PARA LA INTEGRACION NUMERICA.
- c) SUBRUTINA PARA EL CALCULO DE LA LONGITUD DEL "SLUG".

2.4. PRUEBA DE LA CORRECCION DEL PROGRAMA DE CALCULO.

II. EL MODELO DE HUBBARD Y DUKLER PARA EL FLUJO "SLUG"

2.1. IDEA GENERAL DEL MODELO.

A partir del estudio de material filmado, observaciones directas y mediciones experimentales Hubbard y Dukler (1975) elaboraron un modelo teórico del flujo "slug" para tratar de predecir magnitudes de importancia en el diseño de equipo donde ocurre este tipo de flujo. Su base es la proposición de un mecanismo de formación y propagación del "slug", que se puede enunciar en varios pasos del siguiente modo:

1.- Consideramos una sección de tubo como sistema a estudiar al cual inicialmente entra el flujo bifásico en régimen estratificado. A las condiciones de formación del "slug", la capa líquida se desacelera, lo que produce un aumento en el nivel del líquido dentro del tubo; simultáneamente y como consecuencia de la alta velocidad de la fase gaseosa, se pr<u>e</u> senta la formación de olas en la superficie del líquido. Eventualmente ambas formas de incremento del nivel del líqu<u>i</u> do serán tales que se formará un puente o tapón (al que llamaremos simplemente "slug") en el interior del tubo, bloqueando así totalmente el paso del gas (fig. 2-1).

2.- El líquido que forma el tapón, se acelera a la veloci dad del gas y como consecuencia envuelve a la película líqui da que se encuentra al frente.

3.- El líquido que forma la parte trasera del "slug" se desacelera formando así una película.

- 25 -

4.- Los procesos ya descritos en 2 y 3 dan como consecuen cia el avance y la estabilización del cuerpo del "slug".

01a calda de nivel

Incremento de nivel de líquido y formación de clas.

Restauración d

La suma de ambos aumentos de nivel eventualmente boquea el tubo.

Puente de líquido en al tubo.

caida de pius El "slug" atrapa al líquido que se encuentra adelante.

Floura 2-1

5.- El "slug" tiene una energía cinética mayor que la que posee la película, por esta razón al penetrar al cuerpo del "slug" recorre cierta distancia antes de adquirir la velocidad a que se desplaza el tapón.

6.- El gas forma una fase continua dentro del cuerpo del "slug", cuyo flujo determina la velocidad con que se propaga el tapón.

En la fig. 2-2 se muestra en forma esquemática el cuerpo del "slug" incluyendo la zona de la película líquida formando en su conjunto lo que se conoce como "slug" unitario, el cual se considera una unidad que al propagarse por medio del mecanismo mencionado anteriormente forma el régimen "slug" del flujo bifásico, a lo largo de una tubería horizontal. En esta figura se definen algunas magnitudes que posteriormente se utilizarán en desarrollo del modelo.

El método de cálculo puede visualizarse en el siguiente -esquema:

donde:

APs.- caída de presión total. Lu.- longitud del "slug" unitario.

En esta figura se muestra que el modelo Hubbard-Dukler permite mediante un cálculo teórico conocer $\Delta P/lu = \Delta P_g/\Delta x$, a partir de cuatro parámetros de entrada: Q_L, Q_G, R_g y F.

El modelo proporciona también el valor de algunos parámetros intermedios, necesarios, como veremos, para cerrar el sistema de ecuaciones.

La exposición de este capítulo la dividiremos en dos partes. La primera dedicada a explicar cómo se obtienen las ecuaciones y la segunda a decir cómo se resuelven. - 29 -

2.2. OBTENCION DEL SISTEMA DE ECUACIONES.

a) CAIDA DE PRESION.

Se considerarán únicamente dos contribuciones a la pérdida de carga total en un "slug" unitario: la que se debe a la aceleración de la película líquida al penetrar en el cue<u>r</u> po del "slug" (ΔP_a), y la que resulta debido a la interacción de las paredes del tubo con el cuerpo del "slug" (ΔP_f), (ver fig. 2-2 b) entonces se tiene que:

$$\Delta P_{g} = \Delta P_{g} + \Delta P_{f} \qquad (2-1)$$

Para establecer la ecuación para ΔP_a conviene definiz términos como: i) velocidad de la película justo antes de ser incorporada al cuerpo del "slug" (V_{fe}), ii) flujo del líquido atrapado por el "slug" (x), iii) velocidad del "slug" (V_g). De acuerdo con estos términos, es posible deducir a partir de la segunda ley de Newton, la ecuación:

$$\Delta P_{a} = \frac{x}{A} (V_{s} - V_{fe}) \qquad (2-2)$$

para la caída de presión por aceleración y en donde A es el área transversal del tubo.

La caída de presión por fricción se localiza detrás de la zona de mezcla (ver fig. 2-2) en el cuerpo del "slug". Esta pérdida de carga puede evaluarse mediante un modelo de flujo homogéneo (Dukler 1964), esto es debido a que en las condiciones del flujo "slug", R_g es mayor que 0.7, con lo cual el tapón toma características esencialmente líquidas y eso permite hablar de densidades y viscosidades promedio; por es ta razón es posible calcular la caída de presión como si se tratase de un flujo monofásico con propiedades físicas ρ y μ promedio:

$$\Delta P_{f} = \frac{f_{s}(\rho_{L}R_{s} + \rho_{G}(1-R_{s}))(\ell_{s} - \ell_{m})V_{s}^{2}}{D}$$
(2-3)

en donde:

 f_s .- factor de fricción del "slug". l_m .- longitud de la zona de mezcla.

Bajo Ias condiciones impuestas el factor de fricción del "slug", en el caso de tubos lisos, será función del número de Reynolds (ecuación de Blasius) el cual puede expresarse como:

$$R_{es} = DV_{s} \frac{\rho_{L}R_{s} + \rho_{G}(1 - R_{s})}{\mu_{T}R_{s} + \mu_{G}(1 - R_{s})}$$
(2-4)

b) LOS PARAMETROS INTERMEDIOS.

La velocidad del "slug" (V_s) representa la velocidad del fluido, relativa a la pared del tubo; hay que distinguir entre ésta y la velocidad que adquiere el fluido al frente del "slug" (V_t) después de la zona de mez cla (ver fig. 2-2). Este término representa la suma de V_s con la velocidad ganada por el "slug" a incorporarse la pel<u>í</u> cula que se encontraba al frente. La relación entre estas velocidades se expresa de la manera siguiente:

$$V_{t} = V_{s} + \frac{x}{\rho_{L}AR_{s}}$$
(2-5)

La ecuación anterior surge de efectuar un balance de mat<u>e</u> ria para el "slug" unitario, en el cual se efectúa la aprox<u>i</u> mación de considerar al "slug" como un sistema a régimen estacionario, en el cual los flujos del líquido que se incorp<u>o</u> ra y que se arroja son iguales, con lo cual la longitud es estable. Con esta simplificación el balance se puede efectuar del siguiente modo:

La masa del líquido en la sección considerada es:

$$(l_s R_s + l_f R_f) A \rho_1 \qquad (2-6)$$

donde:

 R_{f} es la longitud de la película (ver fig. 2-2), y R_{f} es la fracción de área ocupada por el líquido de la película.

Sea l/F el tiempo de paso del "slug" unitario, entonces un balance de materia para la fase líquida da:

$$\frac{W_L}{A\rho_L} = (\ell_s R_s + \ell_f R_f) F - \frac{x}{\rho_L A}$$
(2-7)

y para la fase gaseosa:

$$\frac{W_{G}}{A\rho_{L}} = V_{t} - (\ell_{s}R_{s} + \ell_{f}R_{f})F - \frac{x}{\rho_{L}A} \left(\frac{1 - R_{s}}{R_{s}}\right)$$
(2-8)

resolviendo simultáneamente para V, tenemos:

$$V_{t} = \frac{1}{A} \left(\frac{W_{L}}{\rho_{L}} + \frac{W_{G}}{\rho_{G}} \right) + \frac{x}{\rho_{L}^{AR}s}$$
(2-9)

adoptando la notación habitual:

$$V_{g} = \frac{1}{A} \left(\frac{W_{L}}{\rho_{L}} + \frac{W_{G}}{\rho_{G}} \right)$$
(2-10)

y definiendo:

$$C = x/AR_{g}\rho_{L}V_{g}$$
 (2-11)

es posible escribir:

$$V_{t} = (1 + C)V_{g}$$
 (2-12)

Resulta ahora necesario una relación complementaria que permita calcular C. Para ello se procede a analizar la di<u>s</u> tribución de velocidades en el cuerpo del "slug". Consider<u>e</u> mos una porción del tubo (ver fig. 2-2), suponiendo que se encuentra totalmente desarrollado el perfil de velocidades en el cuerpo del "slug". La velocidad oscila desde un valor cero en la pared del tubo hasta un valor mayor que V_g en el centro del mismo (r=0), como se muestra en la fig. 2-3; designemos por r a los valores del radio para los cuales la velocidad local será igual a V_g . Para valores del radio mayores el fluido se moverá más lentamente que la velocidad promedio del "slug", retrasándose y formando la película líquida. El valor de flujo másico que se retrasa es:

$$x = R_{g} \rho_{L} V_{g} A - \int_{0}^{r} 2\pi r R_{g} U dr \qquad (2-13)$$

- 32 -

definiendo las variables adimensionales:

$$U^{+} = \frac{U}{U^{\star}}; \quad y^{+} = \frac{U_{A}Y}{F} \quad (y = R - r); \quad U_{\star} = \left(\frac{\tau_{W}}{\rho}\right)^{1/2} = V_{g}\sqrt{\frac{F}{2}}$$

sustituyendo estas variables en la expresión de x y recordando la definición de C tenemos:

$$C = 1 - \frac{2\sqrt{F/2}}{\gamma^2} \int_{y_p^+}^{y} (\gamma - y^+) U^+ dy^+$$

en la cual:

$$\gamma = \frac{U_{\pi}R}{F} = \frac{R_{s}}{2}\sqrt{\frac{F}{2}}$$

puesto que en la región central del tubo $y^+ > 30$ se puede aceptar que el perfil de velocidades en esa zona es logarítmico:

$$U^+ = A + \frac{1}{K} Ln y^+$$

 Λ y K son constantes cuyo valor es 5.75 y .38 respectivamente. Después de esto es posible efectuar la integral que aparece en la expresión de C y evaluarla en términos del número de Reynolds del "slug". Se puede aceptar que para todo fin práctico esta expresión tiene la siguiente forma (fig. 2-4):

$$C = 0.021 \ln R_{ee} + 0.022$$
 (2-14)

Fig. 2-4. Revación entre C y el número de Reynolds.

Algunos otros autores proponen valores constantes para C, por ejemplo Gregory-Scott (1969) dan un valor de 0.35.

Todavía restan algunos parámetros que no pueden ser evaluados a partir de las ecuaciones propuestas, a saber: l_f y R_{fe} , para encontrar relaciones que incluyen estas magnitudes y cerrar el sistema, se realiza un balance de cantidad de movimiento en la zona de la película líquida. La fracción del área ocupada por la película (R_f) y la velocidad de la misma (V_f) dependen de la posición xf (fig. 2-5), y del proceso de desaceleración de la parte trasera del "slug". Para conocer la relación funcional $R_f(x_f)$ y $V_f(x_f)$ se efectúa un balance de cantidad de movimiento a lo largo de xf, usando las aproximaciones siguientes.

1.- Considerar los términos asociados a la fase gaseosa despreciables, respecto a los de la fase líquida. Esta apro ximación se justifica por que en las condiciones de trabajo (presión constante = una atmósfera), la densidad del gas es pequeña comparada con la del líquido y por lo tanto su cant<u>i</u> dad de movimiento es despreciable.

2.- En esta región la presión de vapor es constante lo que permite hablar de presiones hidrostáticas promedio sobre la fase líquida.

Fig. 2-5. Definición de un volumen de control en la película.

Bajo las condiciones impuestas el balance en una longitud diferencial dx_f da una expresión del tipo:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\rho_L \mathbf{v}_f \mathbf{R}_f \mathbf{A} \mathrm{d} \mathbf{x}_f \right] = \left[\mathbf{A} \rho_L \mathbf{v}_f^2 \mathbf{R}_f \right]_1 - \left[\rho_L \mathbf{v}_f^2 \mathbf{R}_f \mathbf{A} \right] - \left[\overline{\mathbf{P}} \mathbf{R}_f \mathbf{A} \right]_1 - \left[\overline{\mathbf{P}} \mathbf{R}_f \mathbf{A} \right]_2 - \mathbf{F}_g - \mathbf{F}_g$$

 \overline{P} es la presión hidrostática sobre la superficie líquida, la cual depende de la presión del gas (P_g) y de la distancia a la superficie de la película al centro del líquido (ξ) estas variables están relacionadas por:

 $\overline{P} = P_g + \rho_L \xi Dg_L$ $g_L - gravedad específica del líquido$ $<math>F_g$ es la fuerza debida a la presión del fluido con la pared del tubo.

 F_g es la proyección de la fuerza de gravedad en la dirección del flujo. Si el tubo está inclinado un ángulo β con respecto a la horizontal (β es positivo para un flujo ascendente):

$$F_{g} = \rho_{L} AR_{f} g_{L} (sin \beta) dxf$$

En el límite cuando la longitud ΔL sobre la cual se realizó el balance, tiende a cero, la ecuación resulta:

$$\frac{d}{dt} (R_f V_f) = -\frac{d}{dx_f} (V_f^2 R_f) - g_L D \frac{d}{dx_f} (R_f \xi) - \frac{\tau_w P_w}{\rho_L A} - g_L R_f \sin \beta$$

expresión en la cual P, es el perímetro mojado.

Para poder integrar la ecuación es necesario encontrar ex presiones para τ_w , P_w , ξ y V_f en términos de R_f . El mo delo supone que las fuerzas de tensión superficial son despreciables con respecto a las de fricción, por lo cual podemos pensar que el frente del "slug" no presenta curvatura (fig. 2-6). Ya que se visualiza al "slug" como un cuerpo que gana y pierde la misma cantidad de materia con la misma velocidad (no existe acumulación de fluido), éste se moverá con longitud estable a lo largo del tubo lo cual puede ocurrir solamente si las partes trasera y delantera del "slug" se mueven a la misma velocidad V_f . Definamos como W a la velocidad medida con respecto al "slug", entonces la velocidad de un punto x_f cualquiera de la película líquida con respecto a V_f es:

$$W_f = V_f - V_f \qquad (2-15)$$

aplicando la ecuación de continuidad entre puntos cualesquie ra de la película y el "slug" tenemos:

$$W_{f}R_{fL}A = W_{s}R_{s}\rho_{L}A \qquad (2-16)$$

recordando que:

$$V_{t} - V_{s} = CV_{s} = -W_{s} \qquad (2-17)$$

sustituyendo estas expresiones en la ecuación de continuidad y rearreglando:

$$V_{f} = V_{g} \left[1 - C \frac{R_{g} - R_{f}}{R_{g}} \right] = BV_{g}$$
(2-18)

Es muy importante es este momento señalar que esta ecuación sólo tiene sentido si B es positiva, pues ello señala una limitante al modelo de Hubbard-Dukler. Sobre este punto volveremos más adelante en el momento de discutir la validez del modelo.

En lo referente al esfuerzo cortante en la región de la película, lo podemos evaluar mediante la expresión clásica:

$$\tau_{\rm w} = \frac{f_{\rm f} \rho_{\rm L} V_{\rm f}^2}{2} = \frac{f_{\rm f} \rho_{\rm L} B^2 V_{\rm g}^2}{2} \qquad (2-19)$$

donde f_f es el factor de fricción de la película. Dada la definición del diámetro hidráulico:

$$D_{\rm H} = \frac{4AR_{\rm f}}{P_{\rm W}} \tag{2-20}$$

en el cual el perímetro mojado es:

$$P_w = \frac{\theta D}{2}$$

con θ definido de acuerdo con la figura 2-7.

Fig. 2-7. Definición del ángulo Theta.

- 38 -

Con estas expresiones el número de Reynolds de la película es:

$$R_{ef} = \frac{2\pi B R_f}{\theta} R_{es}$$
 (2-22)

mediante esta ecuación podemos calcular f_f mediante una expresión de Blasius.

Ahora procedemos a evaluar la relación $\xi(R_f)$, para la cual primero obtenemos la fuerza debida a la presión, como una integración de ésta sobre la sección transversal del líquido, lo que resulta:

$$\rho g_{L} \frac{D}{2} \left[-R_{f} \frac{\pi}{4} D^{2} \cos \frac{\theta}{2} + \frac{2}{3} r^{2} \sin^{3} \frac{\theta}{2} \right] \qquad (2-23).$$

esta fuerza, en términos de ξ es:

$$(\rho g_{L} \xi D) R_{f} \frac{\pi}{4} \dot{D}^{2}$$
 (2-24)

resolviendo simultáneamente para 5:

$$\xi = -\frac{1}{2}\cos\frac{\theta}{2} + \frac{1}{3\pi R_{f}}\sin^{3}\left(\frac{\theta}{2}\right) \qquad (2-25)$$

hemos logrado obtener expresiones para ξ y R_{ef} en términos de θ , no obstante por consideraciones geométricas (ver fig. 2-7), se tiene:

$$R_{f} = \frac{\theta - \sin \theta}{2\pi}$$
 (2-26)

Logramos obtener indirectamente las funciones buscadas $(P_w(R_f), \tau_w(R_f), \xi(R_f), V_f(R_f))$, ahora se puede integrar y simplificar la ecuación de balance, para la cual Hubbard y Dukler encuentran:

$$\frac{C^2 R_g^2}{R_f^2} - \frac{1}{F_r} \left[\frac{\frac{\pi}{2} R_f \sin\left(\frac{\theta}{2}\right) - \sin^2\left(\frac{\theta}{2}\right)}{1 - \cos\theta} - \frac{1}{2}\cos\frac{\theta}{2} \right] dR_f = \\ = \left[-fB^2 \frac{\theta}{\pi} - \frac{R_f}{F_r}\sin\beta \right] d\psi \qquad (2-27)$$

en la cual F, es el número de Froude, definido por:

$$F_{T} = V_{8}^{2}/g_{L}^{D}$$
 (2-28)

У:

 $\psi = (l_f - x_f)/D$ (2-29)

separando variables e integrando:

$$\int_{R_{fe}}^{R_{g}} w(R_{f}) dR_{f} = \ell_{f}/D \qquad (2-30)$$

en donde:

$$w(R_{f}) = \frac{\frac{C^{2}R_{s}^{2}}{R_{f}^{2}} - \frac{1}{F_{r}} \left[\frac{\frac{\pi}{2}R_{f}\sin\frac{\theta}{2} + \sin^{2}\left(\frac{\theta}{2}\right)}{1 - \cos\theta} - \frac{1}{2}\cos\frac{\theta}{2} \right]}{F_{f}B^{2}\frac{\theta}{\pi} + \frac{R_{f}}{F_{r}}\sin\theta}$$
(2-31)

para un valor $x_f = 0$ (ver fig. 2-5), antes de que la pelfcula sea incorporada al cuerpo del "slug" se tiene: $\psi = \ell_f / D$ y $R_f = R_{fe}$. En el frente del tapón se cumple: $R_f = R_{fe}$ y $x_f = \ell_f$ con lo cual $\psi = D$. Estas condiciones fijan los l<u>f</u> mites de integración.

Mediante las ecuaciones ya obtenidas es posible evaluar otros parámetros intermedios (como l_u y l_f). Para obtener la longitud del "slug" unitario:

$$\vartheta_{u} = \frac{\Psi_{t}}{F} = \frac{(1+C)\Psi_{s}}{F}$$
 (2-32)

y la longitud de la película:

$$\ell_{f} = \ell_{u} - \ell_{g} = \frac{V_{t}}{F} - \ell_{g} \qquad (2-33)$$

en este punto aparece otra variable ya definida anteriormente: la longitud del "slug", que es fundamental para calcular $\Delta P/\Delta X$, y que ahora pasaremos a evaluar.

c) LONGITUD DEL "SLUG".

La longitud del "slug" se calcula a partir de un balance de materia para el líquido. Considerando un plano normal al flujo se procede a calcular la masa del líquido que atraviesa el plano. El tiempo que tarda en pasar el tapón y la película son Ts y Tf respectivamente. Efectuando el balan ce y resolviendo para k_a se obtiene:

$$\ell_{s} = \frac{V_{s}}{F(R_{s} - R_{fe})} \left[\frac{W_{L}}{\rho_{LAV_{g}}} - R_{fe} + C(R_{s} - R_{fe}) \right]$$
(2-34)

Finalmente para la longitud de la zona de mezcla (l_m) , el trabajo de Hubbard y Dukler propone como resulado de varios experimentos la relación:

$$k_{\rm m} = \frac{0.3 (v_{\rm s} - v_{\rm fe})^2}{2} \frac{\rho_{\rm L}}{S_{\rm L}}$$
(2-25)

donde S_L es el peso específico del líquido.

- 41 -

2.3. SUBRUTINAS PARA LA RESOLUCION DEL SISTEMA DE ECUACIONES.

El modelo teórico enunciado anteriormente conduce a un sistema de doce ecuaciones con igual número de incógnitas. La metodología para su solución se resume en el diagrama de bloques de la figura 2-8.

FIGLERA 2-B

Para realizar el programa de cálculo fue necesario introducir las siguientes subrutinas:

a) SUBRUTINA PARA EL CALCULO DE THETA.

Al realizar la integración numérica de la ecuación 2-30, es necesario evaluar la función w en varios puntos correspondientes a decrementos fijos de θ , por lo cual es indispensable calcular theta para cada R_f en cuestión, y así f<u>i</u> nalmente obtener R_{fe} .

Se probaron los siguientes métodos para evaluar theta:

- Aproximaciones sucesivas.

- Newton - Raphson.

- Aproximación polinomial de sen θ (cortando en el término de orden 11). La expresión resultante se substituye en la ecuación 2-26, y así se tiene R_f como un polinomio en theta. (ASLA 2-)

> X= .2 TAS= 2.1131315 TMR= 2.11313856 TPM= 2.1131372 X1= 8 KZ= 10 K3= 6 X= .2 TAS= 2.1131315 TMR= 2.11313856 TPM= 2.1131372 M1= 8 KZ= 10 K3= 6 X= .3 TAS= 2.48564348 TMR= 2.49078487 TPM= 2.49077247 M1= 18 KZ= 2 K3= 2 X= .4 TAS= 2.71146053 TMR= 2.49078487 TPM= 2.82473921 M1= 18 KZ= 2 K3= 2 X= .5 TAS= 2.84747016 TMR= 3.14159266 TPM= 3.14136982 M1= 18 KZ= 1 K3= 1 X= .5 TAS= 3.29566085 TMR= 3.4583881 TPM= 3.45760115 M1= 18 KZ= 1 K3= 1 X= .6 TAS= 3.78510001 TMR= 3.79240044 TPM= 3.78961866 M1= 18 KZ= 2 K3= 2 X = .417004352 TMR= 4.17004635 TPM= 4.15918049 M1= 7 KZ= 2 K3= 2 X = VALOR DE R₇ VALOR DE THETA POR: TAS= AFROSINGE TMR= 3.4583881 TPM= 4.15918049 M1= 7 KZ= 2 K3= 2 X = VALOR DE R₇ VALOR DE THETA POR: TAS= AFROSINGE TMR= 3.4583(CEST) KAS TMR= NO KO TIERA FORS: TAS= AFROSINGE TMR= 4.17004635 TPM= 4.15918049 M1= 7 KZ= KMS= 2 X = VALOR DE R₇ VALOR DE THETA POR: TAS= AFROSINGE TMR= 3.4563(CEST) KAS TMR= KM KB DE TIERACIONES (TAS) M1= MMR KB DE TIERACIONES (TAS) M2= MMR KB DE TIERACIONES (TAS) M2= MMR KB DE TIERACIONES (TAS)

- 43 -

Los resultados obtenidos mediante estos tres métodos se listan en la tabla 2-1, en la cual puede observarse que el método de Newton-Raphson tiene una convergencia rápida además que el método de aproximaciones sucesivas presenta problemas de convergencia alrededor del punto $x = \pi$.

b) INTEGRACION NUMERICA PARA EVALUAR Rfe.

El problema puede enunciarse del siguiente modo:

Se tiene:

$$\int_{R_{fe}}^{R_{g}} w(R_{f}) dR_{f} = \frac{\ell_{f}}{D}$$

o en el caso general una función f(z) para integrarse entre los límites x y x_0 :

$$\int_{x}^{x_{0}} F(z) dz = A$$

en la cual son conocidos $f_{(z)}$, x_0 y A y se busca el valor de x que da la igualdad.

El algoritmo usado evalúa cada vez por el método del trapezoide el valor de la integral. Si éste es igual dentro de un error menor que 1% al valor conocido A, entonces el valor buscado de x es el que se posee en ese momento si no, el valor de x se aumenta una cantidad h preestablecida (0.0001) y se repite el proceso de integración. Si se reb<u>a</u> sa el valor de A se toma el valor inmediato inferior de x tal que el valor calculado de la integral con este límite in ferior sea menor que A, y se toma un nuevo valor de h (10 veces menor que el original) y así sucesivamente hasta que el programa converge con un error menor del 1%. Los resultados de una prueba de la subrutina se encuentran en la tabla 2-2. Los valores usados para efectuarla fueron:

 $f(z) = 1/y; A = ln2; x_0 = 2$

puede observarse que el resultado coincide con el valor real.

TABLA 2-2

X-X; A1. AREA CALCULADA Y-AREA REAL

X=	1.96	A1=	.020	2027	932	188	Υ=	. 693	41	
X=	1.92	A1 =	.040	8221	717	473	Υ-	. 693	41	
X =	1.88	A1 =	.061	8756	781	621	Ÿ.	. 693	41	
X =	1.84	A1 =	083	3819	870	088	Ý.	. 693	41	
Ϋ́.	1.8	A1 =	105	3610	043	38	v.	601	1 1	
Ŷ.	1 76	A1.	1 7 7	8330	784	28	÷-	601	7	
Ŷ	1 22	A1 -	150	8736		26	÷-	. 403	74	
÷-	1 60	A1 -	174	7647	161	22	42	-033	7.	
÷:	1.00	242	100	1110		70	÷-	- 093	11	
÷2	1.04	A1 -	. 198	4 3 4 3		20	5	• 633	<u>.</u>	
<u>ک</u> =	1.0	A1=	. 223	1447	231	E Z	¥-	- 693	11	
<u>.</u>	1.50	A1=	.248	4627	002	39	¥=	.693	41	
X	1.52	A1 -	.274	4383	69Z	37	¥-	. 693	41	
X=	1,48	A1 =	.301	1068	8139	19	¥-	. 693	41	
X-	1.44	A1=	.328	5060	024	•	¥=	. 693	41	
х-	1.4	A1 -	.356	6773	1122	:9	Υ-	. 693	41	
Х=	1,36	A1 =	.385	6649	9029	3B	¥-	.693	41	
х-	1.32	A1-	.415	5181	432	81	¥-	.693	41	
X =	1.28	A1=	.446	2901	055	32	Ý.	.693	41	
X	1.24	A1=	.478	0391	372	81	Ŷ.	.693	Ă1	
X-	1.2	A1=	510	8291	274	35	Ý.	. 693	41	
Xe	1.16	A1	544	7312		07	Ŷ.	603	41	
- Ÿ	1 12	A1	570	8720	1551	54	÷.		75	
Ŷ-	1 00	A1 -	616	101	2000		÷-	403	71	
- -	1 04	712		0120		12	÷-	407		
- 07	100 1		.033	100	2000	400		.093	91	
- V A	LOV D	5 A -	1 V A	LOK	06	ARE	~-	.0321	22430	14 6 Z

c) CALCULO ITERATIVO DE LA LONGITUD DEL "SLUG".

El método lo proponen Hubbard y Dukler en su artículo y consiste en suponer una longitud inicial del "slug" que permita obtener la longitud de película l_f y posteriormente R_{fe} mediante la integración de la ecuación 2-30. Por medio de los parámetros obtenidos, para esa longitud supuesta, se

÷....

procede a efectuar el cálculo de la longitud del "slug" mediante la ecuación 2-34, y posteriormente se comparan ambas magnitudes, si no coinciden (con un error menor del 1%), se adopta el último valor de la longitud (obtenido por la ecuación) como inicial y se repite el procedimiento, hasta que ambos valores coincidan.

El método es ciertamente rápido y de hecho se obtienen errores menores del 1% con únicamente dos iteraciones. 2.4.- PRUEBA DE LA CORRECCION DEL PROGRAMA DE CALCULO.

Antes de probar el modelo frente a datos experimentales de otras fuentes conviene reproducir los resultados que obtu vieron Hubbard y Dukler, para así comprobar la corrección del programa de cálculo. La referencia obtiene valores para longitud del "slug" y caída de presión total, para diversos gastos de gas y líquidos introduciendo los parámetros expe rimentales F y R_g . Los resultados de comprobar los valores calculados en este trabajo y los reportados se pueden ver en las figuras 2-9 y 2-10 en las cuales se notan muy lige ras diferencias entre ambos, las cuales pueden atribuirse so bre todo a la dificultad de efectuar lecturas precisas de F y R_g de las gráficas experimentales reportadas en el artículo de Hubbard y Dukler (ver apéndice).

- 46 -

kL= 1.67 1b/seg.

Fig. 2-10. Longitud del "slug" obtenido mediante trabajo contra la calculada por Dukler.

CAPITULO III

EXPLOTACION DEL PROGRAMA DE COMPUTO

- 3.1 CRITERIO DE SELECCION DE R
- 3.2 CRITERIO DE EVALUACION DE F

3.3 COMPARACION DEL MODELO CON DATOS DE LA BIBLIOGRÁFIA

- a) TUBERIA HORIZONTAL
- b) TUBERIA INCLINADA

III. EXPLOTACION DEL PROGRAMA DE COMPUTO

En este capítulo usamos el programa de cálculo desarrollado con base en el modelo de Hubbard-Dukler para aplicarlo a datos de bibliografía y comparamos los resultados obtenidos por el - cálculo con los reportados experimentalmente.

Los datos proceden de las siguientes fuentes:

1.- Vermeulen (1971) 2.- Speeding (1976)

Como hemos indicado el modelo requiere de los cuatro parámetros de entrada: Q_L , Q_G , R_s y F, además de las propiedades físi-cas de los fluídos y de las dimensiones de la tubería. En general no se dispone de información "a priori" para evaluar R_s y F, no obstante, hemos desarrollado los siguientes criterios para su selección.

3.1 CRITERIO DE SELECCION DE R

Si calculamos la caída de presión mediante el módelo de Hubbard-Dukler para diferentes valores de R_s manteniendo los restan tes datos de entrada constantes, podemos observar que la caída de

• 49 -

III. EXPLOTACION DEL PROGRAMA DE COMPUTO

En este capítulo usamos el programa de cálculo desarrollado con base en el modelo de Hubbard-Dukler para aplicarlo a datos de bibliografía y comparamos los resultados obtenidos por el - cálculo con los reportados experimentalmente.

Los datos proceden de las siguientes fuentes:

1.- Vermeulen (1971) 2.- Speeding (1976)

Como hemos indicado el modelo requiere de los cuatro parámetros de entrada: Q_L , Q_G , R_s y F, además de las propiedades físicas de los fluídos y de las dimensiones de la tubería. En general no se dispone de información "a priori" para evaluar R_s y F, no obstante, hemos desarrollado los siguientes criterios para su selección.

3.1 CRITERIO DE SELECCION DE R_e

Si calculamos la caída de presión mediante el módelo de Hubbard-Dukler para diferentes valores de R_s manteniendo los resta<u>n</u> tes datos de entrada constantes, podemos observar que la caída de

- 49 -

presión es prácticamente constante, es decir, este parámetro es poco sensible a la fracción de líquido en el "slug" (R.). Si repetimos el procedimiento ahora evaluando la longitud del "slug" unitario, se detecta una situación similar. Debido a esto podemos concluir que el parámetro caída de presión, el cual interesa para diseño, no se ve afectado grandemente por el R_c seleccionado y se puede elegir un valor constante para este dato de entra-Los resultados de este análisis se muestran en las figuras da. 3-1, 3-2 y 3-3 para diferentes casos. El valor elegido debe ser consistente con la suposición de que el "slug" tiene características esencialmente líquidas, que es la base sobre la que se - desarrollaron algunas de las ecuaciones que surgen en el modelo; esto ocurre para R_e mayor que 0.7. Por otro lado, si en el tapón líquido no hubiese burbujas R_c valdría uno; por lo cual podemos hacer la elección en el intervalo abierto entre 0.7 y 1. Noso-tros seleccionamos a partir del estudio de las figuras el valor de 0.75 el cual mantendremos en los cálculos efectuados.

El parámetro R_s constituye el límite superior de la integral que aparece en la ecuación 2-30 e influye de manera directa en la determinación del límite inferior R_{fe} . Como ya se ha mencionado, los límites de la integral determinan toda la gama de R_f que se encuentran entre ambos. Existen valores de R_f que producen valores negativos del parámetro B, lo cual es uno de los problemas -del modelo de Hubbard-Dukler. Esto es ocasionado por el hecho de que R_s tenga un valor menor que el real lo cual produce que el -- R_{fe} estimado también sea más pequeño que el valor verdadero (esto

- 51 -

sucede debido e que el área obtenida por lo integral es fija), lo que conduce a obtener magnitudes de R_f que provocan los valores negativos de B y en consecuencia la interrupción del programa. Cuando se selecciona el R_s con el cual se va a trabajar y se presentan los hechos mencionados, conviene aumentar dicha fracción de líquido en el "slug" tomando en cuenta el intervalo ya citado.

3.2 CRITERIO DE EVALUACION DE F

En el capítulo I mencionamos la existencia de un trabajo de Gregory y Scott para el cálculo de la frecuencia, el cual pasamos ahora a discutirlo con mayor detalle.

La base del trabajo consiste en el análisis de curvas, obte-

nidas con datos experimentales para un flujo horizontal, de frecuencia contra velocidad al frente del "slug" (V_t) (figura 3-4), los cuales ajustan a una ecuación del tipo:

$$F_{=} - \frac{L}{V_{+}} + MV_{t} + N \qquad (3-1)$$

donde L, M y N son constantes que se determinan a partir de un tratamiento estadístico de los datos experimentales y donde la velocidad V_{+} se determina por:

$$V_{+} = (1 + C) V_{e}$$
 (3-2)

expresión en la cual el autor toma un valor de C constante (0.35). En las curvas de la figura 3-4 se observa la presencia de un mínimo, el cual se determina como:

$$\frac{dF}{dV_{+}} = - \frac{L}{(V_{+}^{*})^{2}} + M = 0$$

(3-3)

en donde V_t* es la velocidad V_t evaluada en el mínimo. Despejando L de la ecuación 3-3, se tiene:

$$L = (V_{+}^{*})^2 M$$
 (3-

4)

(3-5)

(3-6)

ο.

reescribiendo la ecuación 3-1 obtenemos.

$$F = M \begin{bmatrix} V_t * 2 \\ V_t \end{bmatrix} + V_t + V_t$$

Por otro lado si reescribimos el número de Froude, en los siguientes términos:

$$Fr = \frac{V_{L}^{\circ}}{GD} \left[\frac{(V_{t}^{*})^{2}}{V_{t}} + V_{t} \right]$$

con:

$$V_{L}^{\circ}$$
 = velocidad superficial del líquido = $\frac{4}{R^{2}}$

- 54 -

los experimentos muestran (figura 3-5) que la frecuencia se puede expresar en términos del número de Froude del siguiente modo:

$$F = K (F_r)^L$$
(3-7)

K y L son constantes, en este trabajo se toman los valores de --0.0157 y 1.2 respectivamente. Cabe aclarar que en la expresión 3-7 se ha utilizado el valor de 6 para V_t^* , el cual se obtiene de las curvas mostradas en la figura 3-4. Si incluimos la ecuación 3-7, en la expresión 3-6 y expresamos V_t en términos de V_s (ecuación 3-2), el resultado final es:

 $F_{=} 0.0226 \begin{bmatrix} V_{L}^{\circ} \\ GD \end{bmatrix} \begin{bmatrix} 19.75 \\ V_{S} \end{bmatrix}$ (3-8)

Æ

æ

- 55 -

Nosotros corroboramos esta ecuación con datos experimentales obtenidos por Hubbard-Dukler (1975) y Speeding para flujos horizontales los resultados se muestran en la figura 3-6, en la cual se puede observar que ajustar, para todo fin práctico, de una manera adecuada.

Existe un trabajo teórico de Taitel y Dukler (1977), en el cual se calcula F a partir de la solución de las ecuaciones teór<u>i</u> cas adimensionales que describen el fenómeno, sin embargo, la co<u>m</u> plejidad que se agrega al procedimiento de cálculo no se ve suficientemente compensado por la precisión ganada, al menos en el -caso de tubos horizontales.

En lo referente a tubos inclinados, se establece una compara

ración de los datos obtenidos por Speeding con un resultado que se obtiene de la ecuación 3-8, el resultado se observa en la figura 3-6Q en donde se muestra gran desviación, lo que indica que la relación encontrada por Gregory-Scott, no es adecuada para -este caso.

3.3 COMPARACION DEL MODELO CON DATOS DE LA BIBLIOGRAFIA

Una vez escogida la manera de fijar los parámetros de entrada R_s y F, pasaremos a realizar los cálculos necesarios para est<u>a</u> blecer la comparación. Primero efectuaremos los cálculos para -tubos horizontales y luego para tubos inclinados.

- 57 -

a) FLUJO EN TUBERIA HORIZONTAL

El intervalo de variación de los datos experimentales utilizados de Vermeulen se muestran en la siguiente tabla:

D(in	0.5			
W _L (1b/hr)	200-1000			
W _G (lb/hr)	3.23			
Caída de presión (psi/ft)	0.02-0.2			

El resultado de comparar algunos de estos datos (véase apréndice) con los predichos por el modelo de Hubbard y Dukler se mue<u>s</u> tra en la figura 3-7.

El modelo de Hubbard-Dukler se aproxima bastante bien a los obtenidos experimentalmente, sin embargo se aleja de estos valores para caídas de presión altas.

En lo referente a los datos experimentales reportados por -Speending, sus características principales pueden observarse en la siguiente tabla:

D(m)	0.045
W _L (kg/s)	0.365-1.692
₩ _G (kg/s)	0.00182-0.0164
Caída de presión (Pascal/Metro)	40 - 1240

la comparación con el modelo de Hubbard-Dukler, se realiza en la figura 3-8, en donde se puede observar que los datos predichos por el modelo ajustan bien para caídas de presión pequeña, y en general es una aproximación excelente para bajos gastos de gas y líquido.

b) FLUJO EN TUBOS INCLINADOS

Se realizó la prueba del modelo con los datos experimentales de Speeding cuyas características se muestran en la tabla siguiente:

D(m)	0.045			
W _L (kg/s)	0.06-0.494			
W _G (kg/s)	0.0011-0.0018			
Caída de presión (Pascal/Metro)	212 - 327			
Angulo de inclinación	2.75°			

Se efectúan los cálculos con los parámetros R_s y F seleccionados de la manera ya indicada, se obtiene en primer lugar valores de frecuencia alejados de los experimentales reportados por el autor, es evidente que esto provoca que los valoros de caída de presión calculados y los reportados en el laboratorio difieran notablemente. Por otro lado si se ocupan los datos experimentales de frecuencia como dato de entrada en el programa de cálculo se obtienen valores de B negativos para los R_s contenidos en el intervalo mencionado anteriormente.

Debido a lo anterior, se concluye que mientras no se disponga de datos experimentales de frecuencia confiables o se tenga -una fórmula adecuada para su cálculo (es posible que la relación encontrada por Taitel y Dukler, mencionada anteriormente satisfaga esta demanda), no se recomienda utilizar el modelo de Hubbard-Dukler para predecir pérdidas de carga en tubos inclinados. CAPITULO IV

CONCLUSIONES

4.1 ANALISIS DE LAS HIPOTESIS DEL MODELO

4.2 INTERVALOS DE VALIDEZ DEL MODELO

4.3 SUGERENCIAS PARA MEJORAR EL MODELO

4.4 CONCLUSION GENERAL

IV CONCLUSIONES

En este capítulo discutimos la validez de las hipótesis ut<u>i</u> lizadas en el desarrollo del modelo de Hubbard-Dukler, para posteriormente pasar a establecer los intervalos (con base en datos de la bibliografía) en los cuales este modelo es útil para los propósitos mencionados anteriormente. Finalmente proponemos algunas correcciones que, a nuestro criterio, mejorarían las predicciones del modelo.

Para establecer e! grado de error que se comete mediante el emplo de las hipótesis, tomaremos un ejemplo específico, establ<u>e</u> ciendo órdenes de magnitud de los términos no tomados en consid<u>e</u> ración.

4.1 ANALISIS DE LAS HIPOTESIS DEL MODELO

Algunas de las hipótesis se pueden justificar plenamente, por ejemplo:

a) Contribuciones a la caída de presión total.- El modelo considera dos términos que contribuyen a la pérdida total de car ga; i) caída de presión por la interacción del cuerpo del "slug" con las paredes del tubo, ii) caída de presión por aceleración de la película al incorporarse al cuerpo del tapón. Es decir no se toman en cuenta las pérdidas de carga que ocurren en la fase-

- 62 -

gaseosa y en la película líquida.

Para formarnos una idea del orden de magnitud de los términos no considerados, tomamos el siguiente caso:

D(m)	0.0381
W _L (kg/s)	0.0758
W _G (kg/s)	0.0027
Caída de presión experimental	L (Pascal) 1362.0400

Evaluaremos la caída de presión que se presenta en el gas, como si se tratare de un flujo monofásico. La razón de proceder de esa manera, es que no conocemos la fracción de area que ocupa el gas a lo largo del tubo (es posible obtener esta información a partir del modelo de Dukler, sin embargo no es válido utilizar este recurso en el momento de evaluar el orden de magnitud de -los términos despreciados), no obstante esta manera de cálculo puede dar idea de la magnitud del término buscado.

Tomando en cuenta el hecho experimental de que las mayores longitudes de "slug" unitario oscilan alrededor de los diez metros, la caída de presión encontrada es de 10.0 Pascales, estu va lor representa el 7.3% de la pérdida de carga total, esto indica que este término puede considerarse despreciable.

En lo referente a la caída de presión que ocurre en la pe-lícula líquida, realizamos simplificaciones similares, a las re<u>a</u> lizadas en el caso de la fase gaseosa y estimando una longitud de película de tres metros, se obtiene una caída de presión de película que representa el 12% del total. Este porcentaje signi fica una contribución importante a la pérdida de carga total, -sin embargo, su inclusión en el modelo, puede complicar los cálculos, de tal modo que no compense la precisión ganada.

b) Cálculo de caída de presión por fricción como si se tratara de un flujo monofásico.- Esta hipótesis es aceptable en la medida en que la fracción de líquido en el "slug" sea mayor que
0.7, ya que bajo esta condición es evidente que el tapón tiene características esencialmente líquidas, y es posible considerarlo monofásico, con propiedades físicas promedio (Dukler-1964).

ć) El cambio en la cantidad de movimiento de la fase gaseosa es despreciable respecto al de la fase líquida.- Esta suposición se justifica por el hecho de que la densidad del gas es muy pequeña en relación a la densidad del líquido (a condiciones estandard la relación de densidad de aire y agua líquida es de -0.001); se necesitan condiciones de operación a muy alta presión para que las densidades sean comparables.

d) La presión del gas es constante a lo largo del tubo.- Es to se corrobora porque como ya se ha visto la caída de presión - de la fase gaseosa es pequeña.

e) El flujo se encuentra establecido en la dirección x.- Lo

- 64 -

cual es comprobable mediante observaciones experimentales.

f) Efectos de tensión superficial despreciables.- En la bibliografía se demuestra que estos efectos son pequeños en comparación a aquellos ocasionados por fricción, y por lo tanto des-preciables. Por ejemplo Taylor (1959) evalúa el parámetro C, del modelo de Hubbard-Dukler, tomando en consideración la tensión superficial que se presenta en la interfase; la diferencia que se presente entre este valor y el calculado mediante la ecuación pro puesta por Dukler es regularmente menor al 10%. Esta evidencia muestra claramente que la aproximación usada está justificada.

Existen también otras hinótesis cuya solidez es menos evi-dente, por ejemplo:

g) El esfuerzo constante que se presenta en la interfase líquido-gas se desprecia en la ecuación de balance de conservación de cantidad de movimiento de la película.- Esta suposición no es adecuada, ya que este término de esfuerzo puede llegar a ser im-portante, como se ve en la figura 4-1, la cual muestra los resultados de experimentos, en los cuales se puede observar que el valor de este término mencionado, es comparable con el esfuerzo que se presenta entre la película y las paredes del tubo. Por lo tanto la magnitud del esfuerzo en la interfase líquido-gas, no puede ser despreciado.

h) La expresión utilizada en el modelo y la cual permite eva-

-65 -

luar la longitud de mezclado, es el resultado de un ajuste de datos de laboratorio, por lo cual el uso de esta ecuación está limitado a la regiones experimentadas.

4.2 INTERVALOS DE VALIDEZ DEL MODELO

No obstante las aproximaciones hechas, el modelo de Hubbard-Dukler, bajo los criterios de R_s y de evaluación de F predice la pérdida de carga por unidad de longitud, para tubos horizontales, de un modo adecuado, para números de Reynolds del "slug" mayores a 50000 y menores de 540000.

4.3 SUGERENCIAS PARA MEJORAR EL MODELO

a) Formulación teórica que permita calcular a partir de los

gastos y las propiedades físicas de cada fase los valores de R_S y F. El trabajo de Tartel-Dukler, mencionado anteriormente no alcanza a cubrir esta demanda, por las razones expuestas anterio<u>r</u> mente.

b) Incluir los términos de esfuerzo cortante en la interfase líquido-gas dentro de la ecuación de la balance de cantidad de movimiento.

c) Modelizar la expresión de longitud de mezcla con bases teóricas.

4.4 CONCLUSION GENERAL

El modelo de Hubbard-Dukler se basa principalmente en la hidrodinámica del flujo bifásico tipo "slug"; de esta manera presenta las ventajas de un método teórico, es decir una mayor generalidad. Permite además correcciones ulteriores a medida que se conocen mejor las leyes que rigen el comportamiento entre las fases, como por ejemplo la fricción interfacial.

Desde el punto de vista práctico este modelo permite realizar diseño de equipos en donde ocurre el flujo bajo análisis, en los intervalos mencionados. Los resultados obtenidos son de exactitud aceptable, lo cual permite emplear bajos factores de sobrediseño y consecuentemente reducir costos en equipo de proceso.
- 68 -

BIBLIOGRAFIA

- Bird, R.B., Stewart, W.E., Lightfoot, E.N. "Fenómenos de Transporte. Editorial Reverte, 1980.

- Chisholm, D. Engineering and boiler house review, p. 287 (1963).

- Dukler, A.E., Wicks, M. Cleveland, R.G. "Frictionial pressure drop in two phose flow".
 A.I. Ch, E. Journal 10,43 (1964)
- Dukler, A.E., Hubbard, M.G. "A model for gas-liquid slug flow in horizontal and near horizontal tubes" Int. Eng. Ch. Fundam. Vol. 14 No. 4 (1975)
- Gregory, G.A., Scott, D.S. "Correlation of liquid slug velocity and frecuency in horizontal concurrent gas-liquid slug flow". A.I. Ch. E. Journal, Vol. 15 No. 6 (1969)
- Kordyban, E.S. "A flow model for two phase flow in horizontal tubes" Journal of Basic Engineering Transactions of the ASME (1961)
- Kordyban, E.S., Ranov, T. "Mechanism of slug formation in horizontal two phase flow" Journal of Basic Engineering, Transcations of the ASME (1970)
- Lockhart, R.W., Martinelli R.C. "Proposed Correlation of date for isothermal two-phose flow component flow in pipes" Chemical Engineering Progress, Vol. 45 No. 1 (1949)
- Mandhane, J.M., Gregory, G.A., Aziz K. "A flow pattern map for gas-liquid flow in horizontal pipes" Int. J. Multiphase flow, Vol. 1, pp. 537-553 (1974)

- Spedding, P.L., Nguyen, V.T. Data on holdup."Pressure loss and flow pattern for two-phase air-water in an inclined pipe". University of Auxkland (1976)
- Taytel, Y., Dukler, E.A. "A model for slug frecuency during gas-liquid flow in horizontal and near horizontal pipes" Int. J. Multiphase flow, Vol. 3 pp 585-596 (1977)
- Taylor, G.I. Proc. Roy Soc. A pp 253, 317 (Scientific Papers, 4) 1959
- Vermeulen, L.R. Ryan, I.T. "Two phase slug flow in horizontal and inclined tubes" The Canadian Journal of Chemical Engineering, Vol. 49 (1971)

A P E N D I C E

BANCO DE DATOS UTILIZADOS EN LA FIGURA 1-3

W_G= 3.23 lb/hr. D= 0.5 in

W _L (1b/hr)		Caída de presión	(PS1/Ft) x	.001
	Experimental	Lockhart-Martinelli	Vermeulen	Kordyban
300	3.7	3.5	4.2	2.9
400	D.J	4 • 0	0.3	4.0
500	8.2	6.0	8.0	5.0
600	11.2	8.0	10.5	6.2
700	13.2	10.0	12.5	8.0
800	16.0	11.5	16.0	9.3
			이 가지 않는 것은 것은 것이다. 같이 이 것은 것이 같이 같아요. 같이 이 것은 것이 같이 같아요.	물건하는

900 18.0 14.0 17.5 11.0

- 71 -

BANCO DE DATOS UTILIZADOS EN LA FIGURA 2-9

D = 1.5in

W_L= 1.67 lb/seg.

V _s	(ft/seg)	f(1/seg)	R _s	Caída de presión (PS1)x O	.1
			el Martine el	Hubbard-Dukler Trabajo	
	8.7	1.05	0.89	2.2	
				en fan de fa Fan de fan de Fan de fan de	
	10.0	0.65	0.95		
	15.0	0.65	0.90	9.0 7.5	
	20 0	0 60	0 80	15 0 13 0	
	40.0			17.0	
	26.0	0.65	0.92	21.0 26.0	

W_L= 2.2 lb/hr.

								S. 1977	1.1.1.1	5 - 68		· · · · · · · · · · · · · · · · · · ·	27 series	St = 7		EX 12.	1.2	10 I.I.		1.1.1			1						
		` • `		a e 1, 1				10 1	്റ	\ PP	1 - AR B		1.1.1	~ ~	n n	11 - N						•	24 - A				- 14. e	1. A 18	• •
		α.	- /						U	13		1. J.M.		ن ا ،	эι.	- e - 1					4.	. U '							a -
					2.1		- 19 A A A A A A A A A A A A A A A A A A				- N. P. J.	19 T. S. S.								- T		• • • • •				1.201			
				1.1.1.1			5 77	1140	20.00	2	1 N. M	- 100 540	5 F. J.	1.1.41		26.11	1.1		÷			S						- A - A - A	
					1121		5, 51, 55		- 1. A	1.56	1.157	- C				1.1.1	a	÷				1 is		- in .	1 A 12		1.11		
			 5.0 		12.050	5 A.	e na se	188	5.12.3	47.5	1.1	12.5	11111	1.2.1	1.11.1	2012		5. 12					1.11.64				10.10	1.2011	1.1
								1. 1. 1. 1.	6 M.C.		80.66	< 1678	1. 16. 1		1 A A A			- C C C C C C C C.				1.1.1.1.1.1	Se 1.04				1.12.1		
								en Sala,		C 1974	್ಷಣಗಳು		5.545	- C.	1 A A A	1.5		- N	· ·	14 A A			インタン		こうた	1.14		Sec. 11.	
		-					1844				2.4.63		a - 57	÷	-	S 10.			5		- -	تصرره	5 - 10 C	1.025		10.00	1997		
	- 7		- 11			1.1.1		1.11	6.27		A.50	6 - T.F.		n -	чı	1.1.1				· · · ·		S DY .			1.1		· · · /		1.
	_	•••	•••	1.1.2	. 911			- 10 A		•••	2 X T	1. 1	1.10	v.•	~ ~			21 A.			~	•••			÷	1000	- Cal	r	•
			1.1.1			 223 		1923.01	1.11			an sa ƙasar Ing	2.44	80 M		14.5.5						1.12.12				- S. A. S	12.1		
		÷ 22, 2			62.196	79		いいさ	0.1450		<u>.</u> .	í . i i i i i i i i i i i i i i i i i i		, 6 M A		1996 - N						2 7 5	1.1.1		C		· ·		·
	· • •	1.00	- 1 C.	1.2.24	1.10	ang Cita			1942	18 60	3. D. C.	ور ژور ا		1.1	- C25		Sec. 1		15 C			アミネッ		, i 1960).	1.2.4	12.10	11.57		
		14.1				1.1.17.1	1.04	11116		1.1	S. 65.	N 197	1.12.14			11 A A	1.2.2.2		· . ·		- 1 - La	140	Sec. 3. 13	- 27		- 1ee -	2010	100	
	· .	. 211			a		11 A A		1 1 1 N	- 10 - 11 - 11 - 11 - 11 - 11 - 11 - 11	2022	- 10 B.	1.201		2 Y .		6 - 10 ^a				1 N N 19					2.6.90		22.3	
			1 m	4. S.H				-90 S.		1.1	1612.0			- 32	·	2222				1 A. J.	<u>`</u>					- 221		1 s 1 s	2.1
	1	- S .	ា	1.00	1.739	C 202	6. C.A.	1.271	3	יחנ	1.27			n	. 8 7	7		13. IV.			11	. n	1 A.A.	1.171				36	٦.
			•.•	- Tr.	1.00	1.1	1.1.1	5 C.			-121	-432.1		υ.	.01	1.1218		10 E			**	• •		- MAR - 6		12.0	19 y 19 🖷		•
		1.4	÷	90 M.					1.1.1.1	10.00		1.8 %	P 25	1.815.	6 a 😪							1 - 1 6 .	1997						
			1473	- 1224 -	183.5	10.00		S 0 6		- 2 (S - 1944)	2 - C - C	10.01	W7 1.	- 4,69	2113	5.000).	11.47		. 32	1. I B B	- C.A.A	. *3	1.1.1		2.52	- 11 - F	69 H N	1.1.1	
		- 11	20.57	N 1997	1.00		1.15	1.12	2 mg 2			26.5	1917		- 131	S.1 - 64						10.0				1.551			
			185.		1.111	1.064	12.85	3.3 %	160 A.S.	92 Y		- e.,	2212	ે જે તેને			1 1 1	- 1990 P	1 i a 1		11.1	1.57.273	- 2 C	1.11	90. P.S.	122.17		89 N.	έ. 1
			Ър. – "		1.24.2	1 NG 50		1.11	1. 1. 1. 1.	S-201	221.1	ST 81.	S 447	1.154	1.00	1. ACC					- 32	1.5.25		1.000				23. S	
	12			- C. S		60 M	1.357.	0 T C			1.5.5.	S. 1.	S 24 S	12.50	C 221.		1.54	, i se i e								おんず	6 La - E		-
	1.7	יחי	:÷•П	4.120			15.65		127.5	20		51 P 44		n (- 21	n 23		2010			16	<u>п</u>				·	ിം		л.
	~		• •	99 a 10		1.12		100	1.0.4		2.44	÷	10.44	υ,		- C.				(al es	T O	·•. •.	12812	A 271	56 M S	5 Q (7)	್ರಕ್	* • '	
	1.1	2.25	- A A	14.14	5 i. iii	°.∦≁ –	-3290	6.5.69	S-21.	. Or 100	11.		-	10.2	11.20	11.14	÷	St. 15.		1 A 200	1.001	- 3-27				9 C S.		28 - 22	
			- S., A.	- 214	-12° - 6			1.1	1.00	Same S	2.5	6.2.8	21.11		1.695	- A.	· · · · ·	2110		110111-0									
			2455, 1	- 1969		1.4.5.1	1122	12122	10.062.00		9 L. S.	1.25		500	- 30.00	0.00		· · · ·						19-17 TT	ator i	uit, "			
			1 A. A		- N. S	11112	11.24	11.12	1920	3951.15	236 A.	11			1. CO 1 -				1.0				1.1	المهادك				41 aligned	
					382.	100 E		e 1997.	A& 6271		194 J.A	1.28.1	8 X D				e. 195	1.7	1.0		1.11.1	100 E				1.00			
			10.14			- 9.E		1.1	196.5		36 G.,	251	승규가.			1.0 %		್ರೀತಿ		. 214	1212	1 A 💷	1994 a - 1	1 a 1 a			2.1		-
1.2		16	· • •	IN.	1 to 1		4 J.C.	- S. C.	1 CO. 1	nn	200 C	S. 4	12.14	n	0	τ.			1	1.4.14	71	• : A	Sec. 16.	- 12			. 7 .	1 1	а.
		- •	u	.0.:	66 M P P		Sec. Sec.	·	£ • ١		ini n	81 C - 3	1.51.1	Υ.		. .					44	•••		161.5	- L		· • • •	***	•
					1993 a.	10.000	1.1.1.1.1			10 C - 1	700 (c)		density.	6. A.	2.11						· · ·			1. A.			6 - P		
							1.6.1.			200 M -	10			N 92	n frank	1012	10 20 V												

BANCO DE DATOS UTILIZADOS EN LA FIGURA 3-6

DATOS DE SPEEDING (D=0.045m)

W_L(Kg/seg) W_G(Kg/seg)

F(1/seg)

		Experimental	Calculado
0.5759	0.00186	0.35	0.40
	0.00279	0.25	0.36
	0.00612	0.63	0.24
	0.01055	0.56	0.24
0.7977	0.00187	0.58	0.51
	0.00280	0.65	0.35
	0.01058	0.061	0.37
그 가슴 가슴 가슴 가슴. 그럼 2011년 - 11년 - 11년 - 11년 - 11	0.01522	0.73	0.43
1.157	0.00116	0.90	1.13
	0.00189	0.91	0.89

DATOS DE DUKLER (D=0.0381m)

0.758	0.00272	1.05	0.85
	0.00718	0.85	0.79
	0.01176	0.65	0.72
	0.01636	0.60	0.77
	0.02180	0.70	0.87
1.007	0.00242	0.96	1,19
	0.00650	0.94	1.11
n de la contra de la	0.001101	0.77	1.02
	0.00156	0.63	1.08
	0.00212	0.54	1.23

BANCO DE DATOS UTILIZADO EN LA FIGURA 3-7

D = 0.5in W_G= 0.65 lb/hr.

W_L(1b/hr) Caída de presión (PSIA/Ft) x 0.001

	ľ.	•		Ē													60				e.
				4			j.	E	кр	ez	·iı	nei	nta	a1			I)u]	k 1	er	
						49 ⁻²⁰ -1															•
		30	0								L5	. 0						1	4.	0	

		~ ~						 					n	 				_	-	_		
									10 B													
				C. 127 (200) 101	Sec. 10. 10.																	
	_	_						 A					_					_				
		_				2 C. S. S. S. S. S. S.				- C. A			- C. A.		- E - E - E - E - E - E - E - E - E - E			_				
			A Description of the			10 A.M.		2 C							1.1							
						the second s																
					A					1. 1. 1. 1. 1.	A 6 1 1 1			 								
								 		A 44 A 44												
								- 1 - C - C - C - C - C - C - C - C - C	T = 100 (s.)													
										Sec. 2.	11.22	· · · · · · · · · · · · · · · · · · ·				Contraction of the second s	1					
					C. 12. B. L									Concernence in								
											1.11				The second second							
								Sec. 1				- C. A. A. A.		 1.000	1.1	N 18.00						
																		 			1 1 1 m 1 1 1 1 1	
									1.1		and the second se							 The second se			100.000	
													1.1								1. A. M. Market	
													- A									
																		 2				
								 1.2														
								11.00														
							- X & - X &															
														_								
																15						
					1.4																	
										A												

				a state a state a su a	(a) (2) (2) (2) (2)				やんし ひんき 長い
	÷.	19 M I 19 M	e da esta se sua	승규는 실험 영국	- 1 - 1 - -	<u> </u>	a de la composición d		
 SEE	1					Z . B			5 11
 						~ • •		•	
e and i		19.11	- 1 C Z - 1		1.01.1101	1. Mar. 1			
100		1983 C		ute di polici	しんいち 許可なの				
1.1.1	÷.	- 2 C	1. N. A. M.		こうご ぞうりょう				
11.1	1.1					1. 1. C. 1.	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		and the second second

						20				3.7				143	20.			N 43			31		÷ 41	S. 1			14.	
	6	n	0				- ÷.					125	A .	n	· n	1 8	с. Л	. N			$C \sim 10^{-1}$. N	72	6	- 1	n.		
	v	υ.	0	· ·						2		200	4	υ.	• •	14		2.6		1.55		1.5	- 2	υ.	• '	U,		
	а.,		Ωe.	Δ.	2.0				÷4.,		1. J	÷2,	231					1.10					1.1					
																. ÷			1.1		16	11.						

				 * * * *		 						(S. H. A						N	
						 - 10 a - 10	10 C 10 C												
												SC 1							
								· · · · · ·	 	Sec. 11									
												The second se		10 C					
	 										S			N 16 4		1.1.44			
	 	•						-							• •	- n	 21. ****** 		
	 						· •	-											
	 							 -				1. AL A.	· · · ·						
							_												
			121																
		11111																	
				 A 10.5															
																1 N. K.			

900

70.0

46.0

BANCO DE DATOS UTILIZADOS EN LA FIGURA 3-8

W_I(Kg/s)

Speeding

Caída de presión (Pascal/m)

0.365

1.416

1.692

0.575

Calculado 0.0018 51.01 68.64 77.61 0.0027 67.98 0.0060 27.95 116.45 204.21 0.0104 93.29 0.0018 106.00 112.30 145.03 136.30 0.0027 0.0061 286.10 220.97 0.0105 407.20 340.20 381.00 0.0158 481.70 0.0011 279.00 223.42 0.0019 373.70 294.23 0.0028 526.70 354.75 0.0062 1062.20 563.61 0.0010 665.00 862.81 0.0011 385.90 279.98 0.0019 484.30 351.65 720.90 0.0028 410.61 983.00 664.47 0.0063 371.60 0.0010 943.75

W_G(kg/s)

NOMENGLATURA

mente
ijo
la

-

- 77 -
- P_g Presión del gas
- P. Perímetro mojado
- P Caída de presión
- ΔP_{a} Caída de presión por efectos de aceleración
- ΔP_{r} Caída de presión por fricción
- ▲ P_ Caída de presión total en el cuerpo del "slug" unitario
 - Q Gasto volumétrico
 - q Relación de flujos másicos de líquido y gas
 - R Número de Reynolds
 - R_c Número de Reynolds de la película
 - Res Número de Reynolds del "slug"
 - R_c Fracción de área ocupado por la película
 - r g Radio hidráulico de la fracción del tubo en donde está contenido el "slug"
 - R_c Fracción de área ocupado por el líquido "slug"
 - S Sección transversal ocupado por la película al frente del "slug"
 - S, Peso específico del líquido
 - V Velocidad (referida al área efectiva que ocupa cada fase)
 V_f Velocidad de la película
 - V_{fe} Velocidad de la película justo antes de ser incorporada al cuerpo del "slug"
 - V Velocidad del "slug"

- V_t Velocidad al frente del "Slug"
- W Gasto másico
- x Distancia a lo largo del tubo (página 12)
- x Flujo del líquido atrapado por el "slug" (página 29)
- x_f Distancia a lo largo de la película
- X Parámetro de Lochart-Martinelli
- Y Altura del nivel de líquido

ADEMAS LOS SUBINDICES

- BIF Bifásico
- C Flujo canal
 - Película
- G Gas

f

S

- L Líquido
 - "Slug"

AM-DCLCA