

Universidad Nacional Autónoma de México

ESCUELA NACIONAL DE ESTUDIOS PROFESIONALES ARAGON

Análisis de Placas por el Método del Elemento Finito

T E S I S

Que para obtener el Título de

INGENIERO CIVIL

presenta

LEONARDO SEGURA GUTIERREZ

Septiembre

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ANALISIS DE PLACAS POR EL METODO DEL ELEMENTO FINITO

			1. A.		PAG.
Introducciór	ı				1
Capítulo I			•		4
Análisis del	. modelo mate	emático de p	placas.		
Capítulo II					29
Metodologfa	del método d	lel elemento	finito.		•
Capítulo III	.		L		42
Análisis de	placas por e	el método de	el elemento	finito.	
Capítulo IV		•			70
Análisis num	mérico e inte	erpretación	de resultad	os.	
Anexo "A"					87
Listado del	programa de	elementos	finitos.		
Conclusión					88

INTRODUCCION.

El método del elemento finito es una técnica muy poderosa para resolver problemas complejos en ingeniería, tal como el análisis de placas sujetas a cargos transversales bajo varias condi ciones de borde. Su uso se ha generalizado gracias al desarro llo en la velocidad del cálculo y capacidad de memoria de las computadoras electrónicas y al refinamiento de los métodos numéricos para resolver ecuaciones simultáneas.

En 1956, Turner ¹ y sus colaboradores presentaron el método de las rigideces, que es la base del método. La primera vez que se empleo el término "Método del Elemento Finito" fue en el -trabajo de Clough ².

El método es bastante versátil y se puede aplicar a problemas en estructuras, en geomecánica, en problemas de flujo, etc.

Hay varios métodos para formular las ecuaciones, los más comunes son el método de los desplazamientos y el método del equilibrio. El más popular es el primero y se inicia suponiendo --una distribución de los desplazamientos, se asegura la compatibilidad de los mismos entre los elementos y se usan los criterios de energía potencial mínima para establecer las matrices del elemento finito.

- Turner, Clough, Martín y Topp, "Stiffnes and Deflection analysis of complex structures" Revista de Ciencia Aeronáutica, Vol. 23 No. 9, 1956.
- Clough, "The finite element method in plane stress analysis" memorias de la 3a. conferencia en cálculos electróni cos, Pitssburgh, 1960.

En este trabajo, se aplicará el método a la solución del probl<u>e</u> ma de flexión en placas planas, la placa se divide en partes de forma arbitraria conocida como <u>ELEMENTOS</u>. Estos se conectan en puntos llamados <u>NODOS</u>. La variable desconocida (esfuerzo o de-formación), se denomina <u>variable de campo</u>. La distribución de la variable se aproxima usando ciertas funciones polinominales. Usando métodos residuales o variacionales, se desarrollan las ecuaciones de elemento finito que relacionan las variables - de campo con los vectores de acción correspondientes a dichos puntos. Al final se ensamblan las ecuaciones de elemento finito para formar un sistema de ecuaciones algebraicas. Las variables se calculan resolviendo dicho sistema. Debido a que la variable de campo solo se aproximó en su distribución, el método es - aproximado, entre más elementos se tengan, el método es más - exacto, pero aumenta el tiempo de cálculo.

En el capítulo I de este trabajo se desarrolla el modelo matem<u>á</u> tico que representa el problema de flexión de placas cargadas perpendicularmente a su plano, también se especifican las hipótesis y consideraciones para simplificar el problema.

En el capítulo II se presentan las bases del método del elemento finito tratado de una manera muy sencilla por el método de los desplazamientos, en el capítulo III se resuleve una placa empotrada con una carga concentrada al centro, con la finalidad de aclarar lo expuesto en el Capítulo II, y además explicar en ensamble de la matriz de rigidez global de la estructura, ade-más de resolver el mismo problema por un método conocido y así poder comparar resultados.

El capítulo IV está dedicado a resolver el problema del capítulo III, así como dos problemas más de mayor grado de compleji-dad por medio de un programa de computadora que utiliza, el método del elemento finito.

Los programas más conocidos a la fecha, en nuestro medio, -son:

- SAP IV. "Solid Analysis Program" Desarrollada por la Universidad de Berkley. Se aplica a la investigación en estructuras. Con algunas modificaciones, se -puede usar en aplicaciones específicas.
- STRUDL. "Structural Design Languaje" Este programa es del Instituto Tecnológico de Massachusetts, para solu ción de estructuras.
- NASTRAN. Formulado por la NASA para la solución de problemas estructurales en cohetes y aviones.

CAPITULO I

En éste capítulo se desarrollará el modelo matemático del problema de flexión de placas delgadas con deflexiones pequeñas.

Por simplicidad se considerarán placas de espesor uniforme -las cuales estan constituidas de un material linealmente elás tico, homogéneo e isotrópico. Además se supondrá que las fuer zas externas y de cuerpo que actuan sobre la placa son normales a su plano medio. Para obtener los elementos del tensor, de deformaciones se partira de las hipótesis de KIRCHHOFF, de la teória líneal de placas sobre el campo de desplazamiento,una vez determinado esto se procederá a obtener los elementos correspondientes del tensor de esfuerzos haciendo uso de la ecuación constitutiva.

Entonces, a partír de las ecuaciones de equilibrio, para el caso estático de un medio continuo, se llega al modelo matem<u>á</u>tico que rige a este problema.

Finalmente se determinaran los elementos mecánicos que actuan sobre dicho tipo de placas.

HIPOTESIS BASICAS.-

Las hipótesis básicas correspondientes a este problema son:

- H.1).- Hipótesis geométricas.
- H.2).- Hipótesis de cargas actuantes sobre la placa.
- H.3).- Hipótesis de la configuración deformada de la placa.

La geométria será la de un sólido tridimensional, FIG. I.I, de la cuál se puede establecer lo siguiente:

a).- La dimensión asociada al eje z , h , es muy pequeña - comparada con las correspondientes a los ejes x , y , debido a ésto la geométria de la placa se define me - diante una superficie denominada "Plano Medio" y su es pesor correspondiente. El plano medio se hace coincidir con el plano coordenado X, Y de tal manera que el dominio de la variable Z , queda acotado por.

$$-h/2 \leq z \leq h/2$$
 I.1

Las cargas deberán actuar en planos perpendiculares al plano - medio, tomando en cuenta lo anterior podemos establecer que:

b).- El plano medio no sufre deformaciones

 c).- Las componentes del tensor de deformaciones asociadas a la dirección Z se anulan, es decir:

$$\mathbf{\hat{e}}_{\mathbf{z}} = \frac{\partial \omega}{\partial \mathbf{z}} = \mathbf{o} \qquad \qquad \mathbf{I}.\mathbf{1}$$

$$Y_{xz} = 1/2 \left(\frac{\partial \omega}{\partial x} + \frac{\partial u}{\partial z} \right) = 0$$
 I.3

$$y_{\mu z} = 1/2 \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) = 0$$
 I.4

FIG. I.1 GEOMETRIA DE PLACAS PLANAS

DEFINICION DE DEFORMACIONES:

El análisis de la deformación de un sólido es de importancia par<u>a</u> lela al análisis de esfuerzos. Requiere de una definición precisa de la deformación.

Un cuerpo no rigido, al aplicarsele un sistema de cargas experi menta cambios en su geométria (FORMA), estos cambios originan las deformaciones.

Sea el cuerpo mostrado en la FIG. I.2, Homogéneo elástico e iso trópico, en donde localizamos un punto P(x,y,z) mediante un vector de posición $\overrightarrow{OP}=xi+yj+zk$, al aplicarsele el sistema de cargas el punto P pasa a ocupar la posición P' (x',y',z') con un vector de posición $\overrightarrow{OP}'=x'i+y'j+z'k$

Donde Ĉm es el vector de desplazamientos del punto P.

I.5

Podemos representar el vector \vec{C} m como sigue: \vec{C} m = uî + vĵ + wk DONDE: U = X' - X V = Y' - YW = Z' - Z

Pero como nos interesa conocer el desplazamiento relativo entre dos puntos, puesto que un cuerpo puede no haberse deformado, -aún cuando sus puntos se han desplazado, entonces.

$$\Delta \vec{e}_{m} = \vec{e}_{m}, - \vec{e}_{m}$$
I.6
Donde $\Delta \vec{e}_{m}$ es el desplazamiento relativo,
 $\vec{e}_{m}, q \vec{e}_{m}$ vectores de desplazamiento.
 $\vec{e}_{m_{1}} = u_{1}\hat{i} + v_{1}\hat{j} + w_{1}\hat{k}$
I.7

sustituyendo 1.7 y 1.5 en 1.6 tenemos

$$\Delta \overline{e}_{m} = (u_{i} - u_{i})\hat{i} + (v_{i} - v_{i})\hat{j} + (\omega_{i} - \omega_{i})\hat{k}$$

$$\Delta \overline{e}_{m} = \Delta u\hat{i} + \Delta v\hat{j} + \Delta \omega \hat{k}$$
^{I.8}

Que representa el desplazamiento relativo. Con la magnitud del vector incremento y el incremento de la longitud del vector -- desplazamiento ΔL_r definiremos a la deformación lineal unita - ria en un punto y en la dirección del vector desplazamiento -- como:

$$\mathcal{E} = \lim_{\Delta L \to 0} \frac{\Delta \mathcal{C}_m}{\Delta L}$$

Consideremos ahora tres puntos A, B, C, antes de la deforma ción, y los puntos A',B'C', hasta donde se desplazaron después de la deformación, como se muestra en la FIG. 1.3

NO DEFORMADO

DEFORMADO.

Definiremos como deformación angular, χ como al cambio angular que experimenta el ángulo formado por dos rectas o dos planos que se intersectan, al aplicarsele un sistema de cargas en equi librio, ocasionando variaciones relativas entre sus partículas.

En realidad la deformación angular es la Tg \emptyset , pero si este ángulo es muy pequeño puede considerarse como el ángulo \emptyset .

Las deformaciones lineales se consideran positivas si se trata_ de un alargamiento y negativa en caso contrario, la deformación angular es positiva cuando por ejemplo, el ángulo original es recto y se transforma en obtuso y negativo cuando se transforma en ángulo agudo.

Definidas ya la deformación en un punto en una dirección determinada y la deformación angular entre dos direcciones que pasan por el punto, determinaremos las deformaciones lineales y angulares en función de los desplazamientos, con referencia al sistema de ejes coordenados X,Y,Z, para esto se necesitará de las siguientes hipótesis que se conocen como "Hipótesis básicas de la teoría de la deformación".

HIPOTESIS 1a. DE LA DEFORMACION:

Sólo se consideran deformaciones pequeñas, como las que ocurren en los cuerpos elásticos y estables.

En estas condiciones estableceremos que las potencias superiores a la unidad de las deformaciones unitarias lineales y ang<u>u</u> lares, o el producto de dos o más de estas seran despreciables. en comparación con la deformación Σ o V.

HIPOTESIS 2a. DE LA DEFORMACION:

Se considera que, para el análisis, operamos en un campo de --

de deformación homogénea. Esto significa que los segmentos rectilíneos en el cuerpo antes de la deformación seguiran sien do rectilíneos después de la deformación, así mismo las líneas paralelas antes de la deformación seguiran siendo paralelas -después de la deformación, aún cuando se altere su orientación general.

Por facilidad, y tomando en cuenta las ecuaciones I.2, I.3, y I.4, tomaremos un campo de deformaciones bidimencional en el plano X,Y.

Supongamos un elemento diferencial de la placa, de lados dx, dy este elemento diferencial va a experimentar deformaciones lin<u>e</u>a les y angulares, haciendo uso del principio de superposición,

determinaremos primero las deformaciones lineales y después -las angulares.

FIG. 1.4

De la FIG. 1.4, vemos que Ui es la componente del vector despla zamiento en dirección X , y , Vj la componente en dirección Y entonces de acuerdo a la deformación lineal tenemos que.

$$\varepsilon_{x} = \frac{du}{dx} = \frac{du}{dx} = \frac{du}{dx}$$
$$\varepsilon_{y} = \frac{dv}{dy} = \frac{dv}{dy} = \frac{dv}{dy}$$

Analogamente para la dirección Z

FIG. 1.5

De la FIG. I.5 vemos que el cambio del ángulo original ϕ , que por conveniencia lo tomamos de 90°, esta dado por:

$$\mathscr{V}_{\mathbf{x}} \stackrel{=}{=} \Theta_{\mathbf{i}} + \Theta_{\mathbf{z}}$$

Para ángulos muy pequeños el ángulo es numéricamente igual a su tangente, por lo que podemos decir que:

$$\Theta_1 = \frac{1}{9}\Theta_1 = \frac{\partial u}{\partial y}$$
$$\Theta_2 = \frac{1}{9}\Theta_2 = \frac{\partial v}{\partial x}$$

Por lo tanto

 $\gamma_{xq} = \frac{\partial u}{\partial q} + \frac{\partial v}{\partial x}$

Para el caso general tendremos las siguientes deformaciones angu lares, deducidas análogamente.

$$\begin{aligned} & \mathcal{S}_{xz} = \frac{\partial \omega}{\partial x} + \frac{\partial u}{\partial z} \\ & \mathcal{S}_{yz} = \frac{\partial \omega}{\partial y} + \frac{\partial v}{\partial z} \end{aligned}$$

Las deformaciones lineales unitarias son causadas por esfuerzos normales, y las deformaciones angulares son causadas por esfuerzos tangenciales.

A las deformaciones lineales y angulares las podemos expresar en forma matricial, al cual se le llama tensor de esfuerzos o tensor de Euler:

$$\begin{bmatrix} \mathcal{E}_{\mathbf{x}} & \mathbf{\tilde{J}}_{\mathbf{x}\mathbf{y}} & \mathbf{\tilde{J}}_{\mathbf{x}\mathbf{z}} \\ \mathbf{\tilde{J}}_{\mathbf{y}\mathbf{x}} & \mathbf{\tilde{E}}_{\mathbf{y}} & \mathbf{\tilde{J}}_{\mathbf{y}\mathbf{z}} \\ \mathbf{\tilde{J}}_{\mathbf{z}\mathbf{x}} & \mathbf{\tilde{J}}_{\mathbf{z}\mathbf{y}} & \mathbf{\tilde{E}}_{\mathbf{z}} \end{bmatrix}$$

En mecánica del medio contínuo * se demuestra que las componentes del tensor que estan fuera de la diagonal son iguales a la mitad de las deformaciones angulares en ingeníeria, justificándose las ecuaciones I.3 y I.4, entonces podemos expresar el tensor de defor maciones como sigue:

* Ver ref. 1 Pag. 100

COMPONENTES DEL VECTOR DESPLAZAMIENTO.

Tomando en cuenta las EC. I.2 se concluye que la componente W del vector desplazamiento es independiente de la variable 2,0 bien -que:

$$W = W (X, Y)$$
 . I.9

Integrando las ecuaciones I.3 y I.4 y tomando en cuenta que el -plano medio no sufre deformaciones, nos queda las componentes del vector desplazamiento U,V

$$U = -z \frac{\partial w}{\partial x}$$
 1.10

$$V = -z \frac{\partial w}{\partial y}$$
 1.11

COMPONENTES DEL TENSOR DE DEFORMACIONES.

Las componentes del tensor de deformaciones de EULER diferentes de cero son los siguientes.

$$\varepsilon_{\mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

$$\varepsilon_{q} = \frac{\partial v}{\partial q}$$
 I.13

$$\forall x q = \frac{1}{2} \left(\frac{\partial u}{\partial q} + \frac{\partial v}{\partial x} \right)$$
 1.14

Sustituyendo las ECS. I.10 y I.11 en las ecs. I.12, I.13 y I.14 tenemos.

$$\varepsilon_{\rm x} = - z \frac{\partial^2 \omega}{\partial x^2}$$
 1.15

I.2 a I.4, el tensor de EULER lo podemos expresar como

$$\begin{bmatrix} E_{XX} & E_{XY} & E_{XZ} \\ E_{YX} & E_{YY} & E_{YZ} \end{bmatrix} = \begin{bmatrix} -z \frac{\partial^2 \omega}{\partial x^2} & -z \frac{\partial^2 \omega}{\partial x \partial y} & 0 \\ -z \frac{\partial^2 \omega}{\partial x \partial y} & -z \frac{\partial^2 \omega}{\partial y^2} & 0 \end{bmatrix}^{1.18}$$

$$\begin{bmatrix} E_{ZX} & E_{ZY} & E_{ZZ} \end{bmatrix} = \begin{bmatrix} -z \frac{\partial^2 \omega}{\partial x \partial y} & -z \frac{\partial^2 \omega}{\partial y^2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

NOTA:

La notación de la primera matriz, ij, es la notación \underline{fn} dice, y donde sabemos que

es la deformación angular normalmente usada en Ingeniería.

De la ecuación anterior podemos observar que, debido a las hipót<u>e</u> sis de geometría, cargas y de la manera de deformarse la placa, se ha pasado de un problema tridimensional a uno bidimensional.

Las ecuaciones I.15, I.16 y I.17 las podemos expresar como:

$$\begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{y} \\ \varepsilon_{xy} \end{bmatrix} = -\overline{z} \begin{bmatrix} \frac{\partial^{2} \omega}{\partial x^{2}} \\ \frac{\partial^{2} \omega}{\partial y^{2}} \\ \frac{\partial^{2} \omega}{\partial x \partial y} \end{bmatrix} = -\overline{z} \begin{bmatrix} \frac{\partial^{2}}{\partial x^{2}} \\ \frac{\partial^{2}}{\partial y^{2}} \\ \frac{\partial^{2}}{\partial y^{2}} \\ \frac{\partial^{2}}{\partial x \partial y} \end{bmatrix} \omega \qquad \text{I.19}$$

Que en forma condensada se puede escribir como:

 $\omega Lz - = 3$

$$L = \begin{vmatrix} \frac{\partial^2}{\partial x^2} \\ \frac{\partial^2}{\partial y^2} \\ \frac{\partial^2}{\partial x \partial y} \end{vmatrix}$$
 I.21

De acuerdo a las ecs. I.15 y I.16 se puede concluir que una línea ab, FIG. 1.6,

originalmente recta en la configuración no deformada, sigue siendo recta en la configuración deformada, los términos que aparecen en la ecuación I.19 son términos que aproximan la curvatura de la supe<u>r</u> ficie media de la placa; a las hipótesis anteriores se les conoce

I.20

hipótesis de KIRCHHOFF en la teoría de placas. Las expresiones de las curvaturas de la superficie media son:

$$\frac{\partial^2 \omega}{\partial x^2}$$
I.22
$$\frac{\partial^2 \omega}{\partial q^2}$$
I.23
$$\frac{\partial^2 \omega}{\partial x \partial q}$$
I.24

Estas expresiones representan la rapidez con que varian o - - cambian las pendientes del plano medio, FIG. I.7

DEFINICION DE ESFUERZO.-

La naturaleza de las fuerzas que actuan dentro de un cuerpo para equilibrar el efecto del sistema de cargas externas o de superficie y a las fuerzas de cuerpo, es una de las partes principales de la mecánica de sólidos.

Aplicamos el método de secciónes para aislar un elemento diferencial y definir el concepto de esfuerzo.

Imaginemos un sólido sujeto a un sistema de fuerzas en equilibrio -(De cuerpo y de superficie), este sistema producirá fuerzas elasticas, esto es si hacemos un corte al cuerpo (FIG. I.8) y tomamos una parte, esta para estar en equilibrio tendra una fuerza que represen ta a la acción de la porción retirada, esta fuerza es la resultante de la fuerza distribuidas en la superficie de corte.

CORTE A-A

FIG. 1.8

Del corte A-A de la FIG. 1.8, observamos que al hacer el área A cada vez más pequeña las fuerzas distribuidas en el área -son cada vez más uniformes, hasta que llega un momento en que cuando el área es un punto se puede considerar que las fuer-zas distribuidas en esa área son uniformes. La respuesta de esas fuerzas distribuidas uniformemente se denomina esfuerzo y matemáticamente se representa como:

$$\nabla = \lim_{\Delta A \to o} \frac{\Delta P}{\Delta A}$$

Podemos decir ahora que el esfuerzo en un punto asociado a un plano es un vector y gráficamente se puede representar como tal.

Ahora si a este plano le asignamos un sistema de referencia -X,Y,Z, donde uno de los ejes se tomará normal al plano de cor te, entonces podemos especificar al vector esfuerzo por sus componentes referidos a este sistema de ejes como se muestra en la FIG. 1.9

FIG. 1.9

Donde $\nabla_{\mathcal{Z}}$ representa el esfuerzo normal al plano \mathcal{Z} $\forall \mathcal{G}_{\mathcal{Z}X} \forall \mathcal{G}_{\mathcal{U}}$, -representan el esfuerzo cortante asociado al plano \mathcal{Z} en dirección X,Y respectivamente.

Si hacemos pasar tres pares de planos paralelos y separados por -distancias infinitesimales, tendremos un cubo elemental separado del cuerpo en estudio, como se muestra en la FIG. 1.10, donde se muestran los esfuerzos asociados a cada plano.

FIG. 1.10

Los esfuerzos normales serán positivos cuando producen tensión y los esfuerzos cortantes serán positivos cuando siguen la dirección del sistema de ejes. (Esto es para las caras visibles de la FIG. 1.10, y para las caras ocultas es al contrario).

Examinando la FIG. 1.10 se observa que hay tres esfuerzos normales - $\nabla_x, \nabla y, \nabla z$ y sis esfuerzos cortantes $\mathcal{B}_{xy}, \mathcal{B}_{yz}, \mathcal{B}_{yz}, \mathcal{B}_{zy}$, \mathcal{B}_{zx} , \mathcal{B}_{xz} , el siguiente arreglo matricial de los esfuerzos se llama "tensor de esfuerzo"

 $\begin{bmatrix} \nabla \end{bmatrix} = \begin{bmatrix} \nabla x & Gxy & Gxz \\ Gyx & \nabla y & Gyz \\ Gzx & Gzy & \nabla z \end{bmatrix}$

Los elementos del tensor de esfuerzos son escalares cuando se refieren a un punto en particular y son funciones cuando se refieren al problema elástico de un cuerpo.

Se puede demostrar, por medio del cubo elemental en equilibrio, que

 $G_{ij} = G_{ji}$

Tomando momentos con respecto a un sistema de ejes que tengan por origen el c.g. del cubo, por lo anterior podemos decir que el tensor de esfuerzos es una matriz simétrica y un número de incógnitas se reducen a seis. La relación entre esfuerzos y deformaciones para el caso de un material elástico líneal está dada por la ley de HOOKE-CAUCHY, cuya ecuación es:

$$\nabla = DE$$
 1.25

Donde. D es la matriz de constantes elásticas y para el caso de -- placas está dada por:

I.26

Donde:

E = M6dulo de YOUNG. $\Im = Coeficiente de POISSON.$

Sustituyendo la ecuación I.20 en 1a ec. 1.25 tenemos:

$$\nabla = -ZDL\omega$$

o en su forma desarrollada

$$\begin{bmatrix} \overline{V}_{X} \\ \overline{V}_{Y} \\ \overline{V} \\ \overline{V}_{Y} \\ \overline{V}_{Y} \\ \overline{V}_{Y} \\ \overline{V}_{Y} \\ \overline{V}_{Y} \\$$

I.28

1.27

Las componentes del tensor esfuerzo, asociados a las Ecs. 1.2. a 1.4 que son uno normal ∇z y dos cortantes ∂zz , ∂qz , se obtienen de las ecuaciones deequilibrio estático de un medio - continuo, que son las ecuaciones de CAUCHY, sin considerar fuerzas de cuerpo, tenemos:

$$\frac{\partial \overline{\nabla}_{x}}{\partial x} + \frac{\partial \overline{\nabla}_{x}}{\partial q} + \frac{\partial \overline{\nabla}_{z}}{\partial \overline{z}} = 0 \qquad \text{I.29}$$

$$\frac{\partial \overline{\nabla}_{x}}{\partial x} + \frac{\partial \overline{\nabla}_{q}}{\partial q} + \frac{\partial \overline{\nabla}_{q}}{\partial \overline{z}} = 0 \qquad \text{I.30}$$

$$\frac{\partial \overline{\nabla}_{zx}}{\partial x} + \frac{\partial \overline{\nabla}_{z}}{\partial q} + \frac{\partial \overline{\nabla}_{z}}{\partial \overline{z}} = 0 \qquad \text{I.31}$$

Estas se pueden obtener por medio del cubo elemental en equili-brio, tomando en cuenta las condiciones de equilibrio, $\mathcal{E}F_x = O, \mathcal{E}F_z = O$, así como la variación de los esfuerzos en planos paralelos.

De las ecuaciones I.29 Y I.30 tenemos que:

Tomando en cuenta la ecuación I.28 y sustituyendo en las ecuaciones I.32 y I.33 e integrando obtenemos:

$$G_{XZ} = \frac{E}{\mathcal{E}(1-y^2)} \left(\frac{h^2}{4} - Z^2\right) \left(\frac{\partial^2 \omega}{\partial x^3} + \frac{\partial^4 \omega}{\partial x \partial y^2}\right) \qquad I.34$$

$$\mathcal{J}_{yz} = \frac{E}{2(1-y^2)} \left(\frac{h^2}{4} - E^2 \right) \left(\frac{\partial^2 \omega}{\partial y^2} + \frac{\partial^2 \omega}{\partial x^2 \partial y} \right) \qquad 1.35$$

Sustituyendo las ecuaciones I.34 y I.35 en I.31 e integrando obtene mos:

$$\frac{\mathsf{E}\,\mathsf{h}^3}{\mathsf{I2}(\mathsf{I}-\mathfrak{V}^2)}\left[\frac{\partial^4\omega}{\partial \mathsf{x}^4} + 2\frac{\partial^4\omega}{\partial \mathsf{x}^2\partial \mathsf{y}^2} + \frac{\partial^4\omega}{\partial \mathsf{y}^4}\right] = -\overline{\mathsf{V}}_{\mathcal{Z}} \qquad \text{I.36}$$

Si sabemos que:

$$\nabla^{4} = \frac{\partial^{4}}{\partial x^{4}} + \frac{2}{\partial x^{2}} \frac{\partial^{4}}{\partial x^{2}} + \frac{\partial^{4}}{\partial y^{4}}$$

.Y sustituimos tenemos:

$$\frac{E h^{2}}{12(1-y^{2})} \nabla^{4} \omega = -\sqrt{z}$$
1.37

Sustituyendo en esta ecuación $\sqrt{z} = -q$, donde q es la carga -- actuante sobre la placa, y decimos que:

$$D_{f} = \frac{E h^{3}}{12(1-v^{2})}$$

Donde todas las literales son constantes, y se le llama regidez a la flexión de la placa, obtenemos:

$$\Delta_{\mathbf{m}}^{\dagger} = \frac{\mathrm{D} \mathrm{t}}{\mathrm{d}}$$

ELEMENTOS MECANICOS .-

Para encontrar los elementos mecánicos que actuan sobre la placa,se toma un elemento diferencial de esta como el mostrado en la FIG I.11, como el espesor es constante, las expresiones de los momentos flexionantes, torsionante y fuerzas cortantes por unidad de longitud son los siguientes.

$$Mx = \int_{-h_{f_{a}}}^{h/z} \nabla_{x} \vec{z} d\vec{z}$$

$$My = \int_{-h_{f_{a}}}^{h/z} \nabla_{y} \vec{z} d\vec{z}$$

$$Mxy = \int_{-h_{f_{a}}}^{h/z} \overline{\mathcal{C}}_{xy} \vec{z} d\vec{z}$$

$$I.40$$

$$Mxy = \int_{-h_{f_{a}}}^{h/z} \overline{\mathcal{C}}_{xy} \vec{z} d\vec{z}$$

$$I.41$$

I.38

Tensiones resultantes o "tensiones"en la flexión de placas.

FIG. 1.11

Tomando en cuenta la ec. I.28 donde:

$$\overline{\nabla x} = -\frac{E_z}{(1-y^2)} \left(\frac{\partial^2 \omega}{\partial x^2} + y \frac{\partial^2 \omega}{\partial y^2} \right) \qquad 1.44$$

$$\nabla y = -\frac{\mathbf{E}\mathbf{I}}{(1-\mathbf{y}^{*})} \left(\mathbf{\hat{y}} \frac{\partial^{2} \omega}{\partial \mathbf{x}^{2}} + \frac{\partial^{2} \omega}{\partial \mathbf{y}^{2}} \right) \qquad 1.45$$

$$G_{xy} = -\frac{E_z}{(1-y^2)} \frac{(1-y)}{2} \frac{\partial^2 \omega}{\partial x \partial y} \qquad I.46$$

26

Y sustituyendo en las ecs. I.34, I.35 y I.36 respectivamente, tenemos

$$M_{x} = -\frac{E}{(1-y^{x})} \left(\frac{\partial^{2}\omega}{\partial x^{2}} + y \frac{\partial^{2}\omega}{\partial y^{2}} \right) \int_{-y_{x}}^{y_{x}} z^{2} dz$$

$$M_{y} = -\frac{E}{(1-y^{x})} \left(y \frac{\partial^{2}\omega}{\partial x^{2}} + \frac{\partial^{2}\omega}{\partial y^{2}} \right) \int_{-y_{x}}^{y_{x}} z^{2} dz$$

$$M_{xy} = -\frac{E(1-y)}{2(1-y^{x})} \frac{\partial^{2}\omega}{\partial x \partial y} \int_{-y_{x}}^{y_{x}} z^{2} dz$$

E integrando tenemos;

$$M_{x} = -\frac{Eh^{3}}{12(1-y^{4})} \left(\frac{\partial^{2}\omega}{\partial x^{2}} + y \frac{\partial^{2}\omega}{\partial y^{2}} \right)$$
$$M_{y} = -\frac{Eh^{3}}{12(1-y^{4})} \left(y \frac{\partial^{2}\omega}{\partial x^{2}} + \frac{\partial^{2}\omega}{\partial y^{2}} \right)$$
$$M_{x} q = -\frac{Eh^{3}}{12(1-y^{4})} \frac{(1-y)}{2} \frac{\partial^{2}\omega}{\partial x \partial y}$$

Donde:

· · · · ·

$$\frac{Eh^3}{12(1-y^2)} = Df$$

Sustituyendo nos queda:

$$Wx = -\Omega \left(\frac{\Im x_{1}}{\Im x} + \Im \frac{\Im a_{1}}{\Im a}\right) \qquad 1.4.$$

$$My = -Dt\left(\frac{1}{2}\frac{\partial^{2}\omega}{\partial x^{2}} + \frac{\partial^{2}\omega}{\partial y^{2}}\right) \qquad I.48$$
$$Mxy = -Dt\left(\frac{1-y}{2}\frac{\partial^{2}\omega}{\partial x^{2}} + \frac{\partial^{2}\omega}{\partial y^{2}}\right) \qquad I.49$$

Sustituyendo las ecs. I.34 y I.35 en I.42 y I.43 e integrando de manera analoga a las anteriores nos queda:

$$v_{x} = 0_{\sharp} \left(\frac{\partial^{3} \omega}{\partial x^{3}} + \frac{\partial^{3} \omega}{\partial x \partial q^{3}} \right) \qquad \text{I.50}$$
$$v_{y} = 0_{\sharp} \left(\frac{\partial^{3} \omega}{\partial x^{3}} + \frac{\partial^{3} \omega}{\partial x^{3} \partial q} \right) \qquad \text{I.51}$$

Las ecs. I.47 a I.49 las podemos expresar como:

$$\begin{bmatrix} M_{x} \\ M_{y} \\ M_{y} \end{bmatrix} = -D_{f} \begin{bmatrix} \frac{\partial^{2}\omega}{\partial x^{2}} + \frac{\partial^{2}\omega}{\partial y^{2}} \\ \frac{\partial^{2}\omega}{\partial x^{2}} + \frac{\partial^{2}\omega}{\partial y^{2}} \\ \frac{(1-y)}{2} \frac{\partial^{2}\omega}{\partial x^{2}} \end{bmatrix}$$

1.52

Tomando el equilibrio del elemento de la placa de la FIG. I.11 se -tiene:

$$\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} = -q \qquad 1.53$$

$$\frac{\partial M_x}{\partial x} + \frac{\partial M_{xy}}{\partial y} = -V_x \qquad 1.54$$

$$\frac{\partial M_y}{\partial x} + \frac{\partial M_{xy}}{\partial x} = -V_y \qquad 1.55$$

Sustituyendo la ec. I.50 y I.51 en I.53 obtenemos:

$$\Delta_{\mathbf{e}} \mathcal{O} = \frac{Dt}{-d}$$

$$Dt \ \Delta_{\mathbf{e}} \mathcal{O} = -d$$

$$Dt \left(\frac{9x_{\mathbf{e}}}{9\mathbf{e}} + 5\frac{9x_{\mathbf{e}}9d_{\mathbf{f}}}{9\mathbf{e}} + \frac{9d_{\mathbf{f}}}{9\mathbf{e}\mathbf{m}}\right) = -d$$

$$Dt \left(\frac{9x_{\mathbf{e}}}{9\mathbf{e}\mathbf{m}} + \frac{9x_{\mathbf{e}}9d_{\mathbf{f}}}{9\mathbf{e}\mathbf{m}}\right) + Dt \left(\frac{9d_{\mathbf{f}}}{9\mathbf{e}\mathbf{m}} + \frac{9x_{\mathbf{f}}9d_{\mathbf{f}}}{9\mathbf{e}\mathbf{m}}\right) = -d$$

Esta ecuación representa el equilibrio de fuerzas cortantes y de momentos flexionantes y torsionante de una placa, y cualquier expresión de que la satisfaga sera solución de la ecuación diferencial de - equilibrio.

Esta ecuación (EC. I.56) y las condiciones de frontera constituyen el modelo matemático del problema de flexión de placas delgadas y -planas de material elástico lineal.

I.56

CAPITULO I I

El objetivo de este capítulo es presentar de una forma accesible el método de los elementos finitos.

Es común para la ingeniería así como otras ramas de las ciencias, usar razonamientos basados en principios como es el de "Particular a general" ó " Individual a general", como un intento para obtener información (solución) de un todo estudiando sus partes.

El análisis común de estructuras reticulares usa este principio dividiendo, por ejemplo, un marco de la estructura de un edifi cio, en vigas y columnas, todos interconectados en puntos llamados nodos, que ensambladas las partes debe ser lo mas aproximado posible a la realidad.

El método del elemento finito esta basado en este mismo princi pio y la diferencia, aunque trivial, con el análisis común de es tructuras reticulares es que los elementos en que se divide una estructura o pueden ser bi y tridimensionales, lo cual permite aplicar el método de los elementos finitos a un gran número de estructura como por ejemplo: Presas, estructuras para aviones, reactores, etc.

El procedimiento de análisis de este método puede resumirse en los siguientes puntos.

II.1 El medio contínuo (Por ejemplo la placa), se divide, median te líneas o superficies imaginarias, en un número N de ele mentos finitos, FIG. II.1

II.2 Se supone que los elementos están conectados entre si por

puntos o nodos situados en sus contornos, Los desplazamien tos de estos puntos serán las incognitas, tal como ocurre en el análisis usual en las estructuras (Por ejemplo, el método de las rigideces o desplazamientos).

- II.3 Se propone una función de desplazamientos, también llamada de interpolación, expresada en términos de los valores de los desplazamientos nodales, esto es,que con estas funciones podemos conocer, interpolando los desplazamientos noda les, los desplazamientos y por ende los elementos mecáni cos en cualquier punto dentro de nuestro elemento finito y de sus contornos.
- II.4 Estas deformaciones junto con las deformaciones iniciales (Si existen), y las propiedades constitutivas del material definiran el estado de tensiones de todo el elemento y de sus contornos.
- II.5 Se determina un sistema de fuerzas concentradas en los nodos, determinandose una relación entre fuerzas y desplazamientos, o sea.

P = Kui + fp + fe

Donde P = Fuerza concentrada en los nodos.

- K = Matriz de rigidez del elemento.
- ui = Desplazamientos nodales
- fp = Fuerzas necesarias para equilibrar a cualquier fuerza distribuida.
- fe = Fuerzas necesarias para equilibrar cualquier deformación inicial, por ejemplo a causa de la tem peratura, las cuales no tomaremos en cuenta en este trabajo.

FIG. 11.1

REPRESENTACION ESQUEMATICA DE UN MEDIO CONTINUO DISCRETIZADO EN -ELEMENTOS FINITOS.

Trataremos de explicar el método estudiando cada uno de los incisos del procedimiento general del método que sean necesarios.

- II.1.1 El medio continuo se puede dividir de muchas formas, siem pre y cuando se aproximen a la forma del cuerpo real, existen algunas recomendaciones para dividir el medio contínuo que son las siguientes:
 - a).- Los elementos deben ser de la forma mas regular posible.
 - b).- Se debe de subdividir en mayor número de elementos -las zonas de concentraciones de esfuerzos, para tener una mayor exactitud.

c).- Cuando no es conocida la solución exacta de un problema, es conveniente resolver el mismo con un ma yor número de elementos y checar la convergencia -cuando el número de elementos es incrementado.

En la FIG. II.2 se muestran algunos tipos de elementos finitos -usados comunmente en la practica.

Figura 1.- Elemento unidimen sional o barra

Figura 3. Elementos sólidos

Figura 2.- Elementos para estados planos de esfuerzos

Figura 4. Elementos para sóli dos axisimétricos.

Figura 5. Elementos placa

Figura 6. Elementos axisimétricos

FIG. II.2 TIPOS DE ELEMENTOS.

II.3.1 Las funciones o modelos de desplazamientos deben de representar aproximadamente la solución dentro de cada subdivisión por medio de una función simple, especificamente esta mos hablando del método de los desplazamientos de una es tructura o cuerpo dividido en elementos finitos. La forma mas común de representar este modelo de desplazamientos es por medio de un polinomio, teniendo con esto -una mayor facilidad para manipulaciones matemáticas (Derivacion e integración), además de que un polimonio de orden arbitrario nos permite una razonable aproximación, de aqui podemos decir, aunque no es posible, que un polimonio de orden infinito nos daria la solución exacta.

Para el caso unidimensional el polínomio seria de la forma:

$$\mathcal{U}(\mathbf{x}) = \mathbf{x}_1 + \mathbf{x}_2 \mathbf{\chi} + \mathbf{x}_3 \mathbf{\chi}^2 + \cdots + \mathbf{x}_{n+1} \mathbf{\chi}^n \quad \text{II.1}$$

Mientras mayor sea el número de términos incluidos en el polínomio mayor será la convergencia a la solución exacta, como se puede observar en la FIG. II.3

Los términos \ll_s de la ec. II.1 son llamados coordenadas generalizadas.

La ec. II.1 puede presentarse matricialmente para un caso general como:

II.2

(a) Constant (one-term) polynomial

(b) Linear (two-term) polynomial

(c) Quadratic (three-term) polynomial

Polynomial approximation in one dimension.

FIG. II.3

Por ejemplo, el polínomio en su forma general para un modelo de desplazamiento bidimensional sería: $U(x, y) = \prec_1 + \prec_5 X + \prec_5 y + \prec_4 X^2 + \prec_5 X + \prec_6 y^2 + \cdots + \nsim_m y$ $U(x, y) = \prec_{m+1} + \prec_{m+2} X + \prec_{m+3} y + \prec_{m+4} X^2 + \prec_{m+5} X + \prec_{m+6} y^3 + \cdots + \prec_{2m} y$ Donde: $m = \sum_{i=1}^{n+1}$ y en forma matricial $u(x, y) = \begin{cases} u(x, y) \\ v(x, y) \end{cases} = [\phi] [\sim] = \begin{bmatrix} \phi & 0 \\ 0 & \phi \end{bmatrix}$ { ~ 1 II.4 Donde u,v son las componentes de los desplazamientos en x,y respectivamente.

Dijimos ya que el modelo de desplazamientos debe converger a la solución exacta, siendo esta condición necesaria para cualquier método númerico, y para esto existen tres criterios que deben de cumplirse.

> CRITERIO I.- El método de desplazamientos debe ser cont<u>i</u> nuo dentro del elemento y ser compatible -con los elementos adyacentes.

La inherente continuidad del polínomio cumple la primera parte de este criterio y la segunda sólo se cumple en los nodos de los elementos.

> CRITERIO II.- El modelo de desplazamientos debe incluir desplazamientos de cuerpo rigido del ele mento.

El término 🖌 en la ec. II.1 cumple esta condición.

CRITERIO III.- El modelo de desplazamientos debe elegirse de manera que las deformaciones que se producen en los límites de la separación entre elementos adyacentes sea finita.

Esto implica la continuidad de desplazamientos entre elementos,por ejemplo, las deformaciones en el problema de flexión de placas estan definidas por las segundas derivadas parciales de la fle cha, debiendo existir también las primeras derivadas (Ec. I.19).

Los elementos cuyos polínomios cumplen con el primer criterio -son llamados compatibles, los que cumplen con el segundo y tercer criterios son llamados completos. Aunque los tres criterios son suficientes para asegurar que haya convergencia, se ha visto en casos prácticos que los resultados que se obtienen con elementos que sólo cumplen con el tercer criterio son satisfactorios.

Finalmente de forma práctica, seleccionaremos el polínomio de manera que el número total de coordenadas generalizadas (\prec) sea igual o mayor que el número de grados de libertad nodal del ele mento, siendo común el que sean iguales.

Donde los grados de libertad de el elemento finito son el número de giros y desplazamientos que van a sufrir los puntos nodales, especificando completamente con estos la posición deformada de el elemento.

Si relacionamos ahora los grados de libertad y las coordenadas -generalizadas empleando el modelo de desplazamientos, podemos ev<u>a</u> luar los desplazamientos nodales sustituyendo las coordenadas en el modelo, entonces podemos escribir la ecuación II.2 como:

$$\mathbf{U}_{i} = \begin{cases} \mathbf{U}_{i} \\ \mathbf{U}_{a} \\ \vdots \\ \vdots \\ \mathbf{U}_{n} \end{cases} \begin{bmatrix} \emptyset \\ \emptyset \\ \emptyset \end{bmatrix} \{ \boldsymbol{\prec} \} = [\mathbf{A}] \{ \boldsymbol{\prec} \} \qquad \text{II.5}$$

Donde

Ui es el vector de desplazamientos nodales
n es el número de nodos del elemento
A es el arreglo matricial de las coordenadas de los
nodos 1,2,^{...},n

Para calcular las coordenadas generalizadas \propto_s tenemos que invertir la matriz A, de la ec. II.5

11.6

Sustituyendo la ecs. II.6 en II.2 tenemos que:

$$\{u\} = [\phi] [A]^{'} \{Ui\}$$
 II.7

Si hacemos Ø

$$[N] = [\phi] [A]'$$

Y sustituyendo en la ec. II.7 tenemos:

$$\{u\} = [N] \{u\}$$
 II.8

Donde { u } es el desplazamiento en cualquier punto dentro de el elemento finito o en sus contornos en función de los desplaza - mientos nodales y [N] son las llamadas funciones de forma δ - interpolación.

II.4.1 Una vez que se conocen los desplazamientos en cualquier punto dentro del elemento finito (Ecs. II.8) podemos -determinar las deformaciones, por medio de la sig. ex presión.

II.9

Donde L es un operador lineal apropiado, - - que relaciona des plazamientos con deformaciones. sustituyendo la ecs. II.8 en -- II.9, tenemos:

$$\xi = L N u$$
:

Y si decimos que:

B = L N

Y sustituyendo en la expresión anterior, tenemos:

En donde B es la función de forma de deformaciones.

Ahora para calcular los elementos mecánicos 6 tensiones, recurrimos a la ley de HOOKE-CAUCHY, ec. I.25

Donde D es la matriz de constantes elásticas, que esta en función de las propiedades del material, entonces sustituyendo la ec. II.10 en la expresión anterior, tenemos:

$$\nabla = DBUi$$
 II.11

Al producto DB se le conoce como matriz de tensiones del elemento y lo podemos expresar como:

$$S = D B$$
 II.12

II.5.1 Este inciso comprende la deducción para la obtención de la matriz de rigidez, y de la ecuación de equilibrio de un el<u>e</u> mento finito.

> Esta deducción esta basada en la primera ley de la termodinámica que expresa que:

> "El incremento de trabajo que se realiza sobre un sistema mecánico por fuerzas externas mas el calor que fluye den tro del sistema es igual al incremento de energía cinética mas el incremento de energía potencial"

0 algebraicamente:

II.13

Donde E es el cambio de energía

Q Es el calor suministrado al sistema.

W es el trabajo realizado por el sistema.

El cambio de energía puede descomponerse, en los siguientes términos:

$$\mathbf{E} = \mathbf{E} \mathbf{c} + \mathbf{E} \mathbf{p} + \mathbf{U} \qquad \qquad \mathbf{II.14}$$

Donde:

1 400

E c es el cambio de energía cinética.
E p es el cambio de energía potencial gravitacional.
U es el cambio de energía interna.

Como en nuestro problema consideramos un proceso adiabático y además Ec = EP = 0, entonces sustituyendo la ec. II.14 en II.13 tenemos:

U = -W II.15

Para nuestros fines y como es más comun en Ingeniería llamaremos a U energía de deformación y W energía externa.

Entonces la energía total del sistema será:

E _T = →W	11.16
$u = \frac{1}{2} \int_{V} \mathcal{E}^{T} \nabla dv$	II.17
$W = u_i^T P$	II.18

Donde

Y

Sustituyendo la Ec. II.9 y 1.25 en II.17 obtenemos:

$$u = \frac{1}{2} \int_{v} (Lu)^{T} DL u \, dv \qquad II.19$$

Por lo expuesto en el inciso II.4, sabemos que L U = L N ui y (- - B) = L N entonces:

Sustituimos en la EC. II.19

Que podemos escribir como:

Donde

Que es la matriz de rigidez del elemento finito

Sustituyendo la EC. II.18 y II.20 en II.16 tenemos:

$$E_T = \frac{1}{2} U_i \text{ Ke U}_i - U_i P$$
 II.21

Aplicando el principio del trabajo virtual, que establece que:

"De todas las configuraciones de desplazamientos admisibles aquella que conquce al equilibrio de la estructura es la que minimiza la energía total:

Entonces minimizando la EC. II.21, o sea derivando con respecto a Ui e igualando a cero tenemos:

$$\frac{dE_{T}}{dU_{i}} = \text{Ke } U_{i} - P = 0$$

Entonces:

Ke ui = P

11.22

Que es lo que se buscaba.

En esta expresión P representa todas las fuerzas externas aplica-das en los nudos.

La matriz Ke depende del tipo de elemento a utilizar para discret<u>i</u> zar la estructura. Una vez que obtuvimos Ke se procede al ensamble de la matriz de rigidez global de la estructura, este proceso se mostrará de manera práctica mediante un ejemplo en el Capítulo III. Teniendo la matriz K es facil obtener Ui (desplazamiento de los -nudos) ya sea obteniendo la matriz K⁻¹ o solucionando el sistema de ecuaciones.

Calculando Ui se sustituye en la EC. II.8 en donde por medio de -las funciones de forma o interpolación se puede obtener los despla zamientos en cualquier punto deseado, después se continua con lo expuesto en el inciso II.4.

CAPITULO III

En éste capítulo, se aplicará el método del elemento finito a la solución de placas, mediante un sencillo ejemplo desarroll<u>a</u> do paso a paso y con las debidas explicaciones, donde sea nec<u>e</u> sario, con el objetivo de una mejor compresión de lo expuesto en el capítulo II.

La razón de la sencillez del ejemplo se base en el gran número de ecuaciones y de operaciones manuales acarreando con esto -mucho tiempo y posibilidad de error.

Este ejemplo será también solucionado a manera de comprobación por medio de las soluciones del libro: "teoría de Placas y Láminas" de TIMOSHENKO, Pag. 221, además de que en el capítulo -IV se soluciona por medio de un programa de computadora, y asi poder comparar los resultados.

Para nuestro ejemplo usaremos el elemento finito rectangular de 4 nodos, para el cual algunos autores han resuelto la matriz de rigidez Ke así como la matriz de tensión es S, las cuales se muestran en las tablas III.a y III.b respectivamente.

Fuerzas y desplazamientos correspondientes

Elemento de placa rectangular.

FIG. III.1

$$\mathbf{K} = \frac{1}{60ab} \mathbf{L} \{ D, \mathbf{K}_1 + D, \mathbf{K}_1 + D_1 \mathbf{K}_2 + D_1 \mathbf{K}_4 \} \mathbf{L}$$

Siendo

TABLA III.a

						÷						
	6g ⁻¹ D, +6gD ₁	~ 1 aD ₁	86D,	-6pD1	-4aD,	0	~6p ⁻¹ D ₂	0	46D,	0	0	0
•	6 φD, +6φ ⁻¹ D ₁	- B aD,	. 86D,	-6¢D,	- 4 aD,	0	- 6p ⁻¹ D ₁	0	46D1	0	0	0
	-2D _{sy}	4bD,;	4aD ₂₁	2D",	0	4aD",	2D",	-46D,,	0	-2D,,	0	0
	6¢D1	4aD1	0	60 ' D ₂ +60D1	BaD,	86D,	0	0	0	- 6p ⁻¹ D,	0	46D,
• •	-6¢D,	4 aD,	0	6pD, +6p ⁻¹ D,	₿aD,	86D1	0	0	0	-6p-1D1	0	46D1
_ 1	-2D,,	0	-4aD",	2D",	46D,,	4aD",	2D.,	0	0	-2D _s ,	-4bD,,	0
- 43	-6p ⁻¹ D _a	0	4bD _a	0	0	0	+ 6# D1	-8aD1	-86D,	6pD1	~4aD1	0
	-6p ⁻¹ D ₁	0	-4bD1	0	0	0	+ 60 D	- I aD,	-86D1	-6pD,	-4aD,	0
	-2D _{sy}	46D,,	0	2D,,	0	0	2D,,	-46D_17	-4aD",	-2D,	0	4aD,,
	0	0	0	- 6 # ⁻¹ D,	0	46D,	-6pD1	4aD,	0	+ ^{6p⁻¹D, 6pD₁}	80D1	-86D,
	D	0	0	-6p ⁻¹ D ₁	0	-46Di	-6 p D,	4aD,	0	+ ^{6pD} 6p ⁻¹ D	8aD,	-8bD1
,	-2D_m	0	0	2D,,	46D.,	0	2D",	0.	-40D,,	- 2D_,,	-4bD.,	4aD.,
	L.	_										

Matriz de tensiones $\left(p = \frac{a}{b} \right)$ Elemento rectangular de la figura 10.2. Material ortótropo

TABLA III.b

ECUACIONES REQUERIDAS.

La ecuación de equilibrio para el problema de flexión de placas es tá dada por una ecuación en derivadas parciales de cuarto orden --(EC. I.56)

$$\Delta_{t} m = -\frac{b!}{b!}$$

44

8) 8) 8) 8) 8) Los grados de libertad nodal son un desplazamiento vertical Wi y dos rotaciones Θ xi y Θ yi, donde estas dos últimas estan en función de Wi de la siguiente manera:

$$\Theta x i = -\frac{\partial \omega}{\partial q}$$
 III.1
 $\Theta y i = \frac{\partial \omega}{\partial x}$ III.2

De acuerdo a esto, el vector de desplazamiento en el nodo i será:

$$Ui = \begin{cases} Wi \\ \Theta xi \\ \Theta yi \end{cases}$$
 III.3

El número total de grados de libertad del elemento será de 12 ----(3 x nudo) por lo tanto el polinomio que aproxima la solución será:

O sea de la forma Ui = $\phi \propto$ EC. II.2

Donde:

$$\phi = [1 \times y \times^2 \times y \times^2 \times^3 \times^2 y \times y^2 \times^3 \times^3 y \times y^3] \text{ III.5}$$

Que son las coordenadas de los nudos

$$\boldsymbol{\ll} = [\boldsymbol{\ll}_{1} \boldsymbol{\ll}_{2} \boldsymbol{\ll}_{3} \boldsymbol{\cdots} \boldsymbol{\ll}_{13}] \qquad \text{III.6}$$

Teniendo en cuenta la EC. III.1 y III.2 y derivando la EC. III.4 tenemos

$$\begin{aligned} \theta_{xi} &= -\infty_{3} - \infty_{s} \chi - 2 \propto_{s} q - \infty_{8} \chi^{2} - 2 \propto_{q} \chi q - \\ &\quad -3 \propto_{10} q^{2} - \infty_{11} \chi^{3} - 3 \propto_{12} \chi q^{2} \\ \theta_{yi} &= +\infty_{s} + 2 \propto_{4} \chi + \infty_{s} q + 3 \propto_{1} \chi^{2} + 2 \propto_{8} \chi q + \\ &\quad + \infty_{q} q^{2} + 3 \infty_{11} \chi^{2} q + \infty_{1s} q^{3} \end{aligned}$$

Con esto podemos construir la EC. II.2 para el elemento finito de la FIG. III.1 (Ver tabla III.c).

ω		- 1 -	Xt	4	Xi²	X: 4:	422	Xt3	Xt²4t	Xi Yi ²	4 .³	Xt³4t	Xt 4t3	~,
θxt		0	0	-1	0	-Xt	-24i	0	-Xi²	-2Xi 4t	- 34t²	- Xt3	-3X:422	~ ₁
θ ų:		0	1.	0	2Xt	۲t	0	3X1 ²	2 XL 4t	4t²	0	3Xt*4t	4:3	~3
ω		1	Xĵ	4;	χ_j^2	X;Y;	۲ ₃ ۲	X],	Xj²4;	X3 432	ų,s	X3 ⁵ 43	X; 4; 3	~
θ×;		0	0	-1	0	-Xj	-243	0	-Xj²	-2X;4;	-34j ¹	- X13	-3X;4;2	~;
θყ	÷	0	1	0	2X;	Ч;	0	3Xj²	2.X; 4;	452	0	3 X;**4;	432	~.
ωĸ.		1	Xx	Чк	χr	ХкЧк	4r K	Xĸ³	Xx24x	Xx 4x²	42	ХхЧк	ХкЧк	~
Өхк		0	0	-1	0	-Xĸ	-24k	0	- Xx ¹	-2Xx 4x	-34x2	-XK3	- 3 Xx 4x2	~,
Өчк		0	1	0	2Xĸ	Чк	0	324	2 Xx4x	٩ĸ²	0	3Xx²4x	٩ĸ³	~1
ωı		1	Xa	41	Xi	Xı4ı	4 1 2	Xi	Xi'41	Xx4x2	413	X3 4x	Xx413	~10
θκι		0	0	-1 , 200	0	-Xx	-241	0	- X1 ^L	-2X141	-341 ²	-X13	-3X1412	~"
θ41		0	11	0	2X1	41	0	3%	2. X141	412	0	3χ1241	423	~12

TABLA I.c

EJEMPLO:

Se trata de encontrar el desplazamiento y esfuerzos a que estará sometida una placa cuadrada de espesor constante, con todos sus bordes empotrados, la cual deberá soportar una carga concentrada en el centro.

La placa es de acero de 5 cm. de espesor y 100 cm. de lado.

a) DATOS: P = 5000 Kg. h = 5 cm. $E = 2.1 \times 10^6 \text{ kg./cm}^2$ $\Im = 0.3$

b) GEOMETRIA DE LA PLACA:

FIG. III. 2

 c) Se discretiza la placa, numerando elementos y nudos, asignan do número entre parentesís a los grados de libertad nodal --(desplazamiento), si este está restringido se le asigna un cero.

FIG. III.3

De la FIG. III.3 podemos notar que todos los nodos excepto el 5 - estan restringidos, ademas el nodo 5 coincide con el centro de la placa en donde se aplica la carga P=5000 Kg.

d) Cálculo de la matriz de rigidez de elemento

Está dada por la expresión sig. (Ver tabla III.a)

$$Ke = \frac{1}{60 \text{ ab}} \quad L \left\{ D_{x} K_{1} + D_{y} K_{2} + D_{1} K_{3} + D_{xy} K_{4} \right\} L$$

Donde:

$$Dx = \frac{E h^3}{12 (1 - y^2)} = \frac{2.1 \times 10^6 \times 5^3}{12 (1 - 0.3^2)} = 24.04 \times 10^6 \text{ Kg-cm}.$$

$$Dy = Dx = 24.04 \times 10^{6} \text{ Kg-cm.}$$

$$D = \frac{E h^{3}}{12 (1 - y^{3})} = \frac{0.3 \times 2.1 \times 10^{6} \times 5^{3}}{12 (1 - 0.3^{2})} = 7.20 \times 10^{6} \text{ Kg-cm.}$$

$$Dxy = \frac{E h^{3}}{24 (1 + y^{3})} = \frac{2.1 \times 10^{6} \times 5^{3}}{24 (1 + 0.3)} = 8.40 \times 10^{6} \text{ Kg-cm.}$$

$$a = b = 25 cm$$
.

L es una matriz diagonal, según la tabla III.a, es como sigue:

Como podemos ver en la FIG. IV.2 todos los elementos finitos son iguales (cuadrados 50 x 50), entonces obviamente la matriz Ke será igual para todos los elementos, lo cual es para facil<u>i</u> tar los calculos.

Efectuando las operaciones indicadas obtenemos la matriz Ke si guiente, donde para facilidad de operaciones sacamos como factor A:

 $\frac{Dx}{60 \text{ ab}} = \frac{24.04 \times 10^6}{60 \times 25 \times 25} = 641.067$

· • • •

MATRIZ DE RIGIDEZ Ke

-1830	57000										
1830	-11250	57000					į. Pre				·
-68.4	1605	420	158.4		SIN	A E T R I	CA				
-1605	23250	0	1830	57000							
420	0	18000	1830	11250	57000						
-68.4	-420	-1605	~21,6	-645	-645	158.4					
-420	18000	0	645	14250	0	-1830	57000			· ,	
1605	0	23250	645	0	14250	-1830	11250	57000			
-21.6	645	-645	-68.4	420	-1605	-68.4	1605	-420	158,4		
-645	14250	0	420	18000	0	- 1605	23250	0	1830	57000	
645	0	14250	1605	0	23250	- 420	0	18000	-1830	-11250	57000

K_e = 641.067

158.4

e) A cada elemento se le asccia un vector de indicadores el cual estará formado por los números asociados a cada nudo entre -parentisis (Ver FIG. III.3), este vector nos servira para ensamblar la matriz de rigidez global de la estructura.

Los números de este vector corresponderan a los desplazamientos de cada nodo en la secuencia que se indica a continuación.

 $C = \{Wi \Theta x i \Theta y i W j \Theta x j \Theta y j W_k \Theta x_k \Theta y_k W_1 \Theta x_1 \Theta y_1 \}$

Entonces para nuestro ejemplo estos vectores seran los siguientes:

Elemento 1

 $\mathbf{C}_{1} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 0 & 0 \end{bmatrix}$

Elemento 2

 $C_{2} = [123000000000]$

Elemento 3

C₂ [00000000123]

Elemento 4

C₄ [0 0 0 1 2 3 0 0 0 0 0 0]

f) Ensamble de la matriz de rigidez global K

Para ensamblar la matriz K, sumando la contribucion de cada elemento para cada dirección, usaremos los vectores indicadores de la sig manera.

Sean las sig. matrices K₁ y K₂

El ensamble se efectua de la sig. forma:

$$K = \begin{bmatrix} a_{22} + b_{11} & a_{32} + b_{41} \\ a_{23} + b_{14} & a_{33} + b_{44} \end{bmatrix}$$

La matriz de rigidez global para nuestro ejemplo nos queda como sigue:

KII K 12 K13 ĸ Kal K21 K23 K31 K35 К31

Donde:

^K 11	=	641.067	(158.4 + 158.4 + 158.4 + 158.4) = 406 181.95
K ₁₂ =K ₂₁	=	641.067	(-1830 - 1830 + 1830 + 1830) = 0
$K_{13} = K_{31}$	12	641.067	(-1830 + 1830 - 1830 + 1830) = 0
к ₂₂	8	641.067	(57000 + 57000 + 57000 + 57000) = 146 163 000
$K_{23} = K_{32}$	-	641.067	(11250 - 11250 -11250 + 11250) = 0
к ₃₃	=	641.067	(57000 + 57000 + 57000 + 57000) = 146 163 000

g) La obtención de los desplazamientos del nodo 5 de nuestra placa (punto central) es facil.dado que:

P = Kui.

Y usando los resultados del inciso anterior tenemos:

Los resultados son:

 $W_5 = 0.0123 097 \text{ cm}.$ $\Theta x_5 = 0$ $\Theta y_5 = 0$

En resultado para Θx_5 y Θy_5 es logico, ya que el tipo⁻de carga así como su localización no produce ninguna pendiente en el punto medio.

h) Conocidos los desplazamientos nodales, podemos obtener los desplazamientos en cualquier punto dentro del elemento finito mediante las funciones de forma o interpolación. Para esto necesitamos - - sustituir las coordenadas de los nodos de cada elemento en la - - ecuación matricial, Tabla III.c, de acuerdo al sistema de ejes -- coordenados de la FIG. III.1 y así poder calcular los coeficien - tes ~ , también llamados coordenadas generalizadas.

														57
0		1	0	50	0	0	2500	0	0	D	125 000	0	0	~ ~]
. o		D	0	-1	0	0	-100	0	0	0	- 7500	0	0	~.
0		0	1	0	0	50	0	0	0	2500	0	0	125 000	×.,
: 0			0	100	0	0	10 000	0	0	0	1 000 000	0	0	d'a
1 0		0	1	-1	0.	100	0	0	0	10 000	- 30 000	0	ò	· ~,
0.012309	7.	1	50	50	2500	2500	2500	125 000	125 000	125 000	0	0	1 000 000	~
0		0	0	-1	0	-50	-100	0	-2500	-5000	125 000	6250 000	6250 000	~₁
0		0	1	0	100	50	0	7500	5000	2500	-7500	-125 000	-375 000	~
0	1	1	50	100	2500	5000	10 000	125 000	250 000	500 000	1 000 000	12 500 000	50 000 000	
0		0	0	-1	100	- 50	- 200	7500	~_2500	- 10 000	- 30 000	-125 000	-1 500 000	~
			1	U	100	100	v	1300	10 000	10 000	0	750 000	1 000 000	\prec_{a}

ECUACION NATRICIAL PARA ELEMENTO FINITO 1

["	~	Γ	 000 000 T	3 000 000 E	0	TO 000	50 000	30 000	0	001	200	0	τ	0		0	
.	·~		-3 000 000 -	000 000 T-	-30 000	-50 000	000 OT-	0	-200	00T-	0	ī-	0	0		0	
•	"≫		000 000 OOT	100 000 000	000 000 T	000 000 T	τ 000 000	000 000 T	000 OT	000 OT	000 OT	100	001	τ		0	
	~		125 000	000 00S T	0	5500	000 OT	30 000	0	0Ș	500	0	1 T 1 1	0		0	
	~		000 052-	000 000 T-	0054-	000 οτ-	000 OT-	0	001-	00T-	0	t-	0	0		0	l
1	~		JZ 200 000	000 000 09	175 000	000 OSZ	000 005	000 000 T	5500	0005	000 OT	05	007	τ	. =	0	
, ,	~		000 000 T	120 000	0	000 OT	000 OT	005 L	0	001	001	0	I	0		0	
s	~		000 00S T -	-152 000	- 30 000	000 OT -	-5200	0	-500	0⊊-	0	τ-	0	0		0	
	~		000 000 05	15 200 000	000 000 T	000 005	250 000	125 000	000 OT	0005	5200	00T	05	τ		o	
1	~		152 000	000 SLE	0	5500	2000	0052	0	09	00T	0	τ	0		0	ĺ
2	~		000 546-	-152 000	0054 -	0005-	-5200	0	001-	05-	0	ī-	0	0		0	
,	~		e 520 000	6 250 000	000 SZT	125 000	125 000	125 000	5500	5200	5200	.05	05	<u> </u>		7605210.0	ĺ
85																	

ECUACION MATRICIAL PARA ELEMENTO FINITO 2

`~«"	000 52	000 \$40	0	005Z	0005	0052	0	05	001	0	Ţ	0	0
~ "	000 5/1	- 000 SZT-	0051-	0005-	0052-	0	~100	0S-	D	۲-	0	0	o
•~	000 05	e 320 000 e 3	125 000	152 000	000 521	T 22 000	5200	0052	5200	OS	05	τ	7e0 ESID.0
~	0	0	0	0	0	0051	0	0	001	O	. I	0	o ·
·~	0	000 521-	- 0	0	-5200	0	0	05-	0	1-	0	0	O
حر ,	0	0	O	0	0	000 521	0	0	5200	0	05	τ	o
'≫	000 9	0 15	0	3200	0	0	0	0S	0	0	t	0	0
حد ا	0	0	0054 -	0	0	0	-100	0	0	ī-	0	o	0
~	0	0	352 000	0	0	0	3200	0	0	05	0	τ	o
יא	0	0	0	0	0	0	. 0	0	0	0	. 1	0	o
~	0	0	0	0	0	0	0	0	0	1-	0	o	D
_ `~` _		. 0	0	0	O	0	0	0	0	0	0	ĩ	0

ECUACION MATRICIAL PARA ELEMENTO FINITO

1 1	[~		000 521	000 005 1	q ·	005 Z	10 000	000 DE	o	05	500	0	1	ر ع	ļ	0	٦
}	~		000 OSL -	000 000 t-	D054 -	000 01-	000 01-	O	001-	001-	Ũ	1-	C	- 0	i	ð	;
•	<u>ا</u> حر		15 200 000	20 000 000	152 000	520 000	200 000	000 000 t	2200	000 5	000 DT	05	000	ı		0	ł
•	~		0	0	0	0	٥	30 000	0	0	300	0	t	0		0	ł
•	~		D	000 000 1	0	Q	000 at-	O	0	601-	0	ı-	Ð	0		G	1
:	~		0	0	0	0	0	000 000 t	G	0	000 OT	0	001	t		0	
: • ; •	7		000 521	000 546	0	5 200	000 \$	005 L	٥	QS	100	Û	Ţ	0		0	·
S	~		000 \$25 -	- 152 000	0054 -	000 5-	-5200	0	001-	65-	0	I -	0	0		0	
1 •	~		6 250 000	6 250 000	152 000	152 000	152 000	152 000	5200	5200	5200	05	05	1	ļ	160 ES10.0	
1	>~	1	0	0	0	Q	0	0054	D	0	100	0	t t	D		0	
	~		0	000 521 -	• 0	0	- 5200	D	o	05-	0	t-	D	0		. 0)
[':	≻]	l	0	0	0	D	0	152 000	0	٥	0052	D	05	τ.	· · · ·	0	1

ECUACION MATRICIAL PARA ELEMENTO FINITO 4

La solución de estas ecuaciones se realizó invirtiendo la matriz 12 x 12, por medio de un programa, para éste efecto, en microcomputadora, y para los fines que perseguimos sólo damos los resultados.

1	ALOR DE LOS COE	FICIENTES	\sim	PARA CADA	ELEMENTO.	
	ELEMENTO	1		ELE	MENIO 2	
≪ı =	.0					
\propto_{i} .	-1.47716	E - 03		≪ı =	- 0.2461939	
<u>جر</u> بہ	= 0.0			≪ı =	7.38581	E - 03
≪4 *	= 2.95432	E - 05		~ 5 =	7.38581	E - 03
∞ح; =	= 6.40104	E - 05		≪4 =	-8.86298	E - 05
~; =	- 0.0			~`s =	1.23097	E - 04
~ ₁ =	-3.9391	E - 07		≪' =	-8.86298	E - 05
~;-	-2.95432	E - 07		≪ı =	3.9391	E - 07
∝ ₁ ₌	-8,86298	E - 07		~~_6 =	8.86298	E - 07
~₀ =	.0			≪q =	8.86298	E - 07
~ ~₀ =	3.9391	E - 09		∞ ₀ =	3.9391	E - 07
~u =	3.9391	E - 09		∽ Cij =	-3.9391	E - 09
				≪ _{it} =	-3.9391	E - 09
	ELEMENTO	3		ELE	mento 4	
~r	= 0.0	1		<i>∝</i> i =	0.0	
°C1 .	= 0.0			∽ ⊂≀ =	0.0	
~;-	= 0.0		•	≪₁ =	-0.0103401	
•~4 :	= 0.0			≈G =	0.0	
~~s =	-4.92387	E - 06		∝; =	1.52639	E - 04
~:	= 0.0			∞_,=	3.84061	E - 04
~ ₁ :	= 0.0			~~ ₁=	0.0	
\sim	= 2.95432	E - 07		~i =	-8.86298	E - 07
~ ₁ :	2.95432	E - 07		≪₁ =	-3.84062	E - 06
∝₀∶	= 0.0			≪ ₀ =	-3.9391	E - 06
~ "	= -3.9391	E - 09		~ , =	3.9391	E - 09
				•		

Con los valores anteriores (\ll_3) y las ecuaciones III.4, III.7 y III.8 podemos calcular los desplazamientos en un punto especifico, simplemen te sustituyendo las coordenadas de el punto deseado.

Nosotros calcularemos W y Θ y para los elementos 1 y 2 a lo largo del eje X, para cuando Y = 50 y Y = 75 (Ver FIG. III.3) y graficaremos -los resultados para cuando Y = 50, pues cuando Y = 75 la curva es sim<u>i</u> lar aunque con menos flecha.

	Y	=50	r.	¥=75
x	W	Әу	W	өу
	(cm)	(Radianes)	(cm)	(Radianes)
		· ·		
0	. 0.0	0.0	0.0	0.0
10	0.00128	2.36348 E-04	0.00064	1.18174 E-04
20	0.00433	3.5452 E-04	0.00217	1.7726 E-04
30	∶0 .00798	3.5452 E-04	0.00399	1.7726 E-04
40	0.01103	2.36346 E-04	0.00551	1.18173 E-04
50	0.0123097	0.0	0.00615	0.0
60	0.01103	-2.3635 E-04	0.00551	-1.1818 E-04
70	0.00798	-3.5453 E-04	0.00399	-1.7727 E-04
80	0.00433	-3.5453 E-04	0.00217	-1.7727 E-04
90	0.00128	-2.3635 E-04	0.00064	-1.1818 E-04
100	0.0	0.0	0.0	0.0
		· · · ·		
		· · · · · · · · · · · · · · · · · · ·		

TABLA III.d

GRAFICA III.4 CURVA ELASTICA DE LA PLACA. (Y = 50)

i) Obtención de los elementos mecánicos.

Una vez conocidos los desplazamientos nodales, los sustituimos en la formula:

$$\nabla = SUi$$

Que para el elemento rectangular de 4 nodos, se muestran en la tabla III.b

Como vimos en el Capítulo I, las tensiones resultantes son en realidad momentos flexionantes y torsionantes por unidad de longitud. (Ec. I.52)

Ahora bien, como podemos observar en la FIG. I.6 del Capítulo I, -

las deformaciones, y por lo tanto las tensiones varían linealmente a través de todo el espesor de la placa, y estos se pueden calcular facilmente por medio de

$$\nabla = \frac{12 M}{t^3} Z \qquad \text{III.9}$$

Sustituyendo los datos en la matriz de tensiones de la tabla III.b para calcular los elementos mecánicos del elemento finito , pues obviamente, por razón de simetria y carga los otros serán iguales.

ĩ	ELEMENTO	TENSIONES	DE	SISTAM
---	----------	-----------	----	--------

÷.

- · ·	840	058-	8,81-	078-	0	8.91	0	078	8.91	0	0	8.91-		۲ _{۸x} ۳	
D	-1440	608	44.78I	0	5404	-144.24	-120	0	2,64-	0	0.,	0		۲ ^۷ ۶	
0	8085-	1440	\$\$°281	0	022	2.64-	-5404	0	\$2°\$\$[-	0	0	0		Z ^{XM}	
0	840	0	80,84-	078-	078-`	8.91	0	0	8'9T	0	018	8.81-		s yay	
0	0	-5404	+144°54	-1440	8082-	\$ \$. 781	. 0	0	0	- 120 -	0	-43.2		۶ ^{۲M}	
7605210.0	0	-120	2.64-	8087-	0441-	\$\$*L8I	0	0	0	-2404	0	+2,44,24	<u>97×57×</u>	s _{xn}	
0	0	098-	8.91-	0	0	8.91	018	078	8*91	048-	0	8.81-	9 ⁰¹	ĩ _{λ×w}	
0	150	. 0	2,54-	0	0	0	1440	8081	187.44	0	5404	+144°54		T _{KN}	
0	5404	· O	+144.24	0	0	0	808Þ	0440	187.44	0	072	5.64-		τ _{×w}	
0	0	. 0	8.91-	0	078-	8.91	940	0	8.9I	078-	098	8.81-		*XXW	
0	0	0	D	720	0	-43.20	0	-5404	-141,24	1440	8085-	44°181		[⋫] ⊼₩	
0	.0	. 0	· 0	5404	0	-194.24	0	0.027-	-43.20	8087	-1440	\$\$°L8T		₽ _{×₩}	

$$\begin{pmatrix}
Mx4 \\
My4 \\
Mxy4 \\
Mxy4 \\
Mx1 \\
My1 \\
Mxy1 \\
Mx5 \\
My5 \\
Mxy5 \\
Mx2 \\
My2 \\
Mxy2 \\
Mx2
\end{pmatrix}
\begin{pmatrix}
- 710.22 \\
- 212.71 \\
82.72 \\
0.0 \\
0.0 \\
82.72 \\
922.93 \\
82.72 \\
- 212.71 \\
- 710.22 \\
82.72
\end{pmatrix}$$
(Kg-cm)

Tensiones resultantes o "tensiones" en la flexión de placas.

FIG. III.4

j) METODO ALTERNATIVO.

Una manera de comprobar los resultados obtenidos en nuestro ejemplo usando el método del elemento finito, es aplicandoal mismo problema la solución dada en el libro "Teoría de -Placas y Láminas" autor: S. Timoshenko.

El momento en el punto central está dado por la siguiente - expresión:

$$Mx = M'x + mx$$

Dado que la placa es cuadrada, entonces:

$$Mx = My M'X = M'y y mx = my$$

Donde mx = my son los momentos adicionales, que se muestran en la tabla 37 del libro citado y se reproduce mas adelante.

M'x = M'y es el momento en el centro de una placa cuadrada simplemente apoyada y es igual a la siguiente expresión.

$$M'_{x}=M'_{y}=\frac{P}{4\pi}\left[(1+\gamma)\ln\frac{2\alpha}{\pi}\frac{Sen\pi}{2}+1\right]+\frac{N}{4\pi}$$

TABLA 37 formentos flectores en los puntos medios de los lados mayores y flechas y momentos (dicionales en el centro de placas rectangulares bajo carga concentrada en el centro (fig. 93) p == 0.3

			Momentos adicionales			
\$ja	$(\mathbf{x})_{x=y=0} = \mathbf{e} \frac{Pa^x}{D}$	(My)200, 305/8 70 yP y*	$(\mathbf{m}_{s})_{s=y=0} = \beta_{1}P$ β_{1}	$(m_y)_{zmynd} = \beta_2 P$ β_1		
1,0 1,2 1,4 1,6 1,8 2,0 00	0,00560 0,00647 0,00691 0,00712 0,00720 0,00722 0,00725	0,1257 0,1490 0,1604 0,1651 0,1667 0,1674 0,168	-0,0536 -0,0579 -0,0618 -0,0653 -0,0683 -0,0710 -0,0742	, -0,0536 -0,0526 -0,0517 -0,0510 -0,0504 -0,0500 -0,0454		

Para nuestro caso:

a = 100

$$y = 0.3$$

P = 5000 Kg.
C = $\frac{2a}{TT}$ Sen $\frac{TT}{2}$ = 1.745

Donde C es el radio de un circulo donde se supone que actua P como carga uniformemente repartida.

Sustituyendo valores.

$$Mx = My = \frac{5000}{4} \boxed{1.3 \text{ In } \frac{200 \text{ Sen } 0.5}{1.745} + 1} + \frac{0.565 \times 5000}{4} + 0.0536 \times 5000$$

$$Mx = My = 890.73 \frac{\text{Kg} - \text{cm}}{\text{cm}}$$

Que es el momento en el punto central de la placa

Cálculo de momento de empotramiento $Mx = My = 0.1257 \times 5000 = 628.5 \frac{kg - cm}{cm}$

Cálculo de la flecha en el punto de la carga. $W \max = \frac{P a^2}{D} = 0.00560 \times \frac{5000 \times 100^2}{24.04 \times 10} =$

W max = 0.0116472 cm.

Comparando los resultados de ambos métodos.

	MEF	TIMOSHENKC
W	0.0123097	0.0116472
M central	922.93	890.73
M emp.	710.22	628.5
CAPITULO IV

Como se ha visto en el Capítulo III, el análisis de placas utilizando el método del elemento finito por medios manuales es casi imposible, a medida de que se idealiza con una malla más cerrada (mayor número de elementos).

El desarrollo de este método al igual que el de las computadoras digitales de alta velocidad permitieron que se desarrollaran programas con múltiples aplicaciones como por ejemplo: El Nastran, el Sap IV y el Sap V.

La finalidad de este capítulo es la de comprobar lo expuesto en el Capítulo II y III, resolviendo el ejemplo del Capítulo III, -por medio de un prgrama de computadora, además de otros dos ejemplos con mayor grado de complejidad.

12

Dicho programa fué desarrollado en lenguaje FORTRAN, en la divi sión de estudios superiores de la UNAM, utilizando el elemento -rectangular de cuatro nodos, admitiendo carga uniformemente repar tida y cargas puntuales en los nodos dando como resultado desplazamiento y elementos mecánicos nodales para cada elemento.

El listado del programa se reproduce al final de este capítulo, y los datos de entrada necesarios para su utilización se explican a continuación, donde los números arriba de la línea horizontal representan el número de la columna ó campo de la tarjeta.

La numeración de los nodos, así como de los elementos puede ser -como se quiera, aunque lo mas recomendable es seguir un cierto orden ó regla para evitar posibles errores.

En la columna 15 y en la 20 siempre se pone 1 (uno) indicando con esto que solo se utiliza un solo material así como un solo tipo de elemento finito (rectangular), pudiendo este programa ampliarse -para que acepte otros tipos de elementos.

TARJETA

Estas tarjetas serán tantas como número de nodos se tengan en cada problema específico.

TARJETA 3

1 5	6 18	31	44	57
1 CORRESPONDE CON EL # 1 DE LAS - TARJETAS 1 COL. 15	E MODULO DE ELASTICI- DAD	Modulo de Poisson	Po Po PESO PROPIO	X CARGA VIVA

Todos los número serán reales excepto el primer campo que es número entero.

Cuando sólo se quiera cargas puntuales sobre la placa, se puede -- omitir el peso propio y la carga viva, las unidades del peso pro - pio serán [F/L^3] y para la carga viva será [F/L^2].

TARJETA 4 GEOMETRIA DE LA PLACA.

Donde el 1 en la Col. 9 corresponde a la forma del elemento finito, y H es el espesor de la placa.

TARJETA 5

Estas tarjetas serán tantas como número de elementos.

En el caso de tener cargas concentradas, se deberá poner una tarj<u>e</u> ta en blanco después de las tarjetas 5 e inmediatamente después -las siguientes.

17 NUMERO DE CARGA PUNTUAL NODO CAR-GADO.

De estas tarjetas serán tantas como nodos cargados.

Las unidades de los datos de entrada deben ser congruentes entre si, dando resultados congruentes con los datos.

Para cada uno de los 3 ejemplos se anexan los datos de salidas (resultados) del programa, y a partir de los cuales se podra graficar estos si se desea.

EJEMPLO 1

Este ejemplo es el resuelto de forma manual en el Capítulo III, por lo que aqui no se enunciara el problema ni la discretización de la estructura, unicamente pondremos a continuación los result<u>a</u> dos de la corrida de computadora y los comentarios necesarios.

NPM NELEM NAT NGEOM 9 4 1 1 NODO GRADOS DE LIBERTAD C O G R D E N A D A S N O D A L E S w(7) SIPO(X) GIRO(Y) X Y Z 1 1 1 0.0000 100.0000 0.0000 2 1 1 1 0.0000 100.0000 0.0000 3 1 1 0.0000 100.0000 0.0000 0.0000 4 1 1 0.0000 0.0000 0.0000 0.0000 6 1 1 1 100.0000 0.0000 0.0000 6 1 1 100.0000 0.0000 0.0000 0.0000 MATERIAL MOD. PE ELAST.(E) C. DF POISSON PESD PROPIO CARGA UNIF. DIST. 1 2100000.GC 0.30 0.00 0.00 0.00 KLEMANTO MODO 2 NODU 3 NODU 4 MATERIAL GEOMETRIA 2 2 2								
9 4 1 N000 GR/DOS DE LIDERTAD C O G R D E N A D A S N O D A L E S W(7) GIPO(X) GIRO(Y) X Y Z 1 1 0.0000 IGC.CCC0 0.0000 GO.CCC0 0.0000 2 1 1 1 0.0000 IGC.CCC0 0.0000 0.0000 2 1 1 1 1 1 0.0000 IGC.CCC0 0.0000 2 1 1 1 1 1 0.0000 IGC.CCC0 0.0000 2 1 1 1 1 1 1 0.0000 0.0000 0.0000 3 1 1 1 1 0.0000 0.0000 0.0000 0.0000 MATERIAL MOD. PE ELAST.(E) C. DF POISSON PESO PROPIO CARGA UNIF. DIST. 1 2100000.0CC 0.000 0.00 0.00 MATERIAL MOD. PE ELAST.(E) C. DF POISSON PESO PROPIO CARGA UNIF. DIST. 1 210000 0.00 0.00 ESTAPDO DE CARGAE NODO MODO	NPN	NELEM	NMAT	NGEOM				
NODO GRADOS DE LIDERTAD C O C R D E N D D A S N O D A L E S W(7) GIPC(X) GIRO(Y) X Y Z 1 1 1 0.0000 1GC.0000 0.0000 1 1 1 1 1 0.0000 0.0000 1 1 1 1 1 0.0000 0.0000 1 1 1 1 0.0000 0.000 0.0000 MATERIAL MOD. PE ELAST.(E) C. DF POISSON PESD PROPIO CARGA UNIF. DIST. 1 21000000.CC 0.30 0.000 0.000 0.000 MATERIAL FSPESOR 1 5.000 0.000 0.000 ELEMSNTC MODO Z NODU Z NODU Z NODU Z NODU GIRO(X) GIRO(X) GIRO(Y) 1 1 2 2 2 2 1 1	9	4	1	1				
#(7) GIPO(X) GIRO(Y) X Y Z 1 1 1 0.0000 100.0000 0.0000 1 1 100.0000 100.0000 0.0000 0.0000 1 1 100.0000 100.0000 0.0000 0.0000 2 1 1 100.0000 0.0000 0.0000 3 1 1 100.0000 0.0000 0.0000 4 1 1 100.0000 0.0000 0.0000 6 1 1 100.0000 0.0000 0.0000 MATERIAL MOD. NE ELAST.(E) C. DF POISSON PESO PROPIO CARGA UNIF. DIST. 1 21900000.000 0.000 0.000 0.000 MATERIAL FSPESOR 1 5.00 0.000 *LEMASHTC *GD0 1 NOD0 2 NOD0 4 MATERIAL GEOMETRIA 1 5.000 .000 0.000 0.000 *LEMASHTC *GD0 1 NOD0 2 NOD0 GIRO(X) GIRO(Y) 1 2 1 5 1 1	NODO	GRADOS DE L	IBERTAD		DEN.	DASN		
1 1 0.0000 100.0000 0.0000 1 100.0000 100.0000 0.0000 0.0000 1 1 100.0000 0.0000 0.0000 1 1 100.0000 0.0000 0.0000 1 1 100.0000 0.0000 0.0000 MATERIAL MOD. NE ELAST.(E) C. DF POISSON PESO PROPIO CARGA UNIF. DIST. 1 2100000.00 0.0000 0.0000 0.0000 MATERIAL FSPESOR 1 5.00 0.00 0.000 MATERIAL FSPESOR 1 5.00 0.00 0.000 MATERIAL FSPESOR 1 5.00 0.00 0.00 ELEMISHTC MODO 2 NODU 3 NCDO 4 MATERIAL GEOMETRIA 1 5.00 1 5 1 1 2 1 5 5 1 1 1 3 2 1 1 1 1 1 4 7 5 9 1 1 1 <		#(7) GIPO(X) GIRO(Y)		x .	Y V	7	
2 1 <td>1</td> <td>.1 1</td> <td>1 .</td> <td>. 0</td> <td>.0000</td> <td>100.0000</td> <td>0,0000</td> <td></td>	1	.1 1	1 .	. 0	.0000	100.0000	0,0000	
4 7	2	1	1	100	0000			
9 1 1 1 1 1 0	45		ç	50	0000	50.0000	0.0000	1. ja
\$ 1 1 1 1 1 1 1 1 00:0000 0:0000 0:0000 MATERIAL MOD. PE ELAST.(E) C. DF POISSON PESO PROPIO CARGA UNIF. DIST. 1 2100000.CC 0.00 0.00 MATERIAL FSPESOR 1 2100000.CC 0.30 0.00 0.00 MATERIAL FSPESOR 1 5.00 0.00 0.00 KLEMAINTC FSDE POD 2 NODU 3 NCDU 4 MATERIAL GEOMETRIA 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 3 2 2 3 5 1 1 4 2 2 3 5 1 1 1 0 0 0 0 0 0 <	.?			100	.0000	50.0000	0.0000	
MATERIAL MOD. DE ELAST.(E) C. DF POISSON PESD PROPIO CARGA UNIF. DIST. 1 2100000.00 0.30 0.00 0.00 MATERIAL FSPESOR 1 5.00 *LEMGNTC *GOC 1 NODO 2 NODU 3 NODO 4 MATERIAL GEOMETRIA 1 5.00 *LEMGNTC *GOC 1 NODO 2 NODU 3 NODO 4 MATERIAL GEOMETRIA 1 5.00 *LEMGNTC *GOC 1 NODO 2 NODU 3 NODO 4 MATERIAL GEOMETRIA 1 4 1 5 2 1 1 2 4 1 5 2 1 1 2 4 2 5 1 1 1 2 5 5 6 1 1 1 3 6 1231061E-01 6 64262774E-15 0 0 0 3 6 1231061E-01 0 0 0 0 0 0 4 2 0 0 0 0 0 0 0	Ô,		;	100	.0000	0.0000	0.0000	
MATERIAL MON. WE ELAST.(E) C. DF POISSON PASO PROPIO CARGA UNIF. DIST. 1 2100000.00 0.00 0.00 0.00 MATFRIAL FSPESOR 1 5.00 *LEMANTC *COC 1 NODO 2 NODU 3 NODO 4 MATERIAL GEOMETRIA 1 5.00 1 5 2 1 1 2 4 1 5 2 1 1 2 4 2 5 5 1 1 2 4 2 5 5 1 1 2 4 2 5 5 1 1 2 4 2 5 5 1 1 3 5 5 5 5 6 1 1 3 6 1231061E-01 6 6 6 6 3 6 1231061E-01 6 6 6 6 3 6 1231061E-01 6 6 6 6 4 6 6 6 6 6 6 5 6 6 6 6 6 6 4 6 7426274E-15<	MATEDIA		CI ACT (C)					
MATFRIAL FSPESOR 1 5.00 *LEMANTC *GOO 1 1 5.00 *LEMANTC *GOO 1 1 5.00 *LEMANTC *GOO 1 1 5 2 1 2 2 3 4 2 2 3 4 2 5 3 7 4 2 5 5 NODO F(W) MODO N(Z) 6 1231061E-01 6 1231061E-01 7 1231061E-01 6 1231061E-01 7 1231061E-01 7 1231061E-01 1 13 1 <t< td=""><td></td><td>2100</td><td>856 CO</td><td>0.70</td><td>012204</td><td>PESO PRO</td><td>PIO CARGA U</td><td>NIF. DIST.</td></t<>		2100	856 CO	0.70	012204	PESO PRO	PIO CARGA U	NIF. DIST.
MATERIAL FSPESOR 1 5.00 *LEMANTC *GOC 1 5.00 *LEMANTC *GOC 1 5.00 *LEMANTC *GOC 1 5.00 2 1 1 5 2 1 2 1 3 4 4 2 5 0 6 1 1 5 8 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 <td< td=""><td></td><td>2100</td><td>000.00</td><td>0.50</td><td></td><td>0.00</td><td>0.00</td><td>· · · · ·</td></td<>		2100	000.00	0.50		0.00	0.00	· · · · ·
1 5.00 ELEMANTC +GDG 1 HODO 2 NODU 3 NODU 4 MATERIAL GEOMETRIA 3 4 1 5 2 1 1 4 7 5 9 6 1 1 ESTADO DE CARGAS NODO F(W) MXX WYY 5 5DUU.GC 0.00 0.00 NODO W(Z) GIRO(X) GIRO(Y) 3 0:1231061E-01 0:4426274E-15 0: 5 0:1231061E-01 0:4426274E-15 0: 6 0: ELEMENTO MXX(2) MXX(2) MXX(2) MXX(2)	MATERIA	L FSPESOR						
#LEMANTC PGDC 1 NODO 2 NODO 3 NCDO 4 MATERIAL GEOMETRIA 1 1 5 2 1 1 2 4 2 5 2 1 1 2 4 2 5 2 1 1 ESTADO DE CARGAE MXX MYY 5 5 5 1 1 NODO F(W) MXX MYY 5 5 5 1 1 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 <td>1</td> <td>5.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	5.00						
1 4 1 5 2 1 2 4 5 5 5 1 1 ESTADO DE CARGAS NODO F(W) MXX MYY 5 5 5000.00 0.00 0.00 NODO W(Z) GIRO(X) GIRO(Y) 1 0: 0: 0: 2 0: 0: 0: 3 0: 0: 0: 4 0: 0: 0: 5 5000.00 0:00 0:00 1 0: 0: 0: 2 0: 0: 0: 3 0: 0: 0: 4 0: 0: 0: 5 0: 0: 0: 5 0: 0: 0: 5 0: 0: 0: 6 0: 0: 0: 6 0: 0: 0: 6 0: 0: 0: 6 0: 0: 0: 7 0: 0: 0: 8 0: 0: 0: 6 0: 0: 7 <td>ELEMANT</td> <td>0 +600 1 N</td> <td>000 2 N00</td> <td>9 3 NCDA</td> <td>4 MAT</td> <td>FRIAL GEO</td> <td>METRIA</td> <td></td>	ELEMANT	0 +600 1 N	000 2 N00	9 3 NCDA	4 MAT	FRIAL GEO	METRIA	
2 5 2 8 1 1 ESTADO DE CARCAC MODO F(W) MYY 5 5 1 1 NODO F(W) MXX MYY 5 5 5 0 1 1 1 0: <t< td=""><td>1</td><td>4</td><td>1</td><td>5</td><td>2</td><td>1</td><td>1</td><td></td></t<>	1	4	1	5	2	1	1	
4 9 5 9 6 1 1 ESTADO DE CARGAE NODO F(W) MXY MYY 5 5NUULOC (L.DO 0.00 NODO W(Z) GIRO(X) GIRO(Y) 1 0. 0 5 0. 0 1231061E=01 0 5 4226274E=15 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23	57	24	Ġ R	5	1 .	1	
ESTADO DE CARGAE N020 F(W) MXY MYY 5 5000.00 (1.00 0.00 N000 W(2) GIRO(X) GIRO(Y) 1 0. 0. 2 0. 0.	4	Q	5	Ģ	6	1	1	
N020 F(W) MKX WYY 5 5000.00 0.00 0.00 N020 N(2) GIRO(X) GIRO(Y) 1 0.00 0.00 0.00 1 0.00 0.00 0.00 1.00 N(2) GIRO(X) GIRO(Y) 1 0.00 0.00 0.00 1.00 N(2) 0.00 0.00 1.1231061E-01 0.4260774E-15 0.00 0.00 1.1231061E-01 0.00 0.00 0.00 2 0.00 0.00 0.00 2 0.00 0.00 0.00 2 0.00 0.00 0.00 3 0.00 0.00 0.00 0.00 4 0.00 0.00 0.00 0.00 5 0.00 0.00 0.00 0.00 6 0.00 0.00 0.00 0.00 6 0.00 0.00 0.00 0.00	EST/	DO DE CARGAS						
5 5000.00 0.00 0.00 NODO W(7) GIRO(X) GIRO(Y) 1 0.00 5 0.1231061E-01 0.4426774E-15 0.00 7 0.00 6 0.00 ELEMENTO NYY(1) MXX(2) MYY(2)	NODO	F(W) M	** ***					
NODO W(2) GIRO(X) GTRO(Y) 1 0: 0 2 0: 0 3 0: 0 5 0: 1231061E-01 0 5 0: 0 6 0: 0 5 0: 0 5 0: 0 5 0: 0 5 0: 0 6 0: 0 5 0: 0	5 50	00.00 0.00	0.03			and the second s		an a
ELEMENTO NYY (1) NYY (1) NYY (2)	NODO	6(7)		~ * * * * * * *				
2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	1		.5		0	GIRDEY		
ELEMENTO NYY (1) NYY (1) NYY (2)	2	0	ğ.		ğ.			
ELEMENTO NYY (1) NYY (1) NYY (2)	45	0.12310616-	01 - 4424	2745-15	ğ.			
B B	ć,	0.	Ç.		<u>ò</u> .			n gwr dafr
ELEMENTO NYY (1) NYY (1) NYY (2) NYY (2)	8	Ŏ.	ğ.		ğ.		•	
ELEMENTO NOV(1) NYV(1) NYV(1) NYV(2)			••		••			
「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	ELEMENTO	Myx(1) Myx(3)	M Y M Y	Y(1) Y(3)	MX MX	Y(1) Y(4)	MXX(2) MVV(4)	MYY (2)
17102273/+032130682/+03	1	71022731	+03213	0682*+03	. #285	9850+02 D		0-
		.9#32955E	+03 .828	5985E+02	2130	682E+03 -	.71022736+03	-8285985E+02

MXX (3)

.9232955E+03

NXY(2)

.8285985E+02

2 3 4	.5(72555674555 2176612 +53 0. 71(72736403 2139652 +63 0.	9255555.422 9245697.422 92955555.422 9112273.403 .92666553402	#2%50451402). %2F59E56402 . %255985403 . %255985402 7102273E403	21306826+03 .2122736+03 .22320556+03 .92729556+03 21306826+03	7102273E+04 P285985++02 2130642E+63 8285985E+02 .0232955E+63 .8285985E+02	%2 *5 9 %5 E + U2 *2 %5 9 %5 E + U2 . *2 %5 9 %5 E + U2	71622732+03 2130632E+03 9.	

Para el elemento 1 de nuestro problema (FIG. III.3) los desplazamientos para el nodo 5, único nodo libre de nuestra placa, son -los siguientes.

> $W_5 = 0.01231061$ cm. $\Theta_{x5} = 0.0$ radianes $\Theta_{y5} = 0.0$ radianes

Elementos mecánicos para el elemento 1, son los siguientes:

Mxx	(1)	`=	-710.23	Kg-cm.
Муу	(1)	=	-213.07	N
Мху	(1)	=	82.86	
Mxx	(2)	=	0.0	н
Муу	(2)	=	0.0	
Мху	(2)	-	82.86	н
Mxx	(3)	=	923.30	н
Муу	(3)	=	923.30	11
Mxy	(3)	=	82.86	
Mxx	(4)	=	-213,07	
Myy	(4)	=	-710.23	, N
Mxv	(4)	E	82.86	N

Donde los subíndices entre paréntesis, representan nodos i, j, k, l, de acuerdo a la FIG. III.1 de la misma forma que se necesitan para los datos de entrada.

Como podemos observar, los resultados son iguales con respecto a los obtenidos en el capítulo III, de forma manual, además en los resultados son idénticos para los otros 3 elementos.

EJEMPLO 2

Se necesita analizar los desplazamientos y los elementos mecánicos de una losa de concreto rectangular con un espesor constante de 10 cms. la cual tiene agujero cuadrado en su parte central, como se muestra en la FIG. IV.1

La cual deberá soportar además de su peso propio (2400 Kg/m^3) una carga viva de 300 Kg/cm^2 .

Se considera un modelo de elasticidad de E = 1.5 x 10^7 Kg/m² y un - módulo de POISSON $\hat{\nu}$ = 0.20

La losa se encuentra empotrada perimetralmente.

ACOTACIONES EN METROS.

FIG. IV.1 DISCRETIZACION DE PLACA

ý.	(7) GLEO()	D DISCOL)	x	Ŷ	Z
1274567800112745678901234			•	060006000000000000000000000000000000000		0.000 0.0000 0.00000 0.00000 0.0000 0.0000 0.000
MATERIAL	100.	S \$1.1	· · ·	ar porestr	bist edeal	0 CARSA U
1	1506+06	874 . 01		v.\$0	2400.00	300.00
MATERIAL	(SPLSCF					
i. 1	0.10					
ELEMENTO	1.010 1 N	er : 2 %		5688 4 841	ENTAL - GEOME	TRIA
123456730 1011234 11234	7801114457001128	127457801134547	29 L12457801084	27.45.2731245672		
	V / C1	20 7.6 CA	10 26 0 H	NTEOPAENTNTE	DISTRIBUTOA	n a traite

CCORDENADAS NODALES

UNIF. DIST.

NELEN NALL PELON

24 14 1 1

GRADOS DE LISTRTAC

NPA

NODO

N (c 3.0	4(Z) .	6:04(X)	GIPC(Y)
10345 678 0 D108 45678 0 108	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5	A A A A A A A A A A A A A A
2.44			

SUK MANTO	r x x (3)	· Y V (1) ·* X Y (3)	*>*(1) *>>(4)	****(?) MYY(4)	MYY(?) MXY(4)	MXY(2)	MXX (3)
1	43337/55+1-2	%667439E+91	.435L8*DE+P0	0.	Ο.	.92620255+01	2227500E+02
	.2277227E+32	1061617 +62	0470548 +11	4737784 +]?	1189232:+01		
2	.19477458+07	.28515766+02	13646838+02	94795528+01	4739784E+02	4422249E+U1	.9799191E+01
	·29887961+12	5:50429E+01	14210795+02	7105394E+0?	.3073958E+01		
3	.1297245 + 12	.???u265 +:?	2955551 +: 1	1421079 +02	7105394E+02	2955051E+01	1287265E+U2
	.24932651+12	.29556518+01	14210790+02	7105394E+J2	.2955051E+61		
4	.97991911401	.28297968+12	.5550628E+01	14210796+02	7105394E+02	30739586+01	1949245 E+02
	.2921576. + 12	.1304683 +02	5479569-+01	47397840+02	.4422249E+01		
5	.2727500E+.2	.28772277+02	.10014175+02	9479568E+01	4739784E+02	11892325+01	4333775E+02
: *	*EX74691+11	- .4 35 16418+08	1.	0 . .	9262025E+01		
6	63337(5) + 0	8/674/9-+61	.2824040 +31	4337705E+02	8657409E+01	8826940E+01	,2162237E+02
		.*~2694(E+01	.2142237E+02	.25509135+02	8826940E+C1		
7	.1237922t+02	.24952620+02	.PA74585E+01	.18839825+02	.2495262E+02	8624585E+01	1303993E+02
	.4469145 + 17	. C/ 24525 +1 1	.1313003 + 2	.44491655+02	9424595E+01		
2	176 495 964 12	.44481PR=+E2	24241258+14	.13039935+02	.4449165E+02		18839826+02

.

	·· · ·			. · · ·				
	· 24952626+ -2		**************************************	.24952628+02	.8624585E+D1		1	
ç	.2142227 +/2	.2550913 +02	F87654(E+01	.2162237E+02	.2550913E+02	.8826940E+01	4333705E+02	
	86674091+01	2826941'E+01	4333705E+02	<u>8667409</u> E+01	.8826940E+01			
10	0. 1	ί	92620255+01	4333705E+02	8667409E+Ű1	4350850E+00	9479568 +01	
	4730784 +07	,11×9232:+01	.222750CE+C2	.2877227E+02	.1001617E+02			
11	54705486+11	47397842+12	-4422249E+01	.19492455+02	.2821576E+02	.1304683E+02	1421079E+02	
	7105394L+02	-,30739586+01	.9799141E+01	.28287965+02	.5550628E+01			
12	1421079F+02	7135394F+02	.2955051E+01	.12872656+02	.2390265E+02	.2955051E+01	1421079E+02	
	71653948+62	2955L51E+01	.1287265E+02	.2590255E+02	2955051E+01			
13	1421(.79[+02	71053941+02	.3073958E+01	.9799191E+01	.2828796E+02	55506282+01	9479568 +01	
	1737734.+.22	44222495+01	.1949245E+02	.28215765+02	1304683E+02			
14		47397840+02	11292326+61	.????505E+92	.28772276+02	1001617E+02	9.	
	0.	. 92620251+01	43337055+02	86674095+01	.435UR50E+C0			

De la simetría de la geometría y de cargas, podemos decir que los desplazamientos de los nodos 8, 9, 10 y 11 serán iguales a los de los nodos 14, 15, 16, y 17 y observando los resultados los pode - mos comprobar.

.

Graficaremos el desplazamiento vertical a lo largo del eje X ---- (FIG. IV.1) para cuando Y = 0.5 6 Y = 1.0 (ver gráfica IV.1)

CURVA ELASTICA DE LA PLACA (Y = 0.5 & Y = 1.0)

En la gráfica IV.2 se encuentran graficados los momentos Mx, para cuando Y = 0.5 % Y = 1.0, que obviamente son iguales

DIAGRAMA DE MOMENTOS FLEXIONANTES GRAFICA IV.2

También de los resultados podemos observar que los momentos flexi<u>o</u> nantes Mx y My en las esquinas de la placa, nodos 1, 6, 19 y 24 -son nulos.

Una de las ventajas en usar el método del elemento finito, obvia mente mediante la aplicación de las computadoras, es que se calcula directamente el momento de torsión para cada nodo de los elementos finitos, que por medio de las funciones de forma o interpolación se podria calcular para cualquier punto dentro del elemento finito.

EJEMPLO 3

Se necesita analizar una losa de concreto de 12 x 8 metros, que se encuentra apoyada sobre muros de carga formando tableros de 4 x 4, la cual deberá soportar una carga uniformemente distribuida de - - 300 Kg/m^2 , además de su peso propio de 2400 Kg/m³ (concreto arma do).

Se considera un módulo de elasticidad de E= 1.5 x 10^7 Kg/cm² y un módulo de Poisson \hat{F} = 0.20

÷		4	.0		þ	4.0				4.0			
1													
	1	2 16	3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4	5	6_20	7 21	8 22	9 23	10	 25	1	
17	13,28	14 29	15,30	16	17	18	19 34	20 35	21	22 31	23 38	24	
40	25	26	27	28	29	30 16	-31 41	32 18	33	34 50	35 \$1	30	
63	37	38 55	39	40 57	41 50	42	43	44	45 62	46	47	48	
"	49	50 68	51	52 70	53 17	54 72	55 73	56 74	57 15	58 76	59 	6	
71	61	62 81	63 82	64 81	65	66 85	67 86	68 81	69 88	70 81	71 90	7	
12	73 13	74	75 15	76 16	77 91	78 19	79 99	80 160	B 101	82 101	83 (03	84	
	85	86	87	88	89	90	91	92	93	94	95	90	

FIG. IV. 2 DISCRETIZACION DE PLACA.

Y

ACOTACIONES EN METROS

83

0

NPN	, NELEM	NMAT	NGEOM	•			
117	96	1	1	•			
NOPO	GRADOS DE I W(Z) GIPO()	LIGERTAD () GIRD(Y)	C O O F	DEN X	A D	ASNO Y.	DALES Z
177456780012345678100254567800012545678001254567800125456780012545678001254567800125456780012545		A 10 00 00 00 00 00 00 00 00 00 00 00 00				8009888888887777777777777777776666666666	

678001127456789 55556666466666666666666666666666666666		1000 (1000) 1000 (1000)		4 05 09 4 0500 4 0503 4 0503 4 0503 4 0503 4 0503 4 0503 4 0503 5 0000 5 0000	 L		· · · · ·	
7777777780012345 888888888888888888888888888888888888		00000000000000000000000000000000000000						
SSR 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10100000000000000000000000000000000000	a soor o ning onde e	7.6000 8.0000 9.0000 11.0000 12.0000 1.00000 1.00000 1.00000 1.00000000	2 0000 2 0000 2 0000 2 0000 2 0000 2 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000	C 0000 C 0000			
1001234 10056789 10056789 111234 111234 111234	, , , , , , , , , , , , , , , , , , ,	10 10 10 10 10 10 10 10 10 10 10 10 10 1		1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 0 00000 0 0000 0 000	C COO C C C C			
115 119 Matcrial	100. DI 4 15000000) Last.(1) (19.00	10.5305 11.0000 12.0000 0.20 0.20	0.0005 6.000 0.0000 PESO PROPI 2400.00	0.0003 5.0000 0.0000 0.0000 0.0000 0.0000 0.000	DIST.		

MATERIAL LSP. COP

1 6.10

14 15

167 9.9

Ŕ

Q

227

22337

300123

Į,

ST254567898

ELEMENTO NODO 1 NODO 2 NODO 3 NODO 4 MATERIAL GEOMETRIA

	 	5		~	÷				the maximum of the second second
- 43		, 7	c 4	ιŸ	1.	4	-	12	• 19224/28-92 -• 1094648E-92
- 42	્યુ	•							
56		' -	1. e			7		-	
		5	17	11	22	2		:5	
		5	11	ž	25	33		25	
24	•		44	2	Υ.,	51		10	
		۰.	20		74	с.	• _	17	
44		5	27		<u>د</u>	6.		15	
÷λ		' 5	23	2	42	ŝ.	- 1	÷ŧ	
25	- -		¢ a	2.	., 4	5	-	• •	
- 7 Á		٠.	2 2	7	1.0	6.4		12	
37	•	12	25	'n.	2.2	2	1	:5	
78	•	5	24	7	4 3	5		5	
30	· ^ *	• •	U 4	4	1.2		-	• •	
6	1.1								
41		1	. 0		47	2:		,2	-14.45356-02
25	•	'4	žź	2	šà	2		15	
7.3		' 2	11		íż	Ξ.		14	
11	~ *	. /	21	5	4 /	54	-		- 767 796
7.5	ς.	'c.	1.5		ς.	4 (-	. 2	
74	•	ċ	21	1	57	£		12	
7.7	•	١ĉ.	24	4	Ξ'n	ö		1.1	
7.6		• •	୍ୟ		۰ ۲	3		1.5	
7.5		۰.	27	0	E 7	5.		17	
10.	•	• •	54	. 6	31	23		13	T+26209295m03 +36462765m85
é à l	•	1	83		74	19		- 5	T•14142%95"26 •62261405"22
- 24		. 1	ų, t		4.2	21		20	T+13579135Tv5 T+955712964T03
25	1	•							
22	<u>्</u> यः	•							- T+123322841729 - +12249701-03
2.6	- 7.•								
22	- H.	•							────÷?\$\$\$?\$\$\$\$=`??
27	- <u>}</u> ,•	•							
60	- 7.1	•							
60		•							
27		•							
- 29	18	•							
24									••••••••••••••••••••••••••••••••••••••
24	1								 ■ 1097 (215-v) ■ 2917 (2468-36)
- 2.7	- H •	•							• • 282892240132
22	- Y.•	•							
- 22	14	•							• # * • • # # # # # # # # # # # # # # #
- 22	· ` •				٦ ٢	~ .		2	★15,49,20,76=73 ▲3,299,3928=94
26		1	23		97	33		÷.,	•}
66		1	÷.	7	11	õ	-	15	• 5520222225725 - T+ 63432252783
20	•	, c	2		41	21		25	• 24992 205-02 - • 24630365-03
	-	' E		1	5 3	۰.		.7	• 36272 335 119 - • 91728995 129
		2	7.5	5	29	25		12	•14273236288•114662236782
72	•	'è	75	1	λò	33		12	*14145473702 T*11052340.TU7 734579775207 - 744790345207
71	0	, ,	• 5		• •	61		13	
75	- 'a e	۰,	o	d a	14	71		.7	• 26935 \$19293 • 838993396 198
52		12	38	N.	44	2		15	• 7927 2862 283 • 922822952 29
22		4	69	1.5	55	2		16	
		. (67		2)	٢.	· - '	12	•
70									
		·	. 1	e.	~ 7	с.			
64	•	5	42	5	Τ.	21		- 5	• \$????????????????????????????????????
25		5	75	З.	15	31		Ś	
22	1.		56	5		-	-		_ + COURTY PROVENUS = + COURTY AND
6)	11.	1	χ_{12}	0	39	•	·	. 7	
	•	1	5	÷.	13	51	: 2'	1	●本人的名词复数描述的第三人称单数含义的复数形式的第三人称单数含义的复数形式
84	. •	4	13		54	à		-5	• 7486482828283
9.7			Qυ	7	43	7	-	. 4	
28		1	32		۰٥	0	۰.	10	
60		' 5	13	17	źċ		- 21	5	• 5600 7 7 4 5 T 4 2 1 9 1 9 2 9 5 9 7 5 T 4 5
0.1	1	5	74	ž	37	2	1	ΞĴ	
Č i	- 11 ⁻		. 1	Ċ		• •		16	
64									
	 	۰.		• •					•••••••••••••••••••••••••••••••••

۶.

· .••

i.

. .

• i....

50000000000000000000000000000000000000	1000 1000	0.002 4.1143 1.11	Nempinologis Nempinologis 1 1 1				
ELEMENTO	MXX (1)		MXY (1)	MXX(2)	MAA(5)	NXY(2)	MXX (3)
1	-24185356+152	27457228+02		83330816402	R4704745	- 21824655403	24120746+03
	.24777598+03	5977498E+U2	26u7046E+02	.2493876E+U2	1407478E+03		
2	.2277391-+03	. 3450643 +03	1038810E+03	-5280760E+01		1271117F+03	-2326308F+03
	.2988711E+03	.44029716+02	.4347558E+01	.3394751E+02	.2079902E+02		
3	_242577().+03	-30086546+03	50820215+00	1737305F+02	-29603305402	40180625+02	
	.1615773: +03	.00200390+02	.45665088+02	.6286350E+02	.1398892E+03		
4	17118245+13	-14394736+13	.12583606+03	94489776+01	51752276402	120/1785+03	- 25784/95403
	.75416241.+32	.\$796733E+02	7205337E+02	.38573552+02	.9154915E+02		
5		-12168730+03	21046868+02	3232505E403	11743616403	13027725403	- 19252125407
	63328258+03	.1877240E+U3	5715487E+03	1278164E+03	.2969543E+03		
4	- 49560636463	- 60701750+03	36766766483	- 94167326403	- 20194135403	2741421 EA03	
	- 8825969: +03	.6413782:+02	.62398598+03	.4856912E+02	1678752E+02	822014212183.	-1990901E+03
7	- 11191047413	- 93094245403	71/05882407	67767082407	11500000call2	- 14023/754/7	34 / 4 7 / / 5 + 5 7
	.17129030+03	.3339892E+03	21904485+03	5201796E+02	13079436+03	- • I 472247 ETU3	•2100300E+U3
	0/7/477 +	9/40. 38 "7	44/04730-003	- 446430651133	- 11521505102	7/ 370//5	4/22220
	• 74/01/01/01 702 • 45704337+02		-10001325402	- 1000290E+02		• 346/ YOOE+02	1422939E+03
						• • • • • •	

•

. •

,

.

9	43453 83£+03	1241502E+03	.1751957£+02	.2504892E+01	.6976150E+02	4034893E+02	.14377982+03	
	1629244 +03	87849040+02	27953640+02	-3114305E+02	1457175E+03			######################################
16	-10561108+03	-1552908F+03	18267026+03	. 61709011F+02	4007558EA02	- 14496745403	2/ 2251954070	
, a	-2847009E+03	6025831E+01	1744296E+62	_3266459E+02	4831838F+02			
		-					,	
11	.23148698+03	-28254682+03	4643602E+02	.6077609E+01	•3736871E+U2	2680426E+02	.2280196E+03	
	.2416007E+03	.1 024044E+03	-4904456E+01	.3027164E+02	-1220361E+03			
12	.2420964E+03	.2444161E+03	.5645797E+02	2677074E+02	.2393650E+02	.1356573E+03	.24014805+02	
	27306141+02	.1345560c+03	. 8362049#+02	.8404245E+02	.2137553E+03			
13	- 3714116E+02	-7445067E+01	-3052069E+02	-3059488F+02	-45974425+01	- 12359505403	27782005403	
	-2366537E+03	.4915875E+U2	.2387477E+03	.2350275E+03	1049569F+03		-211.52702705	
		-				•	•	
14	. 26860261 +03	.23480845+03	5212582E+01	.2251894E+03	-2323158E+03	4860340E+02	.2822773E+03	
	.2928804E+03	.3385385E+02	.2292420E+03	.2819272E+03	9536970E+01			
15	.2864564E+03	.2937162E+03	3381482E+02	.2391882E+03	-2839165E+03	-4628603E+02	.12883765+03	
· · ·	•1266951£+03	76596210+01	.1 2698046+03	.2047302E+03	.7244123E+D2			
16	1644238F+03	13381246+63	- 2315259E+02	13881705407	20700675+03	14410405407	- 42040046407	
	- 32085286+02	- 9164705#+02	= 3185318E+03	- 24701486403	75609516+03	• I + + (U+UE+U3	-143017742703	
		•//04/05L/DE			.13007312402			· .
17	51860222+03	4066584E+02	-4676905E+02	1556748E+03	2153436E+03	1417810E+03	.1661091E+03	
	.2016634E+03	.2765976E+02	2014825E+03	-1232281E+03	1608803E+03			
18	.3962422E+02	.1757664E+03	.4090464E+01	2082428E+03	.2051732E+03	16624268+03	.30902415+03	
	.20838322+03	.1215670E+03	5980838E+62	.5816254E+03	4926604E+02			
4.0	24124045467	400/7030-07						
19	+2042091E+U3	-1994322E+U3	2018238E+02	-21344/2E+U5	+0302/26E+U3	.2439309E+03	•154U462E+U3	
	• IC 100031403	.1044 903E +02	•1 000000ETU3	03043482701	•2743531E+U3			
20	.15659500+03	.1823100E+03	.6031976E+02	_3964556E+03	+3459364E+02	.1057041E+03	4965754E+03	1
	1097974E+03	3418767E+02	5371159E+03	9956971E+82	-1119668E+02			
21	5292651 E+03	1161354E+03	-5500376E+02	42514338+03	77175288+82	47284732+02	-14631296+03	
	.1450703E+03	.1782675E+02	-1422970E+63	.1555151E+03	8446174E+D2			
		-						
- 22	• 1180326E+1 3	1394143E+03	.1060689E+02	-1041292E+03		7720165E+02	-2815866E+D3	
	1		· · · · ·					

• *

.

• •

	a, e - art					والدابعة فاستعدهما العراب		
	.2811846€+u3	.3379818E+02	.2406865E+03	.2768746E+03	5402036E+02			
23	.2770900E+93	.28028475+03	3028481E+02	.2299155E+03	.2747204E+03	.8879043E+01	.2691244E+03	
	.2311588E+03	.6904629E+01	.2251613E+03	.2273091E+03	-4606848E+32	-		
24	.2779492E+03	-2329238E+U3	48289446+02	.2392381E+03	.23012445+03	.10225386+03	.3707618E+08	
	.7128586E+91	·2982060E+02	.3041113E+02	.4675476E+U1	.1207228E+03	•		
25	.5119815E+02	.6004597E+02	.1498750E+03	.3210515E+02	1773472E+02	.5140438E+02	.1434275E+03	
	.9829505E+02	.1068780E+03	.2801795E+03	_2494065E+03	_8407365E+01			
26	.1414538E+U3	.9790030E+02	.8138934E+02	.27095325+03	.2465612E+U3	.5719300E+02	-1327294E+03	
	.1106986E+03	7318149E+01	-2821677E+03	.2923322E+03	3150649E+02			•
27	-1362455E+03	.11140185+03	4371345E+02	-2863467E+03	-29316908+03	-18630794+02	_73255053+02	
	.5894050E+02	1086216E+03	-1340893E+03	1529535E+03	4527740E+02		• • • • • • • • • • • • • • • • • • • •	
28 -	82285524+12	- 61174 659E+117	10438476+03	-1696754E+03	-1600708F+03	49184135+0.2	28300776+03	
	3881416E+02	49871275+82	4891366E+03	7767134E+32	.5329445E+01			
29	27829758+53	3787205E+62	-3814242E+01	5275394E+03	8535189F+02	7231364F+02	-7565132F+02	
	.7776274E+02	.7629269:+02	.16406250+03	·19083048+03	.16480708+00			•
30	.81827005+02	.78997878+92	.59573485+02	.3757762E+02	.1655334E+03	-2452008E+02	-1377951E+D3	
	.113237UE+03	.21%s544E+9Z	.3241329E+03	-2839271E+03	1324796E+U2			
. 31	.1514287(+03	.1159637:+03	16730588+02	.2793779%+03	.27497615+03	.4410338E+D2	.7409148E+02	
	.7621199E+02	51307176+02	.1428780E+03	1259589E+03	2047321E+02			
32	.8844135E+02	.791 8196E+82	8243312E+02	.1454267E+03	.1264697E+03	2389956E+D2	2757772E+03	
	3167378E+02	1673918E+U2	4954718E+03	1042796E+03	+4179439E+02			
33	27018968+03	30556278+02	.31P3363E+02	5271615E+03	11061752+03	29208198+02	.69597522+02	
	.6223242E+02	.1071719E+33	-1464538E+03	.1457747E+03	.46130D8E+D2			
34	.4369905E+02	-6105273E+02	1088543E+03	.1181734E+U3	.1401186E+03	.4696544E+02	.1341329E+03	
	.11 00 5 1 3E+ 0 3	_455675UE+02	.2826780E+03	.2866410E+03	1632138E+02			
35	-1302025E+03	.1092652E+03	-10285855+02	.27518145+03	_2957417E+U3	.3382523E+D2	.1414693E+03	
,	.9743042E+02	78711218+02	.2712838E+03	.2419557E+u3	5517178E+02			

							a ser a ser en er a añ	
76	.1433183E+L3	.979u022E+02	1638664E+83	.2801096E+03	.2437207E+03	7442157E+01	.5111093E+02	
	.59364616+02	1471476E+93	•3555312E+05	1713655E+02	5J78327E+02			
37	.7106520E+02	.3945978E+02	.15933302+02	.30331865+02	44285466+02	.1500257E+03	1221173e4D3	
•	4859804E+63	3603564E+02	.1527860E+03	.1450772E+03	.9805680E+02		84 84 88 88 88 88 88 88 88 88 88 88 88 8	
38	1941781E+83	4822926E+03	.5246154E+02	-1508122E+03	-1446925E+03	-8902572E+02		
•	56731162+03	4671956E+02	.1391909E+03	.13900608+03	10155388+02	•••••••		
39	12542702+03	57014626+03		-1417070E+03	_1387093E+03	41429195+02	33461396+02	
17	2989991E+03	279L953E+32	.7457483E+02	.6553939E+02	1093256E+03		• • • • • • • • • • • • • • • • • • • •	
15	89559/82+(12		- 15081035+02	. 836653116+02	. 67345405+02	10861845+08	17030975402	
	.2059241E+02	.637722UE+02	2942902E+03	9522660E+U2	2886115E+U2		,	
41	17330750402	21.6723064112	- 45553064()	- 28958006408	- 9/38/555403	- 55668865401	- 77787/75407	
· · ·	25400922+03	-1664718E+32	.7827060E+02	.9.385913E+02	_7663269E+02		11303436*02	
	- 222026/14/2	- 2/7 1430-417	2207675 34 52	0111439 4.13	0200/275402	8/ 73107-403	- 0474778-107	
42	4313973E+03	3979739£+02	-1445047E+03	-1467850E+03	-1454978E+02	-0432193ETUC	99702302402	
		17405155437	1710130.00	4504707-07		7//7/50-54		
43	24245762+03		.43460436402	.128138364(+1)2	- 1493117E+U3	+. (043132E+U1	-,29373328+92	
		• • • • • • • • • • • • • • • • • • • •						
42	79068868+02	25419636+03	13104228+02	.8º66565E+02	.8520352E+02	7861094E+02	.1843922E+02	
	.1767386E+02	.6335UR9E+02	2F64779E+03	8517764E+02	2155823E+01			
45	.1592433; +U2	•1717088(+02	65381428+02	28089042+03	9406013E+02	.2521490E+02	8722266E+02	
	3033153E+03	-14976L35+02	.7089558E+02	.6872272E+02	.1055723E+03			
46	3230012E+62	292330RE+03	+2436676E+32	.6499711E+02	•67543 J 3E+U2	.1066211E+03	1243021E+03	
	5629955E+u3	3777831E+02	•1395856E+03	,1373144E+03	.44476U6E+02			
47	1094365E+03	6561 02236+03	.4746182E+02	.1356552E+03	.1365294E+03	.1239220E+02	1036932E+03	
	47898655+03	5073010E+92	.1507476E+03	•1438270E+03	85799735+02	1	•	
4 9	-1215076 + 13	4925493 +03	.3795407-+02	.1525976 +93	.14419582+03	-,95208425+02	.7103901E+02	
	_3910387E+4-2	14063606+u2	-30497965+02	43780275+92	14719P1E+03			
49		4388672a+92		17199599 <u>8+112</u>	.3911374E+J2	11942437502	•1516474E+03	

•

					• 1				
	• 11 J. • • • • • • • • • • • • • • • • • •	14289646404	9513315E+02	1220878E+63	48573272+03	-3973454E+02	· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , 	
	50	-14987498+03	•1425419 +0*		10414353+03	49214498+93	49008753+02	.1339597E+11311111	
		•1351266E+i/3	■1194346E+02	~.11123 506+03	5669167E+03	.4343796E+J2	1		
	51	.1378376E+03	.1359P22E+03	.4490661E+02	1254080E+03	5697513E+U3	3801244E+02	.6406076E402	
		•6765669E+02	.1058674E+03	33433690+02	29886062+03	.22948372+02			
	52	.7032318E+02	.6390918E+02	.1055405E+03-	8953178E+02	31008026+03	.1178758E+02	2769534E+03	
		82391522+02	.262777P +02	.1744591 0+82	.18167644+02	6747510E+02			
	53	2770703E+03	8241490E+02	5017573E+01	.1684580E+D2	.1804762E+02	.6439495E+02	-8142488E+02	
		.7370918,+02	8025049-+02	76925962+02	2517219#+03	1083795E+02			
	54	.74364418+02	.7229709E+02	80559086+02	2194002E+J2	2407247E+03	2642423E+02	.1453189E+03	
		•1320247s+03	1176869 +62	98794102+02	4315558:+03	-4236616E+02	۶		
	55	.1458068F+03	.1321223E+03	.1142268E+U2	1010802E+03	4320131E+U3	4202303E+02	-7330620E+02	
		•7194327E+62	-8011489E+02	2026402E+02	2419011E+U3	.2666913E+D2			
	56	.8127611E+02	.73537255+02	-8027743E+02	7895758E+02	2536398E+03	.1054329E+02	2787294E+03	
		82064592+62	. 42679913+01	.18257630+C2	-1676590±+02	55455158+02		· · · · · · · · · · · · · · · · · · ·	
	57	27818160+03	31955038+02	2622426E+02	.1574274E+02	.1626292E+02	-6432636E+D2	-7143354F+02	
		.6950646E+02	10546968+03	8719657E+02	3031849E+03	1491901E+02			
	58	•6515812C+02	.68251376+92	10653116+03	3227454E+82	2922004E+03	2406871E+02	-1393946F+03	
		•1375826L+G3	44479918+02	12430305+03	5629999E+03	.3798251E+02		••••	
	59	.1355139.+63	.1368065E+03	1233492E+02	1094374E+03	56002685+03	4731770E+02	-15068526+03	
		.14390010+03	.#574248E+02	1036916E+03	4789784E+03	.5075971E+02			
÷ 1	60	.1525243E+63	.14426792+03	.9518596E+U2	12158548+93	4825412E+U3	37971 90 -+02	- 33507982+02	
		4371-2858+12	•1471435E+03	.7104110E+02	-3911431E+02	+13985776+02			
	61	.32206298+92	17367118+02	51061548+82	.51219708+02	.59631588+02	14637775+03	- 2794411E+03	
		.24349770+03	770P3275+01	.1423663E+03	.9646071E+02	1035245E+03			
	42	.2766523±+03	.2417399 +33	55293024+02	.1405977E+03	-9610619E+02	79816675+02	. 27692235+03	
		.2=52446E+03	.3372237E+0?	.1285140E+03	.1078981E+03	-1029873E+02			

the second second

.

• •

and a strange of the strange of the

				• •				
43	2814977E	.28615916+63	1567895E+02	.13239193+03	.1386737E+03	.4524408E+02	.1176849E+D3	and a second second
	.1419652.+03	•47°1371/+02	-4252386 +U2	_59972180+92	.1087367E+03			1
54	.1433663E+u3	.14704546+03	.44592b7E+02	.6878628E+J2	-6122467E+02	_1077702F+03	520535364D3	
	1150.659.+03	3025921-+02	2666968:+03	28168316+02	.32918895+02			
45		- 10517/701:7	793347/5413					
65	-11390356+93		-3622134E+02	-64550485+02	83635976+02	108/913E+02	•122410 SE+95	
		• . • • • • • • • • • • • • •	• /////////////////////////////////////					
65	.1263100 +/ 3	1037854()+03	4114817E+02	.72532675+02	.6313838E+U2	8055541E+02	.2687996E+D3	
	•2071542E+03	-2295712E+U2	.1391262E+03	.10106165+03	1655012E+02	. 1	•	
67	. 2687074E+03	.2071358E+03	22877215+02	.1396142E+03	-1011592E+03	.16605495+02	.1264686E+03	
	10870965+03	.4116741E+U2	.7146751E+02	.62749325+02	.80650125+62			
40	.1518887E+03	-1137936E+03	.3461876E+02	.7943742E+02	.6434390E+02	-8360395E+02	5220784E+03	
	11532296+93	37937912+02	2679932E+03	2838350E+02	.1104719E+02		••••••••	
69	5215206E+03	11521136+63	.3060481E+02	2674453E+03	28273942+02	3289751 =+02	-14390338+03	
	.1470382E+03	4428451E+02	.7001460E+02	.6240376E+02	1077958E+03			
70	■1181922±+03	.1419460E+03	4749227E+02	.6373858E+U2	.6115368E+02	10871055+03	.2825264E+03	
	.2864136F+63	.15699756+02	.1339832E+63	.1105256E+03	45518465+02			
71	.27791861+03	.28549206+03	3395330 +02	.1301025-+++3	.10974948+03	1030402++02	.2713081E+03	
	.2419517E+13	.5538c19E+32	.1413991E+03	.9746968E+02	.7872946E+02			
72	2801.152+03	-2437094E+03	.7355560E+01	-14323826+03	- 978374 9F +0 2	-10373905+03	3222671 = +02	
	1714(-341.+02	.5L72851E+J2	•5112229E+02	.59368700+02	.14711202+03			
77	76777666109	15090515104	40004/05407	77440745000				
60 - 1	- 3037 3692 *02 377 4677 (*****	10.19/07E+07	-1202044C+U3	• 5/110/18+U2	./214909E+UT	5UT4290E+U2	•2389995E+03	
	• 2 24, 1417 4 1 472	• PC174076735	•2772201E+03	.23243256703		1		
74	.2249564E+63	.22729758+03	.45586620+02	-2684393s+U3	.2306750 <u>8</u> +03	+65889302+01	.2294841E+03	
	•2735943E+53	•894654JE+01	-275946PE+03	-2803666E+03	3004515E+02			
75	.2307027 +33	.2756561 .+U3	5351207±+02	£0+655555085•	.2812817E+03	.3431614E+02	.1042594E+03	
	.1486052E+U3	75165398+02	.11684365+03	.1377J25E+U3	.1166233E+02			
7 5	.14°5:232+13	•15745388+03	\$633015E+02	.14252586+93	.1428388E+03	.1695441E+02	4463900E+03	
	-, \$7554431 +12		5177475:+03	10106690+03	.47656775+02			
				1 T				

	· · · ·							1.
77	44 628596+.3	97653664+02	.37666278402	+.51839946+53	1011953E+03	3842416E+02	-15320185+03 minute	2/119199999999999999999999999
	.1274754).+ 3	.66363200 +J2	.15169468+03	11032501+03	97272342+01	1		
78	10998176+03	.11545146+23	.5454944E+02	.1261042E+u3	.1052069E+03	1930635E+01	.2253364E+03	
	·20890172+13	12FUR102E+02	•2679131E+03	-2022216E+03	2944905E+02			
79	.2253650L+U3	_20890745+03	2821817E+U2	.26772398+03	.2022031E+63	-2832066#+0 2	.1088224E+03	
	■11860945+03	54602715+02	.1257477E+C3	.1J519435+03	.1936115E+01			
8.	-1529741E+63	.1274397E+u3	66416458+82	.1511678E+03	.1101888E+03	-9680461E+01	44728956+03	
	97722030+12	37406088+02	1 92995 =+03	10142825+03	.33690835+82		-	
R 1	44677775+(3	97619662+42	_5584982E+02	51974172+03	10131665+03	47391398+02	-1486651E+03	
	-1573988E+03	.86652298+02	.1430660E+03	.1429019E+03	1658892E+02			
82	.10442236+93	.14854238+53	.74529765+02	•1173550-1+J3	.13775978+03	11347075+02	-24025755+03	
	.2756235E403	- 305 2P49E+ 2	.2715620E+63	-28159126+33	34347135+02		· · · · · · · · · · · · · · · · · · ·	
97	.22993365+03	.27355P7 +03		-27695420+03	.23056970+03	.30024434+02	.2252798E+03	
	.2272839E+37	+_4587380E+02	.2671147E+03	-2309935E+33	6931125E+01			
94	23933868+63	.2300955 +03	1022571.+03	+27790813+03	.23274229+03	.4819959=+02	.3036802E+92	
	.4631121F+01	- ,12.3959#+33	. 77085146+02	.71518256+01	.2976079E+32			
25	•#3611#36+32	. 94:07525+02	.2132719E+03	-24030942+02	2726225E+02	.1341263E+03	2693477E+02	
	.23982U5E+J2	.13520842+.3	.2415111E+03	.2441652E+u3	•2045290E+02			
٩.6	.4573275(+)1	-302836A +02	.1214348d+03	.22776194+03	.24135548+03	.1020194E+03	.7027085E+01	
	.37040700+02	26743718+02	.23124165+03	.2823820E+03	4436411E+02			
87	15712971+01	.3249269E+U2	4P12970E+02	_24155u2E+03	_2844438e+03	5228423E+01	.5672986E+02	
	.*.3u636f+~?	- .1459398 +∪7	.11469550+13	•1507856 '+03	10303795+03			
22	4.2749676+0.2	. 30802658+02	1471 6928+03	1499383E+03	.1596342E+u3	9257545E+02	-3663335E+02	
	. *9245966+2		44965448+03	1139783E+u3	.2646276E+J2			and the second second
8.7	.342.397 +62	6061:004 +-12	23451602+01	4501503-+03	1139775*+03	4410255E+02	4102127E+02	
	.307-9190+02	.11297442+03	.15372078+03	-1300702E+03	.7121752E+02		· · · · · · · · · · · · · · · ·	
0	- 4749 - 4 +	.5 261710+-2	.11126195403	.10760066403	.12124625+03	.92463175+02	17091RRE+02	
·· ·								

•

•

					المان المالية الم			
	.31229642442	-3947227L+ 1	•2271893E+03	.2131661E+03	1985026E+02			}
91	1713765E+02	.3120045E+02	00589016401	•2272179%+03	.21817195+03	■19735928+02	.5678847E .	
	.5027205E+02	1112738E+U3	.1093411E+03	.1212025e+03	9248398E+02			
92	4104206E+02	.3070594E+02	1129946E+03	.1534928E+03	.1300329E+03	7123607E+02	.3819595E	
	.6959915E+u2	.2563660E+01	45055362+03	1140424E+03	. 4432717E+02		:	
93	.36681512+02	.6929626E+02	-2824398E+02	4500418E+03	1139401E+03	2620587E+02	4085410E+02	
	_ 30795965+u2	.14735882+03	.1 4909900+03	.1595599≦+03	.9290893E+02			
9 4	.5679010E+02	.5U32580E+02	.1462376E+03	.1048561E+03	.1507113E+03	.1033445E+03	1574711E+02	
	.3249877E+02	.4816814E+02	•2420158E+03	.2844150E+03	.5275U13E+U1		•	
4 95	.70217u8/+01	.3704394:+02	.26998446+02	.2316919E+03	.2823502E+03	•4638864E+02	.4597307E+01	
	.30289006+02	12170675+03	.2280959E+03	.2413646E+03	1023165E+03			
96	26983846+112	2397277E+62	1354837E+(3	.2421548E+03	.2441763E+03	5635720E+02	.8366599E+02	
1.1	-8400564E+02	2136816E+03	.7398913E+D2	2726331E+U2	1345551E+03			

Graficaremos el desplazamiento vertical de la placa a lo largo del eje X (Fig. IV.2) para cuando Y = 2.0 y Y = 6.0 que por simetría y observando los resultados son iguales (Ver gráfica IV.3

CURVA ELASTICA DE LA PLACA (Y = 2.0 6 Y = 6.0) GRAFICA IV.3

En la gráfica IV.4 se encuentran graficados los momentos Mx, para la curva elastica anterior (Y = 2.0 % Y = 6.0)

 $M_{X} = 521.2$

Mx = 521.5

DIAGRAMA DE MOMENTOS FLEXIONANTES

GRAFICA IV.4

De esta misma forma podriamos graficar deformaciones y momentos para cualquier punto de la placa, datos con los cuales podemos diseñar, por ejemplo en nuestro caso,el acero de refuerzo nec<u>e</u> sario para nuestra losa.

ANEXO "A"

LISTADO DEL PROGRAMA DE ELEMENTOS FINITOS.

Se incluye en este anexo el listado completo en Fortran del programa usado para resolver los ejemplos del Capítulo IV.


```
csī
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TATE 85 SEGMENT 012
                       SUPPOUTINE FACK: (NIC, MELNE, NAMAX, BB)
DIMENSION AA(1), FB(1), NBMAX(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               012:0000:0
012:0000:0
012:0000:5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Ħ
                       IL=NEC
                     AUTORE NET, NO.C
CCERC(4)
F(AA(4), NEL(3) BE(N)ERA(8)/AA(8)
F(AA(4), NEL(3) BE(N)ERA(8)/AA(8)
EF(1), NEL(3) BE(1), AA(8)
EF(1), NEL(3), AA(8)
EF(1), AA(8), 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ČCC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               012:0001:3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ñ1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2:0003:4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ă
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2:0004:1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Õ1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2:0009:3
                        IH=NRMAY(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2:0000:5
                      K=N
D0 350 I=IL,IH,NEC
K=K+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2:000F:0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ٥t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               012:0010:4
450 93(K)=98(K)-AA(1)+CC
400 CONTINUE
450 IL=2*NEC
500 IL=7L-1
N=Y-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               012
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ñi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ā
                       IF(N_LQ.0) RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Ô1
                        1H=4944X(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Ŏ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   002
                        K=11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             012 002
                        DO 6dio I=IL, IH, NEC
                       ¥=++1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             012:0024:5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ĉ
 600 83(d)=88(N)-#A(1)+98(K)
                      GO TO SOO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             č
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Öİ.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2:0026:5
                                                                                                                                                                                                                                                                                                                                                                                                                                                            C 012:002F:2
SEGMENT 012 IS 0036 LONG
```


CONCLUSION

Hemos visto, através de este trabajo, la facilidad con que se resuelven problemas relativamente complejos, usando el método -del elemento finito. La ventaja de este método radica en la gen<u>e</u> ralidad de su formulación. Si se incrementara el número de ele mentos para representar la placa, los pasos a seguir serián los mismos, independientemente de las condiciones de borde y del tipo de cargas, lo que no sucede con los métodos tradicionales. --En estos últimos, cualquier variación en condiciones de apoyo o de carga, hace el problema más complejo.

Otra de las ventajas del método del elemento finito es que las matrices que se usan son fáciles de manipular con la computadora.

El método del elemento finito, como todo, también tiene sus des ventajas. Una de ellas es que se obtiene una solución aproximada Esto se debe a que las funciones polínomiales que representan el comportamiento del desplazamiento en cada elemento sólo aproximan el desplazamiento exacto de la placa. Al incrementar el núme ro de elementos para obtener una solución más exacta, aumenta el tiempo y costo del análisis en la computadora.

Con el advenimiento de computadoras pequeñas, y de gran capaci dad, el problema de la máquina se ha vuelto relativamente sencillo. Actualmente existen máquinas de escritorio con capacidad de hasta 100 kilobytes y con acceso a disco de memoria. El costo de estas máquinas esta incluso al alcance de un Ingeniero particu lar. El problema que hemos analizado, placas sujetas a cargas transversales, tiene una aplicación práctica muy común, por ejemplo en el análisis de placas base para columnas, placas o losas planas con o sin agujeros, conexiones atornilladas para edificios, etc.

En la planta nucleoeléctrica Laguna Verde, Ver. se utilizó el -método del elemento finito para el análisis de placas base para soporteria de tuberias, donde fué practico pues esta planta cue<u>n</u> ta con aproximadamente con 6000 soportes con placas base.

El uso del elemento finito en estos casos representa como se apli can los últimos avances en ingeniería estructural y en tecnolo gía, para lograr estructuras mas seguras y económicas dejando al ingeniero en libertad para dedicarse a labores creativas, propo<u>r</u> cionando un mejor servicio a la sociedad.

REFERENCIAS

- Salazar Polanco. Estabilidad de las construcciones.
 Ed. Representaciones y Servicios de Ingeniería S.A.
- 2.- O.C. Zienkiewicz. El método de los elementos fini-tos. Ed. Reverte S.A. 1980
- 3.- Dr. Porfirio Ballesteros. Apuntes de análisis es--tructural. Centro de Educación continua U.N.A.M. --1978.
- 4.- Rodolfo Luthe. Análisis estructural. Ed. Represen-taciones y Servicios de Ingeniería, S.A.
- 5.- Hayrettin Kardestuncer. Introducción al análisis -estructural con matrices. Ed. Mcgraw-Hill.
- 6.- Carlos Magdaleno. Análisis matricial de estructuras reticulares. I.P.N.
- 7.- George Ed. Mase. Mecánica del medio continuo Ed. -Mcgraw-Hill.
- 8.- Sr. Timoshernko. Teoría de placa y láminas.