

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

28

200

UNA ESTRATEGIA DE APROVECHAMIENTO DE LAS AGUAS DEL RIO SAN JUAN, TAM.

Tesis Profesional

Que para obtener el Título de INGENIERO CIVIL

presenta

JOSE LUIS SOLIS FIGUEROA

México, D. F.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

TESIS CON FALLA DE ORIGEN

INDICE

			PAG
INTRODU	ICCIO.	***************************************	î
CAPITUL	-0 1		
ÄNTE	CEOE.TE	:S	2
1.1	Situac	rión geográfica	2
1.2	Vías de comunicación		
1.3	Hidrografía		
1.4	Obras hidráulicas		
1.5	Aprovechamientos		5
1.6	Descripción del proplema		7
1.7	Estrat	egia de solución	8
CAPITUL	פח		
		ENTO DEL RÍC CON LA	
			170
	SA MARTE R. GOMEZ		
2.1	•	to actual	
2.2	Oferta del almacenamiento		
2.3	Revisi	ón de la avenida máxima de digeño	19
	2.3.1	Información	
	2.1.3	Detorminación del gasto pico	Alle prote Alle Allega and
		2.3.2.1 Yétodas propatilisticos	-
		8.8.2.2 Modela precipitatiin-escurrimia to	er =
		ನೀರುವಿ.ನ Presipitación ಗತ್ಯಗಡ ಛಾಶುಡುತ್ತ	# /3
		්ටීමට වේ.මේ දින ක්රියකින්නට සහ යන්නේ ඉහළ වෙන්නට දෙන ද	7
		The real of the second of the	
	10	်ရှင်းက သင်္ကာ (၁) ရှည် ရှည် သို့သည် ရွာရှင်းကို ရွာရှင်းရေးသည် ရေးရေးရေးရေးရေးရေးရေးရေးရေးရေးရေးရေးရေးရ	

		PAG.
2.4	Trầnsito de la forma de la avenida	39
	2.4.1 Transito en condiciones actuales	39
	2.4.2 Trénsito suponiendo un vertedor	
	controlado con compuertas	40
CAPITU	1 3	
APF	ECHAMIENTO DEL RIO CON LAS PRESAS	
MAF	R. GOMEZ Y CUCHILLO	44
3.1	Generalidades	44
3.2	Aprovechamiento	47
	3.2.1 Volúmenes de escurrimiento	47
	3.2.2 Volumen de oferta	47
3,3	Control de avenidas	
	3.3.1 Avenidas de diseño	5C
	3.3.2 Trángito de avenidas	€:
CAPITU	9 4	
ea.	USIONES	en en
4.2	(tablas y figuras)	že.
index from the point () from the other state	CGPAFIA	92

INTROCUCCION

El problema de las prolongadas sequías que en ocasiones sufre nuestro país y que en los últimos años han causado quantiosas pérdi—das a la agricultura y a la ganadería, haces necesario el aprovechar al máximo los volúmenes de agua que escurrer con nuestros ríos.

El presente trabajo tiene como propósito fundamental el plantear, desde el punto de vista hidrológico, una estrategia de aprove—chamiento óptimo de las aguas del Río San Juan, Tamps.; Estado que —cuenta con un gran potencial agrícola y que, por su ubicación geográfica, constituye un importante polo de desarrollo.

Para ello, se proponen dos diferentes alternativas de solu--ción: una que contempla la renabilitación y ampliación de la Presa -Warte B. Sómez (único almasenamiento de la región de los los al riego
de terrenos de cultivo); y otra que consistra la construcción de un -almasenamiento aguas arrita de esta presa.

Así pues, el precente trabajo el un complo práctico de tedmo los aspectos midrológicos idálicado de apenida de dibeño, teánciable su avenidas por cause y por caso, funcionamia to de vado, etc. que dempen tenente en quenta al naser un análicio de orto tipo.

1.- ANTECEDENTES

1.1 Situación Geográfica

La cuenca del Río San Juan (RSJ), se encuentra al coreste de la República Vexicana y forma parte de la Región Hidrológica No. 24 Oriente, Bajo Río Bravo; colinda al Norte con la Región Hidrológica No. 24, Río Bravo (Amistad—Falcón); al Sur, con las Regiones Hidrológicas Nos. 37 y 25; al Deste, con las Regiones Hidrológicas Nos. 35 y 36; y al Este, con el Golfo de México.

El área total de la Región Hidrológica No. 24 Oriente, es de —— 47,505 km2; de los cuales 32,972 km2 (70%), corresponden a la cuenca — del RSJ. La cuenca tiene forma alargada en el sentido Este—Deste; en esta dirección el largo medio es de unos 300 km y la anchura media de unos 100 km en dirección Norte—Sur. Los límites extremos de la cuenca están confinados dentro de los paralelos 25°50'00" y 25°25'00" de la—titud Norte, y por los meridianos 99°45'00" y 101°50'00" de longitud — Deste.

1.2 Vías de Comunicación

Las vias de comunicación en la Región midrológica to. 24 Criente, son de mucha importantia y numerosas, por lo que inicamente se ditan las principales; así como las ciudades que unen dentro de la re---gión.

Tarreteras.- Los caminos que constituyen ejec de comunicación - situados en dirección conte-Sur, son los siguientes:

- Carretera Federal No. 54.- Concepción del Oro-Monterre /-Cd. Mier.
- Carretera Federal No. 57.- Matehuala-Saltillo-Moncli a-Piedras Negras.
- Carretera Federal No. 85.- Cabezones-Vontemorelos-Wirterrey-SabinasHidalgo-Nuevo Laredo. Esta es el camino
 típico de la región pues sa buena parte
 de su recorrido queda dentro de ella.
- Carretera Federal No. 48.- Torreón-Monterrey-Reynosa.

Ferrocarriles.— Varias líneas de Ferrocarriles Nacionales de México recorren territorio de la Región Hidrológica No. 24 Criente; por — ejemplo, un tramo del Ferrocarril San Luis Potosí-Piedras Megras pasa — por Saltillo y Paredón; el Ferrocarril México-Nuevo Laredo, del cual un importante tramo Saltillo-Monterrey-Nuevo Laredo es típico de la región mencionada. Con trayectoria este-oeste merecen citarse las líneas To—rreón-Saltillo y Monterrey-Matamoros.

Aeropuertos.— Existen varios aeropuertos importantes dentro de — la región o en su cercanía, como son los de: Monolova, Saltillo, Monte-rrey, Nuevo Laredo, Reynosa y Matamoros.

1.3 midrografia

El ASJ es afluente derecho del Río Eravo y, con que 32,972 km2 de área, es el segundo en importancia de los aportadores melicanos a esa lo rriente internacional. Su confluencia courre a 88 km aquas abajo de la Ciudad Miguel Alemán, y 283 km aguas arriba de la decembradadura al Court de México.

Por la categoría de la zona en la que está enclavado, este río es uno de los más importantes de la región Noreste del país abarca territorio de tres estados: Coanuila con 13,125 km2, Nuevo León con — 18,860 km2, y Tamaulipas con 980 km2.

El régimen del río es un tanto irregular, ya que el promedio — anual de escurrimiento del período 1944-1982 (tomando las entradas netas a la Presa Marte R. Gómez), es de 1090 millones de metros cúbicos; pero en los años 1950, 1952, 1956 y 1982 el escurrimiento anual apenas alcanzó valores de 29, 29, 12 y 17% del escurrimiento medio anual, respectivamente. En cambio, en los años 1953, 1958, 1967 y 1978, el escurrimiento anual fue extraordinariamente abundante ya que alcanzó — el 195, 231, 400 y 228% respectivamente, del valor medio anual.

La distribución geográfica de la cuerca, su régimen de lluvia y las diferentes características que dominan en cada una, can lugar a — que los afluentes del RSJ tengan a su vez regimenes hidrométricos distintos entre cí: por ejemplo, el Río Pesquería ec una corriente intermitente; caso contrario es el Río Pilón, cue en sua origenes incluso está alimentado por algunos manantiales, con lo cual su régimen es parenne.

Los formadores principales del 250 cur e elo Recolería, Pio Sar ta Catarina, Pio Pamos, Mio Filón y el Arro o Monindo e todos elos convergen en dirección general horeste y no existo un precominio para qui alguno de ellos pudiera consideranse como considera con los sucientes de masor en el como de considera con la serial de considera de consi

1.4 Obras Hidráulicas

Dentro de la cuenca del RSJ existen obras hidráulicas de gran importancia, las cuales satisfacen, en gran parte, las demandas de agua que tiene la región.

Presa Marte R. Sómez, Tamps.— Tiene por objeto regularizar el — régimen del RSJ para proteger contra inundaciones las zonas de aguas — abajo y, al mismo tiempo, para aprovechar sus aguas para riego de — 69,617 Has de terrenos agrícolas del distrito de riego No. 26, Bajo Río San Juan.

La presa se encuentra a unos 16 km aguas arriba de Ciudad Camargo, Tamps.; su posición geográfica es Long. W.G. 98°56°10" y Lat. N. 26°12°00". El área de la cuenca es de 32,524 km2.

Presa Rodrigo Sómez (La Boca), N.L.— El rápido crecimiento de — la Ciudad de Monterrey, tanto en el aspecto demográfico como en lo que se refiere al desarrollo de su industria, ha hecho aumentar en forma no table las demandas de agua potable para el consumo de la población y de las fábricas. La Presa Rodrigo Sómez, con capacidad de 42.2 Mm3, satisface en buena parte las demandas de agua mencionadas.

La cortina se encuentra sobre el RSJ, unos 3 km al Este de Villa de Santiago, N.L. Su posición geográfica es: Long. W.S. 100°07°30" y Lat. L. 25°26°46". El área de cuenca es de 266 km2.

La estructura es de tipo de gravedad, con eje recto, construida toda de concreto . Dom una altura máxima, desde el desplante, de 34 m; la longitud de la corona es de 290 m, con vertedor en el cuerpo de la misma; el ancho de corona es de 4 m.

1.5 Aprovechamientos

Las aguas provenientes del RSJ se utilizan para el riego de dos sistemas de aprovechamiento muy importantes: los distritos de riego – Nos. 26 y 58, Bajo y Alto Río San Juan, respectivamente.

Distrito de Riego No. 26 (Bajo Río San Juan). Este distrito de riego es de suma importancia, tanto por su tamaño como por la existencia de apreciables superficies de terrenos de muy buena calidad. El inicio de operación de este distrito data de 1943 y en el cual se aprovecha principalmente el almacenamiento de la Presa Marte R. Gómez.

Este distrito tiene 86,293 Has, distribuidas en los siguientes municipios del estado de Tamaulipas: Mier (1,857); Miguel Alemán — (4,988); Camargo (11,979); Díaz Ordaz (12,325); Reynosa (24,422) y Río Bravo (30,722); sin embargo, el total de la superficie regable es de — 79,493 Has, de las cuales 69,617 Has (88%), son beneficiadas por el al macenamiento de la Presa Warte R. Gómez y las restantes 9,876 Has, por bombeo de la corriente del Río Bravo. Los cultivos principales en este distrito de riego son: trigo, frijol, sorgo y maíz.

Distrito de Riego No. 58 (Alto Río San Juan).— Este distrito — cuya operación se inició en 1946, comprende un total de 4,408 Has, las cuales son aprovechadas por derivación y bombeo de corrientes. Comprende los municipios de General Bravo (2,310); China (984). Ir. Boss (63):

Los Aldamas (71); Los Ramones (33); Gral. Terán (63) y Cadereyta (29).

Los cultivos principales de este distrita son: sarga, frijol, - maíz, soya y trigo.

1.5 Descripción del Problema

Durante el período 1944-1982, el promedio de entradas netas a la PMPG (Presa Marte R. Gómez) fue de 1,090 Mm3, mientras que el promedio anual de derrames, en ese mismo período, fue de 394 Mm3; esto significa que el 37% del volumen de agua que llegó a la presa no tuto aprovechamiento alguno.

La elevada cifra de derrames se debe a que en temporadas de gran escurrimiento, la presa no retiene todo el volumen de agua que llega al vaso, ya que tiene que "prever" papacidad para el pentrol de avenidas.— Sólo cuando na pasado sensiplemente la temporada de acumpantes previpitaciones, se papta un volumen de agua extra, mediante la polocación de agujas de madera.

Los volúmenes de agua que serrama la presa no tiener aproveu a-miento alguno, ya que el sitio ponde de deciargo al mío (raus se unuago
tra a 383 km aguas arriba de la desembodadura en el Solho de México. —
fista situación es un tanto difícul, sobre todo il se tiene en cuenta —
que existe sobrese de arua en los distritos de diego Auto y rajo Mío —
San Juan.

Hos otra larve, length a que via regulhone en lentra frequentemm minte line hada linning a length lave, also a linning to the second line. sultan ser en ocasiones tur altos, por lo que la RMSS acquiere gran incortancia para el control de avenidas. Sin embargo, la capacidad de la cresa es insuficiente para realizar convenientemente diotricontrol, por lo cual resultan afectados los terrenos de cultivo rivereños situados aguas abajo de la presa. De igual forma, cuando se combinan los derrames de la PMRG, con los escurrimientos del Río Sravo (regulado) y del Río Alamo — (sin control), se originan avenidas de tal magnitud, que ocasionan irunda ciones a las Ciudades de Reynosa, Matamoros y Brownsville (Texas).

Así pues, con relación al RGJ, se puede decir que existen dos ti—
pos de problemas: una relacionado con su aprovechamiento y otro con el —
control de avenidas. Ambos problemas están intimamente ligados, por lo —
que cualquier alternativa de solución que se considere, deberá cubrir estos dos aspectos.

1.7 Estrategia de Eslución

Con el fin de lograr el máviro acrovechamiento y un mejor control de las aguas del ABO, se llevó a cato el análicos as por alternativas generales de coludión: una en la qual se plantean modificaciones estructurales a la PM98 y pora que considera la existembia de un almacenamiento aguas arriva de la misma.

Las modificationes entructuraled que de planteir en la primera - alternation con control de la contr

El almacenamiento considerado en la segunda alternativa, se denomina Presa Cuchillo, cuyo sitio de localización se propuso derta de la estación hidrométrica El Cuchillo: la cual, con ciento, registra aproximadamente el 50% de las entradas a la FVFF. El análisis de esta alternativa se prosenta en el Cacítulo 3.

Finalmente, en el capítul: 4 se emiter las conclusionss a las que se llegó en este trabajo.

2.- APROVECHAMIESTO DEL RIC CO. LA PRESA MARTE R. GOMEZ

Los propósitos de este capítulo son definir el aprovechamiento y control de avenidas del RSJ con la PMRG en diferentes condiciones: las actuales de proyecto y considerando niveles de conservación mayores.

Existen dos formas de aumentar la capacidad útil de la presa: — una es sobrelevando la cresta del vertedor actual, y la otra es cambián dolo a controlado por compuertas. Ambas alternativas se analizan más — adelante poniendo especial atención a lo relacionado con el control de avenidas.

En lo que respecta al aprovechamiento, se estudiaron diferentes niveles de conservación para definir las demandas que se cueden satisfa cer; para lo cual, se utilizan los modelos de computador OPTIMA y FUNVA SO (funcionamientos de vasos) como será explicado en la sección correspondiente.

En cuanto al control de avenidas se procedió a, primeramente, re visar la avenida de diseño, por lo que se aprovechó toda la información midroclimatológica disponible en la región; la que, poro es fácil suponer, es más extensa que la considerada en el proyecto criginal. Para el cálculo del gasto pido, se aplicaron bistintos métodos midrológicos; probabilidades (Bumpel Simple, Bumpel Cople y log Pearson III); el mose lo precipitación-espermimiento estaborado en la Subdirección de Processos Pidrológicos de la Dirección General de Lintrol de Ríos e Ingenienda de Seguridas midráulica de la SAR-); establectas de Ireager y lowry. La forma de la avenua se determinó del análicio de los midroquemas reales presentatos en la presa y en la establóc migrofétrica —

Los Aldamas: así como, del obtenido con el modelo precipitación-escurrimiento.

Una vez determinada la avenida de diseño, se estudió el paso de ésta a través del embalse, a fin de conocer el efecto que provoca bajo diferentes condiciones y poder adoptar un tipo de vertedor que garantice la seguridad de la cortina y un eficiente control de avenidas.

2.1 Proyecto Actual

La PMRG se localiza al Norte del estado ce Tamaulipas, en una de las regiones agrícolas más importantes de la República Mexicana. Lo — que fue una zona prácticamente deshabitada, de terrenos convertidos en verdaderos desiertos, cuciertos de chaparrales y mezquites, se ha transformado, gracias a la construcción de esta presa, en una de las regio—nes productoras de granos más importante del país.

Localización.— La PMRS está situada sobre el RSJ, a unos 25 km de la confluencia con el Río Bravo y a 16 km aguas arriba de Ciudad Camargo, Tamps.; su posición geográfica es: Long. 1.3. 98°46°10" y Lat. N. 26°12°00". El área de la quenca es de 32,524 km2.

Construcción. — La presa se construyó para control de avenidas y para satisfacer la demanda de agua de los terresos cituados en la gran planicie costera del norbeste del país. Eco trabajos se iniciaron en el año de 1836, habiendo sido inaugurada en 1846.

Cortina.- La estruitura es de tierra, esn corazón intermeacio -

muy amplio y asimétrico, y respaldos de material seripermeable, siendo mayor el correspondiente aguas abajo. La altura de la cortina es de - 49 m, desde su desplante, y la correspondiente desde el lecho del río, de +6 m.

La longitud de la corona es de unos $6000 \, \mathrm{m}$ son un ancho de $10 \, \mathrm{m}$; el ancho máximo de la cortina en la base es de $600 \, \mathrm{m}$.

Vaso. La capacidad del vaso es de 932.2 Vm3 a la elevación - 76.34 m, que corresponde a la cresta del vertedor. El superalmacenamiento para el manejo de crecientes es de 1,473.9 Mm3 a la elevación - 83 m (NAME). La capacidad para el depósito de azolves es de 300 Mm3 - (actualmente se estima que se ha depositado un volumen de 149 Mm3 de - azolve).

Obra de excedencias.— Se encuentra situada sobre la margen izquierda del río: la estructura es del tipo vertedor de cresta libre, — con cimacio en perfil de arcos similares y planta en curva formada por un avanico de 3 centros, el cual descarga por una rápida a un tanque — amortiguador de energía y a un canal de desagüé. El cimacio es de —— 18.34 m de altura y su cresta de 300 m de longitud. El canal de desagüé y tanque amortiguador de encuentra al cio del cimacio, en el que existo un olant a rivel que se una cor medio de una rácida, don talud 4:1, reventido de univerto reformado, de arí casa al tanque amortiguador de 50 m de anomo de plantilla y 140 m de longitud, también revestido de 30 m de anomo de plantilla y 140 m de longitud, también revestido de se concreto y el como de estremo de aqual adago, de un umbral de lector.

Es importante hacer notar que en el diseño original de la obra de excedencias se incluía la instalación de nueve grandes compusatas Stoney, deslizantes, de 18.24 X 18.24 m cada una, las quales fueron contratadas en Alemania; pero, por motivos de la segunda guerra mundial, no fue posible que se tuvieran con oportunidad. El borde inferior de la compuerta estando bajada se localizaría a la elevación 59.34 m y cuando levantada, el borde inferior se localizaría a la elevación /6.26 m.

La avenida original de diseño es de 21,880 m3/seg y la capacidad máxima del vertedor es de 13,880 m3/seg.

Obra de toma. — Se localizan dos obras de toma; la obra de toma — norte y la obra de toma sur. La obra de toma norte está construída to—talmente de concreto y tiene una capacidad máxima de diseño de 12 m3/seg; alimenta el Janal San Pedro, que riega terrenos de la margen izquierda.

La obra de toma sur se encuentra alojada en la ladera derecha y - construída totalmente de contreto; el gasto máximo us diseño es de 60 m3/ seg; el conducto es de sección harradura, de 6 m de diámetro; la longi-tud del tunal es de 140 m, con tendientes de D.COC: plimente directamente el laral Principal lag. Bulliermo mode, que riega terrenos de la corgo derecha.

ter caracteristical determine de la cue a con la cua cua cua cua cua como la cualculação

- DATE HELDER

TAPAGI AL ELEVALICA

Corriente: 15 m Wan

Car Mar Soft and

N.A.M.E.	2435.1	83.0
Superalmacenamiento	1473.9	
Cresta del vertedor	932.2	76.3
Almacenamiento útil	934.6	
Azolves	350.0	
Umbral obra de toma norte (cap. muerta)	27.6	65.1
Umbral obra de toma sur	0.0	60.1
Gasto máximo avenida de proyecto	21,000).O m3/seg
Area de cuenca	32,524	.0 km2

- CORTINA (tierra)

Longitud total	6,000.C m
Altura máxima	49.0 m
Ancho de corena	10.8 m

- VERTEDOR

Longitud de cresta	300.0 ~
Capacidad máxima	13,890.8 m3/seg
Capacidad obra de toma	72.8 m3/seg

2.2 Oferta del Almadenamiento

De los métodos comúnmente utilizados para coloular el volumen de oferta de un almaseramiento, de tienen los gráficos y los analíticos. — Debido al desarrollo de los comoutadores, los gráficos han dejado de — ser usados y son los analíticos los empleados autualmente.

El funcionamiento analítico de vasos simula la evolución de los volúmenes almazenados, evaporaciones y derrames de una presa, a partir

de ciertos escurrimientos y extracciones.

Esta simulación consiste en resolver para cada mes del registro de escurrimiento, la ecuación de conservación de la materia:

$$I - O = \frac{\exists A}{\exists t}$$

que resolviendo por incrementos finitos de tiemo iguales a un mes y despreciando pérdidas por infiltración en vaso y portina, se tiene:

$$A(i+1) = A(i) + EN(i+1) - EV(i+1) - IN(i+1)$$

Sujeta a las restricciones:

$$AM \leq A \left(\pm + i \right) \leq AC$$

$$M \leq 1 \cdot 12$$

ವರ್ಷದೆಟ್ಟಿ:

% .- ".úmero de aña: so regi fri

A[i+1] .- Almazerarietts al firal del rec

A-1) - .. Almaterart. Fri al indication for

Enfirst .- Entradas retar al vace en el mon lien

$$DM(i+1)$$
 .— volumen demandado en el mes (i+1)
 $DM(i+1) = PD(j) \times 1.14$

Sujeta a las restricciones:

$$\sum_{j=1}^{12} P_{2}(j) = 1.2$$

$$0 \leq \mathfrak{S}(j) \leq 1.3$$

 ${\sf PD}(j)$.- Forciento de demanda, respecto al anual, del mes j

VDA .- .: clumen de demanda medio anual, constante para to-

AM .- lacacidad musmis

AC .- lacacidad de conservación

Al final III mes de dalbulan los dermanes a "déficina" pue muene mas

Clando le suporta una preso. El hurolignomistro de last de energia democratarando el loculoren de demanda media anual anti- ana abadente acera hore des laborado de la lucia tibro den ordanes, en locación el acera el por estre laborado es laborado el entre laborado es laborados el entre laborado es laborados el entre laborado es laborado el entre laborado el laborado el entre laborado el laborado el forma en registra de entre la elegación de laborado el entre laborado el entre

$$VAk = f(ALM(i))$$

$$i = 1, 13, 25, ...$$

$$VA(k) = Volumen de deranda para el ciclo anual (all DM(i+1)) = PD(j) x VA(k)$$

$$VDA = \frac{1}{N} \qquad \sum_{i=1}^{N} .A(k)$$

La Subdirección de Procesos Hidrológicos, perteneciente a la —— D.G.C.R.I.S.H. de la SARH, ha elaborado dos modelos matemáticos que per miten el cálculo del volumen de oferta de un almaceramiento mediante es tos dos criterios; esto es, el que suppne la demanta anual constante — para todos los años de simulación; y el que considera la demanda — anual variable de acuerdo al almaceramiento que se tenga al inicio del ciplo agrícola. Cienos modelos fueron empleados en el presente tracajo.

Al efectuar al funcionamiento de Jaco para la FVAG, se utilizó - la siguiente información:

- Wolfmersa de entrupas natas a la presa, correspondiente sol perfodo (844-1882 (tabla (c. 1)).
- Evaporaciones mencuales correspondientes al mismo seríodo (tabla %s. 8 .
- Volumen de demanda anyaî v ou distritudiin sor meren a lo

largo del año, correspondiente al ciplo 1978-1879 (tabla No. 3).

- Curvas Elevaciones-Areas y Elevaciones-Capacidades del vaso (tabla No. 4).

Se consideraron además diferentes niveles de corservación: el - actual y mayores que este en uno, dos y tres metros. Se propueso un 5% de deficiencia anual, ya que es el que se acepta como tolerable para es te tipo de demandas.

En la tabla No. 5, se presentan los resultados obtenidos del funcionamiento de vaso para los dos criterios considerados. En ella, se puede observar que en el largo plazo, los colúmenes de extracción media anual (EMA), considerando variable la extracción anual durante el período de simulación, son mayores que los que resultan de considerar la EMA constante para qualquier nivel de conservación.

Se observa tambiér que si se indrementa la papazizión de porter a ción de la presa en uno, dos y tres metros, respecto a la que tiera al tualmente, el aumento del loubren aprovo, abli en del coden del 1.00 . 11% respectivamento.

Por otro lass. is colúmente desparado osción de de dispeto em siendo importantes, dún cuendo em elses ou dedese lo se osciónes. Dión.

0

2.3 Revisión de la avenida máxima de diseño

2.3.1 Información

Información topográfica.— Se utilizaron planos de DETENAL escala 1:50,000 sobre los cuales se delimitó la cuenca general, así como la subcivisión de ésta en cuencas más pequeñas, a las que se les determinaron sus características fisiográficas (área, longitud, pendiente, etc.). Se emplearon los planos G14-A71 al 79; G14-A81 al 89. G14-C11 al 19; G14-C21 al 29; G14-C31 al 39 y G14-C41 al 48.

Información climatológica.— Consistió en registros de lluvia mákima anual en 24 horas, de 51 estaciones pluviomátricas localizadas dentro de la cuenca, así como las que se encuentran perca y tienen influentia en ella (Fig. No. 1). Dichas estaciones de encuentran en territorio
de tres estados: Coahuila (7), Nuevo León (42), y Tamaulipas (2). En Coahuila se encuentran las estaciones: Gral. Sepada, Saltillo, Bambo -Arispe, Ejido Reata, Hda. La Joya, Arteaga y Las Alusarao. En Nuevo León: El Milagro, Icamole, La Fosa, Mamulique, Somoreritillo, Mina, Cignega de Florso, Higuerao, Apocaca. Topo Chilo, Binkorada, Santa Catarina.
Loc merrarao, Las Enramadao, Las Bambreo, Bin Suan, Cadareyto, Monterro,
La Arena, Fan Francicso, L. de Cinurez, Bin Suan, Cadareyto, Monterro,
La Arena, Fan Francicso, L. de Cinurez, L. de Santiago, Fourero Redondo.
Adjuntao, Las Comitao, La Isao, El Fijorao, Higorer, L. de Alizardo, Monterro,
Cembrelon, Casillao, Salsarao, Cierca de Como, Carerono, Leal. Terán, El Realito, El Suchillo, Elparer, Los Aldarao, Grai, Franco, Gerralso, y
Reyroda. En Tamaulipao: Dan. Rosalfa, y Tero.

Intermation nutranformation (entroline as community abundantical establishment autrométricae applicant le survivante to survivante. La Armia

Los Herreras, Tepehuaje, Cadareyta, Montencrelos, El Cuchillo, Los Aldamas y Santa Rosalía (suspendida).

Con base en los registros de dichas estaciones, se pudo obtener la avenida de diseño de la presa, aplicando métodos probabilísticos. También sir isron para calibrar el número de escurrimiento 1, como se exclicará más adelante. En la tabla No. A, se presentan los registros de estaciones, para el lapso 1924—1976.

2.3.2 Determinación del gasto pico

Con base en la anterior información, el pico de la avenida máxima — de diseño se determinó aplicando: métodos probabilísticos, el modelo precipitación—escurrimiento (DSCRISH), y envolventes de Creager y de Lowry.

2.3.2.: Vétodos probabilísticos

Los métodos probabilísticos son los más usados en el análisis de - gastos páximos anuales y consisten en la obtención de su distribución de probabilidades, para posteriormente inferir y obtener el gasto de diseño relabilidado con el período de retorno que se desee.

Es importante nater notar que existen limitablemes en le que a extracollubres de deficre, el depender de la utilidación que se les lava de dal electro disculigado y de la contrarda de la destracafo de imposencia considera. Se ha visto que, en forma general, los gastos máximos anuales ofguen una distribución tipo Gumbel Simple, Gumbel Doble o Log Pearson III: que son precisamente las empleadas en el presente trabajo.

Método de Sumbel (Ref. 1).— Considerando que cada máximo anual — es el valor extremo observado en una muestra de un año, si se tiene un — número infinito de muestras anuales, la procacilidad acumulada de cual—quiera de los extremos (máximos anuales) sea meror a la variable ilimita da "y", se aproxima a la ecuación:

$$P(y) = e^{-e} (a+y)/c$$

donde "a" y "c" son parámetros estadísticos, cuyos valores se calculan - como:

$$a = 0.5772 s - \overline{y}$$
$$s = (\sqrt{6}M^{3}) S_{y}$$

donde \bar{y} es la media y Sy la dez.iación estandar de los valores de la po-chación.

Como la muestra es siembra finita, Burba. com idera que:

and the second of the second o

La probabilidad de ocurrencia de un evento está determinado por la ecuación:

$$P(Y \ge y) = \frac{1}{7m}$$

donde:

Y .- Magnitud del evento dado

Tm .- Período de retorno (en años)

La probabilidad complementaria Pm, de que un máximo anual de magnitud "y" sea igual o excedido, será:

$$Pm = 1 - P(y) = 1 - e^{-(a+y)/c}$$

Introduciendo el período de retorno:

$$\frac{Tm-1}{Tm} = e^{-3} - (a+y)/c$$

Utilizando las ecuaciones anteriores, simplificando y ordenando, se tiene la forma para calcular el gasto máximo propuesto por Bumbel:

$$y = \overline{y} - \frac{Sy}{(N)} (\overline{y}_N + \log e \log e \frac{\overline{y}_n}{\overline{y}_{n-1}})$$

23

Log e .- Logaritmo natural

Esta ecuación graficada en papel probabilístico especial o papel tipo Sumbel, representa una recta, teniendo como ordenada el gasto y en la abscisa el período de retorno; esto no quiere decir que los valores de la muestra están contenidos en ella, por lo que es necesario concer el intervalo de confianza de los valores octenidos por la ecuación.

Para el cálculo de ese intervalo se utiliza la expresión:

$$Ay = Sy *F(N)$$

donde:

Ay .- Intervalo de confianza

F(N) .- Función del tamaño de la muestra

Este intervalo de confianza, se suma al gasto máximo para obtener el gasto de diseño; o sea, determinar la condición más desfavorable que pueda presentarse.

Teniendo en cuenta que en papel de probabilidad especial, la -- ecuación (1) es una sínea recta, Cash (Hef. 2), propone que los paráte-- tros "a" y "o" del criterio de Gumbel, se determinen son medio de mínimos cuadrados: así, la ecuación de Gumbel (5 transforma em:

donde:

$$e = \overline{y} - (f * \overline{x})$$

Sxy =
$$n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) * (\sum_{i=1}^{n} y_i)$$

$$S \times x = n \sum_{i=1}^{n} x^{2}i - (\sum_{i=1}^{n} x_{i})^{2}$$

Si se analiza la ecuación (2), se ve que para cada valor inferido de la variable dependiente "y", se tendrá un cierto error, en función de que tan correlacionadas estén las variables. Una medida de la variación de los puntos con respecto a la recta de regresión, puede deducirse del error estándar de la estimación, que es análogo a la desviación estándar de una variable quando se trata de concer la dispersión respecto de su media. Para dada sulor de la cariable independente y e en estándar quás el el coror estándar cada de cagricación de su concer quás el el coror estándar cada de cagricación de cagr

الأساء <u>المقطة بمحمد بيونا و</u> الربيان المراجع الربيان المراجع الم

dinde:

E .- Intervalo de confianza

t $\frac{\infty}{2}$ - Valor tomado de las taclas de districución "t de estudents", con un nivel de significancia α y -- n-2 grados de libertad.

Se =
$$\frac{Syy}{n(n-2)}$$

donde:

$$S_{yy} - n \sum_{i=1}^{n} Y^{2}_{i} - (\sum_{i=1}^{n} Y_{i})^{2}$$

$$rxy = \frac{5xy}{(5xx \times 5xy)^{\frac{4}{3}}}$$

్ కార్ కోమ్మోమ్మ్ కుర్కామ్ ఉంది. కొండి ప్రక్రించి కేస్తున్నారు. అంది కోడ్లు కార్యాలు కార్యాలు మండ్రికి కార్ కోర్ మాంచ్రి కార్లు కార్యాలు మండ్రికి Así, para calcular el gasto máximo y mínimo de diseño más probable, con un nivel de significancia, se obtendrá por medio de la ecuación:

$$yd = e + f Log_e Log_e \underline{Tm} \stackrel{+}{=} E$$
 $Tm-1$

Que es semejante a la ecuación de Gumbel, con la única diferencia de que los parámetros e intervalos de confianza son determinados en forma diferente.

En la tabla No. 7, se presentan los resultados obtenidos al aplicar este método, a los registros de las estaciones hidrométricas comprendidas dentro de la cuenca del RSJ.

Método de Gumbel Doble .— Al graficar los gastos máximos de estas estaciones se observa que éstos siguen dos tendencias distintas; esto se debe a que los gastos fueron causados por dos condiciones meteoro lógicas diferentes: las ciclónicas y las no ciclónicas.

Para este tipo de situaciones, se ha desarrollado (Ref. 3) un méto do basado en la distribución de probabilidad de Gumbel, la cual se aplica por separado a cada población de la muestra y al conjuntarse las dos poblaciones se obtiene una distribución de probabilidad de los gastos máimos anuales de la siguiente forma:

$$P(y) = e^{-\frac{y+a_1}{c_1}} \left[p + (1-p) e^{-\frac{y+a_2}{c_1}} \right]$$
 (3)

donde p es la relación entre el número de gastos debidos a fenómenos no ciclónicos, y el número total de gastos de registro. a_1 y c_2 , a_2 , y c_2 , son parámetros que se determinan para la obtención de gastos de - la población no ciclónica y ciclónica respectivamente. Estos parámetros se pueden calcular de la siguiente forma:

$$a_1 = 0.577 c_1 - \bar{x}_1; a_2 = 0.577 c_2 - \bar{x}_2$$

$$c_1 = \frac{6}{11}$$
 s_1 ; $c_2 = \frac{6}{11}$ s_2

donde: X_1 y S_1 , X_2 y S_2 son la media y desviación estándar de la población no ciclónica y ciclónica, respectivamente.

Con los gastos máximos registredos en un período de N años, se. — puede estimar su función de distribución de protabilidades, mediante la ecuación:

$$FR = 1 - \frac{I}{N+1}$$

donde:

- FP .- Valor estimado de la función de distribución de probabilidades para el gasto máximo anual.
 - I Número de orden en la sequencia del registro (ordenado de mayor a menor).
- ". 🔑 "Wimero de años del registro.

Para obtener mayor confiabilitad en la estimación de los parámetros p, a_1 , a_2 , a_2 , a_2 , existen varios métodos que están basados en procesos estadísticos de la muestra; el utilizado en este trabajo, es el de minimizar la suma de los errores trabations entre los valores estimados de Fr y los valores teóricos $p(\cdot)$, dados por la expresión:

$$E = \sum_{i=1}^{n} \{ = R_i - P_1(y)_i \ [P + (1-P) P_2(y)_i)^2 W_i \}$$

$$E = \sum_{i=1}^{n} (x_i - P(y)_i)^2 W_i$$

donde:

 W_1 es el peso del error cometido en la estimación de la función de distribución de probabilidad en el gasto de rango i.

Existan varion rátotos para valuar la esudoián enterior. Uno de ellos consista en emplear el método matamático del má ima aspenso, el --cual consista en:

- 10 Comensor los calores áreceleiss de su equacida las su eguas.
 20 de la calcaner la calcane
- A Declarate de gradestation de la complétique

gido (a1, c1, a2, c2, p)

- 4) Buscar en esa dirección al punto [aq, cq, ag, cg, p) que haga mínimo el error E.
- 5) Tomar como punto inicial el encontrato en el inciso anterior y volver a 2.
- 6) Si el decremento de E es muy pequeño en cada iteración, o el nuevo punto obtenido en 4 es muy próximo al anterior, la operación termina y se tienen los valores de a1, 11, a2, c2y pocon un E mínimo.

La Subdirección de Procesos Hidrológicos de la C.G.I.A.I.B.A., — ma elaborado un modelo de computadora que aplica la metodología ante—rior, y el cual fue empleado en el presente tracajo.

En la tabla No. 8, se presentan los resultados obteridos al aplicar el método a los registros de las estadiores ni tramétricas comprendidas en la quenca del 850.

Métado dos Rearbon III. A come tarcula de observadades du observadades de obse

donde:

$$\frac{1}{\log Q} = \frac{\sum_{i=1}^{n} \log 3i}{n}$$

$$Cs = \frac{n \sum_{i=1}^{n} (\log Qi - \overline{\log Q})^3}{(n-1)(n-2) (\overline{\sqrt{\log Q}})^3}$$

Tr = Período de retorno

n = Número de años de registro

además:

$$\int_{\log Q} = \sqrt{\sum_{i=1}^{n} \frac{(\log 3^{2}i) - (n \log 3^{2})}{n-1}}$$

Para determinar el valor de K, se puede utilizar tablas elaboradas "ex profeso".

En la tabla No. 9, se presentan los resultados obtenidos al azulcar este método a los registros de las estaciones midrométricas comorendidas dentro de la cuenca tel ASU.

2.3.2.2 Vodelo Precipitación-Escurrimiento (DGCRISH)

Los conceptos y principales procesos que utiliza y realiza el programa de computadora se describen a continuación:

- Para la utilización del modelo, se succividió la cuenca total en 18 -- subcuencas no mayores de 3000 Km2, para ser congruentes en la teoría -- del hidrograma unitario, que emplea el modelo. Figura No. 2.
- Para cada subcuenca, se calculó su tormenta ce diseño a través de un análisis de lluvias máximas anuales en 24 horas, para las estaciones de influencia, ajustándoles una función de distribución de probabilida des tipo Sumbel. Con esto se logró tener para cada una de ellas, las alturas de lluvia media total para diferentes períodos de retorno.
- Como el mecanismo de transformación de lluvia a escurrimiento es el uso del midrograma unitario, el modelo utiliza el midrograma sintético triangular del Soil Conservation Service; por tanto, para cada una de las succuencas, función de las características fisiográficas, determina el midrograma unitario para una duración igual al tiempo de concentración.

La estación que utiliza para calcular el gasto má imo del hidrogra ma unitario, en metros cúbicos por segundo es:

er apridos

A .- Area de la cuenca en km2

D .- Duración de la tormenta en hrs.

to, to - Tiempo pico y tiempo de concentración en hrs.

$$t_c = (\frac{.87 \text{ L3}}{H})^{0.385}$$

L .- Longitud del cauce principal en km .

H .- Diferencia de elevación entre los extremos del cauce.

$$t_b = 5 T_p$$

tb .- Tiempo base .

- El modelo utiliza la relación propuesta por Chow para calcular la lluvia en exceso (Pe) en función de la lluvia total (P) y del número de escurrimiento (N) propuesto por el SCS; así, se calculó la lluvia en exceso para cada subcuenca y para cada período de retorno. La relación propuesta es:

Pe =
$$\frac{(P - \frac{508}{\lambda} + 5.08)^2}{P + \frac{2032}{\lambda} - 20.32}$$

 Al aplicar el principio de proporcionalidad entre las liucias en escabo y los midrograma, unitarios, con la sinótesis de que estas presidinación como la unicia de los controlacións de la controlación de la controlación. obtienen los hidrogramas del escurrimiento directo por subcuencas.

- Para el cálculo del hidrograma total a la entrada de la presa, transita el hidrograma obtenido para cada subcuenca por el método de Muskingum, utilizando como coeficiente K uno igual al tiempo de concentración entre la entrada y la salida de las subcuencas. Para el parámetro X, utiliza el recomendado por Linsley en cauces naturales -- (X = 0.35).

Las ecuaciones que emplea para el tránsito por cauces, son las si-guientes:

donde:

$$C_0 = \frac{-(K*X) + 0.5 \text{ T}}{K - (K*X) + 0.5 \text{ T}}$$

$$C_1 = \frac{-(K*X) + 0.5 \text{ T}}{K - (K*X) + 0.5 \text{ T}}$$

$$C_2 = \frac{x - (K*x) - 0.5 T}{x - (K*x) + 0.5 T}$$

Co .- Gasto de salida en el instante S

ig .- Gunto de entrada en el instante d

On the last was as so all another a

- I: .- Casto de entrada en el instante 1
- Constante de almacenamiento igual al tiempo de concentración.
- X .- Factor de peso que indica la importancia re lativa de las entradas y salidas para la de terminación del almacenamiento; su valor va ría entre 0 y 0.5

A grandes rasgos, así es como el programa realiza los cálculos — para la obtención de los hidrogramas y gastos máximos de cada subcuenca y de entrada a la presa. En la tabla No. 10, se presentan los gastos — máximos de entrada a la presa para diferentes valores de N y períodos de retorno.

Calibración del coeficiente de escurrimiento N.- Uno de los as pectos a considerar en la aplicación del modelo, es la asignación del - coeficiente N, ya que si se le determina de manera confiable, los gastos obtenidos también lo serán.

Dicho valor se determinó al comparar los gastos obtenidos al —aplicar el modelo precipitación—escurrimiento hasta cada una de las estaciones hidrométricas de la cuenca, con los que resultan de aplicar — los métodos probabilísticos en los mismos sitios.

Domo puede observarse en las figuras Nos. Dia la 10, el valor de Nivaría de una establón a otra; para el Río Pesquería el valor orbresto de Nies de oD, según puede apreciarse en las gráficias D. 4. 5. 6 o 1 m para el Río San Juan, en las estadiones richométicas de Diagnatica.

Aldamas y Santa Rosalía, la N es de 75, 75 y 70, respectivamente figuras 8, 9 y 10).

Por lo anterior, se concluye que el coeficiente de escurrimiento N representativo de la cuenca, es de 70.

2.3.2.3 Aplicación del modelo Precipitación—Escurrimiento con cálculo de PMP (Precipitación Máxima Probable)

Para aplicar el modelo, se consideró como tormenta de diseño, para cada subcuenca, la que resultó ser la PMP, celculada a través de estimados estadísticos. El gasto obtenido es el siguiente:

Coeficiente de escurrimiento 79

Gasto máximo 48,000 m3/seg

2.3.2.4 Envolventes de Creager y Lowry

La cuenca del Afo San Juan pertenece a la región midrológica 1.2. 34, cuyas envolventes mundiales y regionales de Creager y de Lowry, produjerom los siguientes gastos:

Mundial: Creager 28,000 m3/set

Mundial: Lowry 27,525 ml seg

Regional: Greager 10,400 m3 em

Regional: Cowry 50,300 mb 40.5

2.3.2.5 Gasto pico adoptado

Según las recomendaciones mundiales, la avenida de diseño para una presa deberá determinarse para un período de retorno de 10,000 años. Del análisis de los resultados que se obtuvieron al aplicar los métodos midro lógicos descritos, se puede comentar lo siguiente:

La distribución de probabilidad que más se ajusta a los datos de — la estación Los Aldamas (controla el 93% del área total de la cuenca de — la presa), es la de Gumbel Simple, cuyos resultados para cualquier período de retorno son muy parecidos a los obtenidos con el modelo precipita—ción—escurrimiento; la misma situación se presenta en Santa Rosalía, (con trola el 97% del área total de la cuenca de la presa). Puede observarse también que la curva obtenida con el modelo parece seguir más fielmente — la distribución de los valores reales.

Por lo que respecta a los valores que producen las Envolventes de Creager y de Lowry, se puede decir que son demasiado bajos los obtenidos con las Envolventes Regionales; y conservadores, los cálculados cor las — Mundiales; esto último se concluye, dado el tiempo de sueldo y magnitud de las precipitaciones que predominan en la cuenca de estudio.

El gasto que produce la PMP, se considera demasiado alto, dado --- que está muy por arriba de las envolventes mundiales.

Por todo lo anterior, se propore que el gasto plos de la alerias de diseño sea el obtenido con el modelo predipitación-escurrimiento y --- que es de 10,000 masseg.

2.2.3 Forma de la avenida

La forma del hidrograma se determinó del análisis de las avenidas ristóricas observadas en la presa y en la estación Los Aldamas, así como la obtenida con el modelo precipitación—escurrimiento. De estas avenidas máximas observadas, destacan por su magnitud y duración, las ocurridas en 1967 y 1978. En las figuras Nos. 11 y 12, se presentan estos hidrogramas, así como el correspondiente obtenido por tránsito de cauce de la estación Los Aldamas a la presa.

Como puede observarse en la figura No. 11, el hidrograma inferido en la presa es un tanto irregular y difiere en forma al registrado en — Los Aldamas (controla el 93% del área total de la cuenca de la presa), — aunque el gasto pico es similar al obtenido del tránsito de Los Aldamas a la presa. Debido a que en caso de presentarse la avenida de diseño, — difícilmente tendría esta forma tan irregular, se decidió desecharla como forma de la avenida de diseño.

En la figura No. 13 se observa que el hidrograma transitado de --Los Aldamas a la presa y el inferido en dicha cresa, tienen características bastante parecidas:

Avenida	Vol (Mm3)	τ_{p}	Tb
1967 (transitada de Los Aldamas a la presa)	5906	70	173
1978 (inferida en la presa)	539 0	43	114
1978 (transitada de Los Aldamas a la presa)	4659	23	124
Model: precipitación-escurrimiento	6500	72	170

Como puede asservarse, las avenidas consideradas tienen características diferentes, asemejándose Chicamente la del año de 1967 y la - calculada con el modelo precipitación-escurrimiento.

Analizando más profundamente la avenida de septiembre de 1967, se observa que ha sido la máxima registrada en la presa con gasto de - 6,600 m3/seg y un rolumen de 2080 Mm3. Por otra parte si se multiplica este volumen por la relación que existe entre el gasto de diseño -- propuesto y el registrado en ese año, se tiene un volumen de 7090 Mm3.

Dado que el volumen de la avenida obtenida con el modelo precipitación-escurrimiento (6500 m3 seg) es del orden de los 7090 Mm3, se propone como forma de la avenida de diseño, la obtenida precisamente — con dicho modelo (figura No. 14).

En resumen, los valores característicos del hidrograma de la ave nida de diseño, son los siguientes:

ig méx = 22,500 mij/seg

 $r_0 = 72 \text{ rors}$

T_h = 170 foras

ve = 6,500 V-3

Al comparar esta avertita con la original de proyecto de aprecia —— que, en lo referente al gasto culo, son mul caredidas y que ific differen reproemento en su columen estumbido. El gasto pico y el columen de sa —— sensia de applicado priminal con, respecta amesto 21,00 m3 sen , column

Por otra parte, si se compara el volumen de la avenida de proyecto, con el volumen de la avenida ocurrida en septiembre de 1967 (2080 – Mm3), se concluye que la forma de la avenida de diseño original resulta demasiado esbelta (figura No. 13).

2.4 Tránsito de la avenida máxima de diseño

Determinada la avenida de diseño, se estudió el paso de ésta a - través del embalse, en diferentes condiciones: las actuales de proyecto y considerando modificación a un vertedor controlado con compuertas.

2.4.1 Tránsito en condiciones actuales

Para este análisis se consideró la siguiente información básica:

-	Longitud del vertedor	398 .0 9 #
	Elevación de la cresta del vertedor	76.34 m.s.n.m.
-	Elevación del NAME actual	83.83 m.s.c.m.
_	Elevación de la corona	36.% ⊤.s.∘.⊤.
_	Bordo libre actual	3.72 -

- Curva de Elevanismes-Capacidades de la presa (tomada del plus o 2419-1-1821 don tesma de noviembre de 1973)
- Curva de descarga deducida, parmaderando la un habitaríctica « de proyecto difia.

En estas condiciones, los resultados que produjo el tránsito de la avenida máxima de diseño, son los siguientes:

Gasto máximo de salida 16,775 m3/seg
Elevación máxima alcanzada 85.290 m.s.n.m.

Como puede observarse, el nivel máximo alcanzado rebasó el NAME, con lo que se produjo una invasión del bordo libre del 77%.

2.4.2 Tránsito suponiendo un vertedor controlado con compuertas

Dados los resultados anteriores, se buscó solucionar el problema, mediante el cambio del vertedor libre a uno controlado con compuertas. — Para lo cual se estudiaron dos alternativas que considerar diferentes — longitudes efectivas del vertedor y diferentes niveles de conservación, imponiendo la condición de alcanzar como nivel máximo la elevación del NAME actual de proyecto (83.5 m.s.n.m.).

2.4.2.1 Alternative 1 (12 compuertas)

```
Número de compuertas = 12
```

Dirensiones $= 10 \cdot - \tau$

Umbrel de compuertas = Eletación X (variable)

Nivel de consurvación = * + y

Para udua elevación del impral de linguerhas se inconsieron las

caguientes políticas de imemoiónio

omegration of confidence of the confidence of th

Elevac	ión	NS	mero d	le comp	_ertas	opera	ndo	Carga
(m.s.n	ı.m.)	P1	P2	Рз	P4	P5	P6	(m)
Elev.	x + y	2	2	3	3	4	4	У
Elev.	x + y + 0	4	5	5	5	6	7	y + 1
Elev.	x + y + =	6	8	7	9	8	10	y + 2
Elev.	x + y + 2.5	12	12	12	12	12	12	y + 2.5

Una vez ijados los niveles de complertas y de conservación, se compararon los resultados que arrojaron cada una de estas políticas de operación de complertas, obteniéndose que los majores valores los produce la política i. En la figura No. 15, se presentan las gráficas — en donde se resumen los resultados de esta política de operación.

La forma de manejar estas gráficas es como sigue: en el eje — horizontal se anota la elevación del umbral de compuertas; en el eje — tertical se lee la elevación máxima alcanzada, al transitar la avenida máxima de diseño. Los números en el extremo superior de cada recta indican el nivel del embalse a partir del qual se inicia la apertura de las compuertas (ni.el de conservación considerado).

Así pues, según el nivel de conservación que se desse adoptar, se obtienen los siguientes resultados:

livel de con− servación (=.3.n.m.)	Elevacifr del ursral (m.o.s)	Eles. mār. aisamkada (m.y.c.m.)	Saksta m ik. de Jaiida 'mskka
	£\$.74" ;	** 1	* *
* >+	** •		•

2.4.2.1 Alternativa 2 (15 compuertas)

Número de compuertas = 15

Dimensiones = $10 \times H$

Umbral de compuertas = Elevación X (variable)

Para cada elevación del umbrel de compuertas, se propusieron las siguientes políticas de operación:

Umbrel de compuertas Elev. \times Nivel de conservación Elev. \times + y

Eleveción	Νć	imero d	e comp	ouertas	opere	ında	Carga
(m.s.n.m.)	Pį	P ₂	P3	P ₄	P5	P ₆	(m)
Elev. × + y	2	2	3	3	3	4	× ÷ y
Elev. $x + y + 1$	6	6	6	6	8	В	x + y + 1
Elev. $x + y + 2$	10	12	10	12	12	12	x + y + 2
Elev. $x + y + 2.5$	15	15	15	15	15	15	x + y + 2.5

En este caso, los mejores resultados se obtuvieron con la política P2, los cuales aparecen resumidos en la figura No. 16. La forma de lesr e interpretar las gráficas es similar a la de la figura No. 15.

Así pues, según el nivel de conservación que se desee adoptar se obtienen los siguientes resultados:

Nivel de con- servación (m.s.n.m.)	Elevación del umbral (m.g.n.m.	Elev. máx. alcanzada (m.s.n.m.)	Jasto māk. De salīda [m] deg.
6.54	69.90		200
e y a v € 19#	Mac. e.e. e.e. e.e. e.e. e.e. e.e. e.e. e	4. 	d esc.,

78.34	68.07	83.0	18,100
79.34	67.52	83.0	19,200

Según puede apreciarse en las dos alternativas anteriores, existe una combinación entre la elevación del umbral de compuertas y el nivel de conservación que se desee adoptar, para el cual se lograría que el —tránsito por el vaso de almacenamiento de la nueva avenida de diseño, se realice convenientemente sin poner en peligro la presa.

El incremento en el almacenamiento, segúr el nivel de conservación que se desee adoptar, es el siguiente:

Nivel de conservación (m.s.n.m.)	Almacenamiento (Mm3)	Incremento del almace- namiento (Mm3)
76.34 (actual)	932.2	0.0
77.34	10 9 6.9	164.7
78.34	1280.5	348.3
79.34	1483.3	551.1

Los volúmenes de oferta de la presa, obtenidos para cada uno de estos niveles de conservación, se presentaron en la tabla No. 5.

3.- APROVECHAMIENTO DEL RIO CON LAS PRESAS MARTE R. GOMEZ Y CUCHILLO

3.1 Generalidades

La construcción de un almacenamiento aguas arriba de la PMAG es otra de las alternativas importantes para incrementar el aprovechamiento y mejorar el control de las avenidas del RSJ.

Efectivamente la Secretaría de Agricultura y Recursos Hidráulicos (SARH) tiene estudiada esta alternativa y ha detectado un proba—
ble sitio para construir este almacenamiento, el cual se denomina co—
mo Presa Cuchillo (PC). El sitio se localiza sobre el RSJ, poco—
aguas arriba del poblado de China, N.L., y muy cerca del puente donde
se encuentra la estación hidrométrica El Cuchillo.

La intención de ubicar la presa en este sitio, se debe a que las avenidas que ahí se presentan son de gran importancia, tanto en magnitud como en volumen; el área de cuenca hasta ese lugar representa el - 27% del área de cuenca de la PMRG; sin embargo, contribuye con el 60% de las entradas a la misma.

La cortina del almacenamiento que se propone, es de tierra con - corazón impermeable y respaldos de material permeable. Exteriormente se protege con una capa de roca. La altura total de la cortina es de 52 m desde su desplante, y la correspondiente sobre el lecho del río -

es de 47 m. La longitud de la corona es de unos 13,500 m, con un ancho de 10 m siendo el ancho máximo de la cortina en la base, de 256 m.

La obra de excedencias se encuentra situada sobre la margen derecha del RSJ, cerca del extremo de la cortina. Esta constituída por
una sección de cresta libre y otra sección controlada por 13 compuertas de 7 m de ancho cada una. La cresta del vertedor libre tiene —
300 m de longitud y se encuentra a la elevación 161.85 m; el umbral
de la estructura de control se encuentra a la elevación 154.10 m.

El nivel de conservación se encuentra a la elevación 160.30 m, 1.55 m abajo del vertedor.

Las características generales de la presa son las siguientes:

- DATOS GENERALES

	Capacidad 10 ⁶ m ²	Elevación m.s.n.m.
Corriente: Río San Juan		
Corona (b=10.0 m)		170.00
NAME	2126.0	167.15
Nivel de conservación	1110.0	160.30
Superalmacenamiento	487.(

	Capacidad 10 ⁶ m ³	Elevación m.s.c.m.
Oresta del vertedor	1300.7	151.83
Jmbral de la estructura de control	510.0	154.10
Almacenamiento para riego	1020.0	
Azolves	80.0	144.10
Gasto máximo avenida de proyecto	15750	m3/seg
Area de cuenca	8794	km2
CORTINA (Tierra)		
Longitud total	13500	m
Altura máxima	52	ព្
VERTEDOR		
Longitud de la cresta	300	m
Longitud del umbral de compuertas d	e 91	m
la estructura de control		
Número de compuentas de 🧎 - de anch	o por 13	
10.5 m de altura de la estructura d	e	

control

3.2 Aprovechamiento

3.2.1 Volúmenes de escurrimiento

Los volúmenes de escurrimiento y evaporaciones empleados en el funcionamiento del sistema PC-PMRG, se determinaron de la siguiente manera:

Los registros de evaporaciones y volúmenes de escurrimiento en la PC, se obtuvieron de las estaciones hidrométrica y climatológica, denominadas ambas como El Cuchillo, las cuales se encuentran muy cerca de la boquilla de la presa. El registro utilizado comprende el período 1944-1980.

Los volúmenes de entrada a la PMRG son producto de los derrames y salidas para uso directo de la PC y los escurrimientos que se tienen por cuenca propia. Las evaporaciones se obtuvieron de la esta---ción climatológica localizada en la misma presa. El registro considerado comprende el período 1944-1980.

3.2.2 Volumen de oferta

Para determinar el volumen de oferta del distema PS-PVAS se aplicó el mismo modelo matemático empleado en la PKS. En este dato, las demandas se consideraron como constantes para tipos los años de simula

ción. La distribución mensual de demandas fue la misma en ambas presas (tabla No. 3).

Las curvas de Elevaciones-Capacidades y Areas-Capacidades de la PC, corresponden al sitio que la SARH tiene previsto para construir - la presa (figura No. 17).

Extracción media anual (EMA)	703.0 Mm3
Derrame medic anual	255.0 Mm3
"Déficit" anual promedio	5%
Número de años con "déficit"	8
Número de años consecutivos con	
"déficit"	3

La EMA que se obtiene en esta alternatica, es mayor en 51 Mm3 a la obtenida con la PVBS, exclusivamente.

Como puede coservarse en los resultados anteriores. Los derrames resultantes del funcionamiento son muy importantes y ello se dete a — que en esta región courren años consecutivos tanto de coco como de —— gran escurrimiento, según se puede apreciar en la figura 10. Tê, en —

donde se ve que los volúmenes de entrada a la PVRG durante el período 1966-1982, fueron superiores a los escurridos er el período 1944-1965. El promedio de entradas a la PMRG en el período 1966-1982 fue de --- 900 Mm3; y el promedio correspondiente al período de 1944-1965 -- fue de 1312 Mm3.

En la tabla No. 11, se presentan los derremes que resultaron — del funcionamiento; en ella, se observa que éstos ocurrieron casi en su totalidad en los meses de enero, febrero, marzo y diciembre; así — como, que esto no ocurre en todos los años y que existen períodos en que los derrames son nulos.

En la práctica, estos volúmenes derramados y no aprovechados, — podrían reducirse al mínimo al procurar que la PC tuviera un almacena miento extra, precisamente en los meses de enero, febrero, marzo y di ciembre. Para ello, podría aprovecharse la capacidad existente entre el NAMO de la presa (160.30 m.s.n.m.) y el nivel correspondiente a la cresta del vertedor libre (161.85 m.s.n.m.), que es de 198 Mm3.

Esta medida de ninguna manera pondría en celigro la estructura, ya que por lo general los gastos máximos que ucualmente ocurren en esos meses referidos, son relativamente menores a los que se cresentam en la temporada de lluvias abundantes que acarca los meses de junio a octubre, según puede observarse en la tabla to. 12.

Astualmente en la PMRG se oblocar agujas de modera durante los meses de octubre a marzo, con el fin de captar los úmenes extra.

3.3 Control de avenidas

3.3.1 Avenidas de diseño

Con el fin de ser congruentes con la manera de cómo se calculó — la avenida de diseño en la PMRG, se propuso como forma de la avenida — de diseño de la PC la obtenida con el modelo precipitación—escurrimien to para un coeficiente de escurrimiento N de 70 y un período de retorno de 10,000 años (figura No. 19).

Los valores característicos del hidrograma de esta avenida de di seño son los siguientes:

Q máx	=	15,000 m3/seg
tp	=	40 horas
tb	=	130 horas
Ve	=	2.700 Mm3

Pespecto a la PIPS, la avenida de diseño considerada, según se - estableció en el capítulo anterior, corresponde a un período de retorno de 10,000 años, y fus la obtenida con el modelo precipitación-escurrimiento, una vez considerado el efecto regulador de la PC.

3.3.2 Tránsito de avenidas

Una vez definidas las avenidas de diseño, se estudió el efecto regulador del sistema PC-PMRG; para ello se lletaron a cabo los tránsitos por vaso de dichas avenidas.

Al efectuar estos tránsitos, se propusieror como niveles iniciales en ambas presas, los de conservación, ya que es la cordición más desfavorable.

En el caso de la PC se buscó una política de operación tal, que al transitar la avenida de diseño, se alcanzara como nivel máximo del embalse, el correspondiente al MAME de proyecto [187.15 m.s.n.m.].

La política de operación tropuesta es la siguiente:

Elevación del embalse	Pasto de salida
(m.s.n.m.)	(m3/seg)
160.30 - 161.00	1006
161.31 - 162.53	2030
162.51 - 164.00	2500
164.01 - 186.00	3000
165.01 - 165.50	4000
165.51 - 166.53	5333
166.31 - 168.58	7000
166.51 - En adelante	libre

En estas condiciones los resultados que produjo el tránsito de las avenidas máximas son los siguientes:

Presa Cuchillo:

Gasto máximo de entrada \$5,000 m3/seg Gasto máximo de salida \$3,700 m3/seg

Elevación máxima alcanzada 167.15 m.s.n.m. (NAME)

Presa Marta R. Gómez

Sasto máximo de entrada 14,200 m3/seg Sasto máximo de salida 13,925 m3/seg. Elevación máxima alcanzada 92.97 m.s.n.m

En base a estos resultados puede decirse que desde el punto de vista del control de avenidas, el sistema funciona adecuadamente, va que el NAME no fue rebasado en ninguna de las presas.

4.- CONCLUSIONES

Con base en todos los resultados obtenidos en los capítulos anteriores, a continuación se presentan las conclusiones a las que se llegó:

Respecto a la avenida de diseño del proyecto original de la PMRG, se puede decir que es demasiado esbelta, por lo que se propone como nue va avenida de diseño la que se presenta en la figura No. 14, cuyos valo res característicos principales son: gasto máximo, 22500 m3/seg; 1500 m3/seg por arriba del gasto de proyecto (21000 m3/seg); tiempo pico 72 horas; 25 horas más que la del proyecto (47 horas); volumen de escurrimiento, 6500 Mm3; 3300 Mm3 por arriba del volumer de escurrimiento de proyecto (3200 Vm3).

Dado que la PMRG es insuficiente para regular la avenida de dise no propuesta, resulta necesario solucionar este problema ya mea sobrele vando la cortina, sustituyendo el actual vertedor por uno controlado — con compuertas, o construyendo una presa aguas arriba de la actual.

La alternativa de sotrelevar la contina do es factible, ya que - al inicio de operaciones de la presa courrieron asentamientos y desplazamientos de cimentación en un importante tramo de la cortina (ECD m -- aproximadamente).

Es posible sustituir el actual vertedor por uno controlado por - 16 cumpuertas de 16 m de anomo y 15 m de alto, las cuales pourían estar

asentadas a una profundidad de 68.90, 68.60, 68.07 y 67.52 m.s.n.m., según se desee adoptar un nivel de conservación de 76.34 (actual), 77.34, 78.34 y 79.34 m.s.n.m., respectivamente.

Si se adopta como nuevo nivel de conservación, la elevación — 79.34 m.s.n.m., 3 metros por arriba del NAMO actual, se logrará un incremento en el almacenamiento útil de 551 Mm3. El gasto máximo de des carga para el cual se diseñaría el nuevo vertedor es de 19,350 m3/seg.

Del funcionamiento de vaso se obtuvo que, en condiciones actuales, la extracción y el derrame medio anual, para 5 por ciento de deficiencia anual promedio, es de 622 y 417 Mm3, respectivamente.

En caso de adoptarse el nuevo nivel de conservación de 79.34 - m.s.n.m., la extracción y el derrame medic anual, para 5% de deficiencia anual promedio, sería de 705 y 302 Mm3, respectivamente.

De los resultados anteriores se puede decir que aún cuando se eleve el nivel de operaciones de la presa, los derranes o volúmenes no aprovechados seguirían siendo importantes: esta elevada cifra de — derrames se debe a que en la quenca ocurren años consecutivos de — gran escurrimiento (figura No. 18), por lo que la presa no puede al macenarlos convenientemente.

La construcción de la PC aguas arrica de la PMPS vendría a proporcionar un mejor control de las crecientes del PSIX eliminaría la posibilidad de falla de la PMPS, en caso de presentarse la avenida de

diseño propuesta. Con el nuevo almacenamiento se incrementaría en un 70% la capacidad para el control del río, por lo que el peligro de inundación que actualmente padecen las ciudades de Matamoros, Reynosa y Bronsville (Texas), disminuiría notablemente.

Del funcionamiento del sistema PC-PMRG se obtuvo que la extracción y el derrame medio anual, para 5% de deficiencia anual prometio, es de 703 y 255 Mm3, respectivamente. La extracción obtenida es mayor en 81 Mm3 con respecto a la que resultó con la FMRG, exclusivamente. — Los derrames aunque disminuyeron en un 40%, siguen siendo importan tes.

Dado que los derrames resultantes del funcionamiento del siste — ma ocurrieron casi en su totalidad en los meses de enero, febrero, marzo y diciembre (que son precisamente los meses menos lluviosos en la región), es posible aprovechar en la PC, la capacidad existente entre el NAMO y el nivel de la cresta del vertedor libre (195 Wr3). a fin de — disminuir los volúmenes derramados y no aprovechados.

Finalmente, se puede decir que, desde el punto de vista hitrológico, la mejor alternativa tendiente a incrementar el aprovechamiento — y mejorar el control de avenidas del RSL, resulta ser la que conterta — la construcción de la PS aguas arrita de la PSRC.

ANEXC

TABLA NO. 1
VOLUMENES DE ENTRADAS NETAS A LA PRESA
MAINE R. GOMEZ, TAMPS. (MAT)

AÑO	ENE.	FEO.	MAR.	ABR.	MAY.	uni.	.HX. a	AGU.	gre.	ort.	NOV.	DIC.	ANLIAL.
				7,04	161. 12	181211	1:17.480	(eri.est	487.,(31	153,67	111.01	62.73	1812
1944	10,193	9,06 45,15	1.1.11 31. <i>1</i> 15	57,54	12,34	11.89	27.16	5/34	31,79	577.41	48,41	32.45	1005
1945	63.79	11.72	7.00	77,01	100,32	a. a.	19. 41	60.30	152,02	2411, 17	37.47	20.32	837
1946	11.76	5.39	4,63	50.78	31.85	99,01	4.94	6841,39	70, 10	44,45	10.28	15,44	1033
1573	11.37	15.24	17.92	24,65	98,2£	63.39	42.63	80.42	655,29	277.53	94,43	26.40	1403
1948	7.52	41.24	36.17	160, 18	194,27	94.22	42.77	24.80	33.75	37.92	13.16	11.39	700
1949	10,46	9,87	9, 18	25.03	18.29	43.40	26,30	16.92	80.07	67.88	3.46	3.97	315
1950	10.59 3.92	5.71	6.08	15.41	بوروء دع.25	139.31	22.60	125.43	638,99	186, 19	39.94	22.99	1290
1951	11,27	24.80	45.66	18, 14	37,57	99,07	13.58	8.73	45,29	4.61	3.57	3.74	316
1952	2,35	13.91	8.78	24.30	9,42	3.86	21.59	1213.00	328,28	409,79	74.89	11.31	2121
1953	12.09	21.14	10.80	26.53	144.66	30,21	16 98	14.93	15.95	102.82	14,85	2.71	454
1954	9.08	6.53	3.99	4.34	32.34	6,92	52.78	75,46	389,40	105.71	20.08	4.47	725
1955	5,63	5.43	4,70	4.34 6.68	18.83	17,24	7.18	14,50	42.63	3.29	1.96	.99	129
1956 1957	2.72	35.63	50.32		152,76	139,41	4.41	8,47	23.09	91.06	6.29	3.99	676
1958	15.27	4.74	4,04	357,42	54,48	159,72	100.31	56.50	545.67	1210, 14	276.12	80.49	5255
1939	51.18		27,57	6.31		35,09	17.45	42.76	58.87	22.95	8.68	6.50	370
1960	5.25	36, 16	5,92	9,97	37.42		48.41	149.36	199,97	286.27	27.91	9.76	788
		8.16	22.59	16.03	14,43	24,78	26.88	34.67	237.23	159.98	12.34	6.51	529
1961	10.78	8.04		17,00	29.18	47.35	10.56	5.81	155.02	110, 16	4.28	7.65	417
1962	2.88	14.72	6.82	39,99	8.81	49.70	10.39	1.89	232.31	138.37	7.95	4,57	613
1963	3.65	5.00	4.91	3.10	165.12	35,46		11, 14	119,83	66.24	4.95	4.64	633
1964 1966	8,38 10,20	4,36 15,45	9,36 21,10	45.28 13.29	327,75 140,85	29.05 81.09	9.57 7.42	14,36	309,48	46,79	20,77	19,11	<i>EP</i> G
1966	4.45	17.85	22. 9 8	45,60	222.09	229,93	130,36	64.40	81.51	112.06	45.98	10,53	931
1967	14.74	11,45	41 85	FF 70	45,11	55.51	5.59	NU.1.73	24/2:43	503.90	240.23	140,74	4354
1968	94,84	61,48	49,35	B1,41	96.97	83.70	100.73	40.34	293,66	245, 19	86,95	56,45	1291
1929	33.63	17.96	14.73	20,92	3A.0£	ALIGN	10.72	25.48	269.84	251,25	111.82	E2.71	وبرايخ
1970	54,58	35.96	₹:.78	36,80	¥92	68,28	76.18	57,71	264.15	117,27	31.64	14.75	824
1971	25.2	10.8	12.4	12.1	6,0	135,6	57,9	250.2	495.7	471.4	104.	53.4	1635
1972	19.3	20.0	20.35	17.6	347.4	473.2	183.7	8°'.U	227.6	75.6	51.6	32.4	1350
1973	36.1	12.5	18.2	2,63	39,7	R. T. A	24.7	314.0	416.4	27.34	142.2	76.4	1681
1274	℃.2	70.6	4^,3	78.8	142.0	45.	8.6	A2.1	309.0	10.2	37,4	17.1	1015
1975	13.2	6.2	6.1	1,6	1 145,9	27,9	381.1	187.6	411.0	79.6	51.8	37.9	13:2
1976	30.8	4.3	".4	.76.5	47.	41,R	590.2	10.5	243.0	144.0	197.2	155.9	1606
1977	Pc.4	76,5	37.9	41.9	41,9	14.A	2.08	250.7	377, 7	129.3	32.6	18.5	931
1978	17.0	10.2	#,7	20, 1	34,13	Au, ?	5,73	1 71, R	1321.4	74.7	159.1	FF.7	2481
1979	45.2	33.7	24.8	37.4	~ 1	150	46.7	1 н, н	172.8	18.2	16.4	37.1	673
1990	30 6	15.6	9.5	10 4	19.1		٠.٥	63.7	4.7	35.5	39.1	26.1	361
1981	34.5	36.9	26.7	1.82	394.5	274 6	81.9	107.7	182.3	G9.7	27.3	9.8	1295
1982	13.7	8.5	5.	20.0	·x: ÷	10. °	4.3	0.9	23.4	20.4	11.0	8.6	190

T A B L A N O. 2 EVAPORACIONES NETAS MENSIMIES EN LA PRESA MARTE R. SINEZ, TAMPS. (mm)

NÃO.	ENE.	FEB.	MAR.	ABA.	WAY.	. ithe	JL.	A69.	SEP,	ect.	NOV,	oic.
1944	86	125	162	238	#G	1117	20	193	د 12	₩s3	93	84
1945	39	125	200	156	258	279	290	225	207	73	152	103
1946	77	109.	232	204	190	271	.351	563	127	81	116	99
1947	73	110	197	190	*f%	77 A	CAU	141	11,4	196	57	63
1948	72	-7	7	253	216	253	219	164	-82	78	125	87
1949	63	32	123	95	141	240	242	263	164	114	127	76
1950	124	105	130	121	241	528	347	278	204	154	138	101
1951	115	127	130	173	152	194	56.3	196	-38	112	108	109
1952	115	120	150	170	180	Suu	340	211	164	16/9	76	65
1953	134	81	143	186	223	279	198	51	33	-111	69	50
1954	47	114	139	46	118	131	217	531	141	-7	41	79
1955	41	74	156	191	180	553	209	148	125	110	66	63
1956	79	102	145	129	160	233	278	221	93	125	96	86
1957	€8	62	122	13	-1	135	208	260	180	143	43	80
1958	-21	39	137	172	104	500	252	191	-51	- 135	48	44
1959	22	3	117	134	221	166	249	161	163	117	85	89
1950	50	81	109	99	215	268	270	100	51	110	33	1
1951	28	94	174	164	240	256	290	156	95	121	28	61
1962	65	138	130	190	266	236	333	204	-30	136	70 •	11
1963	57	93	171	216	127	196	255	286	107	72	. 99	-2
1964	65	68	140	129	14	179	235	291	-5	119	* B1	55
1965	83	49	82	172	195	185	236	161	101	~£7	23	-14
1966	~5	26	108	30	-57	56	188	180	160	-1	101	86
1967	42	93	138	199	162	فدة	580	-43	-382	33	-7	46
1968	21	35	105	16	78	143	51	129	75	94	92	85
1959	53	54	123	174	185	123	298	119	107	111	43	51
1970	3	47	130	145	155	78	155	1. <u>v</u> .	-27	72	96	73
1971	445	93	+15	-73	-81	13E	199	<i>6</i> 4	-6 8	119	71	40
1972	58	51	90	107	(a)	-12	61	85	C9	104	30	35
1973	-8	-24	114	117	96	-133	ائن	°4	-107	11	72	119
1="4	43	103	19	123	163	20%	177	117	72	62	70	40
1975	34	65	128	149	129	147	-9	9	34	55	92	43
1976	£3	111	79	103	125	2011	Su	131	3	2	-45	8
1977	3	57	111	131	155	130	219	156	38	99	89	61
1978	18	60	144	128	135	190	216	505	-34	21	51	40
1979	45	61	114	-24	*20	*3 *	-Kel	162	-4	129	98	~15
1930	57	56	126	151	23	273	1.9	13+	161	71	28	36
1981	-17	44	62	63	73	-51	158	44	117	60	82	69
1952	67	66	100	70	16	172	2.9	213	135	-32	78	15

TABLA No. 3 VO CO 191 PO

ORRESI	NES DE DEMA PONDIENTES 1979 (10 ⁵ m IT A JE	AL CICLO		EVACION—CAPA -AREA, DE LA	
ES	VD	%	ELE J	CAP _6_3	AREA

TABLA No. 4

MES	VD	%	ELE <i>!</i> manm	CAP 10 ⁶ m ³	AREA Ha
OCT	54.154	8,662	58	0.001	0.1
NOA	4.728	9, <i>7</i> 68	60	0.019	2.5
DIC	4.728	C.768	52	0,500	70.3
ENE	73.100	11.730	64	11.650	1006.C
FEB	75.486	12.102	66	41.940	2614.3
MAR	35.148	5,635	68	116.440	4409.0
ABR	146,425	23.476	70	228.780	6750.0
MAY	194.766	31.225	72	390.660	9551.0
JUN	19,835	3.180	74	608,560	12267.0
JUL	5.533	0.887	7 6	878.350	15031.0
AGO	5.046	0.809	75.34	932.200	15584.0
SEP	4.728	0,768	77	1035.990	16657.3
	COD 625	rac aca	77.34	1096.92	17356.0
ANUAL	623.677	:ec.eso	78	1213.63	18712.0
			ೌಕ,34	1270.47	19356.3
			74 m	1525.16	22375.0

PRESA MARTE R. SOMEZ, TAMPS.

RESULTADOS DEL FUNCIONAMIENTO DE VASO

NIVEL DE	DEFICIENCIA MEDIA	(N MEDIA ANUAL Mm3)	DERRAME MEDIO ANUAL (Mm3)		
CONSERVACION	ANUAL (%)	EMA=CTE	EMA=F(Almi)	EMA=CTE	EMA=F(Alm _i)	
76.34	5	622	756	417	289	
77.34	5	652	777	377	258	
78 .3 4	5	675	793	341	233	
79.34	5	705	810	302	206	

TABLA 5

TABLA NO. 6

GASTOS MAXIMOS ANUALES DE LAS PHINCIPALES ESTACIONES HIDMONETRICAS SITUADAS EN LA CLENCA
DEL RIO SAN JUAN

AÑO	ESTACIOM										
	ICANGLE	CIENEGA	LA ARENA	LOS HERRERA	CADE- REYTA	iepe- maæ	MONTE- MORELOS	archtrru Er	LOS ALDAWAS	sia. Pictali/	
1924											
25										782	
26										1180	
27								1817		368	
28								3017 54		1360	
29								34		566	
30		318			•			994		250	
31		440						333		916 250	
32		447 244								5300	
33 34		74						2737		3750	
35		319						394		349	
36		403						603		650	
37		71						1307		145.0	
38		609						140		5.43	
39		232						6758		EL00	
4C		480						720		1840	
4:		835					288	404		1130	
43		319		450			250	1194		2050	
43		193		226			127	817		1270	
44		487		1251			110	676 1585			
45		104		262			<i>6</i> 6	3359			
46		469		299			30	5260			
47		526		564			254	1394			
48		1152		831			92	1173			
49 %		241		218			7	382			
51		352		270			22	469			
52		404 60		897			102	2064			
53		1986		74 1380			19	167			
54		760		328			110	2511			
e,c		982		417			80	303			
56		275		244			91 96	382			
57		320		337		#042	56	125			
58		1285		905		1632	137	900			
59		581		172		166	13.	1927 177			
60	*15	3*3		1049		134	79	1677			
61 62	125 103	520		571		326	29	492			
£3	42C	193	364	259	657	440 405	15 12				
64	160	870	623	643	286			585 £03			
65	111	293 297	153	563	250	279 370	50	348			
66	91	299	752 214	910 187	56 95	544	?	1274			
67	981	2154	1976	2100	1982	5305	163	727			
66	155	317	:45	160	99	490	583 60	5540 465	£.0		
5 9	31	111	101	77	85	355	21	471	454		
70	97	995	425	438	34	389	49	665	956		
71	233	820	546	454	122	577	85	649	1337		
72	93	61	***3	355	94	584	54	495	930		
73	243	208	87	274	82(;	2014	324	3356	3471		
74	50	347	76	560	æ*	1795	35	1935	1817		
75 76	544 544	324	39	126	5	1148	57	644	756		
77		1228	381	393	642	900	126	1001	1100		
78				255	2.0	1050		2000 2000	538C		
				360				200			

TABLA No. 7

GASTOS MAXIMOS OBTENIDOS POR EL METODO ⇒ROBABILISTICO DE GUMBEL SIMPLE (m3/seg)

			E	STACIC	\ <u>\</u>			
TR (AÑOS)	EL CUCHILLO	LOS ALDAMAS	STA. ROSALIA	TEPEHUAJE	ICAMOLE	CIENEGA DE FLORES	LA ARENA	LOS HERRERAS
10	3480	6350	4800	1910	750	1230	1300	1160
20	4380	8020	6040	2350	950 950	1520	1650	1440
30	4900	8985	6770	2610	1070	1690	1860	1595
50	5550	10199	7670	2935	1250	1900	2120	1795
100	6430	11830	8900	3370	1420	2180	2470	2060
506	8460	15625	11730	4380	1880	2835	3280	2575
100C	9350	17250	12250	4810	2080	3120	3630	2940
5000	11370	21050	15790	5820	2540	3770	4140	3550
10000	12250	22790	17010	6250	2740	4050	4790	3820

TABLA No. 8

GASTOS MAXIMOS OBTENIDOS POR EL METODO PROBABILISTICO DE CUMBEL DOBLE (m3/seg)

	ESTACION											
-a (AÑOS)	EL CUCHILLO LOS ALDAMAS STA. ROSALIA TEPEHUAJE ISAMOLE CIENEGA DE LA ARENA LOS HERRERAS FLORES											
10	3263	5193	4148	1885	630	1175	1043	1123				
20	4528	5581	5322	2087	846	1135	1436	1419				
30	5139	7350	5958	2192	963	1713	1649	1573				
50	5857	8291	6731	2317	1104	1523	1910	1759				
16C	6685	<i>9</i> 545	7756	2482	1290	2195	2255	2003				
500	8863	12415	10092	2856	1715	2804	3042	2553				
1000	9746	13645	11092	3 016	1897	3054	3379	2789				
5000	11789	1/3500	13400	3385	2318	3664	4159	3333				
1000C	12669	17720	14404	3544	2500	3921	4494	3567				

TABLA No. 9

GASTUS MAXIMOS CETENIDOS POR EL METODO PROBABILISTICO LOG PEAPSON III

		ESTACION										
Tr (AÑOS)	FI (Ա)(ԴԵՄԱԼԱ	LOS ALDANAS	STA. ROSALIA	TEPEHUAJE	ICAMOLE	CIENEGA DE FLORES	LA ARENA	LOS HERRERAS				
10	2930	4660	3600	1680	49E	1100	925	990				
50	4030	0820	5200	2230	770	1410	1400	1310				
30	4870	8820	6670	2700	1040	1665	1830	1 580				
50	5830	10712	8030	3030	1300	1930	2250	1810				
10G	<i>c</i> s60	14600	10760	3860	1900	2230	3115	2240				
50G	10250	30200	21000	<i>t</i> ·100	4500	3000	6200	3500				
1000	11820	37100	24700	7070	6050	3550	<i>79</i> 70	4120				
5000	16560	7100	49000	10250	12500	5330	14000	6000				
10000	1576-(36)	96390	54920	11680	17600	8660	17830	6890				

GASTOS MAXIMOS HASTA LA PMRG OBTENIDOS

CON EL MODELO PRECIPITACION-ESCURRIMIENTO

(m3/seg)

		Cae	eficiente	de Es	scurrimie	nto N		
TR (AÑOS)	45	50	55	6C	65	20	7 5	30
10	1264	1823	2890	3130	387€	4582	5550	6483
20	2230	2920	3900	4579	550C	6450	7370	8450
30	2750	3650	4650	6530	650C	7530	8600	9750
50	3278	4232	5232	6270	7347	8 454	9593	10765
100	4326	54	6584	7757	8948	10161	1139G	12844
500	7082	8533	9981	11429	12850	14265	15670	17968
1000	9500	gg cont tody comp many large 'I hand' man data atta	11500	:3:00	14650	15100	17500	19000
3008	11760	13581	15352	*7000	19750	20350	21588	23500
10000	13142	:215E	16960	15990	20354	22500	23453	25473

TABLA Nº 10

W.- Adimensional

DERRAMES MENSUALES RESULTANTES DEL FUNCIONAMIENTO DEL SISTEMA PC-PMAG PARA 5% DE DEFICIENCIA (Mm3)

AÑO	ENE	FEB	мАЯ	AUR	MAY	JUL	JUL	AGO	SEP	OCT.	NOV	DIC
1944	157.8	84.4	57.8	0	٥	o o	0	O	0	٥	o	0
1945	0	0	0	0	0	0	c	0	0	O	o	C
1946	0	٥	O	5	0	9	0	0	0	0	0	0
1947	a	O	0	Ð	Ü	Ü	0	O	0	0	Ø	0
1948	O	43.0	0	Ð	0	ប	0	0	0	O	0	0
1949	0	0	0	0	Ö	9	0	0	0	0	0	e
1950	Ð	c	0	Đ	O	9	۵	0	0	0	0	0
1951	ប	O	O	0	0	0	0	0	0	0	0	0
1952	0	o	Ð	0	0	3	0	0	O	Ö	O	49.6
1953	205.7	22.0	O	0	٥	១	0	Ö	O	Ω	ū	0
1994	0	Ú	U	O	0	0	0	0	0	0	0	O
1955	0	0	O	0	0	9	O	0	O	e	0	0
1955	0	0	0	0	0	ត	0	0	0	0	0	a
1957	O	0	0	ລ	0	3	O	0	0	C	٥	0
1958	30.4	257.5	81.3	0	0	0	0	0	0	0	0	0
1959	0	0	0	0	0	э	0	0	0	0	0	9
1960	0	0	0	O	0	О	۵	0	0	O	0	0
1961	0	O	O	0	n	Э	0	0	0	9	0	0
1962	O	Ω	0	Э	0	J	0	9	Ü	IJ	Ö	O
1963	0	0	0	0	0	3	0	J	ח	0	0	0
1964	O	0	0	ວ	O	0	٥	0	0	0	O	0
19 65	O	0	0	0	0	0	0	O.	Q	0	0	0
1966	0	0	D	D	0	a	0	0	0	0	0	1950.9
1907	430.4	232.4	121.8	5.2	0	۵	0	O	0	0	0	80.5
1968	157.2	77.3	40.0	0	0	9	0	O	0	0	0	o
1969	0	0	0	ប	O	3	0	0	0	0	0	0
1970	0	υ	0	0	Ð	0	C	a	0	0	Ü	197.7
1971	299.0	78.3	33.8	3	0	2	0	e	0	148.6	44.0	207.3
1972	0	21.0	13.3	0	Ð	9	0	O	228.2	228.3	288.0	434.9
1973	196.7	115.5	42.6	0	O	o	0	0	0	0	0	58.7
1974	0	Ð	0	О	Ü		Ö	0	Ü	Ö	Ď	236.1
1975	16.5	19.6	17.1	3	ō	ت	O	G	Ö	õ	22.9	239.3
1976	99.2	202.8	145.6	2.4	ō	g	ō	ō	Ö	Ö	0	0
1977	0	υ	0	g	0	7	C	ā	ō	0	٥	577.3
פֿיל פֿו	p∺o'n o	7.38.F	68.b	u u	Ü	Ū.	u	u	U	Ö	์ บี	G

TABLA 11

CASTOS MAXIMOS PEGISTRACOS EN LA ESTACION HIDACLETRICA EL CUCHELLO (MO/seg)

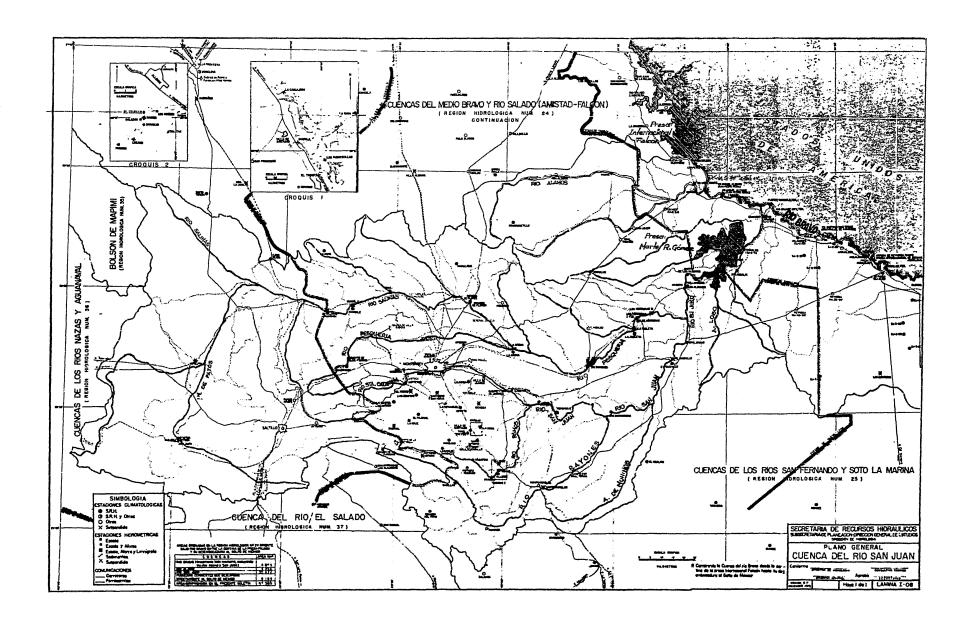
AÑO .	ENE	FEB	RAW	ASA	MAY	JUN	æ	AGO	SEP	OCT	NOV	DIC	AWA
1926	7	5	4	1	11	3	1	Q	54.	18	15	. 11	54
1929 1930	6 6	4 3	3 2	2 111	7	2	3	4	34	13	7	9	34
1931	333	104	31	16	443 309	862 115	49 258	17 215	43 28	994 17	119 9	37 9	594 333
1933	15	8	6	30	291	43	781	1881	2737	1185	105	52	2737
1934	63	, 28	15	137	57	11	292	22	112	394	12	9	394
1935	a	10	23	20	214	243	66	5	503	243	58	457	603
1936	61	23	31	39	131	20	1307	609	592	77	79	27	1337
1937	18	15	19	7	28	81	140	59	121	35	138	36	140
1938	13	8	9	11	77	12	122	6758	350	50	19	14	6758
1939	13	9	5	165	201	42	44	16	136	720	7	7	720
1940	4	2	7	2	197	365	217	241	396	404	45	115	401
1941	55	16	73	34	90	1194	173	23	750	44	31	27	1153
1942	22	9	7	197	208	817	295	175	138	495	25	12	817
1943	16	7	3	16	20	21	63	7	676	225	14	17	675
1944	10	5	20	1	21	180	291	1143	1585	535	47	25	1585
1945	62	23	11	28	19	6	40	216	112	3358	22	13	3358
1946	8	6	5	59	231	34	35	90	306	526	25	12	525
1947	5	3	1	132	99	250	29	1294	53	28	8	9	1254
1948	4	1	5	28	276	58	27	145	1173	482 54	45 3	15 4	1175
1949	3	47	2 9	362 64	114 8	70 188	12 44	10 15	42 284	469	0	ő	362 4č9
1950	3 0	12	2	22		561	1C	531	2084	235	31	12	2054
1951	5	0	3	15	520 41	361 167	57	531 0	2064 79	233 5	2	2	167
1952 1953	1	ć	79	84	0	0	17	2512	835	1117	22	5	2512
1954	4	3	13	154	302	20	119	154	25	303	78	ž	تتت
1955	1	3	ė	ءَ ۔	39	20	365	367	279	249	29	ຣ	3€5
1956	ż	1	ō	ō	104	125	2	39	76	13	52	1	125
1957	ā	170	211	506	385	238	ž	0	71	900	8	2	900
1958	9	0	G	a	193	217	222	122	1927	1532	194	48	192"
1959	34	25	13	5	117	64	15	115	177	33	õ	2	177
1960	1	3	8	45	33	23	490	275	194	1578	54	17	1673
1961	8	3	195	197	99	338	155	96	492	255	18	2	462 .
**2	1	O	0	144	25	274	30	35	361	585	54	14	561
1963	1	0	0	10	422	27	24	23	503	302	5	2	5C3
1964	2	1	O	185	348	48	46	2	317	332	2	3	3-2
1965	0	5	178	13	204	82	ı.	153	1274	185	36	93	:7 -
1965	15	17"	31	125	456	727	*62	2:2	180	205	154	17	72"
1967	9	2	56	36	12	242	13	1236	5540	274	73	47	5543
1968	33	21	18	32	69	90		76	465	253	57	32	36 3
1969	19	5	3	13	12	187	2	96	357	471	110	77	47;
1968	33	46	12	65	2	89	128	129	555	175	22	5	SE :
1971	8	1	1	1	G	48	36	222	552	549	51	21	643
1972	11	6	35	5	455	415	133	36	243	58	20	12	16.E
1973	15	6	10	2	150	3355	2715	798	1230	355	171	33	576c
1974	39	13	64	9	4	18	4	2	1935	103	22	8	1935
1975	6	5	2	1	180	15	445	515	64:	67	28	11	64
1976	10	4	3	9	6 0	31	106:	40	364	160	1.2	77	1067
1977 1978	33 7	35 5	17 2	106	68 55	7 200	2	42 313	2000 3500	257 1503	21 #2	9 41	2000 250 T
Minima	3	- č	<u></u>	3	-~	- 0	•	- 111	25	8		O	
Wedla	21	16	25	65	148	245	2.2	410	~39	490	46	30	1222
Mexima	333	171	211	505	520	3355	1715	6758	55-10	3358	154	457	6758

VALORES DE yn ON PARA EL SALCULO DE GASTOS POR EL METODO DE GUMBEL

N	У _N	$\sigma_{_{\!\scriptscriptstyle N}}$	N	Ум	σ _N
3	. 4843	.9043	49	.5481	1.1590
9	. 4902	.9288	50	.54854	1.16066
10	.4952	.9497	51	.5489	1.1623
11	.4996	.9676	52	.5493	1.1638
12	.5035	.9833	53	.5497	1.1653
13	.5070	.9972	54	.5501	1.1667
14	.5100	1.0095	55	.5504	1.1681
15	.5128	1.02057	56	.5508	1.1696
16	.5157	1.0316	57	.5511	1.1708
17	.5181	1.0411	58	.5515	1.1721
18	.5202	1.0493	59	.5518	1.1734
19	.5220	1.0566	60	.55208	1.17467
20	.52355	1.06283	62	. 5527	1.1770
21	.5252	1.0696	64	. 5533	1.1793
22	.5268	1.0754	66	. 5538	1.1814
23	. 5283	1.0811	68	.5543	1.1834
24	. 5296	1.0864	70	. 55477	1.18536
25	.53086	1.09145	72	. 5552	1.1873
26	.5320	1.0961	74	. 5557	1.1890
27	.5332	1.1004	76	.5561	1.1906
28	.5343'	1.1047	78	. 5565	1.1923
29	.5353	1.1086	80	. 55688	1.19382
i 30	.53622	1.11238	82	.5572	1.1953
31	.5371	1 1159	84	.5576	1.1967
32	.5380	1.1193		.5580	1.1980
33	.5388	1.1226		. 5583	1.1994
34	.5396	1.1255	90	.55860	1.20073
; 35	.54034	1.12847	92	.5589	1.2020
36	.5410	1.1313		1.5592	1.2032
37		1.1339	1	. 5595	1.2044
38		1.1363		- 5598	1.2055
39		1.1388	•	.56002	1.20649
40	.54362	1.14132		56461	1.22534
41	.5442	1.1436	200	.56715	1.23598
42	.5448	1 1458		56878	1 24292
43		1.1480		56993	1.24786
44	.5458	1.1499	1	57144	25450
45		1.15185	<i>5</i> CC	.57240	1 25880
46	2	1.1538	750	57377	1 26506
47	, , , , , , , , , , , , , , , , , , , 	1.1557		57450	
48	. 5477	1.1574		.57722	1.28255

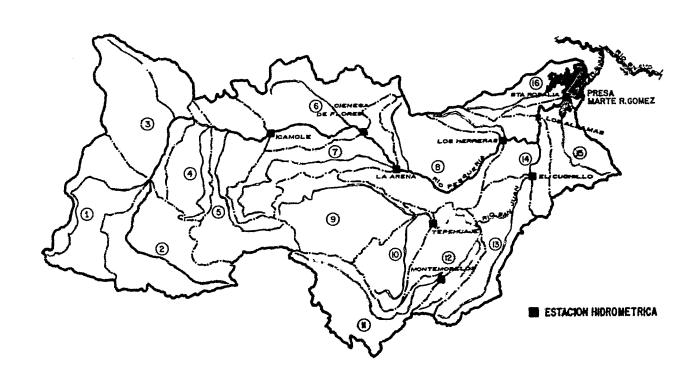
	,												RES	_									
Cs	ļ,											<u>, Р</u>	60	%		·	·						Cs
5	0.01	Q.I	0.5	ı	2	3	5	10	20	25	30	40	50	60	70	75	80	90	95	97	99	99.9	
0.0	3 72	3.09	258	2.33	2.02	186	1.64	1.28	0.84	0.67	0.52	0.25						-1.28			- 233	- 3.09	0.0
	3.83									066	0.52	0 24						-1.28				- 302	
	3.94 4.05											0.24 0.23			-053 -054				- 1.61		- 2.25 - 2.22	- 2.95 - 2.68	
	7 16											0 22			-055				- i.58			- 2.81	
												C 21	-0.04	- 0.29	-056	-070	-085	-125	-1,56	1.77	- 2 14	- 2.69	0 25
	4 38										0 48	0 20						-,24					
	450											0.20						-124 -123		-1.72	- 2.00	2.54	. 4
45	1 72	3.74	2 99	2 64	2.2B	2 08	76	32	Q 82			C is						- 1 22		- 1.6u	-200	- : : ?	13.33
5	4.83	3 81	3 04	2.60	2.31	308	1, 77	t 32	CBI	0 6 5	0.45	0 17	~ 0.0B	- 0 33	~ 0 58	- 0.71	-0.85	-1.22	-1.49	-1.6e	LSG	- :.40	3.5
										O. E2	0.45	0 16						-1.21					
) G	5.05	398	3 13	2.75	2 35	212	1 80	133	080	0 61	0.44	0 16	-010	- 0.34	-019	-0.72	-065	-rso	-145	-1.61	-L88	- 227	06
	5 16											0 15						- L 1 d					
	: 39											0 13						:. 18					
8	5C	4.24	3 31	2 69	2.45	2.16	1.64	134	0.78	C.58	0.41	- 12	-0.13	- 0.37	-L 50	-0.73	- 336	! 17	-1.38	-1.52	-1.74	! 2,02	: 8
	5 62										0.40	: :2	-0.11	- 0.38	-0.60	- 073	-086	- 1. 1G	-1.36	! - 1 - 2	1-1.70	- 1.95	U.D.3
	5.84										0.40	5. II	-0.15	- 0.38	-061	-0.73	- 0.85	L :5 L :4	-135	-1.4	-166	- 1,90	J 25
	3.95											0.09	-016	- 0.39	-062	-073	-0.85	-1.13	-1.32	-1.42	-1.59	-179	10
	ŭ ú7										0.37	0 03	-0.17	-0.40	-052	i 0.74	-0.65	- 1.12	-130	-190	- 56	- : 74	:05
	€.i8										0.36	3.7	-016	-0.41	- 2.62	-0.14	-085	- 3	- 1.28	8.1	-152	-1.68	1: :e
	630										0 36	3 05	-0.18	-0.42	- 0 E2	I 0.74	-0.84	-155 -150	· 1.26			53	l
	6 52											004	- 0.20	- 0.42	- 103	-0.74	-0.84	-167	-1.22				
3	à 6·.	45.	374	3.21	. 6.	2,34	194	i.34	0.72	0.51	0 33	004	-0.21	-0.43	-C £3	-0.74	-0.84	-1.06	-1.20	1.28	-1.25	-1-8	13
										0.50		C.03	-022	- 0.44	-054	-0.74	-0.54	-105	-1.16	- 1.28	-1.35	-: 44	1.33
	u 87											0 02	0.22	- 0.44	-C ≨⊀	- 0.73	-0 83	1.04 1.03	-1.17	-1.23	-1 35	~1 39 -1.35	1: 7.
45 5	09									0.48		0.00	-0.23	0.45	-054	- 0.73	-0.82	- 102	-1.13	-1.19		-1.31	
55	720	5 3 2	95د	3 33	2 76	2 40	1.96	1.33	82.0	0.46	0.29	10.0	-0.24	-0 45	-064	-073	-0.82	- I.00	-1.12	-116	-1.23	-1.28	155
.6.	7.31	531	3.99	339	278	2.42	197	133	8 2.0	0.46	,	0.02	O 2 A	I — ∩ ∧≥	-084	- n73	I.O AL	-049	-1 10	-114	l - 1 20	1 - 1.24	11.6
65	742 754	0.44	4.05	342	2.80	2.43	107	132	0.57	0.45	0.27	0.02	-026	-0.48	- C. E.	-0.72	- 0.71	- 0 36 - 0.97	-1.00	-1.12	-1.17	-120	
	7.65											0.03	-0.21	-0.44	-054	-072	-080	0.96	-1.04	- 1.05	1.12	- 1.14	1.75

					*******							Р	9 G ⁴	.									Г
Cs	0.01	0 1	0.5	1	2	3	5	10	20	25	30	40	50	60	70	75	80	90	95	97	99	999	Cs
1.6	7.76	5.64	4 14	3 50	2 8	2.46	1.99	1.32	0.64	0.42	0.24	- 0.05	-028	-0.46	-0.64	-0.72	-0.60	-094	-1.02	-1.06	-109	-111	1.6
1.85	7 67	570	4 19	13 5	2 2 BE	2 48	199	1.32	0 64	0 41	023	-006	-028	-048	-0.64	-0.72	-080	-093	-1 00	-104	-106	-1 08	185
19	7 98	5.77	42	335	2.86	249	500	131	0.63	0.40	0.22	-007	-0.29	-048	-0.54	-0.72	-079	-092 -091	-0.98	-1.01	-1.04	-1.05	1.9
20	821	591	33	3 6	esp	2.51	2.00	130	0.61	0.39	0 20	-006	1-031	- 0.49	-0.64	-0.71	-078	-090	-0 950	-0 37	-0550	-106	5 0
205																		-089					
2 1									059									-0.866					
215									0.58				1-032		064	-0.70	-0 76	-0 854	-0898	-0913	0.925	-0 931	2 15
22 225									D 57 O 56				0.33			0.63	-0.75	C 8 42 - O 828	-0 862	-0895	-0 905	-0.890	2 2 5
223		020	77:	ገ "	7230	12 37	1 0 0		0 30	0,33	" ' "		•••	***	1 403	0.00	0.7	0 820	-0 500	1-00	i - 0 0 0 0	1-0 030	1
23	1 1	626	45	37	1298	2 54	201	126	0 55	0.32	0 14	-0 13	034	050	0.63	-068	-074	-0 615	-0 850	-085C	-0 867	-0 E70	23
235									0 53		0 13							-0 803					
24									0 52									-0 792					
245	1 1	6 43	4 67	3.80	70:	2 61	2.00	1 24	0.51	0.28	0 11	-015	-036	-051	-0.62	-0.66	-071	-0780	-0 805	-0 810	-0815	-0.817	245
2 5		6 50	4,6	3.8	2 3 05	2 63	2.00	1 23	0 50	11 27	մյն	-u 1É	-035	-051	-0.62	-0 66	-071	-0768	-0790	1-0 795	-0.800	-0800	2.5
2 5 5																		-0.757					
2 6	4 4																	-0746					
2 65									0.47									-C 734					
27 275									0.46									-0724					
213	1 1	600	٦۵.	,,,,]'''	-	. ~		0 73	023	000.	1 " "	030	5 5.	1-000	-007	-05,	-011	-0124	-0 770	-0121	-0 / 12	2.73
28	1 1	686	4 8	39	5 3 12	2 65	2 00	1 18	0.44	0.22	0 057	-0 20	-039	-051	-0.60	-0.64	~067	-0703	-071!	-0 714	-0 715	-0 715	2.8
285									0 42									-0692					
2.9									0.41									-0 6 BI					
295									0 40									-0 672					
20	1 1	710	43	3-2:	73 17	2 00	1131	' ' '	פנט	019	1 0027	-32-	-0 40	10.51	-0 33	-002	-0.54	-0.661	-0863	-0.000	-0266	-0 007	[30]
3.05]	716	49	40	7 3 14	2 66	197	112	0 38	OIB	0018	-0 22	-0 40	-051	-0 58	-061	-0.63	-0651	-0655	- 0 £56	-0 656	-0656	3.05
3 1	1 1	7 23	50	40	9 4 14	266	197	1 1 1	037	017	0 010	-0 23	-0 40	-051	-0 5B	- 0.60	-0 62	-0 641	-0645	-0 546	-0 646	-0646	31
3,15	l l	72 1	50	410	3 14	2 66	136	1 10	036	016								-0.631					
32		735	50	541 1	314	2 6	196	1 09	035	015	-0000	-025	-041	-0.51	-057	-059	-061	-0621	0625	-0.625	-0 625	-0625	135
325		737	5 1	41	3 14	S 66	195	106	034	014	-0014	-025	-0 41	- 0 50	-0.56	-058	-060	-0.613	-U 6 16	-0616	- U.616	-0 616	3.25
33		744	514	4 1	3 1	2 66	195	1 08	0 33	013	-0022	- 0 26	041	-0 50	-0.56	-058	-0 59	-0.605	-0 606	-0 606	-0 606	-0606	33
335		749	516	4 10	5 3 14	5 66	194	107	0 32	0 15	-0029	0 56	041	.050	055	-0 57	-058	- C 596	0 597	-0 557	0 597	-0597	3 35
3.4	1 1	7.54	15 15	14 !!	3 15	2 66	1194	1.06	231	0.11	1-0036	- 0 27	-041	0 50	0.55	-D 57	-0.58	-0.586 -0.578	-0 587	- 0.389	-0589	-0.589	13.2
3 45 3 5									0.29									-0.570					

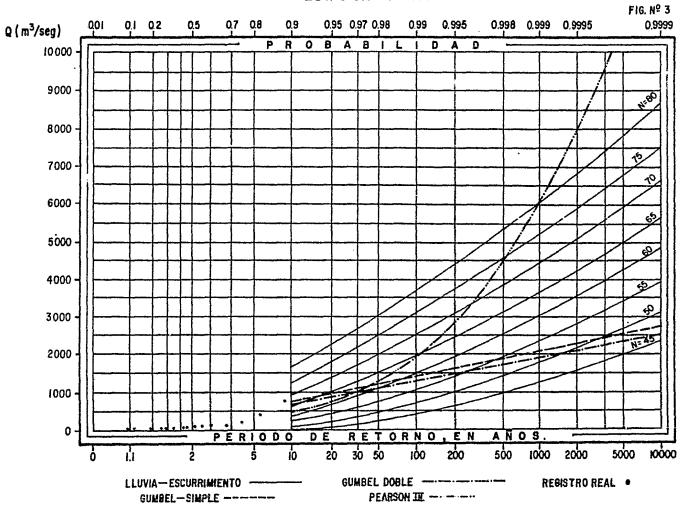

•

•

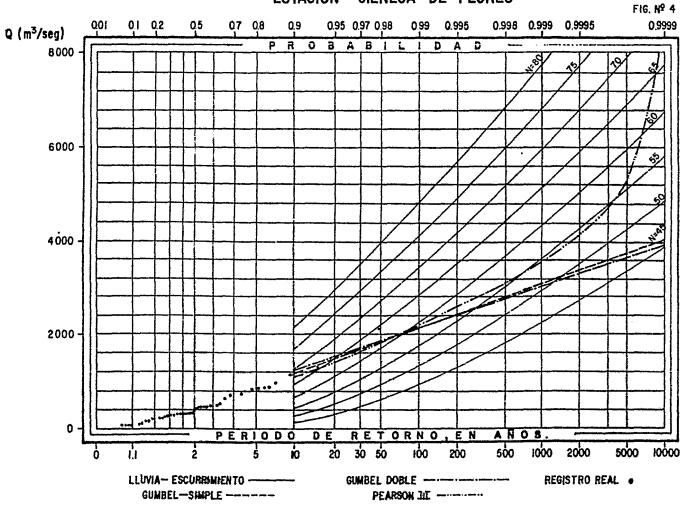
*

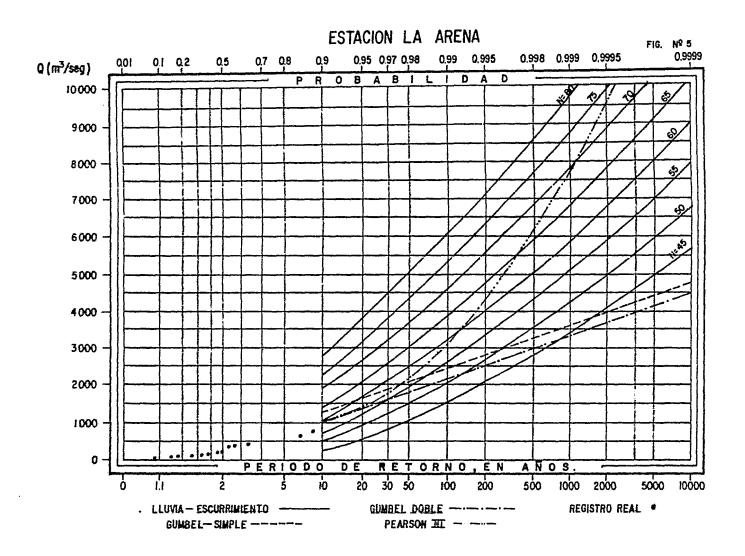

VALORES DE K

	т		_		_				_							AL			en '														
C5	0,01	0	. 1	0,5		,	2];	,	5	10	12	20	2 5	30	4	0] =	0]	60	T	70	7	5	80	9	0	95	97	99	99,9	Cs
3,55														0,072	0.060	-0	žī	1-0	41	-0	1,49	.0	,54	-0,		-0,55						-0,564	
3,6							3.17								0,072			1:0			48		,54 ,53	-0.		·0,55	.0.	3.5	0.556	-0.556	0.549	-0,556	3.65
3,65							3,17								-0,078 -0,084	1 .	•	-0			,48	-0		-0.		-0,54						-0,541	
3,75															0,089	1	• • •	.0	•	ı	,48		•	-0,		-0,55						-0,533	
3.8		,	7	5.40	ļ.	,,	3.18			1.90	, ه	ه أه	24	0.032	.0,0 \$ 5		.30	0	.42	١.,	.48	-0	,5-1	٠.	52	-0,52	.0.	526	-0,526	: -0,526	-0,526	-0,526	3,8
3.85															-0,103			1 - 0			47		50	-0.	51	-0,51						-0,519	
3,9														0,020		-0	.50	.0	.41	- 0	47	-0	50	-0.		-0,51						-0,513	
3,95														0,015				1 -0		1 .	1,46	1.0		.0.		-0,50						-0,506	
4,0		i 8 , I	7	5,50	4.	34	3,20	2.	65	1,90	0,9	10	21	0,010	-0,12	-0	.3 1	f-0	,41	1.0),46	1-0	.49		47	0,50	.0,	900	-0,500	1.0'200	-0,500	-0,500	*,0
4,05		8 ,2	3 !	5,52	ļ4,	35	3,21	2.	55	1,89	0.9	50	.20	0,005	-0,12	-0	, 3 &	- 6	4.1	Ì- 0	,46	1-0	,48	i-o.	487	-0,493	-0,	193	-0,493	-0,493	-0,493	-0,475	4,05
4, 1	ì	8,2	9 '	5,55	4.	36	3,22	2.	65	1,89	8.9	sjo,	.20	0,00	.0,13	.0	۱ ک	§ -0	,4 I	1.0	,46	· • o										-0,487	
4,15														-0,005		-0	.3 1	- 0			1,45											-0,481	
4,2	1			-	•					•	•			-0,010			•	- 0														-0,476	
4,25	1	8,4	3.	5,62	} 4.	39	3,24	2.	•	1,87	0,9	2 6	.1\$	-0,015	-0,13	-0	, 5 ?	-0	,4 Q	1.0),44	.0	,46	٠.	467	-0,470	-0,	170	-0,470	-0.470	-0,470	-0,470	4,25
4,3														-0,021					,40		,44	-0	,46	-0,	462	-0,465	-0,4	165	-0,465	-0,465	-0,465	0,465	4,3
4,35		1,5	4	5,67	1.	4 *	3,24	2.	54	. 8 6	0,9	,0	. 15	-0,026	-0,14			0	-	3	1,44	-0	,455	٠.٠	450	-0,460	-0.		-0,460	-0,460	1-0,450	-0,460	4,35
4.4			4	3, 47 5 7 i		43	3,23	12.	63	1,86	0,3	1:0		-0,032 -0,037	-0,15			-0														-0,450	
4,5														-0,042				٠-٥	-													-0,443	
4,55	j	8.7	4	5.76	.4.	45	3.26	(2.)	52	1.84	0.1	. 0	. 13	-0,047	-0 16	-0	3 2	-0	4.0	c	.42	' ~ 0	.436	-6	439	.0.440		448	-0,440	-0.440	-0,440	-0,440	4,55
4,6														-0,052		-0	.32	- 0	40	,-0	42	1-0	432	-0	435	-0,435	-0,	435	-0,435	0,4 35	-0,435	-0,435	4,6
4,65	i t	3,8	14	5,8 1	4	∢?	3,27	, 2,	61	1,43		6 0	.12	-0,058	-0,17	1-0	.52	-0	40	100	142	1.0	.428	. 0	430	-0,430	-0.	430	-0,430	± *0,430	1-0,430	-0,430	4,55
4.7	1	8,0	9 ;	5,84	4,	49.	3,28	2,	6 I Ì	1,83	6,8	5 6	.11	-0,064	-0,16	-0	, 5 2	: - 0	.40	1.0	,42	1-0	,424	·•9,	425	-0,426	-0.	42 G	-0.426	-0,426	-0,426	-0,425	4,7
4,75	1	8,5	12	5,86	4,	49	3,24	Z.	•	1,62	.0,4	31.6	,10	-0,069	-0,18	.0	,3 2	0	,395	(3,415	5 0	,420	-0,	420	-0,421	-0,	123	-0,421	-0,421	-0,421	-0,421	4,73
4,8														-0,075		-0	. 3 2	. 0	.39),4 1	-0	,416	٠.,	4 16	-0,4 16	.0,	4 1 6	-0,416	-0,4 16	-0,416	-0,416	4,8
4,8														.0,081		-0	3 2	0	,301	. 0	40	1.0	4 1 5	. 0	4 12	0,4 12	1:0.	112	-0.412	1-0,4 12	1-0,412	1-0,412	14.85
4,5														0,007		1:0	, 33		.386), 40 ! 1 1 4 4	11.0	,407 184		40#	1-0,404	1.0	104	-0.404	-0.404	-0.404	-0,409	4.95
5.0														0,033		.0	, 3 3	-0	,380	, 8	39	1.0	355		400	0,400	l -ŏ.	100	-0,400	0,400	0,400	-0,400	5,0
5,0:	,	·3.		5.98	4	35	3.32	. Z.	; 60	1.27	6.7	, a	633	· 0.105	.020	٠.	. 3 3	-0	.371	j ∷∙c	.391	1.0	. 39 5		396	.0.396	0.	3 6	-0,356	-0.396	-0.396	-0,396	5.05
3,1														.0,110	0.21		.33	- 0	37 6	1.0	3.38(1:-0	391	Ø,	332	0.392	.0.	: 92	.8.395	.0,392	1.0,392	1-0,392	5,1
5, 19														-0,115																		-0,388	
5.2	1	7.	"	1.92	4,	37	3.53	₹.	60	·. 74	₽ 7	3 Ø	412	-0,120	-0.2 i	• 9	٤٤,	- 0	,370	(7,382	0	. 3 # 4	, * O.	385	0,385	.0.	1 2 2 1	-0,3#5	.0,345	1.0,385	-0,385	12,5

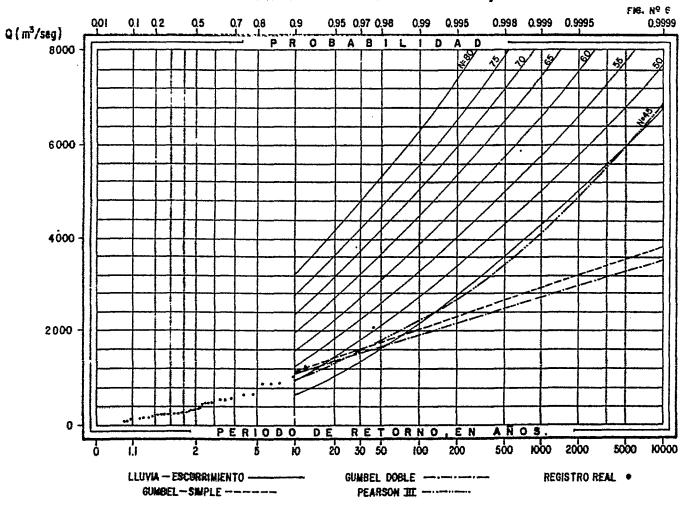


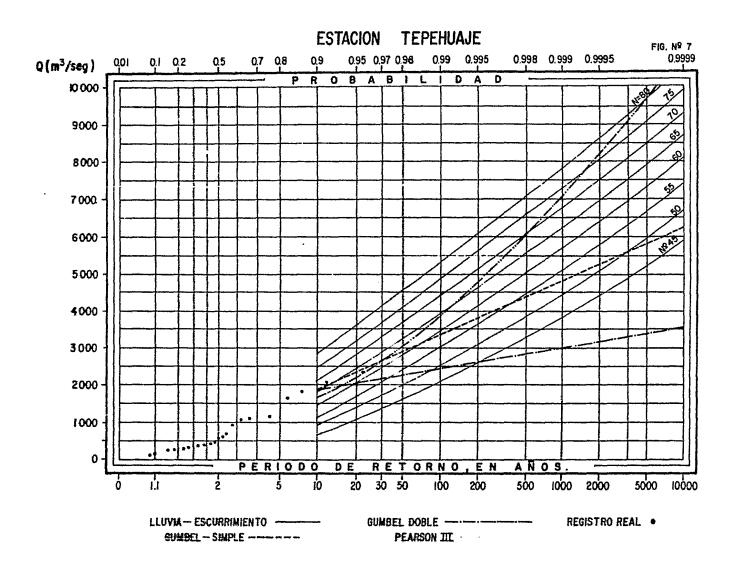
PRESA MARTE R. GOMEZ, TAMPS. SUBDIVISION DE CUENCAS

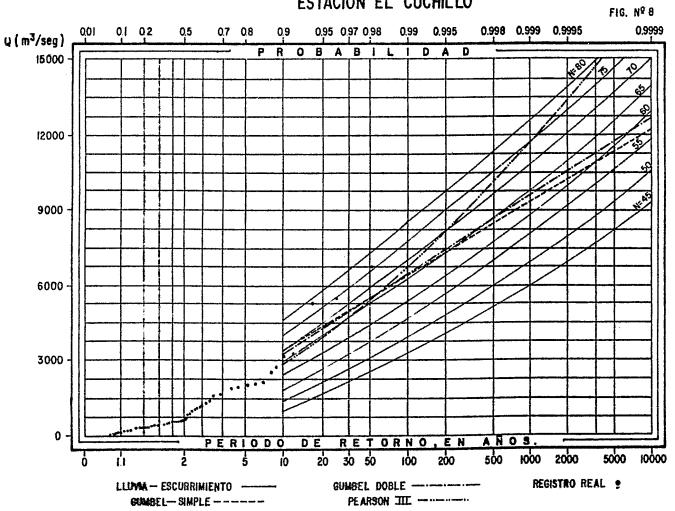

FIG Nº 2

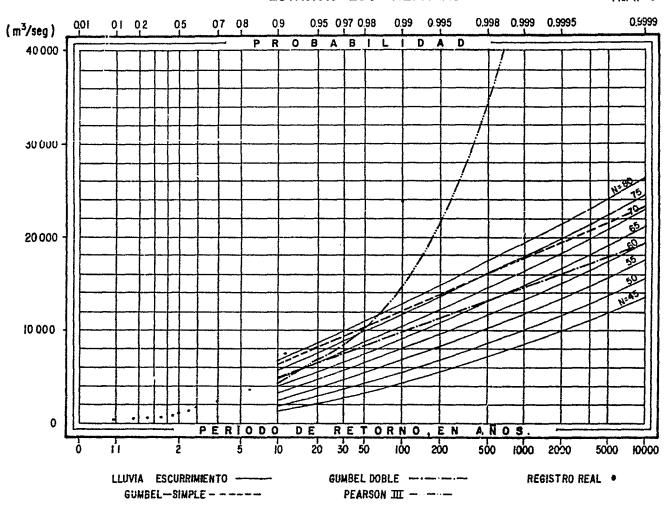


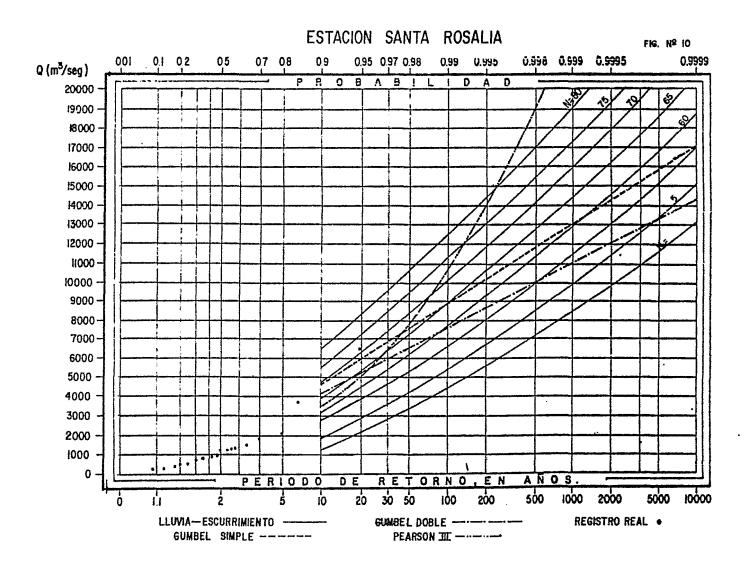
ESTACION ICAMOLE



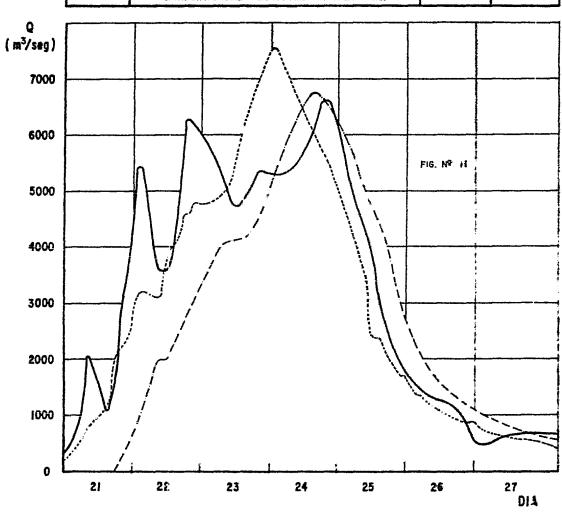

ESTACION CIENEGA DE FLORES

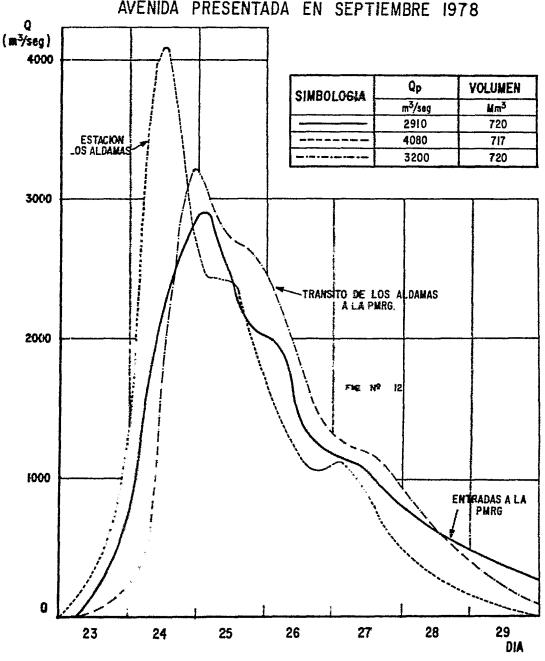



ESTACION LOS HERRERAS I II y III

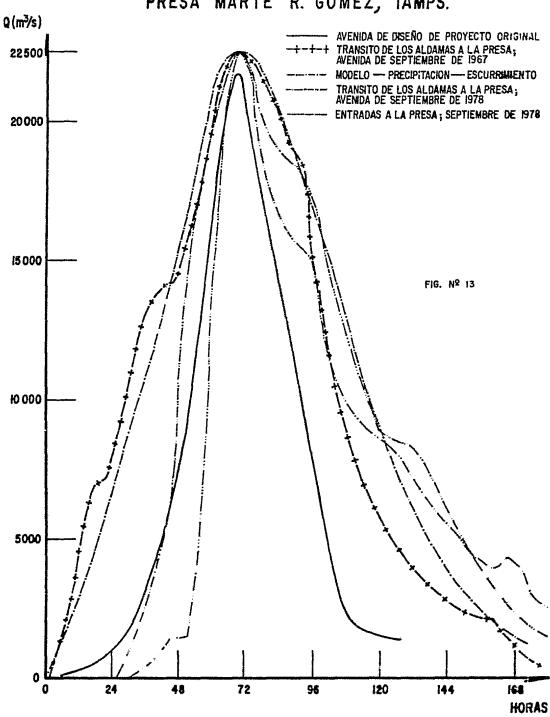


ESTACION EL CUCHILLO

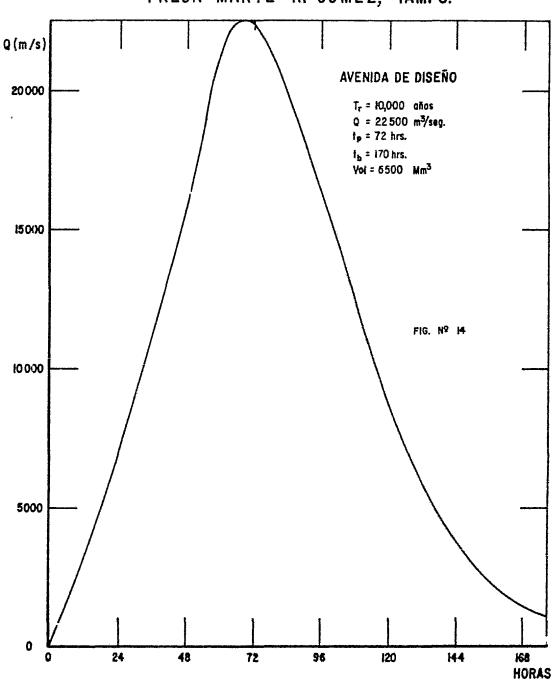




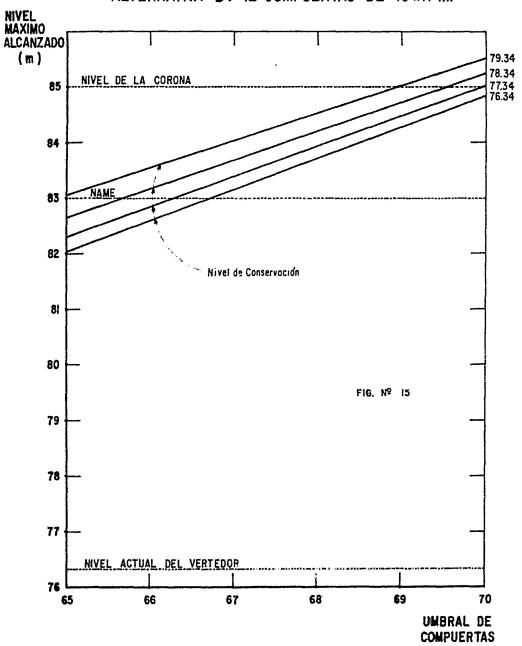
PRESA MARTE R. GOMEZ, TAMPS. AVENIDA PRESENTADA EN SEPTIEMBRE 1967


SIMBOLOGIA	CONCEPTO	Qp	VOLUMEN
SHIRDOLOGIA	CONCEPIO	m³/seg	Mm ³
	AVENIDA REGISTRADA EN LA PMRG.	6600	2080
~~~~	AVENIDA REGISTRADA EN LA ESTACION HIDROMETRICA LOS ALDAMAS	7 600	1900
	TRANSITO POR CAUCE DE LA AVENIDA REGISTRADA EN LA ESTACION HIDROMETRICA LOS ALDAMAS A LA PMRG.	6 650	1800

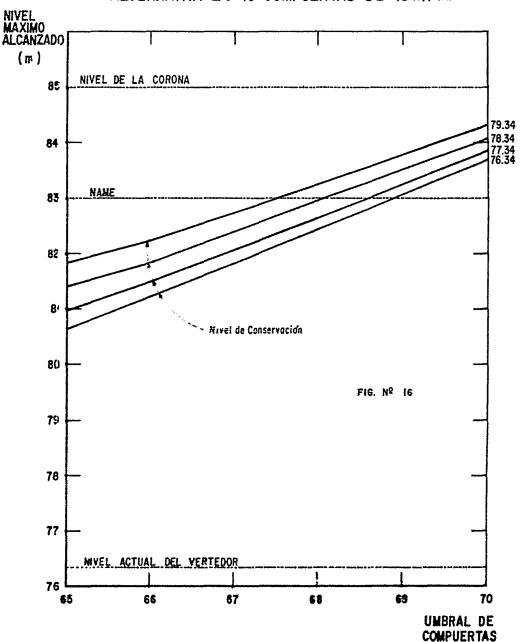



## PRESA MARTE R. GOMEZ, TAMPS. AVENIDA PRESENTADA EN SEPTIEMBRE 1978

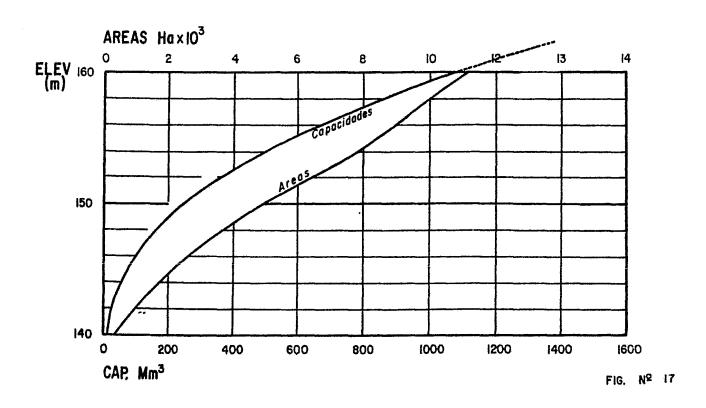



## PRESA MARTE R. GOMEZ, TAMPS.

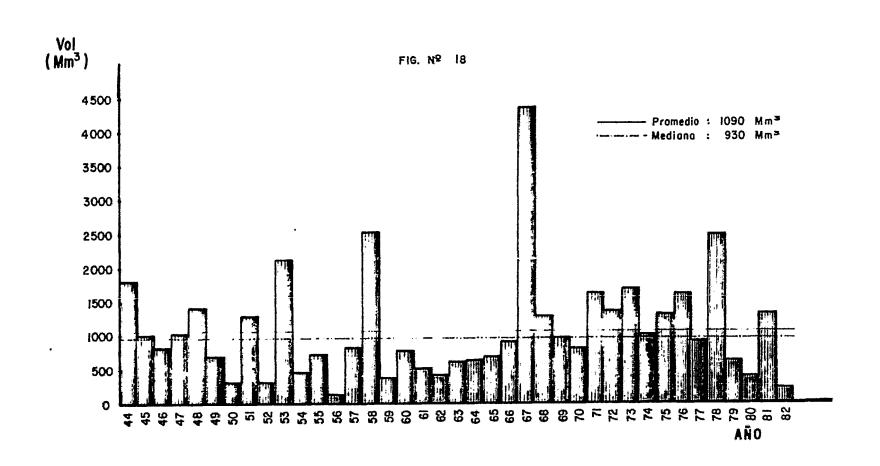


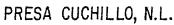

PRESA MARTE R. GOMEZ, TAMPS.

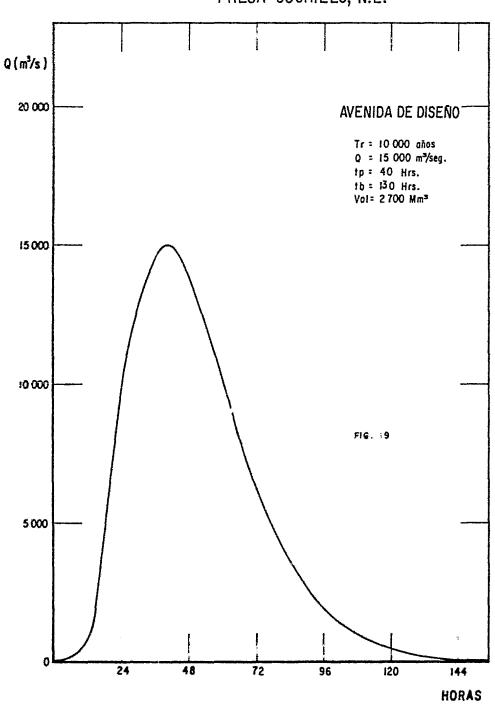



PRESA MARTE R. GOMEZ, TAMPS.
ALTERNATIVA 1: 12 COMPUERTAS DE 10 x H m.




PRESA MARTE R. GOMEZ, TAMPS.
ALTERNATIVA 2: 15 COMPUERTAS DE 10 x H m.





# PRESA EL CUCHILLO, TAMPS. CURVA DE ELEVACION — AREAS — CAPACIDADES



## PRESA MARTE R. GOMEZ, TAMPS. VOLUMENES DE ENTRADA ANUALES







#### BIBLIDGRAFIA

- 1.- E. J. Gumbel; 'The Return Period of Floods Flows"; Annals Mathematical Statistics, Vol. XII, No. 2, (1941).
- 2.- A. B. Thorn; "River Engineering and Water Conservation Works"; Butter Worths (1966).
- 3.- González V. Fernando J.; "Contribución del Análisis de Frecuencias de Valores Extremos de los Gastos Máximos en un Río"; Instituto de Ingeniería, UNAM (1970).
- 4.- Springall G. Rolando; "Análisis Estadístico y Probabilístico de Datos"; Instituto de Ingeniería UNAM.
- 5.- Acosta G. Antonio; "Volumen Util de un Almacenamiento (Un Nuevo Enfoque)"; SARH (1977).
- 6.- Acosta G. Antonio; "Modelo de Cuencas, P.E.C.R.D.P."; SARH (1974).
- 7.- Dirección de Hidrología; "Boletín Hidrológico No. 53, Oriente Bajo Río Bravo"; SARH (1971).
- 8.- Comisión del Plan Nacional Hidráulico; "Recomendaciones para el Diseño y Revisión de Estructuras para el Control de Avenidas"; SARH (1976).
- 9.- Ven Te Chow; "Handbook of Applied Hydrology"; Mc Graw-Hill (1964).
- 10.- Linsley, Kohler and Paulus; "Hidrología para Ingenieros"; Mc Graw-Hill (1977).