O zijui

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

ESCUELA NACIONAL DE ESTUDIOS PROFESIONALES ARAGON

ANALISIS Y PRONOSTICO DE LA TERMINAL FERROVIARIA DE GUADALAJARA, JALISCO Y PATIO UNIDO (FF. CC. N. DE M. Y F. C. P.)

TESIS PROFESIONAL

QUE PARA OBTENER EL TITULO DE :

INGENIERO CIVIL

PRESENTAN

TEODORO GARCIA ORTIZ

MIGUEL ANGEL ZERON LOPEZ

SAN JUAN DE ARAGON, ESTADO DE MEXICO

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

I N D I C E

i,		Pág
I	INTRODUCCION	1
1	Objetivo y Alcance	2
п	ANTECEDENTES	4
1	Ubicación de la Terminal	5
2	Instalaciones Actuales	5
3	Funciones Operativas	5
П	METODO DE PROYECCION DE TERMINALES	7
1	Introducción al Método	8
2	Curvas de Crecimiento	9
3	Factor de Agrupamiento	11
4	Tiempo de Permanencia en Patios	12
5	Capacidad de Estacionamiento Requerida	13
6	Holgura de los Patios	14
7	Secuencias	16
8	Vias de Estacionamiento	18
9	Resumen de la Metodologia	24

•		
		Pág.
IV	ESTUDIO DEL CASO -TERMINAL GUADALAJARA Y	
	PATIO UNIDO (N. DE M. Y F.C.P.)	26
1	Patios	27
1.1	Obtención de Muestreos	27
1.2	Tendencia de Crecimiento y Tráfico a Manejar	29
1.3	Determinación de Requerimiento de Capacidades y Tiem	
	pos	40
1.4	Observaciones Desprendidas de los Muestreos y Cálculos	57
1.5	Dimensionamiento de las Areas Requeridas para una	
He had a second	Terminal	62
1.6	Localización	75
	도 가능하다. 그런 사람들은 이 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	
V	METODOLOGIA PARA EL ANALISIS DE BENEFICIOS POR	
	INVERSIONES EN LA TERMINAL FERROVIARIA Y SU APLI	
	CACION	7 6
•		
1	Ahorro por Eliminación de demoras en trenes de camino	. 77
2	Ahorro por Eliminación de demoras en trenes transfers	80
3	Ahorro por reducción del parque necesario debido al pro-	
	ceso Terminal	83
4	Ahorros en locomotoras por eliminación de la Clasifica-	
	ción por empuje	84

		Pág
5	Ahorros por Tripulaciones en camino y distribución en	
	Patio	86
6	Ahorro del espacio de Estacionamiento necesario para	
	locomotoras y carros durante el tiempo de ocupación -	
	de vias e instalaciones de infraestructura	87
7	Beneficio Anual por Conservación de Locomotoras y -	
	carros	91
8	Beneficio Anual por Tráfico Desviado	94
9	Analisis Económico	96
0	Análisis Económico de Sensibilidad	97
VI	CONCLUSIONES Y RECOMENDACIONES	98

BIBLIOGRAFIA

I - INTRODUCCION

1. - Objetivo y Alcance

Con objeto de que se puedan establecer planes de inversión a largo plazo en el renglón de terminales ferroviarias en la red de los Ferrocarriles Nacionales de México, se hacer urgente deteminar la capacidad de servicio de que disponen las instalaciones actuales para el fin de conocer, en función de la calidad de los métodos de operación seguidos y de las mejoras factibles de lograrse por cualquier procedimiento, hasta cuando serán eficientemente útiles y -- cuando deben practicarse reformas físicas, ampliaciones o adición - de nuevas instalaciones de terminales al sistema.

Los pronósticos que se desprenden de un análisis como el citado, - - pueden conducir a recomendaciones de distintos ordenes; que van des de las que plantean la necesidad de modernizar los métodos de operación con asignación de monto y época, hasta las de atención inmediata como las que significan la separación actual de las áreas de - terreno necesarias, no tanto por el costo futuro que signifiquen, sino por las dificultades de localización adecuada que puedan representar en el futuro.

El método que se intenta, aún cuando fundamentalmente se refiereal diseño de nuevas terminales o proyecto de ampliaciones, es el propuesto para el análisis de las terminales ya existentes y para la determinación de deficiencias físicas u operacionales. En tales casos las conclusiones deben además comprender recomendaciones respecto de modificaciones que se proponen a los procesos que se están siguiendo.

II. - ANTECEDENTES

- 1.- Ubicación de la Terminal
- 2.- Instalaciones Actuales
- 3.- Funciones Operativas

1. - Ubicación de la Terminal

La Terminal de carga de Guadalajara perteneciente a los Ferrocarriles Nacionales de México, se localiza en el Km. 263 de la línea - - troncal Irapuato-Manzanillo (línea "I") y su operación corresponde a la División Guadalajara.

2.- Instalaciones Actuales

Las instalaciones con que cuenta la Terminal de Guadalajara son:

- a) Patio de Recibo
- b) Patio de Clasificación
- c) Patio de Despacho
- d) Talleres de reparación y conservación de locomotoras
- e) Talleres de reparación y conservación de carros
- f) Patio de vías de servicio al público
- g) Patio de vías para servicio de containers y Piggy Back
- h) Estación de Pasajeros
- i) Instalaciones Administrativas

3.- Funciones Operativas

Las lineas que convergen a la Terminal son:

- La linea "I" Trapuato Manzanillo
- La linea troncal Guadalajara-Nogales perteneciente al Ferroca-

rril del Pacifico

Cabe mencionar que el Ferrocarril del Pacífico cuenta con una terminal en Guadalajara que se encuentra prácticamente junto a la terminal de los Nacionales de México.

Puesto que la terminal es un nodo al cual convergen líneas que conducen a diferentes regiones del país, las funciones operativas funda--mentales que tiene encomendadas son las siguientes:

- a) Recibir y clasificar los carros procedentes de las diferentes lineas para su distribución a las industrias de Guadalajara, a otras lineas del sistema de Nacionales de México y del Ferroca
 rril del Pacífico.
- b) Recibir y clasificar los carros que se generan en la ciudad y los procedentes del Ferrocarril del Pacifico, para su distribu-ción en trenes a sus diferentes destinos.

III - METODO DE PROYECCION DE TERMINALES

- 1.- Introducción al Método
- 2.- Curvas de Crecimiento
- 3. Factor de Agrupamiento
- 4.- Tiempo de Permanencia en Patios
- 5. Capacidad de Estacionamiento requerida
- 6. Holgura de los Patios
- 7. Secuencias
- 8.- Vias de Estacionamiento
- 9.- Resumen de la Metodología

1. - Introducción al Método

Cuando se trata de proyectar una terminal de ferrocarril nueva, es necesario establecer las características generales de funciona-miento de la misma, fijando los tiempos y movimientos de proyecto, así como los años que debe servir sin necesidad de modifica-ciones

Lo primero nos lleva a lo tradicional: Contar con un patio de reci bo, un patio de clasificación, secciones de patio de reclasificación y despacho como se requiera, las vías necesarias de operación y cir culación que establezcan los enlaces necesarios en la terminal para hacerla funcional, y las instalaciones administrativas y de servicio conexas que tales terminales implican. En otra fase, debemos asignar secuencias, operaciones, tiempos de permanencia por etapa, etc. que tendrán como resultado un dimensionamiento adecuado de las instalaciones para una capacidad futura dada que debe satisfa-cerse, como consecuencia de los años en que debe permanecer en servicio la terminal. La etapa final comprenderá la determinación de las áreas de terreno necesarias, incluyendo posibles aumentos futuros de las instalaciones y en función de las áreas que pudieranrequerirse, la localización conveniente respecto del área o líneas servidas, así como la evolución y justificación del proyecto al quedar definidos todos los conceptos que intervienen.

2. - Curvas de Crecimiento

Conocidas las áreas industriales y líneas férreas que deben ser - servidas como meta fundamental del proyecto, debe procederse a - una evaluación actual del tráfico que pudi era resultar, con determinación de la tasa de crecimiento fundamentada en los datos históricos estadísticos de registro de la empresa, la cual una vez definida, se aplicará para el trazado de la curva de pronóstico de crecimiento, a partir de la cual se situarán los volúmenes de tráficofuturos.

Para el caso de terminales, la unidad comúnmente usada es el carro, pues éstos se manejan en cargados o vacíos y generalmente - son proporcionales en número a los distintos volúmenes de tonelaje manejado. Los volúmenes de referencia para el análisis se computan por día. Deben indicarse los máximos límites de variación -- respecto del promedio, para ser considerado como parámetro de - proyecto, sobre todo en los límites positivos que sitúan los valores pico presentados.

El nodo terminal estará equilibrado o será estable, cuando el promedio de los carros entrantes a la terminal es igual al promedio - de los carros salientes, y por lo tanto el número de procesos de la terminal desde que el carro se recibe hasta que es despachado a — otra línea o a la industria, corresponderá solamente a los carros -

recibidos o a los carros despachados.

3. - Factor de Agrupamiento

Una vez que se ha situado el número de carros por día que debe atenderse en el último año del período de servicio de la terminal, a partir de las curvas de crecimiento deben determinarse o pro-yectarse los factors de agrupamiento que se tendrán. Estos factores de agrupamiento deben acusar la forma de distribución de los carros durante el día, ya que tanto su recibo como su despacho es tá sujeto a determinados horarios de la industria y de cierto tipode personal de la propia empresa, por lo que siempre se presentarán concentraciones del tráfico a horas determinadas, mismas -que es necesario evaluar respecto de la distribución uniforme al -multiplicar ésta por un factor determinado. llamado aquí de agrupa Tal factor también puede determinarse de manera práctica en instalaciones en funcionamiento que van a ser estudiadas, ampliadas, auxiliadas por otras o sustituidas, mostrando directa-mente los periodos de concentración y el número de carros por -dia. Los factores de agrupamiento no necesariamente indican que las concentraciones sucedan simultáneamente en recibo y en despa cho y siempre en los mismos períodos; pero si acusan las concen traciones de carros que suceden y que es necesario considerar en los proyectos.

4. - Tiempo de Permanencia en Patios

El tiempo promedio de permanencia de carro en un patio determinado debe ser proyectado. Tal tiempo debe ser suficiente para -que se practiquen las labores del personal adecuadamente, como -inspecciones, registros, movimientos, acomodos, etc., y para permitir cierta acumulación que pudiera resultar de demoras que suce den en pasos posteriores, que obliguen a una permanencia mayor del carro en el patio de que se trate. Por ejemplo, si la joroba no se encuentra en condiciones de seguir un goteo con apego a loque se tenga programado por cualquier causa, será necesario sopor tar en recibo la acumulación causada, sin demérito de la facilidad de recepción de otros carros entrantes. Esto en realidad sólo setraducirá en un tiempo de permanencia mayor para el carro en el patio en cuestión, generándose demora respecto de lo proyectado ylimitandose la facilidad de operación por elevación del grado de ocu pación del patio. Cuando se trata de proyectos de mejora de opera ción, de ampliaciones o de instalaciones de ayuda, los datos co-rrespondientes podrán obtenerse directamente de muestreos; pero éstos deben calificarse en función de las dificultades de operaciónque bien pudiera ya presentar el patio, las cuales muchas veces pueden ser resueltas agilizando el proceso.

La fijación de los tiempos medios de permanencia en los patios de-

be realizarse con base en una buena programación de las laboresque deben efectuarse en cada patio, asignando tiempos y protecciones suficientes que aseguren su buen diseño, pues no debe olvidarse que la capacidad de estacionamiento del patio, al final de cuentas, será directamente proporcional al tiempo de permanencia media del carro.

5. - Capacidad de Estacionamiento Requerida

La capacidad de estacionamiento requerida se refiere al número medio de carros que pueden ocupar el patio en forma continua, y de los cuales se van obteniendo los grupos para loteo con el fin de quese tenga capacidad de nueva recepción. La capacidad de estacionamiento del patio es directamente proporcional al número total medio de carros recibidos diariamente, al tiempo medio de permanencia del carro, al mayor factor de agrupamiento que suceda durante el período de más concentración que se considere. Los picos quese presenten durante el año deberán ser absorbidos por las holguras o parte que debe permanecer desocupada, para disponer de facilidades de operación. La capacidad de estacionamiento la expresamos por:

$$C_E = \frac{C_{TD} F_{AM} T_{PM}}{24}$$
 en la que:

C_E = Capacidad de estacionamiento requerida en carros

C_{TD} = Número medio de carros diarios manejados en el patio

F_{AM} = Factor mayor de agrupamiento detectado o proyectado

 T_{MP} = Tiempo medio de permanencia del carro en horas

24 = Número de horas del día.

6. - Holguras de los Patios

Las holguras de los patios deben ser también proyectadas para tener las facilidades adecuadas de operación en los mismos. te estudio entendemos por holgura la diferencia entre la capacidad física del patio en carros y los requerimientos máximos de estacionamiento en carros, los cuales deben corresponder al picopronosticado en carros por día para el último año del período de servicio proyectado y para el período de agrupamiento máximo. El pico presumiblemente será igual al valor diario promedio para ese año, multiplicado por el factor de variación $\mathbf{F}_{\mathbf{V}}$ establecido en el proyecto o muestreado. Es decir, si en el primer mos un valor promedio A en carros por día y el pico correspondiente fué de B carros por día, el factor B/A se entenderá comode variación, o bien $100(\frac{B}{A} - 1)$, será el porciento de variación del pico respecto del promedio diario de referencia.

La holgura en porciento respecto de la capacidad total del patio-será:

$$H = 100 \frac{C_F - C_E^{F_V}}{C_E}$$

De tal formula se desprende que:

$$C_{F} = \frac{C_{E}^{F}V}{1 - H/100}$$

Y substituyendo CE de la formula del punto d, se tendrá:

$$C_{F}^{=} \frac{C_{TD}^{F_{AM}} T_{PM}^{F_{V}}}{24 (1 - H/100)} **$$

En las cuales:

C_F = Capacidad física del patio en carros

 C_E = Capacidad de estacionamiento requerida en carros

FAM = Factor de agrupamiento mayor, para el período de más concentración

F_V = Factor de variación al pico

 T_{PM} = Tiempo de permanencia media del carro en el patio en horas

24 = Número de horas del día

H = Holgura deseada en el patio en % de C_F o de la capacidad física del patio.

** Como se observa, pueden determinarse holguras diferentes para varios períodos de la vida económica de la terminal; pero la importante será la que corresponde al último año de tal vida y que no podrá ser menor del 15% de la capacidad de estacionamiento que se re
quiera para el año correspondiente. De tales fórmulas se determina
rá la capacidad física del patio en carros.

7. - Secuencias

Las capacidades de las funciones en cadena deben ser compatibles para mantener un flujo constante del proceso de manejo en la terminar analizada o proyectada.

El patio de clasificación por ejemplo, debe tener una capacidad de goteo futuro compatible con la capacidad de recibo proyectada y el factor de carros goteados en el último año de la vida económica - de servicio, incluyendo las consideraciones de pico y agrupamiento que se tengan y las protecciones razonables que se asignen para cu brir deficiencias propias motivadas por cualquier causa. Lo mis-mo debe considerarse en las terminales clasificadoras por impulso de locomotora, y siempre la capacidad de clasificación debe ser su perior a la de recibo para un mismo período de tiempo considerado.

Con base en lo anterior, introducimos dos nuevos conceptos al método: el primero lo definimos como frecuencia de clasificación, y - se refiere al número de carros que pueden ser goteados o clasificados por hora y, el segundo, que definimos como factor de clasificación, que se refiere a la parte del total de tiempo que puede clasificarse, ya que no es posible obtener la clasificación continua para el 100% del tiempo en el día.

La capacidad de clasificación se expresa por la ecuación siguiente para cualquier tipo de patio, en carros clasificados por día:

$$C_{CT}^{= 24 \times F_{CH} \times F_{UT}}$$
 en la que:

 C_{CT} = Capacidad de clasificación en carros totales por día.

 F_{CH} = Frecuencia de goteo o clasificación en carros por hora

F_{UT} = Factor de utilización del tiempo para goteo o clasificación, (0.75 como máximo para el último año del período de servicio proyectado).

24 = Número de horas del día.

Para el último año del período proyectado, el número de carros clasificados totales deberá ser mayor que el número total pico frecuen te de carros recibidos que se gotean, correspondientes a ese año, por lo que debe considerarse un factor de protección de goteo (F_p) Así la capacidad necesaria de clasificación en carros por día queda-expresada como sigue:

$$C_{CT} = F_{P}C_{TD} F_{G} F_{V}$$
 en la que:

 $\mathbf{F_{p}}$ = Factor de protección de goteo, no menor de 1.10 para el úl timo año

C_{TD} = Carros totales diarios que corresponden a recibidos o despa

F_G = Factor de carros goteados o proporción de carros goteados

 $\mathbf{F}_{\mathbf{V}}$ = Factor de relación pico a promedio de carros recibidos

La expresión anterior indica que el patio clasificador será capaz - de desalojar al patio de recibo al término del día. Pueden practicarse análisis para períodos menores al del día con base en las - mismas ecuaciones.

La capacidad de goteo o clasificación de un patio puede usarse directamente para el pronóstico de vida económica del mismo cuando se trata de instalaciones existentes; sin embargo, un simple incremento de la capacidad de goteo o clasificación que pudiera lograr
se puede aumentar la vida económica si se dispone de capacidad su
ficiente en los patios analizados.

8. - Vías de Estacionamiento

Con las ecuaciones ya anotadas en los puntos anteriores podrían calcularse fácilmente las capacidades físicas de los patios en carros;sin embargo, tales capacidades deben ser distribuídas en un número de vías adecuado a la longitud y número de trenes recibidos o des—
pachados, o en el caso de patios de clasificación, en relación al número de predestinos, destinos, separaciones y a la longitud de lotes o grupos que pudieran generarse o que se están generando, si el análisis se refiere a instalaciones existentes.

Es de hacerse notar que la capacidad física determinada se refiere solamente a las vías de estacionamiento requeridas y que, tanto — las vías de enlace y circulación, como las vías de trabajo para — efectuar eficientemente los movimientos del patio, no han sido con sideradas.

En un patio de recibo o despacho por ejemplo, debe ser conocidoel período de mayor concentración de trenes y transfers y la longi
tud de unos y otros con objeto de que el número de vías que se -proyecte corresponda a la mayor frecuencia de trenes. El número
de vías puede ser determinado a partir de las expresiones siguientes:

$$C_{\overline{PT}} = \frac{C_{\overline{TD}}}{T_{\overline{TD}}}$$
 en la que:

 C_{pT} = Carros promedio por tren recibido o despachado

CTD = Carros totales diarios recibidos o despachados

TTD = Trenes totales diarios recibidos o despachados.

$$F_{AT} = \frac{24 F_T}{T_{TD}}$$
 en la que:

FAT = Factor de agrupamiento de trenes recibidos o despachados

24 = Número de horas del día

F_T = Frecuencia de recepción o despacho de trenes durante el período de mayor concentración en trenes por hora

TTD = Trenes totales diarios recibidos o despachados.

$$\mathbf{F_R} = \frac{\mathbf{C_F}}{\mathbf{C_E}}$$
 en la que:

F = Factor de relación capacidad física a real

 C_F = Capacidad física del patio en carros

 C_{E} = Capacidad de estacionamiento del patio.

$$L_{MV} = F_R^C_{PT} L_{MC}$$
 en la que:

 L_{MV} = Longitud mínima de vía de estacionamiento

F_R = Factor de relación capacidad física a real

C_{pr} = Número promedio de carros por tren

.L_{MC} = Longitud media de carros manejados en metros, dependiendo de las proporciones de carros grandes y chicos

$$N_{MV} = \frac{C_F}{F_R C_{TM}}$$
 en la que:

 N_{MV} = Número mínimo de vías de estacionamiento

C_F = Capacidad física del patio en carros

F_R = Factor de relación de capacidad física a real

 $C_{\overline{TM}}$ = Carros arrastrados por el tren más largo recibido o despachado

De acuerdo con lo anterior podrán diseñarse los patios para una configuración de terreno determinada. Las vías de trabajo deben ser - por lo menos iguales a la mayor vía de estacionamiento que se ten-ga.

En los patios de clasificación el número de vías se calculará a - partir de otros conceptos, como sigue:

$$N_{VR} = N_P + N_D + N_{VUD}$$
 en la que:

 N_{ND} = Número de vías requeridas

N_p = Número de predestinos diferentes

N_D = Número de destinos diferentes

N_{VUD}= Número de vias para usos diversos

La capacidad de cada vía debe estar de acuerdo con el número medio de carros por lote, pero deben tenerse en cuenta los lotes mayores, los cuales podrán alojarse en varias vías de clasificación o en vías de longitud mayor. Debe tenerse mucho cuidado con el diseño, pues si se proyectan muchas vías largas para lotes muy pequeños, la holgura del patio puede rebasar la proyectada, por lo que debe tomarse muy en cuenta la siguiente expresión:

$$C_{MEV} = \frac{C_F}{N_{VR}}$$
 en la que:

C_{MEV} = Capacidad media por vía en carros

 C_F = Capacidad física calculada para el patio

N_{VR} = Número de vias requeridas en clasificación

En estos casos siempre convendrá tratar de hacer un estudio minucioso de los lotes manejados para que no resulten holguras demasia do grandes.

Una vez determinado un número de vías mínimo que puedan efec-tuar las funciones del patio, se determinará la anchura del patio,
considerando las vías de circulación y trabajo, de la siguiente ma
nera:

$$N_{TV} = N_{VR} + N_{VC}$$
 en donde:

 N_{TV} = Número total de vías

 $N_{
m VR}$ = Número de vías requeridas

 N_{VC} = Número de vías de circulación

$$A_V = (N_{TV} + 1)D_{EV}$$
 en donde:

 A_{vv} = Anchura de las vías del patio en metros

D_{EV} = Distancia entre centros de vías sucesivas en metros, y

la anchura total del patio estará expresada por:

$$A_{TP} = A_V + F_{RA} A_V + A_{FC} N_C + A_{FT} N_T$$
 en la que:

 A_{TD} = Anchura total del patio

F_{RA} = Factor de reserva para ampliaciones

A_{FC} = Anchura de franja de calzadas de acceso longitudinales

No = Número de calzadas proyectadas

 A_{FT} = Anchura de franja de troncales

N = Número de troncales de paso.

La longitud del peine de distribución de las vías se determinará como sigue:

$$L_P = A_V F_F/tg a$$
 en la que:

Lp = Longitud requerida para peines de distribución

F_F = Factor de forma del patio (rombos o trapecios)

A_V = Anchura en tre vias extremas

tg a = Tangente del ángulo de la vía de distribución respecto de las vías de estacionamiento.

La longitud media física en carros entre puntos de libraje de las vías de estacionamiento que se determine instalar, se calculará a partir de las expresiones:

Recibo
$$C_{PV} = \frac{C_F}{N_{VP}}$$
Clasificación $C_{PV} = \frac{C_F}{N_{VP}}$
Despacho $C_{PV} = \frac{C_F}{N_{VP}}$

Y para los tres casos: $L_V = C_{PV} L_{PC}$, siendo la longitud total:

$$L_T = C_{PV} L_{PC} + A_V F_F / tg a$$
 en las que:

C_{pv} = Capacidad media en carros por vía

 C_F = Capacidad física del patio de que se trate

N_{VP} = Número de vías proyectadas

N_{VIR} = Número de vías requeridas

 L_V = Longitud de via

L = Longitud media por carro

F_F = Factor de forma del patio

Y el área total del patio será de:

 $A_R = A_T \times L_T = Anchura total \times Longitud total$

El área total de la terminal estará expresada por:

$$A_T = F_D \times F_S \times \bigcup_{i=1}^{N} A_{Ri}$$
 en la que:

 $A_{\mathbf{T}}$ = Area total requerida por la terminal

F_D = Factor de distribución de terminal

F_S = Factor de proporción de áreas requeridas por los servicios conexos

A_{Ri} = Area requerida en cada patio previsto

i = Variable indicativa del número de patios

9 - Resumen de la Metodología

- 1. Determinar el número de carros actuales que se están manejando por día en cada patio, con definición de los valores pico.
- 2. Determinar las tasas de crecimiento y trazar las curvas de pronóstico del número de carros a manejar en el futuro.
- 3. Determinación de los factores de agrupamiento y variación al picoactual.

- 4. Determinación de las capacidades físicas de cada patio que se requerirán al último año de la vida económica del patio, o en perío dos parciales definidos para la ejecución de ampliaciones intermedias.
- 5. Determinación del número mínimo de vías para cada patio, de - acuerdo con sus funciones.
- 6. Determinación de las frecuencias de clasificación
- 7. Prediseño del patio para obtener el proceso fijado de tiempos y movimientos.
- 8. En los casos de modificación o aumento en instalaciones existentes, prediseñar las modificaciones.
- 9. Preproyecto de las instalaciones de administración y servicios
- Determinación de áreas requeridas y formas convenientes de acuerdo a los preproyectos.
- 11. Localización adecuada respecto del área o líneas a servir.
- 12. Estudios económicos de justificación
- 13. Conclusiones respecto del caso concreto de aplicación

- IV ESTUDIO DEL CASO. TERMINAL GUADALAJARA
 Y PATIO UNIDO (N. DE M.) Y F. C. P.)
- 1. Patios
- 1.1 Obtención de Muestreos
- 1.2 Tendencia de Crecimiento y Tráfico a Manejar
- 1.3 <u>Determinación de requerimientos de capacidad y</u>

 <u>Tiempos</u>
- 1.4 Observaciones desprendidas de los muestreos y
 Cálculos
- 1.5 <u>Dimensionamiento de las áreas requeridas para una</u>
 nueva terminal
- 1.6 Localización

1. PATIOS

1.1 Obtención de Muestreos

Con objeto de proceder a la aplicación del procedimiento de análisis en la Terminal de Guadalajara y Patio Unido F.C.P., se realizó un muestreo de los datos siguientes, los cuales aparecen en las tablas que se adjuntan.

- a) Rangos de carros recibidos por día en el año de referencia
- b) Cantidad de carros clasificados por día para el año de referencia
- c) Serie histórica de tonelajes netos recibidos en trenes de carga y transfers, con indicación de dirección y con determinación de tasa
 de crecimiento.
- d) Pronostico de trenes de carga y transfers, a recibir con aplicación de la tasa anterior.
- e) Carros recibidos durante el año de referencia y determinación de la tendencia de crecimiento de carros
- f) Muestreo para la determinación de factores de agrupamiento pararecibo, clasificación y despacho.
- g) Obtención a partir de planos, de las capacidades físicas actuales y las posibilidades de ampliación máxima para cada patio.
- h) Resumen de datos de la terminal, con determinación de otros factores para la aplicación del modelo
- i) Tablas de tiempos de permanencia en los diferentes patios, para -

la capacidad física actual y aumentada, por aplicación del modelo.

Esto se usa para la determinación de posibilidad de mejora de los tiempos de permanencia en el futuro.

- j) Tablas de las capacidades físicas futuras que se requerirán en cada patio de mantenerse los tiempos de permanencia actuales.
- k) Tabla para la determinación del año en que será necesaria la utilización de joroba y la frecuencia de goteo necesaria.
- L) Tablas de tiempos de permanencia en los patios de recibo, clasificación y despacho, con o sin mejora en la distribución deltráfico o factor de agrupamiento.

1.2 Tendencia de Crecimiento y Tráfico a Manejar

Para la determinación del tráfico y tendencia de crecimiento en la Terminal de Guadalajara, se obtuvieron los datos correspondientes-a los promedios de tonelaje neto recibido por mes, para cada año del período de muestra comprendido entre 1965 y 1979 en trenes - de carga. También se determinó la relación de carros totales recibidos a carros cargados recibidos en trenes de carga.

A partir de los datos obtenidos se determinó el índice de crecimiento medio anual, empleando el método conocido como "regresión lineal", tanto para la curva de tendencia exponencial como para la de tendencia lineal. La tasa resultante para la curva exponencial durante el período de muestra fué de 6.5%.

Ya situados las series de carros cargados y las tasas que les corresponden, se procedió a la determinación del valor de referencia en número de carros para el año de 1979, resultan tal referencia de 540 carros totales recibidos por día en la Terminal de Guadalajara, para el año citado.

DETERMINACION DE LA TASA DE CRECIMIENTO POR REGRESION LINEAL

OÑA	N	N _S	MILES DE TON./MES D	‡ 0 ²	La D	L 0	N D	NLnD	SERIE LINEAL CORREGIDA D'	SERIE EXP CORREGIDA D"	CALCULO DE LA TASA			
64	0	0							94.14		vn ² = 82.67-64 vn • 4.32			
<u>65</u>	1	1	132.4	17529.8	4.8858	23.8713	132.4	4.8858	105.1	113.0	vn. 4.32 18.67			
<u>66 </u>	2	4	135.0	18225.0	4.9053	24.0617	270.0	9.8105	116,15					
67	3	9	127.4	16230.8	4.8473	23.4966	382.2	14.5420	127.1	128.1	$m = \frac{F-AC}{VN^2} = 10.9764$			
68	4	16	152.9	23378.4	5.0298	25.2987	611.6	20,1191	138.0	136.4				
69	5	25	127.7	16307.3	4.8497	23.5194	638.5	24,2484	149.0	145,3	$m' = \frac{F' - AC'}{VM^2} = 0.062$			
70	6	36	147.0	21609.0	4.9904	24.9044	882.0	29.9426	160.	154.8				
71	7	49	129.0	16641.0	4,8598	23.6178	903.0	34.0187	170.9		b=c-am = 94.088			
72	8	64	166.2	27622.4	5.1132	26.1447	1329.6	40.9055	181.9	175.5	4 000			
73	9	81	200.3	40120.1	5.2998	28.0881	1802.7	47.6983	192.9		5= C-Am'= 4.668			
74	10	100	213.9	45753,2	5,3655	28,7887	2139.0	53,6550	203.8	199.1				
75	11	121	169.1	28594.8	5.1305	26.3219	1860.1	56.4354	214.8	212.0				
76	12	144	228,2	52075.2	5.4302	29.4872	2738.4	65.1624	225.8	225.8				
77	13	169	252.2	63604.8	5,5302	30.5833	3278.6	71.8926	236.8	240.5				
78	14	196	274.1	75130.6	5.6135	31.5112	3837.4	78,5890	247.7	256.1				
79	15	225	273.1	74583.4	5.6098	31,4702	4096.5	84.1470	258.7	272.8	-1 10 0704 br			
Σ	120	1240	2728.5	537405.8	77,4608	401.1652	24902.0	637.0523			o'=m++•10.9764xN+ o'= 94.088			
ıΣ	.8	82.67	181.9	35827.0	5.1640	26.7443	1660.13	42.47	b" e4.	2. m'n+b' 0.062N+4.668 e4.668(e0.0662)N				
ND.	A	8	С	E	c '			F	0" = 106.48x(1.0639) N TASA = 6. 4% (VD) = E-C = 2739.4 (VD) = E'-(C') = 0.0774					

Los datos usados para los pronósticos quedarán definidos como sigue:

Año de referencia	1979
Carros totales recibidos/día	540
Horizonte inmediato	1979-1994
Tasa para el horizonte inmediato (curva exponencia	6.5%
Factor quinquenal para el horizonte inmediato	$(1.065)^5 = 1.3700$
Horizonte lejano	1994-2019
Tasa para el horizonte lejano (curva exponencial)	4.5%
Factor quinquenal para el horizonte lejano	$(1.045)^5=1.2462$

RANGOS DE CARROS RECIBIDOS POR DIA EN LA TERMINAL DE

GUADALAJARA EN EL AÑO 1972

RANGOS RECIBIDOS POR DIA:

	Menos de 300	300 a	400 a	500 a 600	600 a 700	700 a 800	800 a 900	900 a 1000	1000 a 1100
MES	<u>ae 300</u>	<u>400</u>	<u>500</u>	000	100	800	900	1000	1100
ENERO	2		13	10	5	1	-	••	-
FEBRERO		5	12	9		2	-	:	-
MARZO		2		4	7	6	4	3	5
ABRIL		2	15	7	4	1	-	1	- &
MAYO	3	3	4	11	8	2	-		- 1
JUNIO		2	9	12	5	2	-	••	-
JULIO		5	6	9	9	1	1	•	-
AGOSTO	2	6	3	10	8	2	-		
SEPTIEMBRE		2	7	9	10	2	•	-	-
OCTUBRE		1	6	11	6	5	1	-	1
NOVIEMBRE		2	10	9	7	2	_	-	-
DICIEMBRE	2	. 3	7	9	7	2	1	-	
TOTAL DE DIAS EN 12 MESES:	9	33	146	110	76	28*	7	4	6 * *

^{*} Pico frecuente. Correspondiente a un máximo de 800 carros ** Pico frecuente. Correspondiente a un máximo de 1100 carros.

TABLA DE VALORES PARA TRENES DE CARGA RECIBIDOS EN GUADALAJARA

	TASA	4.5.%	TASA	6.5%	TASA 4.59	% y 6.5%*
AÑO	Trenes Rec. P'Mes	Trenes Rec. P'Dia	Trenes Rec. P'Mes	Trenes Rec. P'Día	Trenes Rec. P'Mes	Trenes Rec P' Día
1979	330	11	330	11	330	11
1984	411		452	15	452	15
1989	512	17	619	21	619	21
1994	638	21	848	28	848	28
1999	795	27	1162	39	1057	35
2004	991	33	1592	53	1317	44
2009	1235	41	2181	73	1641	32 -
2014	1539	51	2988	100	2045	68
2019	1918	64	4094	136	2548	85

miento de:

4.5% del año 15 en adelante.

^{*} Se consideró un creci-

^{6.5%} los primeros 15 años

TABLA DE VALORES PARA TRANSFERS RECIBIDOS

EN LA TERMINAL DE CUADALAJARA

Año	Factor 3.5 %	Transfers Rec. Por Mes	Transfers Rec. Por Dia
1979	1.000	210	7
1984	1.1877	249	8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
1989	1.4106	296	10
1994	1.6757	352	12
1999	1.9898	418	14
2004	2.3632	496	17
2009	2.8068	589	20
2014	3.3336	700	23
2019	3. 9593	831	28

CARROS RECIBIDOS EN TRENES Y TRANSFERS EN LA TERMINAL DE GUADALAJARA EN EL AÑO 1979

MES	TOTAL MENSUAL	PROMEDIO DIARIO
ENERO	15996	516
FEBRERO	14672	524
MARZO	16678	538
ABRIL	15210	507
MAYO	16151	521
JUNIO	16230	541
JULIO	17019	549
AGOSTO	16368	528
SEPTIEMBRE	16800	560.
OCTUBRE	18456	596
NOVIEMBRE	16170	539
DICIEMBRE	16182	522
PROMEDIO:		540

TABLA DE CRECIMIENTOS

NUMERO DE CARROS RECIBIDOS POR DIA EN TRENES Y TRANSFERS

TASAS DE CRECIMIENTO

A Ñ O	4.5%	6.5%	6.5% y 4.5%*
1979	540	540	540
1984	673	740	740
1989	839	1014	1014
1994	1045	1389	1389
1999	1302	1903	1731
2004	1623	2607	2157
2009	2022	3572	2688
2014	252 0	4894	3350
2019	3141	6705	4175

^{*} Se consideró de:

^{6.5%} los primeros 15 años

^{4.5%} del año 15 en adelante.

DATOS CORRESPONDIENTES A LA TERMINAL QUE SE ESTUDIA

No.	Concepto	Unidad	Valores Actuales	Valores Iniciales para proyecto
1	Año de iniciación	Año	1979	1979
2	Pico ocasional de carros re- cibidos (aprox.2% de los días del año)	carros/día	. 1100	125 8
3	Pico frecuente de carros recibidos (aprox.16% de los días del año)	carros/dĭa	800	915
4	Promedio carros recibidos	carros/día	. 540	618
5	Tasa de crecimiento calculada	%	6.5	6.5
6	Factor de relación pico ocasio- nal/promedio		2.04	1.964
7	Factor de relación pico frecuen- te/promedio		1.481	1.481
8	Relación pico ocasional/frecue <u>n</u> te		1,375	1,375
9	Promedio de carros clasifica- dos	carros	400	560
10	Factor de relación clasifica dos/recibidos		0.740	0.906
11	Frecuencia de clasificación	carros/ho	ra 45	45
12	Tiempo promedio de permanen cia en patio de recibo	horas	4.5	4.5
13	Tiempo promedio de permanen- cia en patio de clasificación	horas	4.5	4.5
14	Tiempo de permanencia en pa- tio de despacho	horas	9.0	9:0

No.	Concepto	Unidad	Valores Actuales	Valores Iniciales para proyecto
15	Capacidad física del patio de recibo			
	(18 mts.promedio/carro)	carros	385	537
16	Capacidad física del patio - de clasificación (18 mts. promedio/carro)	carros	252	587
17	Capacidad física del patio - de despacho (18 mts.promedio/carro)	carros	873	920
18	Posibilidad de ampliaciones- para el patio de recibo	carros	152	
19	Posibilidad de ampliaciones para el patio de clasificación	carros	335	
20	Posibilidad de ampliaciones para el patio de despacho	carros	47	370
21	Factor de agrupamiento pa- tio de recibo		1.760	1.500
22	Factor de agrupamiento patio de despacho		1.880	1.500
23	Capacidad de estacionamiento requerida en recibo $C_{E_1} = 540 \times 1.76 \times 4.5/24$			
and the second	$C_{E_2} = 618 \times 1.50 \times 4.5/24$	carros	178	174
24	Capacidad física requerida en recibo para 30% de holgura pi co	•		
	$C_{\mathbf{F_1}} = 178 \times 1.481/(1-30/100)$			
	$C_{\mathbf{F_2}} = 174 \times 1.481(1-30/100)$	carros	377	36 8

No.	Concepto	Unidad	Valores Actuales	Valores Inicial es para proyecto
25	Factor de utilización del - tiempo requerido en clasifica ción $F_{U_4} = 1.1 \times 0.740 \times 540/24 \times 45$			
	$F_{U_2} = 1.1 \times 0.906 \times 618/24 \times 45$	-	0.41	0.57
26	Tiempo de permanencia necesario en recibo para no rebasar la capacidad del patio TP = 24x385x0.7/540x1.76x1.481 M1			
	$T_{PM_2} = 24 \times 907 \times 0.7/618 \times 1.50 \times 1.481$	horas	4.59	11.10
27	capacidad de estacionamiento - requerida en clasificación $C_{E_1} = 400x1.760x4.5/24$			
	$C_{E_2} = 618x1.500x4.5/24$	carros	132 .	134
28	Capacidad física requerida en clasificación para 30% de hol-gura en pico C _{F1} = 132x1.481/(1-30/100)			
	$C_{\mathbf{F_2}} = 174 \times 1.481/(1-30/100)$	carros	279	368
29	Tiempo de permanencia máxi- mo que soporta la dimensión - del patio de clasificación Tp = 24x252x0.7/400xl.76xl.481 PM1			
	$T_{P_{M2}} = 24x587x0.7/618x1.50x1.481$	horas	4.06	7.18
30	Capacidad de estacionamiento - requerida en despacho, carros clasificados			
	$C_{E_1} = 400x1.88x9.0/24 * C_{E_2} = 618x1.50x9.0/24 *$	carros	282	348

No.	Concepto	<u>Unidad</u>	Valores Actuales	Valores Iniciale para proyecto
31	Capacidad física requerida en despacho para 30% de holgura en el pico $C_{\mathbf{F_1}} = 282 \times 1.481/0.70$ $C_{\mathbf{F_2}}^{\mathbf{F_1}} = 340 \times 1.481/0.70$	carros	597	73 6
32	Tiempo de permanencia máxi mo que soporta la dimensión del patio de despacho proyec tado tráfico (N. de M.).			
	T _P =24x873x0.85/400x1.88x1.48 M ₁ T _P =24x920x0.85/618x1.50x1.48		15.99	13.67

^{*} Se supone que los carros no clasificados no hacen permanencia en los patios de despacho.

1.3 Determinación de requerimientos de capacidades y Tiempos

Se anexan tablas que indican las capacidades físicas necesarias en los patios de recibo, clasificación y despacho para diferentes tiempos de permanencia de los carros y varias tasas decrecimiento.

Asimismo, se incluye tabla que muestra los requerimientos de capacidad y frecuencia de clasificación y año en que será nece saria la utilización de joroba.

PATIO DE : RECIBO

CAPACIDAD NECESARIA

(NUMERO DE CARROS)

AÑO	CARROS: Recibidos			TI	EMPO I	DE PER	MANEN	CIA EN E	EL PATIO	(HORA	s)		· .
	POR DIA (CTD)	2,5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0
1979	540	209	251	293	335	377	419	461	503	545	587	629	67
1984	673	260	313	365	417	470	522	574	627	679	732	784	83
1989	839	325	390	455	520	585	651	716	781	846	912	977	104
1994	1045	404	486	567	648	730	811	892	973	1055	1136	1217	129
1999	1302	504	605	707	808	909	1011	1112	1213	1314	1416	1517	161
2004	. 1623	628	754	881	1007	. 1133	1259	1386	1512	1638	1764	1890	201
2009	2022	783	940	1097	1255	1412	1569	1727	1884	2041	2199	2356	250
2014	2520	975	1172	1368	1564	1760	1956	2152	2348	2544	2740	2936	312
2019	3141	1216	1460	1704	1948	2193	2437	2681	2926	3170	3414	3658	389

CAPACIDADFISICA FACTOR DE AGRUPAMIENTO FACTOR DE PICOS TIEMPO DE PERMANENCIA HOLGURA DEL PATIO CARROS RECIBIDOS POR DIA TASA ANUAL DE CRECIMIENTO CONSIDERADA

FAM . 1.78 FV - 1.481

CTD . 540

VIDA UTIL CON CAPACIDAD ACTUAL

IN A STATE OF THE CASE OF THE STATE OF THE CASE OF THE

PATIO DE : RECIBO

CAPACIDAD FISICA NECESARIA

(NUMERO DE CARROS)

AÑO	CARROS: Recibidos			TI	EMPO	DE PER	MANEN	CIA EN E	EL PATIO	(HORA	Sì	·	
4110	POR DIA (CTD)	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8. p
1979	540	209	251	293	335	377	419	461	503	545	587	629	67
1984	740	286	344	401	459	517	574	632	689	747	804	862	91
1989	1014	392	471	550	629	708	787	865	944	1023	1102	1181	125
1994	1389	538	646	754	862	970	1078	1186	1294	1402	1510	1618	172
1999	1903	736	884	1032	1180	1328	1476	1624	.1772	1920	2068	2216	2361
2004	• 2607	1009	1212	1415	1617	1820	2023	2226	2428	2631	2834	3037	323
2009	3572	1382	1660	1938	2216	2494	2771	3049	3327	3605	3883	4160	4432
2014	4894	1894	2275	2655	3036	3416	3797	4178	4558	4939	5 3 20	5700	6072
2019	i 6705 i	2595	3116	3638	4159	4681	5202	5724	6245	6767	7288	7810	831
	•										!		

CAPACIDADFISICA
FACTOR DE AGRUPAMIENTO
FACTOR DE PICOS
TIEMPO DE PERMANENCIA
HOLGURA DEL PATIO
CARROS RECIBIDOS POR DIA
TASA ANUAL DE CRECIMIENTO CONSIDERADA

CTD FAM TPM FV

#AM : 1.76 #V : 1.481 TPM : 30%

540 CTO: 6.5 VIDA UTIL CON CAPACIDAD ACTUAL

385

PATIO DE : CLASIFICACION

CAPACIDAD FISICA NECESARIA

(NUMERO DE CARROS)

AÑO	CARROS: Clasificados			ŢΙ	E M PO	DE PER	MANEN	CIA EN	EL PATI	O (HORA	s)		
A 11 U	POR DIA (CTD)	2,5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0
1979	400	155	186	217	248	279	310	341	372	403	435	466	497
1984	5: 498	193	231	270	309	348	386	425	464	502	542	580	619
1989	621	241	289	337	285	433	481	529	578	626	676	724	772
1994	774	300	360	420	480	540	600 '	660	720	780	842	902	962
1999	964	374	449	523	598	673	748	822	. 897	972	1049	1124	1199
2004	. 1202	466	559	652	745	839	932	1025	1118	1212	1307	1401	1494
2009	1498	581	697	813	929	1045	1161	1277	1393	1509	1629	1745	1861
2014	1867	723	868	1013	1157	1302	1447	1592	1736	1881	2030	2175	2320
2019	2326	902	1082	1262	1442	1623	1803	1983	2164	2344	253 0	2710	2891

CF= CTD FAM TPM FV

CAPACIDADFISICA
FACTOR DE AGRUPAMIENTO
FACTOR DE PICOS
TIEMPO DE PERMANENCIA
HOLGURA DEL PATIO
CARROS RECIBIDOS POR DIA
TASA ANUAL DE CRECIMIENTO CONSIDERADA

CF FAM : 1.76 FV : 1.481 TPM :

H 30% CTD 400 VIDA UTIL CON CAPACIDAD ACTUAL 25

PATIO DE: CLASIFICACION

CAPACIDAD FISICA NECESARIA

(NU MERO DE CARROS)

AÑO	CARROS: Clasificados			TI	EMPO	DE PER	MANEN	CIA EN E	EL PATIO) (HOR	AS)		
A N O	POR DIA (CTD)	2,5	3.0	3.5	4.0	4 , 5	5.0	5.5	6.0	6.5	7.0	7.5	8.0
1979	400	155	186	217	248	279	310	341	372	403	435	466	497
1984	548	212	255	297	340	382	425	467	510	552	596	638	681
1989	750	291	349	407	466	524	582	640	698	756	817	875	. 933
1994	1029	399	478	558	638	718	797 '	877	9574	·1036	1119	1198	1278
1999	1409	546	655	765	874	983	1092	1202	1311	1420	1533	1642	1771
2004	• 1931	748	898	1048	1197	1347	1497	1646	1796	1946	2100	2249	2399
2009	2646	1025	1230	1435	1640	1845	2050	2255	2461	2 666	2877	3082	3287
2014	3625	1405	1686	1966	2247	2528	2809	3090	3371	3652	3942	4223	4503
2019	4966	1924	2309	2694	3079	3464	3849	4234	4619	5004	5400	5786	6170
	•			•									

CF= CTD FAM TPM FV 24 (1-H/100)

CAPACIDADFISICA
FACTOR DE AGRUPAMIENTO
FACTOR DE PICOS
TIEMPO DE PERMANENCIA
HOLGURA DEL PATIO
CARROS RECIBIDOS POR DIA
TASA ANUAL DE CRECIMIENTO CONSIDERADA

CF FAM = 1.76 FV = 1.481

TPM: 30%

CTD = 400 T = 6.5 VIDA UTIL CON CAPACIDAD ACTUAL

YIDA UTIL CON CAPACIDAD AMPLIADA 587

252

PATIO DE : DESPACHO

CAPACIDAD FISICA NECESARIA

(NUMERO DE CARROS)

			•	•				•					
ΑÑΟ	CARROS: Despachados			TI	EMPO	DE PER	MANEN	CIA EN E	L PATIO	HOR	AS)	 	
~	POR DIA (CTD)	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7. 0	7.5	8.0	8.5	9.0
1979	400	232	265	298	332	365	398	431	464	497	530	563	597
1984	498	289	330	371	414	455	496	537	578	619	660	702	744
1989	621	360	412	463	516	567	618	669	· 721	772	823	874	927
1994	774	449	513	577	643	706	770	834	898	962	1026	1090	1155
1999	965	560	639	719	801	880	960	1039	1119	1199	1278	1358	1440
2004	. 1202	697	796	896	998	1097	1196	1295	1395	1494	1593	1692	1794
2009	1498	869	993	1116	1243	1367	1491	1614	1738	1861	1985	2109	2236
2014	1867	1083	1237	1391	1550	1704	1558	2012	2166	2320	2474	2628	2786
2019	2327	1349	1541	1733	1931	2123	2315	2507	2699	2891	3083	3275	3472
	•												

CF= CTD FAM TPM FV 24 (1-H/100)

CAPACIDADFISICA
FACTOR DE AGRUPAMIENTO
FACTOR DE PICOS
TIEMPO DE PERMANENCIA
HOLGURA DEL PATIO
CARROS RECIBIDOS POR DIA
TASA ANUAL DE CRECIMIENTO CONSIDERADA

FAM = 1.88 FV = 1.481

H • 30%

T • 4.5 9

VIDA UTIL CON CAPACIDAD ACTUAL 873

PATIO DE : RECIBO PROYECTO

CAPACIDAD FISICA NECESARIA

(NUMERO DE CARROS)

AÑO	CARROS: Recibidos			TI	EMPO	DE PER	MANEN	CIA EN E	L PATI	O (HORA	s)		
A N O	POR DIA (CTD)	2.5	3.0	3,5	4.0	4.5	5.0	5,5	6.0	6.5	7.0	7.5	8.0
1979	618	204	245	286	32 6	367	409	449	490	531	572	612	65
1984	. 770	254	305	356	406	457	510	560	611	662	713	763	81
1989	960	317	380	444	506	570	635 .	697	761	825	888	950	101
1994	1196	395	474	553	631	710	792	869	948	1028	1107	1184	12 6
1999	1490	492	591	690	786	885	986	1083	1182	1281	1380	1476	157
2004	. 1857	613	73 6	860	980	1103	1229	1349	1473	1596	1719	1839	196
2009	2315	764	918	1071	1221	1375	1532	1682	1835	1989	2142	2292	244
2014	2884	952	1144	1335	1522	1713	1909	2096	2287	2478	2670	2856	· 3 05
2019	3595	1187	1425	1663	1896	2135	2379	2612	2850	3088	3327	3560	380
	•												

CF= CTD FAM TPM FV . 24 (1-H/100)

CAPACIDAD FISICA
FACTOR DE AGRUPAMIENTO
FACTOR DE PICOS
TIEMPO DE PERMANENCIA
HOLGURA DEL PATIO
CARROS RECIBIDOS POR DIA
TASA ANUAL DE CRECIMIENTO CONSIDERADA

FAM = 1.500 FV = 1.481 TPM =

H 30%

CTD :

• 4.5 9

VIDA UTIL CON CAPACIDAD ACTUAL 385

PATIO DE: RECIBO PROYECTO

CAPACIDAD FISICA NECESARIA

AÑO	CARROS: Recibidos			TI	EMPO	DE PER	MANEN	CIA EN	EL PATI	O(HORA	15)		•
ANU	POR DIA (CTD)	2.5	8.0	3,5	4.0	4.5	5.0	5.5	6.0	6 , 5	7.0	7.5	8.0
1979	618	204	245	286	326	367	409	449	490	531	572	612	654
1984	847	279	336	392	447	503	560	615	671	728	784	838	896
1989	1160	383	460	537	612	689	768	843	920	997	1074	1149	1228
1994	1589	525	630	736	838	944	1052	1155	12 60 i	1366	1471	1574	1682
1999	21 78	719	863	1008	1149	1293	1441	1582	1727	-1871	2016	2156	2304
2004	2984	985	1183	. 1381	1574	1772	1975	2168	2366	2564	2761	2 95 5	3157
2009	4088	1349	1621	1892	2156	2427	2705	2970	3241	3512	3783	4048	4326
2014	5600	1849	2220	2592	2954	3326	3706	4069	4441	4812	51 84	5546	5927
2019	7673	2533	3042	3551	4048	4557	5078	5575	6084	6593	71 02	7599	8120
1. <u>.</u>				•									

CTD FAM TPM FV 24 (1-H/100)

CAPACIDADFISICA FACTOR DE AGRUPAMIENTO FACTOR DE PICOS TIEMPO DE PERMANENCIA HOLGURA DEL PATIO CARROS RECIBIDOS POR DIA TASA ANUAL DE CRECIMIENTO CONSIDERADA

FAM = 1.50

FV - 1.481

T . 6.5

VIDA UTIL CON CAPACIDAD ACTUAL 385

PATIO DE : CLASIFICACION PROYECTO (Incluye Tráfico del F.C.P)

CAPACIDAD FISICA NECESARIA

(NUMERO DE CARROS)

AÑO	CARROS: Clasificados			TI	EMPO I	DE PERI	MANENC	IA EN E	L PATIO	HORA	S)		
	POR DIA (CTD)	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0
1979	560	185	222	259	296	333	370	407	444	481	518	555	592
1984	. 698	231	277	323	369	415	461	507	553	599	646	692	738
1989	870	287	345	402	460	517	575	632	690	747	804	86 2	919
1994	1084	358	430	501	573	644	716	788	859	931	1002	1074	1146
1999	1351	446	535	625	714	803	892	982	1071	1160	1249	1338	1428
2004	• 1683	556	667	778	890	1001	1112	1223	1334	1446	1557	1668	1779
2009	2097	693	831	970	1109	1247	1386	1524	1663	1801	1940	2079	2217
2014	2614	864	1036	1209	1382	1554	1727	1900	2072	2245	2417	2590	· 27 63
2019	3257	1077	1291	1506	1722	1937	2152	2367	2582	2 798	3013	3228	3443
				***	* * * * * * * * * * * * * * * * * * * *								•

24 (1-H/100) 3

CAPACIDADFISICA FACTOR DE AGRUPAMIENTO FACTOR DE PICOS TIEMPO DE PERMANENCIA HOLGURA DEL PATIO CARROS RECIBIDOS POR DIA TASA ANUAL DE CRECIMIENTO CONSIDERADA

FAM = 1.50

FV = 1.481

VIDA UTIL CON CAPACIDAD ACTUAL

252

VIDA UTIL CON CAPACIDAD AMPLIADA

587

DE : GUADALAJARA

PATIO DE : DESPACHO PROYECTO

CAPACIDAD FISICA NECESARIA

AÑO	CARROS: Despachados			TI	E M PO	DE PER	MANEN	CIA EN	L PATIO	HORA	S)		
	POR DIA (CTD)	3,5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0
1979	618	286	327	368	409	449	490	531	572	613	654	695	735
1984	770	356	408	459	510	560	611	662	713	764	815	866	916
1989	960	444	508	571	635	697	761	825	888	972	1016	1079	1141
1994	1196	553	633	712	792	869	948	1028	1107	1186	1266	1345	1422
1999	1490	690	789	888	986	1083	1182	1281	1380	1478	1577	1676	1773
2004	•1857	860	983	1106	1229	1349	1473	1596	1719	1842	1966	2089	2209
2009	2315	1071	1225	1378	1532	1682	1835	1989	2142	22 96	2449	2603	2753
2014	2884	1335	1526	1718	1909	2 096 ·	2287	2478	2670	2 861	3052	3244	3430
2019	3595	1663	1902	2140	2379	2612	2850	3088	3327	3565	3804	4042	4275

CTD FAM TPM FV 24 (1-H/100)

CAPACIDADFISICA FACTOR DE AGRUPAMIENTO FACTOR DE PICOS TIEMPO DE PERMANENCIA HOLGURA DEL PATIO CARROS RECIBIDOS POR DIA TASA ANUAL DE CRECIMIENTO CONSIDERADA FAM : 1.50

1.481 30%

873 VIDA UTIL CON CAPACIDAD ACTUAL

A Series of the series of the

CAPACIDAD FISICA NECESARIA

(NUMERO DE CARROS)

AÑO	CARROS: Despachados			TI	EMPO	DE PER	MANEN	CIAENE	L PATIO	HORA	s)	•	 .
A 10 O	POR DIA (CTD)	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0
1979	618	2 86	327	368	409	449	490	531	572	613	654	695	735
1984	847	392	448	504	560	615	671	728	784	840	896	952	1007
1989	· 1160	537	614	691	760	843	920	997	1074	1151	1228	1305	1380
1994	1589	736	841	946	1052	1155	1260	1366	1471	1577	1682	1787	1890
1999	2178	1008	1152	1297	1441	1582	1727	1871	2016	2160	·. 2304	. 2449	2590
2004	. 2984	1381	1579	1777	1975	2168	2366	2564	2761	2959	3157	3355	3548
2009	4088	1892	2163	2434	2705	2970	3241	3512	3783	4055	4326	4597	4862
2014	5600	2592	2963	3335	3706	4069	4441	4812	5184	5555	5927	6298	6661
2019	7673	3551	4060	4569	. 5078	5575	6084	6593	71 02	· 7611	8120	8629	9126
	•							•					

CF= CTD FAM TPM FV 24 (1-H/100)

CAPACIDAD FISICA
FACTOR DE AGRUPAMIENTO
FACTOR DE PICOS
TIEMPO DE PERMANENCIA
HOLGURA DEL PATIO
CARROS RECIBIDOS POR DIA
TASA ANUAL DE CRECIMIENTO CONSIDERADA

FAM = 1.50 FV = 1.481

н 30%

T = 6.5 %

VIDA UTIL CON CAPACIDAD ACTUAL 87

TERMINAL DE L'OCCOMMENDATION

PATIO DE : DESPACHO PROYECTO

(Incluyendo F.C.P).

CAPACIDAD FISICA NECESARIA

(NUMERO DE CARROS

AÑO	CARROS: Despachados			TI	EMPO	DE PER	MANEN	IA EN E	L PATIC	HORA	S) .	•	· · · · · · · · · · · · · · · · · · ·
ANU	POR DIA (CTD)	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0
1979	618	286	327	368	409	449	490	531	572	613	654	695	735
1984	770	356	408	459	510	560	611	662	713	764	815	866	916
1989	- 960	444	508	571	635	697	761	825	888	952	1016	1079	1141
1994	1196	553	633	712	. 792	869	948 `	1028	1107	1186	1266	1345	1422
1999	1490	690	789	888	986	1083	1182	1281	1380	1478	1577	1676	1773
2004	1857	860	983	1106	1229	1349	1473	1596	1719	1842	1966	2 08 9	2209
2009	2315	1071	1225	1378	1532	1682	1835	1989	2142	22 96	2449	2603	2753
2014	2884	1335	1526	1718	1909	2096	2287	2478	2670	2 86 1	3052	3244	3430
2019	3595	1663	1902	2140	2379	2612	2850	3088	3327	3565	3804	4042	4275
	•		•										

CF= CTD FAM TPM FV

CAPACIDAD FISICA
FACTOR DE AGRUPAMIENTO
FACTOR DE PICOS
TIEMPO DE PERMANENCIA
HOLGURA DEL PATIO
CARROS RECIBIOOS POR DIA
TASA ANUAL DE CRECIMIENTO CONSIDERADA

CF . 1.50

FV • 1.481

TPM : 30%

T • 4.5

VIDA UTIL CON CAPACIDAD ACTUAL 873

· PATIO DE : DESPACHO PROYECTO

(Incluyendo FCP)

FISICA NECESARIA

(NUMERO DE CARROS)

A Ñ O	CARROS: Despachados			Ţl	E M PO	DE PER	MANENO	IA EN E	L PATIC	HORA	15)		
	POR DIA (CTD)	3.5	4.0	4.5	5,0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0
1979	618	286	327	368	409	449	490	531	572	613	654	695	735
1984	847	392	448	504	560	615	671	728	784	840	896	952	1007
1989.	. 1160	537	614	691	768	843	920	997	1074	1151	1228	1305	1380
1994	1589	736	841	946	1052	1155	1260	1366	1471	1577	1682	1787	1890
1999	2178	1008	1152	1297	1441	1582	1727	1871	2016	2160	2304	2449	2590
2004	• 2 98 4	1381	1579	1777	1975	2168	2366	2564	2761	2959	3157	3355	3548
2009	4088	1892	2163	2434	2705	2970	3241	3512	3783	4055	4326	4597	4862
2014	5600	2572	2963	3335	3706	4069	4441	4812	5184	5555	5927 .	6298	6661
2019	7673	3551	4060	4569	5078	5575	6084	6593	71 02	7611	.8120	8629 .	9126

CAPACIDADFISICA FACTOR DE AGRUPAMIENTO FACTOR DE PICOS TIEMPO DE PERMANENCIA HOLGURA DEL PATIO CARROS RECIBIDOS POR DIA TASA ANUAL DE CRECIMIENTO CONSIDERADA FAM = 1.50

VIDA UTIL CON CAPACIDAD ACTUAL VIDA UTIL CON CAPACIDAD AMPLIADA 1290

PATIO DE CLASIFICACION

CAPACIDAD Y FRECUENCIA DE CLASIFICACION

		de Crecimie			de Crecimie			Crecimiento	
Afio	Carros Recibidos Por Día	Capacidad Necesaria Clasf./Dľa	Frecuencia Necesaria Clasf./Hora	Carros Recibidos Por Día	Capacidad Necesaria Clasf/Día	Frecuencia Necesaria Clasf/Hora	Carros Recibidos Por Día	Capacidad Necesaria Clasf./Dia	Frecuencia Necesaria Clasf. Hora
1979	540	651	3 6	540	651	36	540	651	36
1984	673	811	45	740	892	49	740	892	49
1989	839	1011	56	1014	1222	68	1014	1222	68
1994	1045	1260	70	1389	1674	93	1389	1674	93
1999	1302	1570	87	1903	2294	127	1 731	2086	116 g
2004	1623	1957	108	2607	3143	174	2157	2600	144 ,
2009	2022	2438	135	3572	4306	238	2688	3240	180
2014	2520	3038	168	4894	5900	326	3350	4037	224
2019	3141	37 86	209	6705	8083	450	4175	5031	279
	•	dad de Clasifi de Picos	icación -	$\mathbf{F}_{\mathbf{V}}^{\mathbf{CT}} = 1$	l • 481	C = 1	I.1 F _V C _{TD}	F _C	
	Factor	de Clasifica	ción -	$\mathbf{F_C} = 0$). 740				
	Carros	Recibidos		C _{TD}			C _{CT}		
	Frecuer	ncia de Clasi	ificación -	F _{CH}		$F_{CH} = \overline{2}$	24 x F _{UT}	•	
	Factor	de Utilizació	ón -	F _{rrp} =	0.75		UT		•

PATIO DE CLASIFICACION (Proyecto)

CAPACIDAD Y FRECUENCIA DE CLASIFICACION

	Tasa de	e Crecimient	to 4.5%	Tasa	de Crecimie	nto 6.5%	Tasa de	Crecimient	o 6.5v4.59
Año	Carros Recibidos Por Día	Capacidad Necesaria Clasf./Dĭa	Frecuencia Necesaria	Carros Recibidos Por Día		Frecuencia Necesaria Clasf./Hora	Carros Recibidos Por Día	Capacidad Necesaria Clasf./Dĭa	Frecuenc Necesar
1979	618	912	51	618	912	51	618	912	51
1984	770	1137	64	847	1250	70	847	1250	70
1989	960	1416	79	1160	1712	96	1160	1712	96
1994	1196	1765	99	1589	2346	131	1589	2346	131
1999	1490	2199	123	2178	3214	180	1980	2924	163
2004	1857	2741	153	2984	4203	246	24 68	3643	203
2 009	2315	3416	191	4088	6032	337	3075	4540	254
2014	288 4	4257	238	5600	8265	462	3872	5658	316
2019	3595	5305	257	7673	11323	633	4776	7051	394
	Capacid	ad de Clasif	icación -	C _{CT}		C _{CT} = 1.	1 F _V C _{TD} F _C	-	
	Factor	de Picos		$\mathbf{F_V} = 1$.481		·		
	Factor	de Clasificac	eión -	$\mathbf{F_C} = 0$.906				
	Carros	Recibidos		$C_{\overline{TD}}$			C		
	Frecuer	ncia de Clas i	ificación -	F _{CH}		F = -	CT		
	Factor	de IItilizació	m -		0.75	OII &	4 x F _{UT}		**

Factor de Utilización

1.4 Observaciones desprendidas de los muestreos y cálculos

Del análisis de las tablas de capacidades y de los datos obtenidos en la Terminal de Guadalajara N. de M., se derivan las siguientes observaciones:

a)- Vida Util de las instalaciones actuales de N. de M.

PATIO DE RECIBO

El patio actual se encuentra practicamente saturado para los tiempos de permanencia que se tienen.

Realizando las ampliaciones propuestas para este patio en el proyecto elaborado por la Subgerencia de Vía y Estructuras, de los FF. - CC. N. de M., la capacidad aumentaría de 385 a 537 carros, con-lo cual las instalaciones podrán ser útiles para manejar el tráfico de N. de M. por un período de 8 y 5 años considerando tasas de crecimiento del 4.5% y 6.5% respectivamente con un tiempo de permanencia promedio de los carros en el patio de 4.5 horas.

Si la permanencia de los carros puede reducirse a 3.0 horas y el factor actual de agrupamiento baja de 1.76 a 1.50, la vida útil de las instalaciones será de 18 y 12 años respectivamente con tasas anotadas.

PATIO DE CLASIFICACION

Actualmente este patio casi no se utiliza por tener una capacidad insuficiente para el volumen de carros manejados. Las manio—bras de clasificación se efectúan en gran parte en los patios de -recibo y despacho.

A fin de contar con un patio de clasificación adecuado se proyectó una ampliación del patio actual de 252 a 587 carros estimándos se que una permanencia promedio de 4.5 horas podrá ser obtenible en tal instalación. Por lo tanto de mantenerse el mismo factor de agrupamiento actual (1.76), los períodos de vida útil delpatio serían de 17 a 12 años considerando tasas del 4.5 y 6.5% - respectivamente.

Si la permanencia de los carros puede reducirse a 3.0 horas yel factor de agrupamiento se reduce de 1.76 a 1.50, la instala-ción tendría una vida útil de 22 y 15 años respectivamente.

Para cualquiera de las tasas anotadas, en 5 años más se requerirá de una frecuencia de clasificación superior a 45 carros porhora, por lo que será necesaria la instalación de una joroba.

PATIO DE DESPACHO

Para los tiempos actuales de permanencia de los carros, este patio podrá soportar el incremento de tráfico por períodos de 10 y 7 años para las tasas de 4.5 y 6.5% respectivamente, manteniendo - constantes el factor de agrupamiento de 1.88 y la permanencia promedio de 9 horas.

Se tiene proyectado ampliar este patio de 873 a 920 carros, conlo cual la vida útil del mismo sería de 11 y 7 años para las tasas de crecimiento anotadas, reduciendo el factor de agrupamiento de-1.88 a 1.50 y el tiempo de permanencia medio de 9 a 7 horas.

De lo antes expuesto se deduce que las instalaciones actuales de - la terminal de Guadalajara son ya insuficientes en los patios de - recibo y clasificación, por lo que se hace necesario llevar a cabo ampliaciones a las instalaciones mencionadas, de acuerdo con el - proyecto existente elaborado por la Subgerencia de Vía y Estructuras de los FF.CC. N. de M., lo que aunado a mejoras operati-vas, permitirá que sean útiles para la atención del tráfico futuro - por lo menos durante un período de 7 años, considerando una tasa de crecimiento del 6.5% anual.

Se hará necesario que dentro de las mejoras físicas propuestas - para el patio de clasificación se incluya la construcción de una joroba.

Dado que este patio es el que tendría menor vida útil de las instalaciones de la Terminal Unida, se haría necesario incrementar - su capacidad o bien analizar la posibilidad de utilizar el actual patio del F.C.P. (370 carros) como patio de despacho auxiliar, conto cual la capacidad total de despacho sería de 1290 carros. Esto permitiría satisfacer los requerimientos de tráfico por períodos de 18 y 13 años para las tasas de crecimiento consideradas y tiem-po de permanencia de 7 horas.

De las observaciones anteriores, se aprecia que la vida útil de - las instalaciones proyectadas para operar como Terminal Unida - (incluyendo la utilización del patio actual del F.C.P), sería de 13 años tomando como base una tasa de crecimiento del tráfico del - 6.5% anual.

b) - Vida Util de las Instalaciones con las ampliaciones proyectadas Operando como Patio Unido.

PATIO DE RECIBO

La capacidad física de proyecto de este patio es de 537 carros, por lo que trabajando para atender tanto el tráfico de N. de M. como del F.C.P. tendrá una vida útil de 18 y 12 años consideran
do tasas de crecimiento del 4.5% y 6.5% respectivamente, tiempode permanencia de 3 horas y un factor de agrupamiento de 1.50.

PATIO DE CLASIFICACION

Para la capacidad proyectada del patio de clasificación de 587 carros, la instalación podría atender el tráfico de N. de M. y F.C.-P. por período de 22 y 15 años considerando tasas del 4.5% y 6.5% respectivamente, permanencia de 3 horas y factor de agrupamiento de 1.50.

PATIO DE DESPACHO

Las ampliaciones proyectadas para el patio de despacho en com-binación con las instalaciones del F.C.P., nos permitirán tener una capacidad física de 1290 carros, la cual será suficiente parala atención de N. de M. y F.C.P. por un período de 18 y 13 años
para tasas del 4.5% y 6.5% respectivamente, con permanencia de 7.0 horas y factor de agrupamiento de 1.50.

1.5 Dimensionamiento de las Areas requeridas para una Nueva Terminal

Con base en los análisis realizados anteriormente, se procedió a de terminar el área de la Nueva Terminal Unida.

Se considera que la Terminal proyectada deberá tener una vida útil con tráfico creciente de 30 años a partir de su puesta en operación, la que se ha estimado para el año de 1989, habiéndose tomado una tasa de incremento del tráfico de 5.5% anual.

Para el dimensionamiento del area necesaria de la nueva Terminalse han analizado 2 alternativas.

ALTERNATIVA 1

Mantener en operación indefinidamente la actual Terminal de Guada lajara, manejando un volumen de tráfico constante de 1056 carrospor día, incluyendo el del F.C.P.

Manejar todo el tráfico excedente a 1056 carros en la nueva Terminal Unida que para el año 2029 sería de 7931 carros por día.

ALTERNATIVA 2

Suprimir las instalaciones actuales y proyectadas en los patios de recibo, clasificación y despacho de la Terminal de Guadalajara y la
del F.C.P. manejando todo el volumen de tráfico en la nueva Ter-

minal, el cual para el año 2029 sería de 8987 carros por día

Se anexa una tabla que muestra la distribución de carros en cada Terminal para cada una de las alternativas enunciadas.

A continuación se hace el cálculo de las áreas de la nueva terminal para 8987 y 7931 carros por día, considerando permanencias de 3, 6 y 4 horas en los patios de recibo, clasificación y despacho respectivamente.

DISTRIBUCION DE CARROS CORRESPONDIENTES A LA TERMINAL DE GUADALAJARA

Y LA NUEVA TERMINAL PROPUESTA PARA CONDICIONES FUTURAS

			Factor		AL	TERNATIVA I	AL'	TERNATIVA' II	
Trai	Años nscurridos	Años de Referencia	Incremento Tasa 5.5%	Carros a Manejar	T.G.* Carros	Nueva Terminal Carros	T.G. Carros	Nueva Terminal Carros	
	0	1979	1.000	618	618		618	-	
	· 5	1984	1.307	808	808		808	- -	
	10	1989	1.708	1056	1056		1056	-	
	15	1994	2.232	1380	1056	324	•	1380	
	20	1999	. 2.917	1803	1056	747	·;	1803	1.
	25	2004	3.813	2357	1056	1301		2357	64 -
	30	2009	4.983	3080	1056	2024	-	3080	•
	35	2014	6.513	4026	1056	2970	-	4026	
	40	2019	8.513	5261	1056	4205		5261	
	45	2024	11.126	6876	1056	5820	· · · · · · · · · · · · · · · · · · ·	6876	
	50	2029	14.541	8987	1056	7931		8987	

^{*} T.G. - Terminal Guadalajara Unida.

DIMENSIONAMIENTO DE LAS AREAS REQUERIDAS PARA LOS DIFERENTES PATIOS DE UNA NUEVA TERMINAL

PATIO DE RECIBO

Capacidad de Diseño = 8987 carros

Constantes Consideradas

$$C_{TD} = 8987 \text{ carros}$$

$$F_V = 1.20$$

$$F_{AM} = 1.50$$

$$T_{PM} = 3.0 \text{ horas}$$

$$H = 30\%$$

Longitud de trenes mayores = 90 carros de 18 Mts.

- Capacidad de la vía entre puntos de libraje:

$$C_{V} = \frac{\text{Carros x }^{F_{V}}}{(1-H/100)} = \frac{90 \text{ x } 1.20}{(1-30/100)} = 154 \text{ carros}$$

- Capacidad física total requerida en el patio de recibo:

$$C_{F} = \frac{C_{TD \times}^{F_{V \times} F_{AM \times}^{T_{PM}}}}{24 (1 - H/100)} = \frac{8987 \times 1.20 \times 1.50 \times 3.0}{24 (1 - 30/100)} = C_{F}$$

- Número mino de vias requerido en recibo:

$$N_{MV} = \frac{C_F}{C_V} = \frac{2889}{154} = 19 \text{ vfas C'}_F = 19x154=2926 \text{ carros}$$

Vias de circulaculación adicionales = 4

Número total de vías a considerar = 19 + 4 = 23 vías Longitud de centro a centro de vías = 6.1 Mts. (20')

Ancho de Recibo:

Ancho por vías = $(23+1) \times 6.1 = 147$ Mts. 20% de protección para ampliaciones = $0.2 \times 140 = 30$ Mts. Franja para uso de troncales $(10 \text{ Mts.}) = 2 \times 10 = 20$ Mts. Ancho total requerido 207 Mts.

Longitud de Recibo:

Angulo de los peines de distribución = 11.30° Tang. = 0.2 Por longitud de vía = $154 \times 18 = 2772$ Mts.

Por peines de distribución = 147/0.2 = 735 Mts.

Longitud total a considerar = 3507 Mts.

Area Necesaria para Patio de Recibo:

A = Ancho por longitud = 207×3507 A = 725949 Mts.^2 = 72.6 Has.

PATIO DE CLASIFICACION

Requerimientos de joroba:

 $C_{TD} = 8987 \text{ carros por dia}$

Fp = 1.1 factor de protección de goteo

$$\mathbf{F}_{\mathbf{v}}$$
 = 1.20 factor pico

$$\mathbf{F}_{\mathbf{G}}$$
 = 0.906 factor de goteo

$$F_{U_{-}} = 0.75$$
 factor de utilización máxima de joroba

$$\mathbf{F}_{\mathbf{CH}}$$
 = ? = frecuencia de goteo requerida en joroba

$$C_{CT} = F_{P} F_{V} F_{G} C_{TD} = 1.1 \times 1.20 \times 0.906 \times 8987 = 10748 \text{ carros/dfa}$$

$$F_{CH} = \frac{C_{CT}}{24 \times F_{UT}} = \frac{10748}{24 \times 0.75} = 597 \text{ carros}$$

$$Para N_i = 1$$

$$F'_{CH} = \frac{597}{60} = \frac{10 \text{ carros/minuto}}{60}$$

Para
$$N_j = 2$$

$$F'_{CH} = \frac{597}{2 \times 60} = 5 \text{ carros por minuto}$$

Actualmente se conocen dos rangos de frecuencia de joroba:

- a) 2 a 4 carros/minuto; semiautomáticas
- b) 4 a 8 carros/minutos; automatización total

Para nuestro caso se necesitarian 1 de automatización total o 2 semiautomáticas

Requerimientos de área en clasificación:

$$C_{TD} = 8987 \text{ carros/dia}$$

$$F_{AM} = 1.50$$

$$T_{PM} = 6.0 \text{ horas}$$

$$\mathbf{F}_{\mathbf{G}}$$
 = 0.906 factor de goteo

Capacidad Física Requerida:

$$C_{\mathbf{F}} = \frac{C_{\mathbf{TD}} \times F_{\mathbf{AM}} \times T_{\mathbf{PM}} \times F_{\mathbf{V}} \times F_{\mathbf{G}}}{24 \ (1 - H/100)}$$

$$C_{\mathbf{F}} = \frac{8987 \times 1.50 \times 6 \times 1.20 \times 0.906}{24 \ (1 - 30/100)} = 5234 \text{ carros}$$

Número de vías consideradas para clasificación = 40

Longitud de la vía =
$$\frac{5234}{40}$$
 = 131 carros/vía

En virtud de que se estima una joroba, sólo se considerará un patio de clasificación, en caso de usar 2 semiautomáticas, no - se vería afectado el cálculo del área requerida, ya que los 2 - patios serían equivalentes en área a la aquí considerada.

Anchura para 40 vias con entrevia de 5.2 Mts. (17')

Vias de circulación para rodeo del patio = 4

Total de vias del patio = 40 + 4 = 44

Anchura por vias = (44 + 1) x 5.2 = 234

20% de incrementos = 0.2 x 234 = 47 Mts.

Franja para paso de troncales = 1 x 10 = 10 Mts.

Franja para calzadas = $2 \times 10 = 20$ Mts.

Anchura total del patio = 311 Mts.

Longitud de peines

Anchura de vias/Tg. = 234/0.2 = 1170 Mts. (romboidal)

Longitud de vias = $131 \times 18 = 2358$ Mts.

Area requerida = Anchura x Longitud

 $311 \times 3528 = 109.7$ Has.

PATIO DE DESPACHO

C_{TD} = 8987 carros por dia

 $F_{V} = 1.20$

 $F_{AM} = 1.50$

 $T_{pm} = 4.0 \text{ horas}$

H = 30% holgura

Longitud de trenes mayores = 90 carros de 18 Mts.

- Capacidad de la Via entre puntos de Libraje:

$$C_V = \frac{Carros \times F_V}{(1 - H/100)} = \frac{90 \times 1.20}{(1 - 30/100)} = 154$$

- Capacidad física total requerida en el patio de despacho:

$$C_{F} = \frac{C_{TD} F_{V} F_{AM} T_{PM}}{24 (1 - H/100)} = \frac{8987 \times 1.20 \times 1.5 \times 4.0}{24 \times 0.70} = 3851 \text{ carros}$$

- Número mínimo de vía requerida en despacho:

$$N_{MV} = \frac{C_F}{C_V} = \frac{3851}{154} = 25 \text{ vfas C'}_F = 25 \text{ x } 154 = 3850 \text{ carros}$$

- Vías de circulación adicionales = 4

Número total de vías a considerar = 25+4 = 29 vías

Longitud centro a centro de vías = 6.1 Mts (20')

Anchura de Despacho:

Anchura por vias = $(29+1) \times 6.1 = 183$ Mts. 20% de protección para ampliaciones = $0.2 \times 183 = 36$ Mts. Franja para paso de troncales $(10 \text{ Mts.}) = 1 \times 10 = 10$ Mts. Calzada de acceso o circulación $(10 \text{ Mts.}) = 2 \times 10 = 20$ Mts. Anchura total requerida = 249 Mts.

Longitud de Despacho:

Angulo de los peines de distribución <u>a</u> 11.30°tg. = 0.2 Por longitud de vía = $154 \times 18 = 2772$ Mts.

Por peines de distribución Anchura / tg. = 249/0.2 = 1245 Mts.

Longitud total a considerar = 4017 Mts.

Area necesaria para el patio de Despacho:

A = Ancho por longitud = $249 \times 4017 = 100$ Has.

Area total requerida:

El área total requerida se calcula a partir de la siguiente expresión:

$$A = F_D \times F_S \times \sum_{iF'}^{N} A_i,$$

o sea que es la suma de las áreas de los patios individuales $\operatorname{mul-tiplicada}$ por un factor posible de distribución (F_D) que se ha con-

siderando de 1.15 y un factor de proporción de requerimiento para servicio de talleres de carros y locomotoras, abastecimientos, almacenes, edificios administrativos y de conservación; tal factor se ha determinado (FS) como factor de servicios anexos y seha considerado de 1.3

$$A = 1.15 \times 1.3 \times (72.6+109.7+100) = 422 \text{ Has.}$$

A = 422 Hectareas

Para el caso de 7931 carros/día, siguiendo el mismo procedimiento, las áreas serían:

Patio de Recibo = 65.7 Has.

Patio de Clasificación = 100.8 Has.

Patio de Despacho = 88.4 Has.

Subtotal = 254.9 Has.

Area total = $1.15 \times 1.3 \times 254.9 = 381$ Has.

A = 381 Hectareas

Se anexan a continuación tablas que muestran las áreas requeridas para cada patio, en función de la permanencia de los carros.

DIMENSIONAMIENTO DEL AREA DEL PATIO DE RECIBO O DESPACHO

PARA VARIOS TIEMPOS DE PERMANENCIA DE LOS CARROS

(PARA 8987 CARROS RECIBIDOS/DIA)

Permanencia (Hrs.)	Cap. Física Necesaria (Carros)	No.Minimo de Vias Requerido	Ancho del Patio (Mts.)	Longitud del Patio (Mts)	Area Total (Has.
2.0	1926	13	162	3322	53.8
2.5	2407	16	184	3412	62.8
3.0	2889	19	207	3507	72.6
3.5	3370	22	228	3597	82.0
4.0	3852	29	250	3687	92.2
4.5	4333	29	279	3775	105.3
5. 0	4815	32	302	3902	117.8
5.5	5296	35	323	3992	128.9
6.0	5778	38	346	4087	141.4
6.5	6259	41	367	4177	153.3
7.0	6740	44	387	4267	166.0
7.5	7222	47	410	4357	178.6
8.0	7703	51 •	440	4482	197.2
8.5	8185	54	462	4572	211.2
9.0	8666	57	484	4662	225.6
9.5	9147	60	507	4757	241.2
10.0	9629	63	52 8	4847	255.9

DIMENSIONAMIENTO DEL AREA DEL PATIO DE CLASIFICACION

PARA VARIOS TIEMPOS DE PERMANENCIA DE LOS CARROS

(PARA 8987 CARROS RECIBIDOS/DIA)

Permanencia (Hrs.)	Cap. Física Necesaria (Carros)	No.Minimo de Vias Requerido	Ancho del Patio (Mts.)	Longitud del Patio (Mts.)	Area Total (Has.)
1.5	1309	44 (33)*	311	1764	54.9
2.0	1745	44 (44)	311	1962	61.0
2.5	2181	44 (55)	311	2152	66.9
3.0	2617	44 (66)	311	2358	73.3
3.5	3054	44 (77)	311	2556	79.5
4.0	3490	44 (88)	311	2754	85.6
4.5	3926	44 (99)	311	2952	91.8
5.0	4362	44 (109)	311	3132	97.4
5.5	4798	44 (120)	311	3330	103.6
6.0	5234	44 (131)	311	3525	109.6
6.5	5671	44 (142)	311	3726	115.9
7.0	6107	44 (153)	311	3918	121.9
7.5	6543	44 (164)	311	4122	128.2
8.0	6979	44 (175)	311	4311	134.1
8.5	7416	44 (186)	311	4518	140.5
9.0	7851	44 (196)	311	4703	146.3
9.5	8288	44 (208)	311	4914	152.8
10.0	8724	44 (218)	311	5096	158.5
10.5	9160	44 (229)	311	5292	164.6
11.0	9596	44 (240)	311	5488	170.7
11.5 12.0	10033 10469	44 (251) 44 (262) en Carros de	311 311	5688 5861	176.9 182.9

AREAS TOTALES REQUERIDAS PARA DIFERENTES PERMANENCIAS

DE LOS CARROS EN LOS PATIOS

(PARA 8987 CARROS RECIBIDOS/DIA)

		Permanencia Clasificación	Despacho	Recibo	Areas Rec Clasificación	queridas (F Despacho	Has.) Subtotal	Total
					•			
	2.0	6.0	2.0	53.8	109.6	53.8	217.2	325.
	2.5	5.0	2.5	62.8	97.4	62.8	223.0	334.
0.0	3.0	4.0	3.0	72.6	85.6	72. 6	230.8	346.
	4.0	2.0	4.0	92.2	61.0	92.2	245.4	368.
	2.0	.4.0	6.0	53.8	85.6	141.4	280.8	421.
	2.0	8.0	2.0	53.8	134.1	53.8	241.7	362.
	3.0	6.0	3.0	72.6	109.6	72.6	254.8	382.
2.0	4.0	2.0	6.0	92.2	61.0	141.4	294.6	441.
•	4.0	4.0	4.0	92.2	85.6	92.2	270.0	405.
	5.0	2.0	5.0	117.8	61.0	117.8	296.6	444.
	2.0	10.0	2.0	53.8	158.5	53. 8	266.1	399.
•	3.0	8.0	3.0	72.6	134.1	72.6	279.3	419.
•	4.0	2.0	8.0	92.2	61.0	197.2	350.4	525.
4.0	4.0	4.0	6.0	92.2	85.6	141.4	319.2	478.
	4.0	6. 0	4.0	92.2	109.6	92,2	294.0	441.
	5.0	4.0	5.0	117.8	85.6	117.8	321.2	481.
	5.0	2.0	7.0	117. 8	61.0	166.0	344.8	517.
	6.0	2.0	6,0	141.4	61.0	141.4	343.8	515.
	2.0	12.0	2.0	53.8	182.9	53.8	290.5	435.
	2.0	8.0	6.0	53.8	134.1	141.4	329.3	494.
	2.0	8.0 4.0	6.0 10.0	53.8	134.1 85.6	141.4 255.9	329.3 395.3	494. 593.
•	3.0	10.0	3.0	72.6	85.6 158.5	255.9 72.6	395.3 303.3	593. 455.
	3.0	8.0	5.0	72.6	134.1	117.8	303.3 324.5	486.
\$	3.0	4.0	9. 0	72.6	85.6	225.6	383.8	575.
•	4.0	8.0	4.0	92.2	134.1	92.2	318.5	477.
6.0	4.0	6.0	6.0	92.2	109.6	141.4	343.2	514.
	4.0	4.0	8.0	92.2	85.6	197.2	375.0	562.
	4.0	2.0	10.0	92.2	61.0	255.9	409.1	613.
	5.0	6.0	5.0	117.8	109.6	117.8	345.2	517.
	5.0	4.0	7.0	117.8	85.6	166.0	369.4	554.
	5.0	2.0	9.0	117.8	61.0	225. 6	404.4	606.
	6.0	4.0	6.0	141.4	85.6	141.4	368.4	552.
•	6.0	2.0	- 8.0 <u>-</u>	141.4	61.0	197.2	399.6	599.
	6.0	6.0	4.0	141.8	109.6	92.2	343.2	514.
	7.0 * Area	2.0	7.0	166.0	61.0	166.0	393.0	589.

1.6 Localización

Una vez definidas las áreas requeridas para la construcción de la nueva Terminal, el siguiente paso consiste en determinar la localización más adecuada de la misma, para lo cual se tomarán en cuenta los siguientes factores:

- 1) Disponibilidad de terrenos que por sus características topo-gráficas hagan factible la construcción de la Terminal.
- 2) Clasificación de los terrenos más convenientes en función de:
- a) Su ubicación respecto a la línea o líneas troncales a los volúmenes de tráfico que se manejan en tales troncales.
- b) El aumento o disminución en el recorrido para los trenes y carros que concurran a la Terminal.
- c) Los problemas ocasionados por el crecimiento urbano y el desarrollo de nuevas zonas industriales.
- d) El valores de los trenes afectados.
- e) Los problemas de tipo social que acarrearía la construcción de la Terminal.

- V METODOLOGIA PARA EL ANALISIS POR INVERSIONES EN LA TERMINAL FERRO-VIARIA Y SU APLICACION.
- 1.- Ahorro por Eliminación de Demoras en Trenes de Camino
- 2. Ahorro por Eliminación de Demoras en Trenes Transfers
- 3.- Ahorro por Reducción del Parque necesario debido al proceso terminal
- 4.- Ahorros en locomotoras por Eliminación de la Clasificación por Empuje
- 5.- Ahorros por Tripulaciones en Camino y distribución en patio
- 6. Ahorro del espacio de estacionamiento necesario para locomotoras y carros durante el tiempo de ocupación de vías e instalaciones de infraestructura
- 7.- Beneficio Anual por Conservación de Locomotoras y carros
- 8.- Beneficio Anual por Tráfico Desviado
- 9.- Análisis Económico
- 10.- Análisis Económico de Sensibilidad

- 1.- Ahorro por Eliminación de Demoras en Trenes de Camino
- a) Por locomotoras Ahorro anual

$$B_{ALC} = \frac{N_{TTR} \times N_{LTR} \times F_{RLC} \times D_{TTR} \times F_{INT}}{24 \times F_{ULC}} \times \frac{C_{MLC} (1 + ts/100)^{Nx} ts/100}{(1 + ts/100)^{N} - 1}$$

$$F_{INT} = \frac{\sum_{D_{TTR}} D_{TTR}}{\sum_{TTR}}$$

En donde:

B_{ALC} = Beneficio anual por ahorro en adquisición de locomotoras de camino (pesos anuales)

N = Número medio diario de todos los trenes recibidos

N_{LTR} = Número medio de locomotoras de camino por tren

F_{RLC} = Factor de reserva de locomotoras de camino

D = Demora total media diaria de todos los trenes recibidos por falta de facilidades de recepción en la terminal (horas)

F_{INT} = Factor de interferencia o de afectación a otros trenes

C_{MLC} = Costo medio actual de locomotoras de camino

 F_{ULC} = Factor de utilización de locomotoras en tren

 D_{TTA} = Demora total media diaria de todos los trenes en línea -

afectados por la demora de los trenes recibidos, solamente considerando el tiempo imputable a los trenes recibidos. Incluye los recibidos.

ts = Tasa de interés de capital de aplicación anual en %

24 = Número de horas del día

N = Número de años de vida útil

Datos:

N_{TTR} = 14 (Incluye F.C.P)

 $N_{LTR} = 2$

 $\mathbf{F}_{\mathbf{RLC}} = 1.15$

D_{TTR:}

Trenes demorados por día en recibo = 6 (muestra directa)

Transfers recibidos por día = 6

Demora media/tren demorado = 2.58 hrs. (muestra directa

Trenes en línea afectados por patio

bloqueado, 57% aprox. del total de

trenes recibidos de acuerdo al fac

tor de agrupamiento (1/1.76=0.57) = (14-6)(0.57)=4.56 trenes

= 5 trenes

Demora media/día =
$$6 \times 2.58 = 15.48 \text{ horas} = \sum_{TTR} D_{TTR}$$

$$D_{TTR} = \sum_{TTR} N_{TTR} = 15.48/14 = 1.11 \text{ horas}$$

De acuerdo al factor de agrupamiento, 1/1.76 (24 hrs) = 13.68 hrs. que repartidos uniformemente a los 8 trenes en línea afectados -- por patio bloqueado, dá intervalos de 1.71 horas.

(2.58-1.71) = 0.87 horas (demora promedio por tren en línea)

$$D_{TTA} = (0.87 \times 5) + 15.48 = 19.83 \text{ horas}$$

$$F_{INT} = \frac{19.83}{15.48} = 1.281$$

$$C_{\text{MLC}} = $18.5 \text{ millones}$$

$$\mathbf{F_{ULC}} = 0.60$$

$$ts = 12\%$$

N = 20 años

Substituyendo los valores en la ecuación anterior:

$$B_{ALC} = \frac{14 \times 2 \times 1.15 \times 1.11 \times 1.281}{24 \times 0.60} \times \frac{18.5 \times 10^6 (1 + 0.12/100)^{20} \times 0.12}{(1.12)20 - 1}$$

$$B_{ALC} = $7.89$$
 millones

b) - Por Carros - Ahorro anual

$$B_{AAC} = \frac{N_{TTR} \times N_{CTR} \times F_{RCA} \times D_{TTR} \times F_{INT}}{24} \times \frac{C_{MAC} (1 + ts/100)^{N} ts/100}{(1 + ts/100)^{N} - 1}$$

en la que anarecen como nuevas constantes:

BAAC = Beneficio Anual por el ahorro de carros

N_{CTR} = Número medio de carros por tren en los distritos próximos a la Terminal en donde hay afectación por demora

F_{DCA} = Factor de reserva de carros

C_{MAC} = Costo medio actual del carro

Datos:

 $N_{TTR} = 14$

NCTR = 45

 $F_{RCA} = 1.03$

 $D_{TTR} = 1.11$

 $F_{INT} = 1.281$

C_{MAC} - \$ 860,000.00

Substituyendo los valores en la ecuación anterior:

$$B_{AAC} = \frac{14 \times 45 \times 1.03 \times 1.11 \times 1.281}{24} \times \frac{0.86 \times 10^{6} (1 + 0.12/100)^{20} \times 0.12}{(1.12) 20 - 1}$$

 $B_{AAC} = 4.43 millones

- 2. Ahorro por eliminación de demora en trenes transfers:
- a) Por Locomotora Ahorro Anual

$$B_{ALT} = \frac{N_{TTT} \times N_{LTT} \times F_{RLT} \times D_{TTT}}{24 F_{ULT}} \times \frac{C_{MLT (1+ts/100)}^{N} ts/100}{(1 ts/100)^{N} - 1}$$

En la que:

B_{ALT} = Beneficio anual por locomotora tr ansfer

N_{TTT} • Número total de trenes transfers

Numero medio de locomotoras por tren transfers

FRLT = Factor de reseva de locomotora transfer

D_{TTT} = Demora media diaria de trenes transfer

F_{ULT} = Factor de utilización de locomotoras transfer

C_{MLT} - Costo medio actual de locomotora transfer

Datos:

 $N_{TTT} = 6$

 $N_{LTT} = 1.0$

F RLT = 1.15

 $D_{TTT} = 1.5$

F_{ULT} = 0.75

 $C_{MLT} = $7.2 \times 10^6 \text{ pesos}$

ts = 12% N = 20 años

Substituyendo valores:

B_{ALT} = $\frac{6 \times 1.0 \times 1.15 \times 1.5}{24 \times 0.75}$ × $\frac{7.2 \times 10^6 (1.12)^{20} 0.12}{(1.12)^{20} - 1}$

 $B_{ALT} = $0.5 millones$

b) Por carros - Ahorro Anual

$$B'_{AAC} = \frac{N_{TTT} \times N_{CTT} \times F_{RCA} \times D_{TTT}}{24} \times \frac{C_{MAC} (1 + ts/100)^{N} ts/100}{(1 + ts/100)^{N} - 1}$$

En la que parecen como nuevas constantes:

B'AAC = Beneficio anual adicional por ahorro de carros (pesos)

N_{CTT} = Número medio de carros por tren transfer

Datos:

$$N_{TTT} = 6$$

$$N_{CTT} = 30$$

$$F_{RCA} = 1.03$$

$$D_{TTT} = 1.5$$

ts =
$$12\%$$
 N = 20 años

Substituyendo valores en la ecuación:

B'AAC =
$$\frac{6 \times 30 \times 1.03 \times 1.5}{24}$$
 $\frac{0.86 \times 10^6 (1 + 12/100)^{20} 0.12}{(1 + ts/100)^N - 1}$

$$B'$$
 AAC = \$1.33 millones

3. - Ahorro por reducción del parque necesario debido al proceso terminal

$${\rm ^{B}_{RPT}} = \frac{{\rm ^{N}_{CPD}} \times ({\rm ^{T}_{PPT}} - {\rm ^{T}_{FPT}}) \times {\rm ^{F}_{RCA}}}{24} \times \frac{{\rm ^{C}_{MAC}}(1 + {\rm ^{ts/100}})^{\rm ^{N}} \frac{{\rm ^{ts}}}{100}}{(1 + {\rm ^{ts/100}})^{\rm ^{N}} - 1}$$

En las que aparecen como nuevas designaciones:

B_{RPT} = Beneficios anuales por reducción del proceso terminal (pesos)

NCPD = Número diario de carros procesados o recibidos por día

TFPT = Tiempo futuro del proceso terminal (horas)

TPPT = Tiempo presente del proceso terminal (horas)

Datos:

 $N_{CTT} = 6$

 $T_{PPT} = 18$

 $T_{FPT} = 13$

 $F_{RCA} = 1.03$

 $C_{MAC} = $860,000.00$

ts = 12%

N = 20 años

Substituyendo valores:

$$B_{RPT} = \frac{618 (18 - 13) 1.03}{24} \times \frac{-0.86 \times 10^{6} \times (1.12)^{20} \times 0.12}{(1.12)^{20} - 1}$$

 $B_{RPT} = 15.27 \text{ millones}$

4. - Ahorros en locomotoras por eliminación de la clasificación por empuje.

$$B_{ECE} = \frac{N_{CCD} \times F_{RLT}}{24 F_{CPE} \times F_{ULT}} \times \frac{C_{MLT} (1 + ts/100)^{N} ts/100}{(1 + ts/100)^{N} - 1}$$

En la que aparecen las nuevas designaciones:

• Beneficios anuales por eliminación de la clasificación por empuje (pesos)

FCPE = Frecuencia de clasificación por empuje

NCCD = Número diario de carros clasificados por dia.

Datos:

 $N_{CCD} = 618$

FRLT = 1.15

FCPE = 45 carros por hora

 $\mathbf{F}_{\mathbf{ULT}} = 0.75$

 $C_{MLT} = 7.2 \times 10^6$ millones de pesos

ts = 12%

N = 20 años

Substituyendo valores:

$$B_{ECE} = \frac{618 \times 1.15}{24 \times 45 \times 0.75} \times \frac{7.2 \times 10^{6} (1.12)^{20} 0.12}{(1.12)^{20} - 1}$$

 $B_{ECE} = 0.85 \text{ millones}$

5.- Ahorros por tripulaciones en camino y distribución en patio

$$B_{TTC} = 720 \times N_{TTR} \times D_{TSC} \times F_{INT} \times C_{HTC} \times F_{RPG}$$

$$B_{TTR} = 720 \times N_{TTT} \times D_{TSC} \times C_{HTT} \times F_{RPG}$$

Donde:

 B_{TTC} y B_{TTR} = Beneficios anuales en trenes o transfers

C_{HTC} y C_{HTT} = Costo sencillo de la hora tripulación en trenes o transfers

F_{RPG} = Factor de repercuciones generales

720 = 2×360 considerando horas dobles 360 días

D_{TSC} = Demora media por tren sobre el tiempo de cédula o jornada

Datos:

 $N_{TTR} = 6$

 $D_{TSC} = 1.5$

 $C_{HTT} = 153.88$ \$/hora

 $_{\text{RPG}}^{\mathbf{F}} = 1.30$

Substituyendo valores:

 B_{TTC} = 0 Se consideró que en promedio los trenes no exceden el tiempo de cédula por demora al entrar al patio

$$B_{TTR} = 720 \times 6 \times 1.5 \times 1.30;$$

$$B_{TTR} = $9.30 millones$$

- 6. Ahorro del espacio de estacionamiento necesario para locomotoras
 - y carros durante el tiempo de ocupación de vias e instalaciones de infraestructura.

$${}^{B}_{ELC} = \frac{{}^{N}_{TTR} \times {}^{N}_{LTR} \times {}^{F}_{RLC} \times {}^{D}_{TTR}}{{}^{24} \times {}^{F}_{ULC}} + \frac{{}^{N}_{TTT} \times {}^{N}_{LTT} \times {}^{F}_{RLT} \times {}^{D}_{TTT}}{{}^{24} \times {}^{F}_{ULT}}$$

$$(1 - F_{MUL}) {}^{L}_{MLC} \times {}^{C}_{MMI} = \frac{(1 + ts/100)^{N} {}^{V}_{ts/100}}{(1 + ts/100)^{N} {}^{-1}}$$

En la que:

B
ELC = Beneficios anuales por reducción de la longitud de vía
de estacionamiento necesaria

F_{MUL} = Factor medio de utilización de locomotoras

LMLC = Longitud media de locomotoras (metros)

CMMI = Costo medio por metro de infraestructura en patios e - instalaciones de abastecimiento y mantenimiento

Datos:

$$N_{TTR} = 14$$

$$N_{LTR} = 2$$

$$F_{RLC} = 1.15$$

$$D_{TTR} = 1.11$$

$$F_{ULC} = 0.60$$

$$N_{TTT} = 6$$

$$N_{LTT} = 1$$

$$D_{TTT} = 1.5$$

$$F_{ULT} = 0.75$$

$$\cdot$$
FMUL = 0.60

que substituyendo en la fórmula

$$B_{ECA} = \left(\frac{N_{TTR}^{x} N_{CTR}^{x} F_{RCA}^{xD}_{TTR}^{x} F_{INT}}{N_{TTT}^{x} N_{CT}^{x} F_{RCA}^{x} D_{TTT}^{x}} + \right)$$

$$\frac{{}^{N}_{CPD} \left({}^{T}_{PPT} - {}^{T}_{FPT} \right) {}^{F}_{RCA}}{24} \right) \left(1 - {}^{F}_{TCA} \right) x}$$

$$L_{MCA} \times {}^{C}_{MMI} \times \frac{\left(1 + ts/100 \right)^{N} ts/100}{\left(1 + ts/100 \right)^{N} - 1}$$

En la que:

B
ECA = Beneficio anual en pesos por reducción del espacio requerido de estacionamiento de carros

FTCA = Factor de tránsito del carro en relación al ciclo totalde cargadura obtenible

LMCA = Longitud media del carro (metros)

CMMI = Costo medio del metro de infraestructura de estacionamiento (pesos/metro lineal).

Datos:

$$N_{TTR} = 14$$

$$N_{CTR} = 45$$

$$F_{RCA} = 1.03$$

$$D_{TTR} = 1.11$$

$$_{\text{INT}}^{\text{F}} = 1.281$$

$$N_{TTT} = 6$$

$$N = 30$$

$$F_{RCA} = 1.03$$

$$D_{TTT} = 1.5$$

$$T_{PPT} = 18 \text{ horas}$$

$$T_{FPT} = 13 \text{ horas}$$

$$F_{TCA} = 0.15$$

$$\mathbf{C}_{\mathbf{MMI}} = 2,000.00$$

Que substituyéndolos en la fórmula anterior:

$$B_{ECA} = 0.83 \text{ millones}$$

- 7. Beneficio anual por conservación de locomotoras y carros
- a) -Por locomotoras

$$^{\rm B}_{\rm ACL} = \frac{F_{\rm PPL} \times G_{\rm TCL}}{N_{\rm TPL} \times 24} (^{\rm H}_{\rm LTR} + ^{\rm H}_{\rm LTF})$$

$$H_{LTR} = D_{TTR \times} F_{INT \times} N_{LTR}$$

$$H_{LTF} = D_{TTF \times} N_{LTR}$$

Donde:

BALC = Beneficio anual por conservación de locomotoras

FPPL = Factor de proporción para fuerza tractiva

N_{TPL} = Número total del parque de locomotoras

G_{TCL} = Gasto total por conservación de locomotoras

HLTR = Horas locomotoras ahorradas en trenes

H_{LTF} = Horas locomotoras ahorradas en transfers

Datos:

$$G_{\text{TCL}} = 12.50 \times 10^6$$

$$N_{TPL} = 1150$$

$$D_{TTR} = 15.48$$

$$F_{INT} = 1.281$$

$$N_{LTR} = 2.0$$

$$D_{DFT} = 16$$

$$N_{LTR} = 1$$

Que substituyendo en las ecuaciones:

$$^{\rm H}$$
LTR = 15.48 x 1.281 x 2.0 = 39.66

$$^{\rm H}_{\rm LTF} = 16 \times 1.0 = 16$$

$$B_{ALC} = \frac{0.6 \times 1250 \times 10^6}{1150 \times 24} \quad (39.66 + 16)$$

$$B_{ALC} = 1.51 \text{ millones}$$

b) - Por carros:

$$^{B}ACC = \frac{^{F}_{PPC \times ^{G}TCC}}{^{N}_{TAC \times 24}} (^{H}_{CTR} + ^{H}_{CTF})$$

$$^{H}_{CTR} = ^{D}_{TTR \times} ^{F}_{INT \times} ^{N}_{CTR}$$

$$^{H}_{CTF} = ^{D}_{TTF \times} ^{N}_{CTF}$$

Donde:

BACC = Beneficio anual por conservación de locomotoras

FPPC = Factor de proporción para carros

GTCC = Gasto total por conservación de carros

N_{TPC} = Número total del parque de carros

HCTR = Horas carro ahorrados en trenes

H_{CTF} = Horas carro ahorradas en transfers

Datos:

 $\mathbf{F}_{\mathbf{PPC}} = 0.40$

 $G_{TCE} = 583 \times 10^6$

 $N_{TAC} = 32122$

 $D_{TTR} = 15.48$

F_{INT} = 1.218

 $N_{CTR} = 45$

 $D_{TTF} = 16$

 $N_{CTF} = 30$

Que substituyendo en las ecuaciones:

 $H_{CTR} = 15.48 \times 1.218 \times 45 = 848.46$

 $^{\rm H}$ CTF = 16 x 30 = 480

 $^{\mathbf{B}}\mathbf{ACC} = \frac{0.40 \times 583 \times 10^{6}}{32122 \times 24} \times (848.46 + 480)$

$$^{\rm B}$$
ACC = 0.4 millones

8.- Beneficio Anual por tráfico desviado

$$^{\mathrm{B}}$$
ATD = 365 x $^{\mathrm{T}}$ BC ($^{\mathrm{T}}$ MMA - $^{\mathrm{T}}$ MFC) $^{\mathrm{D}}$ MRC x $^{\mathrm{N}}$ DCR

Donde:

BATD = Beneficio anual por tráfico desviado

TBC = Tonelaje bruto por carro

TMMA = Tarifa media del auto transporte

TMFC = Tarifa media del ferrocarril

D_{MRC} = Distancia media recorrida de los carros

NDCR = Número diario de carros cargados recibidos

Datos:

 $T_{BC} = 75$

 $T_{MMA} = 0.53$

 $^{T}MFC = 0.17$

 $D_{MRC} = 660$

Que substituyendo:

$$B_{ATD} = 365 \times 75 (0.53 - 0.17) 660 \times N_{CCR}$$

 $B_{ATD} = 6.5 \text{ millones x } N_{DCR}$

Total de Beneficios:

1.- a) -
$$B_{ALC} = 7.89$$
 millones

b) -
$$B_{AAC} = 4.43$$
 millones.

$$2.-a)-B_{ALT}=0.55$$
 millones

b) -
$$B'_{AAC} = 1.33$$
 millones

$$B_{RPT} = 15.27$$
 millones

$$4. B_{ECE} = 0.85$$
 millones

$$5. B_{TTR} = 9.30$$
 millones

$$6.-a)-B_{ELC}=0.01$$
 millones

b) -
$$B_{ECA} = 0.83$$
 millones

$$7. - a) - B_{ACL} = 1.51$$
 millones

b) -
$$B_{ACC} = 0.40$$
 millones

Total de Beneficios = 42.37 millones de pesos

TERMINAL DE GUADALAJARA

TABLA DE BENEFICIOS Y COSTOS ACTUALIZADOS

No.	Años de <u>Referencia</u>	Incremento de carros Ts.5.5%	Carros a Manejar Term.Act.	Carros excedentes a desviar	Benef. obtenidos de la oper. act. 1979 (42.37 Mill.)	Beneficios por Traf. Desviado 35%	Suma de Beneficios	Costos Actualizados Obra y Mantenimient
0	1979	6:3	618				_	
ĭ	80	652	652			<u> </u>	_	_
2	81	688	688				_	600.00
3	82	726	726			<u> </u>	-	600.00
4	83	766	766		42.37		42.37	4.65
5	84	808	808	_	44.71		44.71	4.65
6	85	852	852		47.17		47.17	4.65
 7.	86	899	899		49.76		49.76	4.65
8	87	948	948		52.50		52.50	4.65
9	88	1001	1001		55.40		55.40	4.65
10	89	1056	1056		58.44	I	58.44	4.65
11	90	1114	1056	58	58.44	131.95	190.39	4.65
12	91	1175	1056	119	58.44	270.73	329.17	4.65
13	92	1240	1056	184	58.44	418.60	477.04	4.65
14	93	1308	1056	252	58.44	573.30	631.74	4.65
15	94	1380	1056	324	58,44	737.10	795.54	4.65
16	95	1456	1056	400	58.44	910.00	968.44	4.65
17	96	1536	1056	480	58.44	1092.00	1150.44	4.65
18	97	1620	1056	564	58.44	1283.10	1341.54	4.65
19	98	1709	1056	653	58.44	1485.60	1544.04	4.65
20	99	1803	1056	747	58.44	1699.43	1757.87	4.65
21	2000	1902	1056	847	58.44	1924.65	1983.09	4.65
22	01	2007	1056	951	58.44	2163.53	2221.97	4.65
23	02	2117	1056	1061	58.44	2413.78	2472.22	4.65
24	03	2234	1056	1178	58.44	2679.95	2738.39	4.65
25	04	2357	1056	1301	58 .4 4	2959.78	3118.22	4.65
26	05	2486	1056	1430	58.44	3253.25	3311.69	4.65
27	06	2623	1056	1567	58.44	3564.75	3623.19	4.65
28	07	2767	1056	1711	58.44	3892.53	3950.97	4.65
29	08	2990	1056	1934	58.44	4399.85	4458.29	4.65
30	2009	3080	1056	2024	58.44	4604.60	4663.04	4.65
TÒ T	ALES:				1519.15	40458.48	42087.63	1325.55

TRI = 17.80%

TRI (1200 x 1.15) = 16.93%

96

TERMINAL DE GUADALAJARA

ANALISIS ECONOMICO DE SENSIBILIDAD

No.	Año	Beneficios de Operación	Beneficios P'Trafico Desviado	Beneficios Totales (Mill.\$)	Carros a Manejar NC15%	Beneficios de Op.	Beneficios P'Tráfico Desviado	Beneficios Totales (Mill.\$)	Carros a Manejar NC25%	Beneficios de Op.	Beneficios P'Tráfico Desviado	Beneficios Totales (Mill.\$)
0	1979	Costo Op 15%			526				464			
1	80	• •		1	555				490	•		1 .
2	81				586				517	l		
3	82				618				545 ·			
4	83		territoria.		652				575			}
5	84	36 .02		36.02	688	36.02		36.02	607	36.02		36.02
6	85	38 .00		38.00	726	38.00		38.00	640	38.00		38.00
7	86	40.10		40.10	766	40.10		40.10	675	40.10		40.10
8	87	42.29		42.29	808	42.29		42.29	712	42.29		42.29
9	88	44.62		44.62	852	44.62		44.62	752	44.62		44.62
10	89	47.08		47.08	899	47.08		47.08	793	47.08		47.08
11	1990	47.08	131.95	179.03	948	49.70		49.70	837	49.70	•	49.70
12	91	47.08	270.73	317.81	.1000	52.40		52.40	883	52.40		52.40
13	92	47.08	418.60	465.68	1055	55.28	4.4	55.28	931	55.28		55.28
14	93	47.08	573.30	620.38	1113	55.28	131.95	187.23	982	58.32		58.32
15	94	47.08	737.10	784.18	1175	55.28	273.00	328.28	1036	61.52	400.00	61.52
16	95	47.08	910.00	957.08	1239	55.28	418.60	473.88	1093	61.52	129.67	191.19
17	96	47.08	1092.00	1139.08	1307	55.28	573.30	628.58	1153	61.52	266.17	327.69
18	97 98	47.08	1283.10	1330.18	1379	55.28	737.10	792.38	1217	61.52	411.77	473.29
19		47.08	1485.60	1532.68	1455	55.28	910.00	965.28	1264 1354	61.52 61.52	564.20 723.45	625.72 784.97
20 21	99 2 000	47.08 47.08	1699.43 1924.65	1746.51 1971.73	1535 1620	55.28 55.28	1092.00 1285.37	1147.28 1340.65	1429	61.52	894.10	955.62
22	01	47.08	2163.53	2110,61	1709	55.28	1487.85	1543.13	1507	61.52	1071.52	1133.04
23	02	47.08	2413.78	2460.86	1803	55.28	1701.70	1756.98	1590	61.52	1260.35	1321.87
24	02	47.08	2679.95	2727.03	1902	55.28	1926.92	1982.20	1678	61.52	1460.55	1522.07
25	04	47.08	2959.78	3006.86	2006	55.28	2163.52	2218.80	1770	61.52	1669.85	1731.37
26	05	47.08	3253.25	3300.33	2117	55.28	2416.05	2471.33	1867	61.52	1890.52	1952.04
27	06	47.08	3564.75	3611.83	2233	55.28	2679.95	2735.23	1970.	61.52	2124.85	2186.37
28	07	47.08	3892.53	3939.61	2485	55.28	3253.25	3308.53	2078	61.52	2370.55	2432.07
29	08	47.08	4399.85	4446.93	2622	55.28	3564.92	3620,20	2192	61.52	2629.90	2691.42
30	09	47.08	4604.60	4651.58	2765	55.28	3890.25	3945.53	2313	61.52	2905.17	2966.69
								4. T - 1. T		1		}
										ł		
									1	ł		}
. !									}	1		
												j

TRI = 16.94%

TRI = 14.28%

TRI = 12.46%

97-

IV - CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

1.- Del análisis de la operación de la Terminal Guadalajara, se concluye que las instalaciones correspondientes a los patios de recibo, clasificación y despacho, se encuentra prácticamente saturadas.

Si se quiere que estas instalaciones continúen operando para el tráfico creciente que se ha pronosticado, será necesario incremen
tar su capacidad física con base en el proyecto elaborado por la Sección de Estudios Especiales de la Subgerencia de Vía y Estruc
turas de los Ferrocarriles Nacionales de México, y mejorar losprocedimientos de operación seguidos, lo cual permitirá que la Terminal opere hasta el año de 1990 exclusivamente, para el tráfi
co de Nacionales de México.

Si se pretende que la Terminal en su actual localización opere como Patio Unido para Nacionales de México y F.C.P., las ampliaciones factibles de realizarse a las instalaciones, incluyendo las del F.C.P. permitirán atender el volumen de trafico hasta el año de 1990.

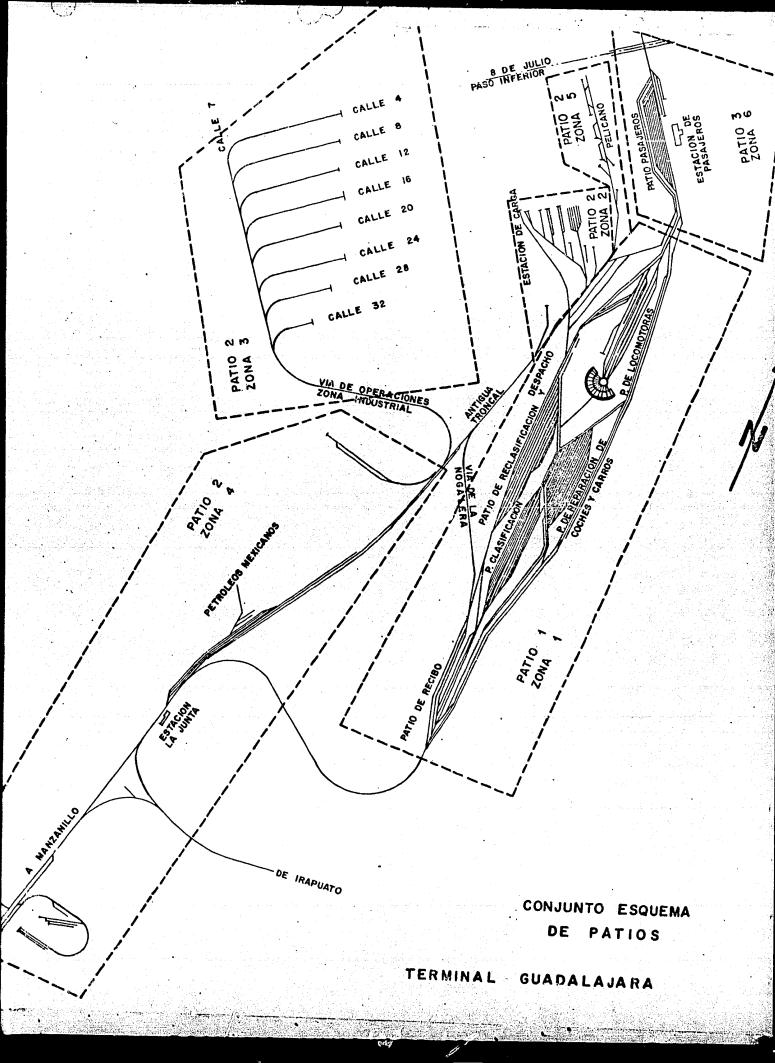
2.- A partir de 1990, la Terminal actual con las ampliaciones facti-bles de realizarse será insuficiente para el manejo del tráfico -

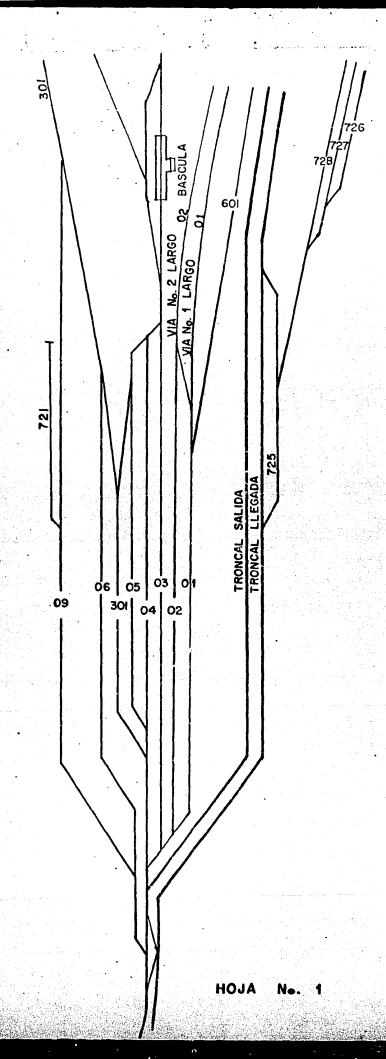
(1056 carros recibidos por día), por lo que será indispensable la construcción de una nueva Terminal que maneje para el año 2029 un volumen de 7931 carros recibidos diarios, considerando que la Terminal actual siguiera operando 1056 carros por día, o bien — un total de 8987 carros por día si se opta por que las instala—ciones actuales de Guadalajara se utilicen exclusivamente para — servicio industrial.

3.- Del análisis económico, al actualizar los costos de inversión y - beneficios obtenidos para cada año del período de análisis, se de- riva una tasa interna de retorno del proyecto del 17.80%.

Con el fin de conocer la sensibilidad de la tasa interna de retorno a las variaciones en el tráfico, los beneficios de operación ylos costos de inversión, se hicieron varios análisis que dan lossiguientes resultados:

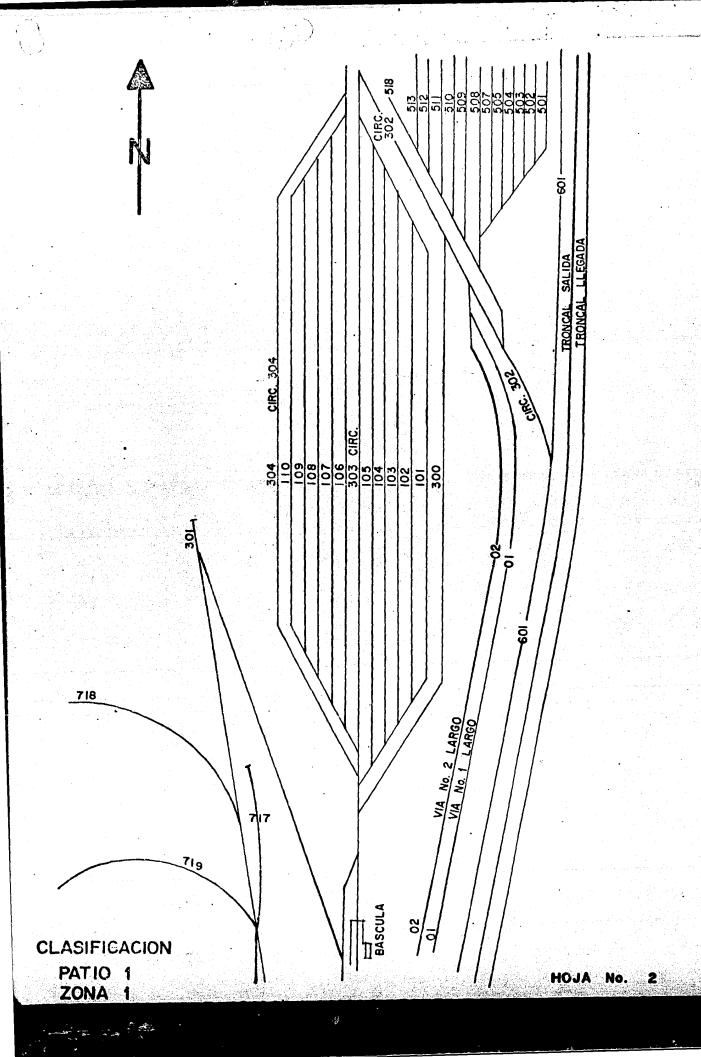
- a) Incrementando la inversión estimada para el proyecto en 15%, la tasa interna de retorno que se obtiene es de 16.93%.
- b)- En el caso de que los beneficios de operación estuvieran 15% -- abajo de lo estimado, la tasa interna de retorno resultante seria de 16.94%.
- c) Suponiendo una disminución del 15% y del 25% en el tráfico esti-

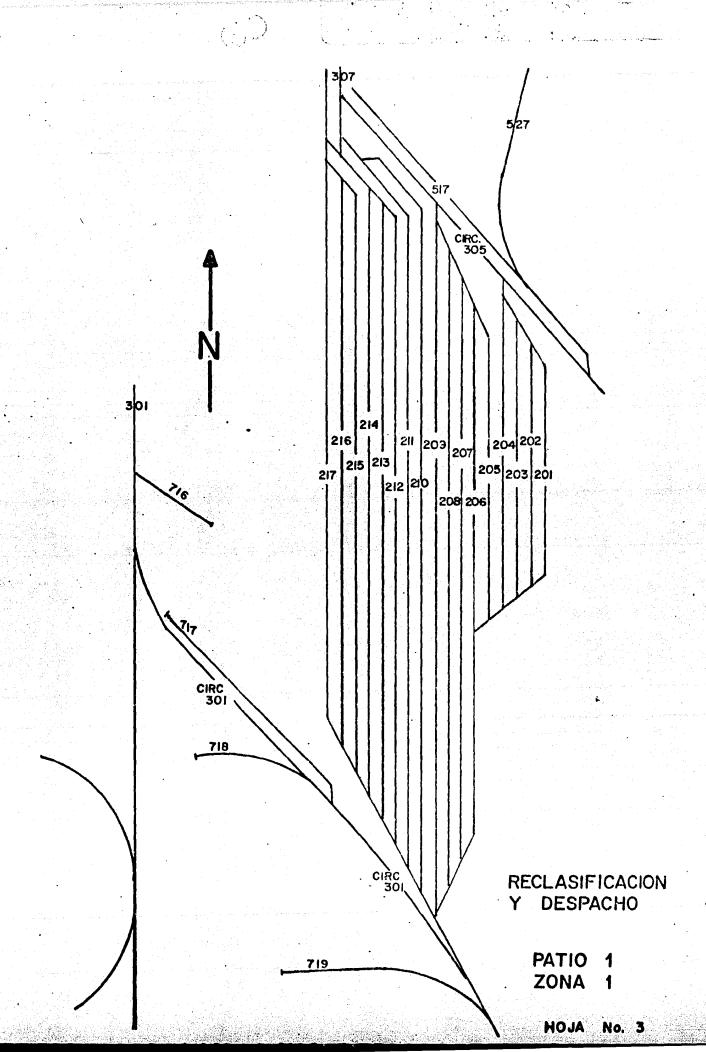

mado, las tasas internas de retorno que resultan son de 14.28% y 12.46% respectivamente.


Variación del Concepto	TRI	Porcentaje de Cambio Respecto Condición Inicial
Condición Inicial	17.80%	-
15% mayor costo de inversión	16.93%	- 4.8%
15% reducción en beneficios de operación	16.94%	- 4.8%
15% reducción en trá- fico estimado	14.28%	- 19.7%
25% reducción en trá- fico estimado	12.46%	- 30.0%

RECOMENDACIONES

- 1.- Dado que aún con las ampliaciones factibles de realizarse a la actual Terminal de Guadalajara de acuerdo con el proyecto elabo
 rado por la Sección de Vía y Estructuras, de los FerrocarrilesNacionales de México, las instalaciones tendrían una vida útil de
 16 años, se recomienda terminar la ampliación de las vías de los patios de recibo y clasificación que actualmente se realiza, así como construir dos vías más en el patio de recibo, con lo cual la Terminal podrá operar con tráfico creciente hasta el año
 de 1984.
- 2.- Simultáneamente se propone iniciar la construcción de una nueva Terminal localizada a la altura de la estación de Atequiza sobrela actual Linea "I" Distrito de La Barca, que comience a operar como Terminal Unida a partir del año de 1984 para la cual seapuntan las siguientes características:
 - Vida útil 45 años (1984 2029)
 - Volumen de carros a manejar (año 2029) 8987
 - Tiempos de permanencia en patios: Recibo 3 hrs., Clasificación 6hrs. y Despacho 4 hrs.
 - Una joroba con capacidad de goteo de 8 carros por minuto
 - Area requerida: 422 hectarear aproximadamente.


3.- Se recomienda que con los datos de pronóstico que proporciona este estudio se elaboren proyectos formales para la nueva Terminal, con objeto de delimitar el área requerida y poder iniciar los trámites de adquisición de la misma ante las dependencias correspondientes.



RECIBO

PATIO 1 ZONA 1

BIBLIOGRAFIA

1.- METODO PARA EL ANALISIS Y PRONOSTICO DE TERMINALES

Elaborado por la Unidad de Evaluación de Proyectos de la Subgerencia de Planeación y Organización de los Ferrocarriles Nacionales de México.

2. - FERROCARRILES

Ing. Francisco M. Togno

3. - INFORME E-2

Oficina de Estadística. Subgerencia de Planeación y Organización, Ferrocarriles Nacionales de México

4.- ESTUDIO V

Estudios de Planeación y Evaluación en el Sistema. Ferrocarriles Nacionales de México Tecsult Interamericana, S.A.

5.- Informes proporcionados por el personal de la Unidad de Evaluación de Proyectos de la Subgerencia de Planeación y Organización de los Ferrocarriles Nacionles de México.