

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

134

Facultad de Ingeniería

FUNDAMENTOS DE LA TEORIA ELASTICA

PARA EL DISEÑO DE LOSAS

TESIS PROFESIONAL

RAFAEL MENDOZA GARCIA

6.4.1.454

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INTRODUCCION

1

En el presente trabajo se desarrollan las bases para el análisis de estructuras de losas y placas planas, por medio de la teoría elástica, de acuerdo a numerosas investigaciones y desa rrollos matemáticos, dando por resultado diversos métodos de análisis y el uso de modelos. La solución de estos métodos, se fundamenta en un procedimiento general, que establece la ecuación de la elástica de la losa, por medio de la ecuaciónde Lagrange.

Los métodos antes descritos, toman en cuenta el tipo de carga y distribución, para diferentes situaciones de los tableros -(esquina, extremo e interior), así como de los distintos tipos de apoyos (columna, vigas y columnas, etc.).

De los resultados de esta teoría, se derivan los métodos de análisis siguientes; el método directo y el de el marco equivalente. Su aplicación depende de las condiciones que debencumplir y de la exactitud que se quiera lograr.

Para la distribución de los momentos, se hicieron varios estudios, sobresaliendo los de Sutherland y Appleton, los cuales se representaron en gráficas, de tal modo que al entrar con -un valor de rigidez de viga $\propto 12^2 / 1$, se tiene un porcendel momento que toma la franjal de columna, y el resto taje correspondiente al 100 %, lo toman dos mitades de la fran ja central.

Quiză de todos los mecanismos de falla que se presentan en este tipo de losas, el más importante, es el debido al esfuerzo cortante por penetración. Por esta razón se describen las variables principales que afectan la resistencia del cortante, para este tipo de falla. Cuando el concreto, por si sólo, no es capaz de tomar el esfuerzo cortante requerido, hay varias formas de hacer el refuerzo, recomendando las siguientes; estribos, collares, horquillas, ace ro estructural de secciones I o canal.

Y por último se presentan los trabajos de Hanson, referentes a los efectos de las aberturas y ductos de servicio, en estas losas.

Se presentan dos ejemplos donde se aplican los criterios expuestos, uno de la teoría elástica y otro de el método del marco -equivalente.

CAPITULOI

BASES DE LA TEORIA ELASTICA

En este capítulo nos ocuparemos de algunas bases en los métodos y problemas del análisis de la teoría elástica, en las estructuras de placas.

Se incluye alguna información sobre el uso de modelos, y se des criben brevemente métodos numéricos, usando ecuaciones diferenciales, y métodos aproximados.

TEORÍA CLÁSICA DE PLACAS

Las deformaciones elásticas de placas isotrópicas con carga nor mal a su plano, están regidas por una ecuación diferencial parcial, de cuarto orden:

$$\frac{\partial_{w}^{4}}{\partial x^{4}} + 2 \frac{\partial_{w}^{4}}{\partial x^{2}} \frac{\partial_{y}^{2}}{\partial y^{2}} + \frac{\partial_{w}^{4}}{\partial y^{4}} = q/D \quad \text{EC. 1.1}$$

- donde: W = deflexión de la placa en la dirección de la carga, en el punto (x, y).
 - q = carga aplicada en la placa por unidad de área, en fun ción de x, y.
 - D = rigidez a flexion de la placa = $Eh^3/$ (12 (1-u²))
 - E = módulo de Young del material de la placa
 - h = espesor de la placa
 - u = relación de Poisson

EQUILIBRIO

La ecuación 1.1. se encuentra siguiendo un proceso de dos pasos, el primero considera equilibrio y el segundo, la compatibilidad de deformaciones. Las fuerzas que actúan en un elemento diferen cial de losa, se muestran en la fig. 1.1. Todas las acciones de la losa se dan por unidad de ancho y tienen que ser multiplicadas por las dimensiones del elemento, para obtener las fuerzas que actúan sobre éste. Para claridad estas fuerzas se dividen en dos grupos; de superficie y fuerza cortante fig. 1.1a, y de flexión y momento torsionante, fig. 1.1b. Nótese que la fuerza cortante Vx actúa en la misma cara del elemento que el momento m_x. Este fig. 1.1, fuerzas que actúan en el elemento diferencial de la losa, a) fuerzas de superficie y cortante, b) vectores de flexión y momento torsionante.

Momento necesitará refuerzo en la dirección x. Los momentos se dan en forma vectorial, usando la regla del tornillo de la mano derecha. El vector representa el momento actuando en una cara, con el momento tendiendo a producir rotación alrededor del eje de la flecha. La longitud del vector representa la magnitud del momento, y el vector puede sumarse gráficamente o de otra manera.

Tanto los momentos m_x como m_y de la fig, l.lb, son momentos positivos, produciendo comprensión en la superficie superior de la -losa.

El equilibrio se satisface, sí:

 $\Xi F_{z} = 0, \quad \frac{\partial V_{x}}{\partial x} + \frac{\partial V_{y}}{\partial y} + q = 0 \quad \text{EC. 1.2.}$

5

б

FIG. 1.1 FUERZAS QUE ACTUAN EN EL ELEMENTO DIFEREN-CIAL DE LA LOSA, A) FUERBAL DE SUPERFICIE Y CORTANTE b) vectores de flexion y momento de torsion. Tomando momentos alrededor del eje de las "x" y despreciando los términos de órden superior, se tiene:

$$\frac{\partial m_{x}}{\partial x} + \frac{\partial m_{xy}}{\partial y} = V_{x}$$
 EC. 1.3

Así mismo con la suposición de que mxy = myx ya que 7 xy = 7 xy, en cada uno de los planos horizontales, a cualquier distancia "z" de la superficie neutra, teniendose:

$$\frac{\partial^{m} y}{\partial x} + \frac{\partial^{m} x y}{\partial x} = V_{y}$$
 EC. 1.4

Sustituyendo las ecuaciones 1.3 y 1.4 en la ecuación 1.2, se tie ne la ecuación de equilibrio de la placa:

$$\frac{\partial^2 m_x}{\partial x^2} + 2 \frac{\partial^2 m_{xy}}{\partial x \partial y} + \frac{\partial^m y}{\partial y^2} = q \quad \text{EC. 1.5}$$

Esta ecuación es simplemente una ecuación de equilibrio, y es independiente del estado de elasticidad o plasticidad, de la relación de Poisson, sea que la placa fuera isotrópica u ortrópica.

RELACIONES MOMENTO-DEFORMACION

La compatibilidad de las deformaciones en las losas, se rigen bajo las siguientes suposiciones:

- El material debe estar sujeto a la Ley de Hooke y ser isotrópico.
- 2. La deflexión debe ser pequeña con relación a el espesor de la losa.
- Cualquier línea recta perpendicular a la superficie central de la losa, antes de la deformación, permanente recta y nor mal a la superficie central, después de la deformación.

4. Los esfuerzos directos normales a la superficie central, se - desprecian.

Las relaciones fuerza-deformación, se pueden formular como sigue: Considera un elemento diferencial de losa, ver fig. 1.2, sujeto a los momentos m_{χ} . Los momentos flexionantes del elemento en un segmento de curva, con curvatura $\emptyset_{\chi} = 1/Rx$, donde Rx es el radio de curvatura en la dirección "x". La curvatura también puede expresarse como:

Ø_x= £ x/z (radianes /unidad de longitud) EC. 1.6 donde: £x, es la deformación en la dirección "x" en una fibra a una distancia "z" de la superficie neutra.

La curvatura también se define como:

$$\theta_{x} = -\frac{\partial^{2} w}{\partial x^{2}}$$
 EC. 1.

igualando la ecuación 1.6 con la 1.7 se tiene:

$$\mathcal{E} \mathbf{x} = -\mathbf{z} \frac{\partial^2 \mathbf{w}}{\partial \mathbf{w}^2}$$

esta expresión también se aplica cuando el momento my, actúa en el elemento, así como mx, dado que $-\partial^2 w/\partial x^2$ es la curvatura en la di rección "x" debido tanto a m, y m,. Igualmente:

EC. 1.8

$$\varepsilon_{\gamma} = -z \frac{\partial^2 w}{\partial y^2}$$
 EC. 1.9

la que también se aplica al caso general, cuando mx y my están actuando.

La relación general esfuerzo-deformación, para un material linealmente elástico, se da para cualquier resistencia del material, como:

$$fx = \frac{E}{1-u^2} (fx + ufy) = \frac{1-u^2}{E} (fy + ufy) = \frac{E}{1-u^2} (fy + ufy) = \frac{1-u^2}{2(1+u)} = EC. 1.10b$$

$$Fy = f(x) = \frac{1-u^2}{2(1+u)} = EC. 1.10c$$

Entonces, el esfuerzo fx en una fibra a una distancia "z" de la superficie neutra, se puede expresar en términos de la curva como:

$$F_{x} = -2 - \frac{E}{1-u^2} \left(\frac{\partial^2 W}{\partial w} + u \frac{\partial^2 W}{\partial w} \right) = E.C. 1.11$$

El momento por unidad de ancho en la dirección "x", puede obtenerse integrando el primer momento de fx alrededor de la superficie neutra del peralte de la placa:

$$f_{x} = \int_{-w_{x}} f_{x} e de = \int_{-w_{x}} - \frac{e}{f_{x}e} \left(\frac{\partial w_{x}}{\partial w_{x}} + u \frac{\partial w_{y}}{\partial y_{x}} \right) e^{z} de$$

 $\frac{1}{12(1-4c^{2})} \left(\frac{3x^{2}}{3x^{2}} + 44 \frac{3}{3y^{2}} \right)$ Introduciondo $b = Eb^{3}/12(1-4c^{2})$ como ol factor de rigidez de la placa, se tiene: $m = -\frac{1}{2} \sqrt{\frac{3}{2}} \sqrt{\frac{3}{2}} \sqrt{\frac{3}{2}} \sqrt{\frac{3}{2}}$

$$\gamma M \gamma = - D \left(\frac{3E_W}{3\gamma E} + 4E \frac{3E_W}{3\gamma E} \right) E.C. 1.13$$

La aplicación del momento torsionante en un elemento diferencial de losa, se tiene en la fig. 1.3a, y produce una deformación del tipo asiento de silla, fig. 1.3b.

Los momentos torsionantes deben ser iguales o sea $m_{xy} = m_{yx}$, y tener ambos la dirección que se indica en la fig. 1.3a o dirección opuesta, de cualquier modo, el equilibrio de los esfuerzos cortantes no se puede mantener. La relación momento torsionante - deformación, se obtiene de diferentes maneras. Una de ellas es reemplazar el sistema mostrado en la fig. 1.3a por el sistema equivalente mostrado en la fig. 1.3c. Este sistema de reemplazo tiene la ventaja de estar sujeto a un momento flexionante solamente, el cual es también el momento flexionante principal. La relación momento flexionante deformación, la que ya se vió, se escribe como:

$$M_{\chi'} = -D\left(\frac{\partial^2 w}{\partial \chi'^2} + u \frac{\partial^2 w}{\partial \chi'^2}\right) = .c. 1.14$$

$$M_{\chi'} = -D\left(\frac{\partial^2 w}{\partial \chi'^2} + u \frac{\partial^2 w}{\partial \chi'^2}\right) = .c. 1.15$$

Estas dos ecuaciones pueden resolverse y dar la curvatura en las direcciones "x" y "y", nótese que m_x, = m_{xy}, m_y'=-m_{xy}, y m_x' =m_y. $\frac{\partial^2 W}{\partial \chi'^2} = -\frac{(M_{\chi'} - uM_{\chi'})}{D(1 - u^2)} = -\frac{M_{\chi\gamma}}{D(1 - u)}$ Ec. 1.16 $\frac{\partial^2 W}{\partial \gamma'^2} = -\frac{(M_{\chi'} - uM_{\chi'})}{D(1 - u^2)} = -\frac{M_{\chi\chi}}{D(1 - u)}$ Ec. 1.17 La deformación relativa para los ejes x,y en términos de la cur-

vatura relativa para los ejes x,y en cerminos de la cur-

Sustituyendo la ec. 1.16 y l.17 en la l.18 y resolviendo para m_{xy} se tiene:

$$M_{XY} = -\frac{\partial^2 W}{\partial x \partial y} D(1 - u) \qquad E.c. 1.19$$

el término $J^2 W/J_X Jy$ representa la distorsión o torsión, o sea la razón del cambio de pendiente en la dirección "x" como un movimiento en la dirección "y".

Sustituyendo las ecs. 1.12, 1.13 y 1.19 en la ecuación de equilibrio 1.5 nos conduce a la ecuación de Lagrange (EC. 1.1). La ecuación de transformación dada como la ecuación 1.18 es un caso especial para un desplazamiento de ejes a 45°, simplificada de una expresión más general.

En la fig. l.4 se desea encontrar la curvatura y deformación relativa para los ejes x' - y', suponiendo que se conocen para los ejes x-y.

Primero la diferencia en deflexión entre los puntos a y b se tie ne como:

$$\partial w = \frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial y} dy$$
 EC. 1.20

La pendiente en la dirección x' es entonces:

$$\partial M / \partial X_i = \frac{\partial X}{\partial M} \frac{d X_i}{d x} + \frac{\partial X}{\partial M} \frac{\partial X_i}{\partial X}$$

$$= \frac{\partial W}{\partial x} \cos \theta + \frac{\partial W}{\partial y} \sin \theta = \text{EC. 1.2}$$

de esto se nota que:

$$\frac{\partial}{\partial x'} = \frac{\partial}{\partial x} \cos \beta + \frac{\partial}{\partial y} \sin \beta$$
 EC. 1.22

la derivada parcial segunda con respecto a x' da:

$$\frac{\partial W}{\partial x^{2}} = \left(\frac{\partial}{\partial x} \cos \beta + \frac{\partial}{\partial y} \sin \beta\right) \left(\frac{\partial W}{\partial x} \cos \beta + \frac{\partial W}{\partial y} \sin \beta\right)$$
$$= \frac{\partial^{2} W}{\partial x^{2}} \cos^{2} \beta + \frac{\partial^{2} W}{\partial x^{2}} \sin^{2} \beta + 2 \frac{\partial^{2} W}{\partial x \partial y} \sin \beta \cos \beta \quad \text{EC. 1.23}$$

La pendiente en la dirección y se tiene sustituyendo (\$+90°) por en la ec. 1.21:

$$\frac{\partial W}{\partial y} = -\frac{\partial W}{\partial x} \operatorname{sen}_{\beta+\frac{\partial W}{\partial y}} \cos \beta$$
 EC. 1.24

Tomando la derivada parcial segunda con respecto a y' da: $\frac{\partial^2 W}{\partial y'^2} = \frac{\partial^2 W}{\partial x^2} \operatorname{sen}^2 \beta + \frac{\partial^2 W}{\partial y^2} \operatorname{cos}^2 \beta - 2 \frac{\partial^2 W}{\partial x \partial y} \operatorname{sen}^2 \beta \operatorname{cos} \beta \quad \text{EC. 1.25}$ la deformación relativa para los ejes x' - y' se tiene tomando la derivada parcial de la ec 1.24 con respecto a "x":

$$\frac{\partial^2 W}{\partial x' \partial y'} = \left(\frac{\partial}{\partial x} \cos \theta + \frac{\partial}{\partial y} \sin \theta\right) \left(-\frac{\partial W}{\partial x} \sin \theta + \frac{\partial W}{\partial y} \cos \theta\right)$$
$$= \left(\frac{\partial^2 W}{\partial x^2} - \frac{\partial^2 W}{\partial y^2}\right) \sin \theta \cos \theta + \frac{\partial^2 W}{\partial x \partial y} \left(\cos^2 \theta - \sin^2 \theta\right)$$
$$= \frac{1}{2} \sin 2\theta \left(\frac{\partial^2 W}{\partial x^2} - \frac{\partial^2 W}{\partial y^2}\right) + \cos^2 \theta \frac{\partial^2 W}{\partial x \partial y} \qquad \text{E.c. 1.26}$$

Para el caso considerado arriba, $(2\beta = 90\%$ que elimina el segundo término de la ec. l.26. El término, $\{\partial^1 W/\partial \chi'^1 + \partial^2 W/\partial y'^2\}$ es independiente del ángulo β y la suma es algunas veces referida a la curvatura media.

RELACIONES CORTANTE - DEFORMACIÓN

Sustituyendo los momentos flexionantes y torsionantes ecuaciones 1.12, 1.13 y 1.19 en las ecs. 1.3 y 1.4 se tienen las siguientes fuerzas conrtantes, por unidad de ancho:

$$V_{x} = -D\left(\frac{\partial^{3}w}{\partial x^{3}} + \frac{\partial^{3}w}{\partial x \partial y^{2}}\right) \qquad \text{E.c. } 1.27$$
$$V_{y} = -D\left(\frac{\partial^{3}w}{\partial x^{2}} + \frac{\partial^{3}w}{\partial x^{2} \partial y}\right) \qquad \text{E.c. } 1.28$$

CONDICIONES DE FRONTERA

En un borde fijo no hay ni deformaciones ni rotaciones. Si el borde está a lo largo de la dirección "y", las condiciones de -frontera se pueden expresar matemáticamente como:

$$W = 0$$

 $\partial w/\partial x = 0$ E.C. 1.29

En un borde simplemente apovado no hay deflexión, pero el borde tiene libertad de giro y por lo tanto no hay momento a flexión perpendicular a el borde. Si el borde está en la dirección "y" las condiciones de frontera pueden expresarse como:

$$W^{x} = 0 = -D\left(\frac{9x_{\pi}}{95m} + \pi \frac{9x_{\pi}}{95m}\right)$$

donde:

 $\frac{\partial^2 w}{\partial \chi^2} = o \text{ por inspección nos lleva a:}$ w = o $\partial^2 w/\partial \chi^2 = o$ E.c. 1.30

Si el borde es libre (si lo hay), no hay ni momento ni reacción, no obstante la deflexión y rotación pueden ocurrir. Las expresiones de las condiciones de frontera, serán:

$$m_{\mathbf{x}} = 0$$
$$m_{\mathbf{x}\mathbf{y}} = 0$$
$$\mathbf{V}\mathbf{x} = 0$$

El momento torsionante produce una reacción componente Vx , que puede ser determinada para reemplazar el momento torsionante m_{xy} (la cual es la resultante del esfuerzo cortante horizontal en la losa) que actúa en la misma longitud 'dy' por un par equivalente de fuerzas verticales, como se ve en la figura 1.5. Esto da una fuer za resultante, por unidad de longitud, de:

$$V'_{x} = \left[-(m_{xy} + \frac{\partial m_{xy}}{\partial y} dy) + m_{xy} \right] \frac{1}{dy} = -\frac{\partial m_{xy}}{\partial y} \quad \text{E.c. 1.31}$$

La reacción total es entonces el cortante menor de la componente del momento torsionante:

$$R_x = V_x - V'_x = V_x + \frac{\partial m_{xy}}{\partial y}$$
 E.C. 1.32

igualando $m_x = 0$ y $R_y = 0$, se tienen las condiciones de frontera:

$$\frac{\partial^2 W}{\partial x^2} + \frac{\partial^2 W}{\partial y^2} = 0$$

$$\frac{\partial^2 W}{\partial x^3} + (2 - 44) \frac{\partial^3 W}{\partial x \partial y^2} = 0$$

E.C. 1.33

En un borde apoyado y restringido elásticamente, la ec. 1.33 cumple con las ecuaciones de compatibilidad, y cuando se multiplica por (-D) se establece una igualdad en función de la flexión de la viga y rigidez torsional y claros que tiendan a cero.

REACCIONES

Sobre las bases discutidas anteriormente, es evidente que la reac ción en un borde apoyado, Es el cortante, más o menos, la contribución del momento de torsión y se escribe como:

$$R_{x} = V_{x} + \frac{\partial M_{xy}}{\partial y} = -D \left[\frac{\partial^{3} W}{\partial x^{3}} + (2 - \omega) \frac{\partial^{3} W}{\partial x \partial y^{2}} \right] \quad \text{E. c. 1.34}$$

$$R_{y} = V_{y} + \frac{\partial M_{xy}}{\partial x} = -D \left[\frac{\partial^{3} W}{\partial y^{3}} + (2 - M) \frac{\partial^{3} W}{\partial x^{2} \partial y} \right] \quad \text{E.c. } 1.35$$

En un borde empotrado en la dirección "y" no hay momento torsio nante ya que $\frac{\partial w}{\partial x} = 0$, a lo largo del borde y consecuentemente

 3^2 w/ $3x \partial y = 0$. El momento de torsión, forma una contribución definida en la reacción en un apoyo de un borde simplemente apoyado y puede incrementarse o decreser la fuerza, por unidad de longitud. Como en una esquina que forma un ángulo recto, donde dos bordes sim plemente apoyados se interceptan y Rx y Ry se aproximan a cero. --Sin embargo, el momento torsionante alcanza un máximo en la esquina y como resultado se tiene una fuerza desequilibrada m_{xy}, actuando verticalmente en el extremo del lado de la losa, como se ve en la fig. 1.5b. Hay efectivamente dos fuerzas semejantes que actúan jus tamente en la esquina de la losa, de tal modo que una está contri-buida por cada uno de los lados que se interceptan, como se ve en la fig. 1.5c, dando una fuerza de esquina de:

$$2_0 = 2M_{XY} = -2D(1-M)\frac{\partial^2 W}{\partial X \partial Y}$$

E. C. 1-36

LA RELACIÓN DE POISSON

La relación de Poisson se presenta como una variable significativa en muchas de las ecuaciones de placas, aún cuando ésta siempre hasido considerada como cero al trabajar con losas de concreto refor zado tal como se indica más adelante. Esto es razonable para una losa agrietada, y se debe tomar en cuenta que todas las losas se - agrietan al acercarse a la carga de colapso. Y por otro lado, tiene muy poca influencia en el estado de esfuerzos de la estruc tura.

La influencia de la relación de Poisson sobre el comportamiento de una losa agrietada de concreto reforzado, se espera que sea menor que en el caso de una placa homogénea, ya que al considerar un elemento sujeto al esfuerzo de tensión en las losas se trata realmente de un cruce de varillas de acero que no están correctamente conectadas y que ni siguiera están necesariamente en contac Por consiguiente, el esfuerzo en el acero en dirección "X" to. puede afectar el esfuerzo en el acero en dirección 'y', sólo si se transmite a través del concreto; y no se espera que ésto sea una transferencia eficiente debido a la presencia del agrietamien to y a las enormes diferencias en los valores de los módulos de -Young de los materiales. La relación de Poisson tendrá cierta in fluencia en los esfuerzos de comprensión de concreto, pero éstos esfuerzos de comprensión no controlan el diseño en la mayoría delos sistemas de losas. Existe una influencia menor de la relación de Poisson en las losas rígidas, tal como se refleja en el término D en la ecuación 1.1 pero ésta es mucho menor que las variaciones esperadas en los módulos de concreto de Young. La relación de ---Poisson podría ser importante en una losa reforzada con una placa de acero en vez de varillas.

El valor "verdadero" de u para una losa, sin lugar a duda, varía sobre el área de la losa, dependiendo de la magnitud del agrieta miento. Si se hace u = 0.15 para el concreto, este valor será correcto únicamente para una losa no agrietada y supuestamente sólopara los esfuerzos del concreto. Y se acerca a cero, mientras que la losa se aproxima a un estado de agrietamiento total. Un experimento para determinar el valor más adecuado de u tuvo que haber sido realizado con mucho cuidado, ya que las pequeñas variaciones en propiedades importantes tal como E, podrían fácilmente ocultar los resultados.

Sin embargo, un estudio analítico realizado por Jofriet sugirió un experimento que puede ser de utilidad, encontrándose que elmomento m_x en la dirección del claro corto en un tablero típico interior rectangular de una losa sin vigas, es muy sensible a u en la posición marcada en la fíg. 1.6. Para u = 0 hay un momen to negativo, pero para u=0.05 es cero y para todos los valores grandes de u el momento es positivo. El que ésto sea posible se puede observar con ayuda de la ecuación 1.12, considerando que el factor de la curvatura en la dirección -'Y' sería más -grande que en la dirección 'X' y de signo opuesto.

Haciendo caso omiso del efecto de u en D, ya que es menor, el valor específico de la relación de Poisson, que fue seleccionada, tiene una influencia en la solución de la ec. 2.1, sólo sientra en las condiciones de frontera de la placa. No tiene influencia en el caso de losas empotradas y simplemente apoyadas, pero es de alguna consecuencia en losas con bordes libres o res tringidos elásticamente, como se indicó en la ec. 1.33.

En los casos donde las condiciones de frontera no incluyen la relación de Poisson, los momentos para un valor u pueden fácilmente determinarse a partir de los momentos para otro valor, y es conveniente resolver para el caso de u=0 y los momentos obtenidos para otros valores de u según sea necesario. Si $m_{\chi 0}$, m_{y0} , $m_{\chi y0}$, W_0 son los momentos y deformación para u=0, las mismas -cantidades para valores finitos de u son:

$$m_{yu} = m_{yo} + um_{xo}$$

$$m_{xyu} = (1 - u) m_{xyo}$$

$$W_{u} = (1 - u^{2}) W_{0}$$

um

Las ecuaciones 1.37 se tienen a partir de las ecuaciones 1.1, -1.13, 1.13 y 1.19, siempre que se recuerde que W, y consecuente mente las derivadas de W, son más pequeñas que $(1 - u^2)$.

MOMENTOS ACTUANDO EN UN ANGULO CON LOS EJES COORDENADOS

Lo descrito anteriormente tiene gran interés para encontrar los momentos en las direcciones "X" y "y" junto con los momentos de -torsión correspondientes. En algunas ocasiones es necesario en contrar momentos de flexión y de torsión actuando en otras direcciones, y para determinar los momentos principales, o sea los momentos ortogonales que actúan en las caras de un elemento de losa, el cual está libre de momentos de torsión.

Considerese el elemento de losa mostrado en la fig. 1.7a, con los momentos flexionantes y de torsión, actuando como muestran los vec tores.

Las magnitudes de los momentos que actúan en una sección inclinada un ángulo « con el eje "y" se puede encontrar aislando el cuerpo libre que se encuentra en la fig: 1.7b, se suman las componentes m_{χ} , m_{χ} , $m_{\chi y}$, en las direcciones "n" y "t", para encontrar el momen to flexionante 'm_n' y el momento torsionante 'm_t' que actúan en la sección inclinada. Este cálculo es exáctamente similar a la solución de un problema general de un esfuerzo en dos dimensiones, y resultan las mismas ecuaciones. Los momentos por unidad de ancho, se dan en las siguientes expresiones:

FIG. 1.4.- ELEMENTO DIFERENCIAL DE LOSA, ORIENTADO EN UN NUEVO SISTEMA DE EJES COORDENABOS.

$$m_n = M_x \operatorname{sen^2} \alpha + M_y \cos^2 \alpha + 2M_{xy} \operatorname{sen} \alpha \cos \alpha$$

= $M_x \operatorname{sen^2} \alpha + M_y \cos^2 \alpha + M_{xy} \operatorname{sen} 2\alpha$ E.C. 1.38a
$$M_t = (M_x - M_y) \operatorname{sen} \alpha \cos \alpha + M_{xy} (\operatorname{sen^2} \alpha - \cos^2 \alpha)$$

= $\frac{M_x - M_y}{2}$ sen 2 $\alpha - M_{xy} \cos 2\alpha$ E.C. 1.38h

El ángulo & del eje "y" al plano del momento principal, se - obtiene con:

Tal vez para estas ecuaciones, una forma más conveniente de resolverlas es a través del círculo de Mohr, como se muestra en fig. 1.7c. La fig. 1.7d muestra dicho círculo asociado con latransformación usada en la fig. 1.3.

Los esfuerzos tangenciales relativos a los ejes coordenados gira dos a través del ángulo **\$** del eje "x", se encuentra usando las siguientes ecuaciones, las que se obtuvieron de considerar el -equilibrio vertical, como se muestra en la fig. 1.8):

$$V_{X'} = V_X \cos \theta + V_Y \sin \theta$$

 $V_{Y'} = V_X \sin \theta + V_Y \cos \theta$
 $V_{Y'} = V_X \sin \theta + V_Y \cos \theta$

METODOS DE SOLUCIÓN

El procedimiento general para resolver un problema de una losa -elástica, es determinar la ecuación para la elástica de la losa y luego combinar las derivadas de la deflexión, y así obtener las fuerzas internas.

La forma de la elástica debe satisfacer tanto la EC. de Lagrange (EC. 1.1), como las ecuaciones de las propiedades de las condiciones de frontera.

FIG. 1.8, FUERZAS CORTANTES EN UN ELEMENTO DIFERENCIAL, AJELEMENTO DE LOGA CON FUERZAS CORTANTES, D) DIAGRAMA DE CUERPO LIBRE.

FIG. 1.9 - SUBDIVISION DE UNA LOSA RECTANGULAR PARA APLICAR EL METODO DE DI PERENCIAS PINITAS. Este procedimiento es el que nos lleva a la solución de una ecuación diferencial general, para una viga;

$$\frac{\partial 4W}{\partial x^4} = \frac{4}{EI}$$
 E.c. 1.40

y las condiciones de frontera asociadas.

Cada ingeniero civil resuelve de forma rutinaria la ec. 1.40, alusar varias técnicas simples, pero desafortunadamente la solución a la ec. de Lagrange, no es muy directa. Se han encontrado soluciones de forma particular a la ec. 1.1., para un número muy limi tado de losas, como placas circulares con cargas asimétricas, -algunas placas elípticas, y algunas placas triangulares, pero la lista es corta y no ayuda mucho a los estructuristas.

Las primeras soluciones a la ec. de Lagrange las obtuvo Navier en 1820, al usar la serie de Fourier, para describir la deflexión y la carga de placas rectangulares simplemente apoyadas, bajo -cargas arbitrarias.

La forma general de la función de la deflexión, es: $W = 4c\sum_{m=1}^{\infty}\sum_{m=1}^{\infty}A_{mm}sen \frac{m\pi x}{a}sen \frac{n\pi y}{b}$ E.c. 1.41 donde: C = constante

Amn = es una variable que depende de los enteros m y n y de la relación de los lados del tablero, A y b.

El concepto de energía para soluciones de placas, fue desarro llado por Ritz, que se basa en el principio de que la energía total de una placa deformada, sea mínima, cuando existe el equi librio. Las soluciones se encuentran por lo general, en forma de solución de serie, pero existe más libertad en la elección de las series que se usarán, siempre que las funciones satisfagan las condiciones de frontera del problema. Se han seleccionado coeficientes para los términos sucesivos en las series para minimizar la energía total en el sistema. El método de Galerkin cae dentro de esta clase general. Los térmi nos en las series polinominales o trigonométricos y tales series como las funciones de Bessel y Hankel, han sido usadas para obte ner soluciones de problemas particulares.

En el código ACI-77, las disposiciones para el diseño de estructuras de losas, tuvieron una influencia muy importante en los estudios realizados en Sutherland.

Debido a la gran complejidad de los métodos exactos en el análisis de placas que se han descrito se ha realizado un gran esfuerzo para desarrollar métodos aproximados de análisis.

MODELOS ELÁSTICOS

Otro método tradicional de hacer la distribución de momentos en placas, es por medio del uso de modelos elásticos, en una grangama de materiales como yeso, vidrio, plástico y vulcanita.

Para el análisis de losas complejas, se usan este tipo de modelos, aplicando procedimientos numéricos y modernas calculadoras electrónicas. De este modo se obtiene una información más cuan titativa y precisa en la distribución de los momentos flexionan tes de los modelos que han servido en el desarrollo de los moder nos medios en la medida de las deformaciones, los modelos elásticos son de gran ayuda en la investigación y diseño de placas y losas.

MÉTODO DE DIFERENCIAS FINITAS

El método de diferencias finitas fue introducido por Nielsen en 1920, como una alternativa en los métodos de solución de placas. Estos resultados fueron usados por Westergaard y Slater, con mo dificaciones a corregir para capiteles de columnas circulares,para obtener las distribuciones de momentos, usados en el código ACI, para estructuras de losas planas adaptadas a la versión 1963, de dicho código.

El método de diferencias finitas reemplaza la ecuación en derivadas parciales de cuarto órden de Lagrange, por una serie de ecuaciones algebraicas lineales simultaneas, para la deflexiónde un número finito de puntos en la superficie de la losa.

Mucha información básica sobre el uso del método, ha sido proporcionada por Jensen, en su informe sobre una investigación de losas de puentes esviejados, con bordes rígidos.

Para aplicar este método a una losa o un tablero de losa, se divide ésta, en un número adecuado de cuadros (o también pueden ser rectángulos, paralelogramos, etc.) como se muestra en la -fig. 1.9.

La deflexión de cada nudo interior se debe determinar, dando 40 puntos a la losa de la fig. Si la carga está uniformemente distribuida y la losa es de un espesor uniforme, para éste caso par ticular se puede hacer una reducción del número de deflexiones desconocidas a 12.

Las ecuaciones de diferencias se escriben para cada punto de laintersección de la cuadrícula. Esto puede hacerse manualmente haciendo uso del operador de la ecuación de diferencias, o molécula, como se ve en la fig. 1.10a en cada punto. La ecuación -en función de la deflexión W, para cada punto i, j, se muestra en la fig. 1.10b.

$$20w_{i,j} - 8(w_{i,j+1} + w_{i+1,j} + w_{i,j-1} + w_{i-1,j-1}) + 2(w_{i+1,j+1} + w_{i+1,j-1} + w_{i-1,j-1}) + w_{i-1,j-1}) + w_{i+1,j+1} + w_{i+1,j+1} + w_{i-1,j-1}) = -\frac{8}{D}$$

$$(b)$$

FIG. 1.10.-0.) OPERADOR DE DIFERENCIAS FINITAS PARA UN PUNTO TIPICO INTERIOR, D'ECUACION DE DIFERENCIAS FINITAS PARA EL PUNTO L, J. Se escribe una ecuación para cada punto de deflexión desconocida, y se resuelve el grupo de ecuaciones simultaneas para las deflexiones desconocidas.

El número de cuadrículas que se deben tomar en consideración, de pende de la precisión que se quiera, de la prueba de ensayó y de la capacidad de la máquina computadora.

Dentro de los métodos de diferencias finitas, el modelo físico que más se usa, es sin duda el de la ANALOGIA DE LA PLACA, que consiste en una estructura formada por una serie de barras rígidas ortogonales conectadas por varios resortes y los momentos -flexionantes y torsionantes se piensa que actúan en ésta estructura reemplazando a la placa.

El autor de éste modelo fue Newmark. Descripciones completas de las propiedades y el uso del modelo de la analogía de la placa, son proporcionadas por Ang y Newmark, en una descripción sobre el exitoso procedimiento de distribución de momentos para losas, realizado por Ang y Prescott. Este modelo se analiza punto porpunto, y se obtiene un conjunto de ecuaciones exactamente iguales a las ecuaciones diferenciales antes vistas y se resuelvende la misma manera. El método tiene la capacidad de tomar en cuenta condiciones de límite muy complejas, el cual fue usado por Simmonds, para obtener los momentos, cortantes y deflexio nes, en una serie de losas de 9 tableros, apoyadas en vigas fle xibles unidas a columnas flexibles.

Una ventaja de estos modelos físicos, para el análisis de pla cas, es que los resortes del modelo, se compartan de acuerdo alas relaciones elasto-plásticas, esfuerzo-deformación o momentocurvatura. En los inicios de la era de la computación, a finales de los años 50's y a principios de los 60's se usaron varios métodos basadosen diferencias finitas y analogía de placas, se usaron ampliamente en estudios de detalles, como la distribución de esfuerzos alrededor de la columna en losas sin vigas, efectos de rigideces -de flexión y torsión de vigas y efectos de rigideces de columnaspara la distribución de momentos de losas. Muchas de las disposi ciones descritas en el código ACI-77, para el diseño de estructuras de losas, se pueden remontar directa o indirectamente a esos estudios.

MÉTODOS APROXIMADOS

Numerosos métodos aproximados para el análisis de losas, han sido propuestos, desarrollados, y usados en los últimos años. Muchos de éstos aparecieron antes de la era de las computadoras.

La sustitución de una losa por una serie de vigas ortogonales, con una viga en cada dirección por lo menos, es uno de los recursos más antiguos que se han usado.

Los momentos flexionantes que se obtengan, pueden diferir considerablemente de la distribución teórica elástica actual, debido a la omisión del término de las ecuaciones parciales mixtas, enel estado de equilibrio de la losa, de la ec. 2.5.

Siess y Newmark, desarrollaron un procedimiento de distribución de momento, para una losa de varios tableros apoyada en vigas sin flexionarse. Este procedimiento es directamente comparable a el de distribución de momentos de vigas realizado por Cross, excepto que los factores de distrivución de momentos, son aproximados, -donde todos los momentos negativos están equilibrados y los momen tos positivos se calculan usando otra serie de factores aproximados. Se puede tomar en cuenta la rigidez torsional de las vi**g**as de apoyo. A medida que las vigas permanecen rígidas a la flexión, el método da valores razonablemente exactos para el momento, suficien-tes para los propósitos de diseño.

El principal problema es que pocas vigas son verdaderamente rígidas, aún cuando los muros de carga satisfacen esta limitación, y los momentos en los tableros de borde y esquina, resultan particularmente sensibles a pequeñas deformaciones de los apoyos.

Vanderbilt, presentó un método aproximado, para el cálculo de -las deflexiones de losas contínuas, con y sin vigas, en los quese combinan varios aspectos de análisis de marcos, y solucionesconocidas de placas rectangulares simplemente apoyadas. El efec to del agrietamiento debido a las rigideces se tomó en cuenta en forma empírica. El procedimiento pudo probablemente también ser usado para el cálculo de momentos, pero ésto nunca se hizo, talvez porque en ese tiempo se desarrollo el método del análisis del marco equivalente.

Método del marco equivalente. Este método se aplicó por variosaños, hasta que en 1963 el código del ACI lo incluye en sus disposiciones, para losas planas y placas planas.

En el año 1977, es revisado este método del marco equivalente por dicho código, se amplía y se incluye para losas en dos direcciones.

El análisis del marco equivalente permite una determinación de la distribución de los momentos negativos y positivos, tomando en cuenta la variación en longitud y carga de varios claros y rigideces de apoyo, pero no da alguna información sobre las distribu ciones cuando actúan fuerzas laterales, a través de las losas olas vigas. La versión ACI-77 en cuanto a las disposiciones del anàlisis del marco equivalente, se basaron en los trabajos de Corley y Corley y Jirsa.

105

CAPITULOII

RESULTADOS DE LA TEORIA ELASTICA

INTRODUCCION

Antes de describir los métodos de diseño de losas. Ya sea el método directo o el del marco equivalente, conviene saber la procedencia de los requisitos para análisis y diseño hechos por elcódigo ACI.

Estos requisitos se basaron en muchos factores, incluyendo los resultados de estudios analíticos de los momentos por la teoría elástica, los resultados de pruebas de varias estructuras tanto en modelos y prototipos a escala, los análisis de resistencia de varios tipos de estructuras de losas, usando la teoría de las líneas de fluencia, y la experiencia de sucesos y fallas en es tructuras de losas que se han ido acumulando durante los últimos tres cuartos de siglo.

El código ACI-71 contiene algunos cambios con relación a las últimas ediciones. El cambio más importante es el de la unifica ción de los métodos de diseño para todas las losas, con y sin vi gas. Como un resultado de ésto, todos los tipos de losas gira rán en torno a los mismos factores de seguridad, que es una re-forma importante, ya que una losa apoyada en vigas fue significativamente más fuerte que una losa sin vigas, aún cuando ambas -tengan la misma carga viva y muerta, y la misma calidad de materiales.

Una corta historia de la evolución del código, dá alguna pers pectiva a la complejidad de la tarea de revisar completamente en forma ordenada una sección de dicho código. En 1956 se inicióuna larga investigación en la universidad de Illinois. Se ensayaron cinco losas con nueve tableros a escala, con diversos diseños. Los resultados de estas pruebas fueron descritos por Sozen

32

y Siess. Se hicieron ensayos a placas planas pero a diferente escala de la anterior, realizadas por la Asociación del Cemento Portland, siendo un gran complemento en la serie de estas pruebas. Una extensiva investigación analítica se realizó al mismo tiempo, y cientos de estructuras de losas, fueron analizadas con técnicas numéricas.

El volumen de trabajos analíticos y experimentales fueron completados en 1962. La formulación de los requisitos propuestos en el código, se llevaron al mismo tiempo, usando primeramente los resultados de los estudios analíticos, con una muy importante co rrelación con los resultados experimentales. La reunión del cómité 421 del ACI y ASCE sobre pisos de losas de concreto refor zado, se le dió la responsabilidad de mejorar el capítulo 13 del ACI-71.

Se llevaron siete años en la evolución de dicho capítulo, así como discusiones y regateos entre los puntos de vista teóricos y prácticos, y entre la necesidad de hacerlo general y simple, siguiendo las publicaciones anteriores del capítulo 13 como la -parte del código ACI-71. El capítulo 13 de este código dá dos procedimientos de diseño para sistemas de losas, y son el método de diseño directo y el del marco equivalente.

EL MÉTODO DE DISEÑO DIRECTO

Para un sistema de losas, con y sin vigas, y con carga vertical sólamente, debe satisfacer los siguientes requisitos:

- 1. En cada dirección debe existir un minimo de tres claros continuos.
- 2. Los tableros deben ser rectangulares, con una relación de claro largo a corto, no mayor de 2.

- Las longitudes de los claros de tableros sucesivos en cada di rección, no deben diferir en más de 1/3 de la longitud del -claro mayor.
- 4. Las columnas pueden estar desalineadas un máximo de 10% del claro (en la dirección del desalineamiento) a partir del ejeque una los centros de las columnas sucesivas.
- 5. Todas las cargas deben ser únicamente gravitacionales, y estar distribuidas de manera uniforme en todo el tablero. Lacarga viva no debe exceder de 3 veces la carga muerta.

 Para un tablero con vigas entre los apoyos en todos los lados, la rigidez relativa de las vigas en dos direcciones per pendiculares,

$$\frac{\alpha_1^{1}_{2^2}}{\alpha_2^{1}_{2^1}^{2}}$$

no debe ser menor que 0.2, ni mayor que 5.0, o sea:

- $0.2 < \frac{\alpha c_1^{1} l_2^{2}}{\alpha c_2^{-1} l_1^{2}} < 5.0$
- Tal como lo permite la sección 8.4 ACI-77, la redistribución de momentos no debe aplicarse a los sistemas de losas diseñadas por medio del método de diseño directo (ver sección 13.6.7).
- 8. Pueden aceptarse variaciones a las limitaciones (a las condiciones anteriores) siempre que se demuestre por medio del análisis, que satisfacen los requisitos de la sección 13.3.1 o sea, que se satisfagan las condiciones de equilibrio y compatibilidad geométrica, si se demuestra que la resistencia de diseño en -- cada sección, es por lo menos igual a la resistencia requerida en las secciones 9.2 y 9.3 y que se cumplan todas las condiciones de servicio, incluyendo los límites especificados para las deflexiones.
Los sistemas de losas que no cumplan con éstas condiciones, o que aún cumpliendolas se desean diseñar con un método más exacto, o cuando se tienen cargas laterales, se usa el método del marco equivalente.

El matodo de diseño directo dá reglas para la determinación del momento estático total de diseño y su distribución entre seccio nes de momento negativo y positivo.

El método del marco equivalente, define un marco equivalente para hacer el análisis estructural para determinar los momentos - negativos y positivos que actúan en el sistema de losa. Ambos métodos usan el mismo procedimiento para dividir los momentos - originados entre las franjas central y de columna de la losa y-las vigas.

El espesor de una losa de entrepiso se puede determinar antes de realizar el diseño, ya que el peso de las losas es una parte importante de la carga muerta de la estructura.

La resistencia al cortante de losas sin vigas, es frecuente un factor de control, y la losa puede tener un espesor suficiente para suministrar una adecuada resistencia al cortante. Una forma menos frecuente, es determinar el espesor por los requisitosde momento flexionante y ésto nos lleva a los espesores mínimosdados en el código ACI-63.

DESCRIPCIÓN DEL MÉTODO DE DISEÑO DIRECTO

Anteriormente se dieron las condiciones que debe cumplir este mé todo.

Antes de realizar el análisis para aplicar este método, es necesario determinar el peralte preliminar "h" de la losa para el -- control de las deflexiones de acuerdo con los requisitos de peralte mínimo de la sección 9.5.3.

En los sistemas de losas sin trabes, se recomienda para el análisis, verificar primero la resistencia al cortante de la losa, en las cercanias de las columnas u otros apoyos, según la sec ción 11.11 del código.

Determinado el peralte de la losa, se obtiene el momento estático total factorizado en cada claro, dividiendo el momento estático total factorizado, entre los momentos positivos y negativos dentro de cada claro, y distribuyendo el momento positivo y negativo entre la franja de columna y la franja intermedia dentro de cada claro.

MOMENTO ESTÁTICO TOTAL FACTORIZADO,

Es la suma absoluta de los momentos positivo en el centro delclaro y el promedio de los momentos negativos en los apoyos, basados en una distribución uniforme de la carga a través de la franja de diseño, entre el paño de los apoyos, en la direcciónen que se determinan los momentos.

Este momento se expresa como:

$$M_0 = \frac{wl_2}{2}$$

EC.2.1

donde: w = carga uniformemente distribuida por unidad de área
l₂ = claro de centro a centro de columnas o ancho del tablero considerado en la dirección transversal.
ln = claro libre de cara a cara de los apoyos, en la di-

rección considerada.

(a.)

ANALIZANDO EL TABLERO INTERIOR COMO UN CUERPO LIBRES

FIG. 2.1

Esta formula se obtiene de la siguiente manera:

Considerese el siguiente tablero interior de un piso de losa actuando en dos direcciones, como se muestra en la siguiente figura 2.1.

La carga que actúa en la fig. (c) es wl₂ por unidad de longitud en la dirección del claro largo.

La carga que actúa hacia arriba en las líneas l'-3' o 2'-4' es -wl_ln, donde ln es el claro que se toma a partir de la cara de -- $\frac{2}{2}$ las columnas o apoyos.

Si el momento negativo M(-), y el positivo M(+), son valores nu méricos de los momentos flexionantes positivos, a lo largo de las líneas l'-3' y 5-6, el momento de equilibrio del diagrama de cuer po libre de la figura (d), requiere que:

Mo = M(-) + M(+) =
$$\frac{wl_2 \ln^2}{8}$$
 EC.2.2.

El ACI, usa la notación Mo, para encontrar M(-) + M(+) y llama Mo al momento estático total factorizado. Y establece que la suma absoluta del momento positivo y el promedio de los momentos ne gativos factorizados en cada dirección no serán menores que 'Mo'o sea:

 $\frac{M(-)IZQ + M(-)DER}{2} + M(+) \ge Mo = \frac{wl_2 ln^2}{8} EC.2.3.$ donde: w = carga factorizada por unidad de área

> ln = claro central en la dirección que se determinan los momentos, medido centro a centro de los apoyos, pero no menor que 0.65 l,

1 = claro longitudinal en la dirección que se determinan los momentos, medido centro a centro de los apoyos.

12 = claro transversal, medido centro a centro de los apoyos.

En construcciones de losas plansas los entrepisos de losas que se apoyan en capiteles redondos, el ACI sugiere el procedimiento deconsiderar los apoyos circulares como apoyos cuadrados, teniendola misma área.

En el diseño de los a que actúan en dos direcciones, el valor de Mo, debe primero ser dividido entre M (-) y M(+), si cada extremo del claro está restringido de igual forma, o se divide entre-[M (-) IZA + M (-) DER] / 2y M (+), si los extremos del claro se restringen de diferente manera. Entonces los momentos-M(-) IZQ, M(-) DER y M(+) serán distribuidos transversalmente alo largo de las líneas 1-3 o l'-3', 2-4 ó 2'-4' y 5-6 respecti vamente. Esta última distribución es una función de la rigidez relativa a la flexión entre la losa y la viga incluida.

En seguida se presentan las figuras 2.2 y 2.3, que nos indican cómo obtener las franjas de diseño y cómo considerar los apoyospara obtener las secciones críticas para el momento negativo de diseño.

MOMENTOS FACTORIZADOS POSITIVOS Y NEGATIVOS

La distribución de los momentos negativos y positivos adoptada para un tablero interior en el ACI-77 para el método de diseño directo, es de, 0.65 Mo, para el momento negativo y 0.35 Mo para el momento positivo. Para los claros extremos la distribución del momento estático se controla por la rigidez relativa de la columna exterior equivalente o sea por la rigidez de la columnade borde reducida por la influencia de la flexibilidad torsional de la viga secundaria. Estas recomendaciones son las mismas que las del código ACI-71.

La distribución del momento de un claro extremo es esencialmente la que resulta de un sólo ciclo de distribución de los momentos negativos de empotramiento en el borde de la estructura, más elque se transporta a la primera sección del momento negativo inte rior.

Por tanto la distribución de momento es:

momento negativo interior = Mo (0.75 - 0.10) = Mo (0.75 - 0.10) 1+(1/4ec)momento de diseño positivo = Mo (0.63 - 0.28) = Mo (0.63 - 0.28)1+(1/4ec)

momento negativo exterior = Mo 0.65 = 0.65 % Mo. 1+(1/ ∞ ec)

donde $\propto ec = \frac{kec}{\mathcal{Z}(ks + Kb)}$ = rigidez relativa columna exterior equi $\mathcal{Z}(ks + Kb)$ valente. kec = rigidez a flexión de una columna equivalente (momento entre rotación unitaria). kb = rigidez a flexión de la viga. ks = rigidez a flexión de la losa \mathcal{X} = 1/[1+ (1/ \propto ec)] sustituyendo aquí \propto ec, se tiene: = $\frac{1}{[1 + (\frac{1}{2})]}$ Kec/ (Ks+ Kb) Este factor χ para la distribución en el claro extremo se basa en larelación entre la columna equivalente y las rigideces de la losa y vigas en una junta exterior, \propto ec.

Las distribuciones de momentos se presentan gráficamente en la siguiente figura 2.4 si los momentos negativos en los dos ladosde un apoyo no son iguales, las secciones sobre ambos lados delapoyo, se diseñan para el momento más grande, ver nudo 2, a menos que un análisis, tome en cuenta la rigidez relativa de ambos claros y los apoyos estén hechos para determinar la distribución del momento desequilibrado. La sección crítica para momento negativo, se toma a través de la línea de la cara de la columna y extendiendose perpendicularmente a el claro en la dirección considerada como se demuestra en la línea A-A de la figura, 2.5.

Cuando el ancho transversal de un apoyo es igual o mayor que 3/4 del ancho de la franja de diseño (de la fig. 2.6), $C_2 \ge 3/4l_{2d}$,el ACI en su secci^on 13.6.4.3, señala que el momento negativo factorizado se distribuya uniformemente a través de la franja de diseño del tablero y la longitud en la dirección del claro que se analiza. Una excepción de ésto es cuando un apoyo tiene un granancho transversal.

Una franja de columna en la parte exterior de un claro extremo, se necesita que resista el momento negativo total factorizado, -en la franja de diseño, a menos que se pongan trabes de borde. -Esto se ilustra en la fig. 2.4.

Secuela para el cálculo del parámetro 🔏 :

 La sección transversal de la losa, vigas y columnas, se puedesuponer uniforme en toda su longitud. Como los errores causados por la simplificación de dichos elementos tienden a eliminarse entre si, es preciso simplificar tanto el sistema vigalosa como el de columnas, o ninguno.

FIC. 2.5

FIG. 2.4

- Cuando las vigas cubren un claro entre columnas, no es necesario aumentar la rigidez torsional de los miembros adyacentes a torsión, como lo requeriría la sección 13. 7. 5.4.
- 3. Se puede utilizar el mismo factor y para una franja exteriorde diseño (ver fig. 2.2.), como se calculó para una franja interior de diseño, en el caso de que la columna de esquina tenga el mismo paño que la columna exterior de la franja interior de diseño.

La rigidez de la columna equivalente Kec en términos de la flexibilidad se expresa como: 1 = 1 + 1 o sea Kec $\not \not \not \not Kc$ $\not \not \not Kt$ aquí se usa el término $\not \not \in Kt$ en vez de Kt, que viene en la fórmula 2.6 del ACI actual, esto se hace con el fin de simplificar la expresión.

Otra forma de expresar la rigidez de la columna equivalente es:

Kec = $\angle kc \times \angle Kt / (\angle Kc + \angle Kt)$

La rigidez para un solo miembro a torsión es:

$$Kt = \frac{9Ecs C}{[l_2(1-\frac{c_2}{2})^3]}$$

En éstas dos últimas fórmulas \pounds Kc es la suma de las rigideces de la columna real arriba y abajo de la losa en la junta que se analiza, Kt rigidez a torsión de un miembro sujeto a torsión, Ecs es el módulo de elasticidad del concreto de una losa, C₂ dimensión de una columna, capitel o cartela rectangular equivalente, medida transversalmente a la dirección del -claro que se analiza, y por último la constante de torsión "C" se determina con la fórmula:

$$c = \mathcal{E}(1-0.63-\frac{x}{y}) \frac{x^3y}{3} = \mathcal{E}x^4 (\frac{y}{3x} - 0.21)$$

En esta fórmula se tiene:

- x = menor dimensión de la parte rectangular de una sección transversal
- y = mayor dimensión de la parte rectangular de una sección transversal.

Estos miembros sujetos a torsión deben cumplir con las siguientes condiciones (sec. 13.7.5.1 del código), pero antes se supone que estos miembros tienen una sec. transv. etc. en toda su longitud que es la mayor de: a) una porción de losa que tenga un ancho igual al de la columna, ménsula o capitel, en la dirección del claro para el cual se determinan los momentos.

 b) Para sistemas monolíticos o totalmente compuestos, la porción de losa especificada en el inciso anterior, más la parte de la viga transversal arriba y abajo de la losa.

c) La viga transversal que se muestra en las figuras 2.7.

Para encontrar el valor de la constante de torsión "C" como ya se dijo, se subdivide la sección transversal de los miembros sujetos a torsión en rectángulos (ver comentarios del código, en la sec. 13.7.5., fig. 13.14).

Para calcular la constante "C" se puede hacer uso de la gráfica 2.1. (pág. 158, fig. 4.11 de la referencia 1).

GRAFICA 2.1

SECCIONES TRANSVERSALES TIPO, DE MIEMBROS ADYACENTES À TORSIONS

CONDICION 0) FIG. 2.7.1

---- C1 ---+ CONDICION Q) F16.2.7.3

CONDICION b)

Ct

CONDICION C) FIG. 2.7.4

Al hacer la subdivisión de los rectángulos, se tomará el valor mayor de "C" que de (1) δ (2).

en éste caso, "C" es la mayor de (1) δ (2).

DISTRIBUCIONES DE LOS MOMENTOS DE DISEÑO

MOMENTOS FACTORIZADOS EN FRANJAS DE COLUMNA

Las distribuciones de los momentos de diseño, puede hacerse según las especificaciones 13.6.4 del código, para el caso de losas que cumplan las restricciones del método de diseño directo, y también para losas analizadas por el método del marco equivalente, si los tableros de las losas tienen relaciones $1_1,/1_2 = 2$ o menores, y que satisfagan las restricciones de la rigidez relativa de la viga en las dos direcciones, dadas por el método de diseño directo. Las distribuciones de las secciones de momento positivo y negativo interior, basadas en los momentos de la teoría elástica, se grafican contra el parámetro de rigidez de la viga $\propto 1$ ($\frac{1}{2}$ en las figuras 2.8 a 2.12,

En el código ACI-77 las curvas fueron reemplazadas por funciones bilineales, las cuales resultaron muy buenas representaciones de las curvas y se describieron fácilmente en matemáticas o enforma tabular. Estas curvas no se usaron, ya que están sujetas a errores de lectura (aproximación) y por lo tanto no son usa das en el código mencionado.

Se hicieron algunos intentos para descubrir ecuaciones aproxima das para el ajuste de curvas, con poco éxito.

Los momentos de distribución del código para momentos negativo y positivo interior se presentan en las figuras 2.13 a 2.15, paralelamente con los momentos teóricos, para un tablero interior -cuadrado y para ambos claros de un tablero interior rectangular con relaciones de $l_1/l_2 = 2$. Las más grandes diferencias significativas ocurren cuando $\alpha'_1(l_2/l_1)$ es cercano a 1.0, -cuando los valores del código para momentos de vigas, son generalmente también altos. Cuando $\alpha' 1^{(l_2/l_1)} \approx 1/2$, los momentos de vigas del código, son generalmente bajos, pero de igual manera, las vigas son generalmente también pequeñas para ser prácticas, ya que resultan antieconómicas, sin ningún beneficio significativo de la viga.

48

En seguida se presentan las tablas que dan los porcentajes para la distribución de momentos en franjas de columna y central.

	TABLA	2.1	T
PORCENTAJ	ES DE	MOMENTOS	POSITIVOS

L2/L1	0.5		1.0		2.0	
	franja colum.	franja cent.	franja colum.	franja cent.	franja colum.	franja cent.
$\alpha_1 \frac{\ell_2}{\ell_1} = 0$	60	40	60	40	60	40
$\alpha_i \frac{l_2}{l_1} \geqslant 1.0$	90	10	75	25	45	55
		1				

TABLA 2.2

PORCENTAJE DE MOMENTOS NEGATIVO INTERIORES

L2/L1	0,5		1.0		2,0	
	franja colum.	franja cent.	franja colum.	franja cent.	franja colum.	franja cent.
$\alpha_1' \frac{\ell_2}{\ell_1} = 0$	75	25	75	25	75	25
$\alpha_1' \frac{\ell_2}{\ell_1} \ge 0$	90	10	75	25	45	55

TABLA 2.3

PORCENTAJES DE MOMENTOS NEGATIVOS EXTERIORES

L2/L1		0.5		1.0		2.0	
$\propto_1 \frac{\ell_2}{\ell_1}$	-=0	franja colum.	franja cent.	franja colum.	franja cent.	franja colum.	franja cent.
	€_=(b 100	0	100	0	100	0
	Be≥	2.5 75	25	75	25	75	25
×1 <u>k1</u> ≥0	€£=0 €£≥2	100 90	0 10	100 75	0 25	100 45	0 55

Los momentos de la franja de columna, incluyen los momentos de la viga, con la división entre viga y losa, como se determinará después. La distribución de momentos positivo y negativo interior, son una función sólo de la rigidez a flexión de la viga α_1 y la relación $1_2/1_1$. La distribución del momento negativo interior, es una función de la rigidez a la torsión de la viga de borde, β t; la rigidez a la flexión de cualquierviga interior, α_1 , formando parte de la columna de borde, y la relación, $(1_2/1_1)$.

Se admite hacer interpolaciones lineales en los valores de las tablas anteriores. Esta distribución de momentos también se tiene de las figs. 216 y 217.

Otra forma de distribuir los momentos en una franja de columna es la siguiente (ver p[°]ag. 152, ref. 2):

para un momento negativo ; para un apoyo interior: $75+30(\propto_1 l_2/l_1) (1-l_2/l_1) = C.2.4$ Para un apoyo exterior: $100 - 10 \beta_t + 12 \beta_t < 1 l_2/l_1) (1 - l_2/l_1) = C.2.5$ Para un momento positivo $60+30 < (\propto_1 l_2/l_1) (1.5 - l_2/l_1) = C.2.6$ Nota, cuando $< 1 l_2/l_1 > 1.0$, tomar 1.0, en las ecuaciones anteriores.

Cuando e_{\pm} > 2.5, tomar 2.5, en la ecuación 2.5

donde $\boldsymbol{\beta}_{t} = \frac{\text{Ecb}^{C}}{2\text{Ecsl}_{e}}$,

en las cuales el porcentaje del momento que se asigna a la franja de columna se traza contra la relaci[^]on l₂/l₁, tanto para las secciones de momento positivo y negativo y para los casos con y sin vigas.

ł

FIG 2.18.- DETERMINACION DE CARGAS PARA EL CALCULO DE CORTANTE EN LOGAS CON VIGAS RIGIDAS. Q) AREA DE LA CARGA TRIBUTARIA PARA EL CORTANTE DE LA VIGA, b) CARGA EN LA VIGA'A', C) CARGA EN LA VIGA'B' Q)CARGA EN LA VIGA 'C'

55

Si no hay vigas de borde, es necesario poner suficiente **re**fuerzo dentro de una franja de ancho C₂ + 2d (es decir, el ancho de la columna más un peralte efectivo de la losa a cada lado de la columna).

Se encontró que en más casos el requisito de **en**fuerzo mínimo, gobierna en las franjas centrales de las secciones de momento negativo exterior, aún cuando las losas tienen cargas fuertes. Un importante efecto de ésto, es minimizar los momentos de torsión que pueden ser desarrollados en las vigas secundarias.

Cuando $\boldsymbol{\beta}$ t=2.5, la distribución de momento negativo exterior es la misma, como en una sección de momento negativo interior, según los estudios de momentos elásticos. Sin embargo es muyremoto que cualquier viga de concreto reforzado, podrá razonablemente tener una cierta rigidez torsional alta, si es diseñada sólamente para la carga de la losa más el peso del muro de relleno, así este límite es hipotético en la mayor de lasobservaciones.

Una variación lineal del momento negativo exterior con ℓ t, no es probablemente correcta, pero será lo suficiente exacto para los propósitos de diseño, dentro del actual rango de ℓ t, encon = trándose valores idóneos. Jofriet, en sus estudios de losas, con vigas de borde, sugiere una variación implicando el término ℓ t/(l+ ℓ t).

MOMENTOS FACTORIZADOS EN VIGAS

Una vez que han sido determinados los momentos de las franjas de columna, se pueden conocer los momentos de la viga.

Cuando en una franja de columna hay una viga entre columnas, el momento factorizado que se asigne a la franja de columna, debe distribuirse una parte de éste a la sección de la losa y otra a la sección de la viga. Por tanto la cantidad de momento so factorizado de la franja de columna que ha de resistir la viga, varia linealmente entre 0 y 85%, si \propto_1 $\binom{1}{2}$ varia entre 0 y 1.0. o sea, ésto quiere decir que si $\binom{1}{1}$ $\binom{1}{2}$ $\underset{1}{2} \neq 1$, se asigna la viga el 85% del momento factorizado de la franja de columna y a la losa le corresponde el 15% restante. Se debe de revisar que la sección de la viga resista las cargas apli cadas directamente a ésta. Para valores de $\propto_1(\frac{1}{2})$ comprendidos entre 0 y 1.0, el porcentaje del momento $\overset{1}{1}$ que debe resistir la viga, se obtiene por interpolación lineal.

De los estudios de Sutherland y Appleton, los cuales se basaron en pruebas de losas de tablero rectangulares, cuyos resul tados se presentan en las figuras 2.8 a 2.12, se tiene lo -siguiente:

Los momentos en vigas, franjas de columnas, y franja central, se presentaron contra el factor de rigidez relativa de viga - $\alpha_1 \left(\frac{1}{1}\right)$,

Los datos de las figs, 2.8 a 2.12, son para la combinación espe cífica de rigidez a flexión de vigas, dada por la expresión:

$$\frac{\text{EcbIb1} = 1_{1}}{\text{EcbIb2} \quad 1_{2}}$$

En otras palabras, los momentos de inercia de las vigas son proporcionales a sus claros.

Un incremento en la rigidez de viga, siempre causa un aumento en el momento de 1-a franja de columna y puede ser factible con siderar la franja de columna y viga como una unidad. Incrementando la rigidez de viga causa reducciones en el momento de lafranja central, a lo largo del claro del tablero rectangular, y se incrementa en los momentos de la franja central, en los claros cortos. Para realizar el diseño de la viga, se necesita conocer la fuerza cortante. Las especificaciones del ACI-77, recomiendan que para vigas con $\propto 1$ $(\frac{l_2}{l_1}) \ge 1.0$, deben estar dimensionadas para re sistir un esfuerzo cortante originado por las cargas gravitacionales afectadas por el factor de carga, sobre una superficie que se define en la figura 218.

Para valores $\propto 1 \begin{pmatrix} 1 \\ (\frac{2}{l_1}) \end{pmatrix}$, entre 1.0 y 0, la parte de carga soportada por la capacidad a esfuerzos cortantes de la viga, debe encontrarse por interpolación lineal.

La parte restante de la carga de la superficie rayada se supone, que se transmite directamente a través de la losa a las columnas situadas en las cuatro esquinas del tablero.

Para bajas rigideces de vigas, las fuerzas cortantes obtenidas de las áreas tributarias, para el caso de una viga rígida, puede reducirse linealmente a cero, siempre que \propto 1 tienda a cero.

Las distribuciones de carga de la figura 2.18, dan buenas aproximaciones para las cargas aplicadas, para vigas muy rígidas, según se tiene de los resultados de la teoría elástica.

MOMENTOS FACTORIZADOS EN FRANJAS CENTRALES

Para entender la distribución del momento en estas franjas conviene hacer la siguiente 2.19.

Los momentos de las franjas centrales, es la parte restante que se tiene al hacer la distribución de los momentos factorizados de las franjas de columna. Esta parte o porcentaje se tiene de las tablas 2.1 a 2.3. Sin embargo, observese en la figura que hay un caso en el que un 1/2 de la franja central, es adyacente y paralela a un borde apoyado en un muro. Por tanto la franja central 'A' debe -ser capaz de resistir el doble del momento asignado a la mitad de la franja central derecha del eje 2.

MOMENTOS FACTORIZADOS EN COLUMNAS Y MUROS

Momentos en apoyos interiores. La sección 13.6.9 del código instruye al diseñador, a proporcionar los apoyos interiores de columnas y muros para los momentos que se producen por las cargas afectadas que se tienen en la losa, y da una ecuación para obtener el momento en la columna interior, a menos que se haga un sólo análisis más general para el cálculo de éste.

En claros interiores, los momentos negativos en la losa se determinan, suponieno que se halla presente toda la carga muertay toda la carga viva. Para el cálculo de la columna, resulta una condición de carga más importante si no actúa parte de la carga viva. De acuerdo con ello, el código exige que las columnas interiores resistan un momento de:

 $M_{i} = \frac{0.08 \left[(\omega_{d} + 0.5 \omega_{d}) l_{2} (l_{n})^{2} - \omega_{d}^{2} l_{2}^{2} (l_{n})^{2} \right]}{1 + (1/\alpha_{ec})} = 0.08 \left[\omega_{d} l_{2} l_{n}^{2} / 2 + \omega_{d} l_{2} l_{n}^{2} - \omega_{d}^{2} l_{2}^{2} (l_{n})^{2} \right] = 0.08 \left[\omega_{d} l_{2} l_{n}^{2} / 2 + \omega_{d} l_{2} l_{n}^{2} - \omega_{d}^{2} l_{2}^{2} (l_{n})^{2} \right] = 0.08 \left[\omega_{d} l_{2} l_{n}^{2} / 2 + \omega_{d} l_{2} l_{n}^{2} - \omega_{d}^{2} l_{2}^{2} (l_{n})^{2} \right] = 0.08 \left[\omega_{d} l_{2} l_{n}^{2} / 2 + \omega_{d} l_{2} l_{n}^{2} \right]$

donde: wd = carga muerta de diseño (incluyendo el factor de carga).

wl = carga viga de diseño (incluyendo el factor de carga).

Las literales wl, wd, l² y ln, se refiern al más largo de los dos claros adyacentes a la columna que se analiza y w'd, l'2 y l'n se refieren al claro más corto.

El término 'Y' que se vió al principio de éste capítulo, es para una columna interior, es preciso utilizar la rigidez dela viga y la losa para el claro a cada lado de la columna. Por lo tanto para columnas interiores el término y se expresa como:

$$\chi = \frac{kec}{\left(kec + \mathcal{Z}(K_{s} + K_{b})\right]}$$

El factor 0.08 es aproximadamente 1/2 del factor usado en la ecuación para el momento de empotramiento de una viga prismática con carga uniforme. El término - -- $1/[1+ (1/\ll)]$ es el factor de distribución del momento --combinado para las columnas.

El momento "M" que se calculó con la fórmula anterior, se divide entre las columnas arriba y abajo de la losa, en proporción directa a sus rigideces, como se hace en el método del marco -equivalente.

Los momentos en la columna interior, encontrados con la fórmula anterior, generalmente serán menores que los que se tienen delanálisis del marco equivalente para una misma estructura, a lo menos mientras que la carga viva sea lo suficientemente grande para que se tome en cuenta los requisitos de carga modelo. Esto ocurre porque el método de diseño directo en la ecuación anterior considera 1/2 de la carga viva de diseño, y en cambio el métododel marco equivalente considera 3/4 de la carga viva de diseño,como las intensidades de las cargas parciales apropiadas.

El uso de la columna equivalente es muy complejo y tendrán que hacerse aproximaciones de sus rigideces. Cualquier aproximación que da a una columna rígida, la cual es algunas veces alta, es conservativa, pero presumiblemente aceptable, ya que incrementa el momento de diseño de la columna. Consecuentemente, malas -aproximaciones para la rigidez equivalente, serán aceptables -para la columna interior que para la columna de borde, ya que tanto los momentos de la losa y la columna, se ven influenciados por la rigidez de la columna equivalente de borde.

61

Momentos en apoyos exteriores. Estos momentos se obtienen con la siguiente expresión:

Me = M_F + (3.25 +0.75) (e/ln) Mo EC. 2.8

$$e = C1/2 \leq 0.175 g(ver fig. 2.3).$$

En seguida se dan expresiones (ver pág. 156. ref. 2) para obtener los momentos resistidos en las columnas superior e inferior (basados en las rigideces relativas de la columna):

Momento resistido por la columna superior; $Ma = (1-0.75h/l_c) [((K_c)_a / \leq K_c)] (Me \circ Mi)$ EC. 2.9.

Momento resistido por la columna inferior; $Mb = [(1-0.75 (2a-h)/l_2)][((K_2)_b / \xi K_c)]$ (Me o Mi) EC, 2,10,

donde: (1-0.75 h/lc) = factor para reducir el momento en la unión de columna y la viga-losa por encima de la junta.

a = peralte de la viga-losa

h = peralte total de la losa

(Kc)a = rigidez a flexión de la columna superior.
 (Kc)b = rigidez a flexión de la columna inferior.
 Kc = suma de rigidez a flexión de las columnas
 Me, Mi = ECS. 2.7 y 2.8.

DISPOSICIONES PARA LOS EFECTOS DE LOS MODELOS DE CARGA

El método de diseño directo, puede considerar varios casos de carga modelo. El ACI da al diseñador dos opciones; 1) proporcio nar ciertas rigideces mínimas de columna, así de este modo ais lar un claro de los efectos de la carga del siguiente claro, 6 -2) incrementar los momentos positivos de diseño para tomar en -cuenta los efectos de las cargas modelo. El propósito es producir una estructura en la que el esfuerzo promedio en el refuerzo del momento de la carga de servicio (considerando toda la carga viva y toda la carga muerta), por los efectos de las cargas parciales.

La resistencia de la losa no es por lo general un problema de cargas parciales, sino de un agrietamiento excesivo y/o de flexión, posiblemente. Se hicieron estudios con dos tipos diferentes de cargas parciales, la de tablero de ajedrez y la de fran ja. Cada una tiene un comportamiento en diferentes tipos de estructuras, dependiendo de la relación l_2 / l_1 , del tablero, rigidez a flexión de la viga, rigidez a torsión de la viga y rigidez a flexión de la columna.

El arreglo de los tableros con carga y sin carga, para casos en que se producen momentos máximos de la losa, se muestran en la fig. 2.20, las dos cargas para el momento máximo positivo de la losa fig. 2.20 a y b) son unas de las que se han considerado en la literatura, y sus soluciones son fácilmente accesibles, al me nos para el caso de rigidez a flexión de columnas igual a cero. Las cargas que producen el momento teórico máximo negativo de la losa (fig. 2.20 c y e), en general no han sido analizadas a cau sa de los problemas matemáticos, y en su lugar se han sustituido las cargas modelo, que producen momentos máximos ligeramente más bajos (fig. 2.20 d y f). Sin embargo esto no es una gran limitante,

FIG. 2.20

ya que el incremento en los momentos positivos de la losa, son mucho más importantes que cualquier incremento potencial en losmomentos negativos de la losa. Las cargas que se muestran en las figs. 2.20 b, e y f, también producen los momentos positivos máximos en las vigas, y las franjas cargadas (figs. 2.20 c y d) producen los momentos negativos máximos en vigas. La carga de tablero de ajedrez para momentos negativos en vigas, no ha sido demostrada.

Adicionalmente, a las características generales estructurales, la relación de carga viva a carga muerta o carga móvil a carga total es muy importante en la determinación del significado cargas modelo. Las cargas modelo son obviamente de mucha importancia potencial en una estructura en la que la carga viva es varias veces la carga muerta, que en una estructura en la que la carga viva es -sólo parte de la carga muerta.

La relación de la carga viva a carga muerta puede ser tomada con la siguiente expresión, que sigue la notación del ACI, donde sea aplicable, para la relación de momento efectivo y cargas modelo;

$$\chi = \frac{MAXM}{DLM+LLM} = \frac{\chi_1 + \beta a}{1 + \beta a}$$

donde: MAXM = momento de la carga muerta más el momento máximo de la carga viva modelo.

DLM = momento de la carga muerta

LLM = momento de la carga viva, con todos los tableros cargados.

81 = momento máximo de la carga viva modelo /LLM 8a = DLM/LLM = carga muerta / carga viva Las cargas modelo especificadas en la sección 13.7.6.3 del ACI, usando un 75% (3/4) de la carga viva, en las cargas modelo, nos llevan a valores variables de χ , con los máximos valores fluctuando entre 1.21 para **B**a = 4/3, a 1.38 para **B**a = 1/3, en ambos casos con muy baja rigidez de columna. Resultan valores más pequeños a medida que la rigidez de la columna aumenta. Esta conclusión se basa en un valor de $\chi 1$ = 2.0 mientras sea válido para un tablero típico interior. Usando el 100% de la carga vivanos lleva a valores de χ = 1.43 y 1.75 respectivamente, para los mismos dos casos anteriores.

Estudios más a fondo, de los efectos de las cargas parciales de momentos de estructuras de losas, realizados por Jirsa, dan la tabla 13.6.10 del ACI-77. Este estudio se basó en soluciones desarrolladas por Jirsa y Gamble, los cuales se obtuvieron de los reportes de otros investigadores vistos en el capítulo anterior.

Las franjas de carga modelo, son más importantes para momentos positivos que para la carga modelo tablero de ajedrez, por dos razones; primera, éstas producen un gran incremento en el momento positivo, a menos que la rigidez de la viga sea grande, se gunda, la probabilidad de lograr una distribución de carga en -una estructura que se aproxime a la franja de carga, será mucho mayor que la probabilidad de lograr una carga tablero de ajedres, especialmente en el caso de estructuras con mucha carga viva, como bodegas.

Adicionalmente, los casos de franja de carga, producen los momentos máximos de la viga. La rigidez de columna minima∝min que es adecuada para limitar el incremento en momentos positivos, se da en la tabla 2.4. --(tabla 13.6.10, ACI-77).

Los valores de la tabla anterior fueron tomados de un conjunto de figuras semejantes a las de las figuras 2.21 - 2.23.

METODO DEL MARCO EQUIVALENTE

Historia. Este método fue propuesto por Peabody en 1948 y seincorporô en ediciones posteriores del código ACI, como método de diseño elástico. Para el ACI-77 aparece perfeccionado con el nombre de : método del marco equivalente.

El método del marco equivalente, considera que las estructuras tradicionales, se pueden sustituir por sistemas de estructuras, idealizadas por marcos ortogonales.

El ancho de cada marco equivalente está limitado por las líneas que pasan por los puntos medios entre columnas.

La definición de marco equivalente se interpreta en la figura 2.24. = ric 2.2

TABLA 2.4

Cuando $\beta_{a} = \omega_{m.s.} / \omega_{v.s.} < 2$ se debe cumplir: () el factor $\alpha_{c} = \frac{\mathbf{Z}K_{c}}{\mathbf{Z}(K_{s}+K_{b})}$, no sea menor que \boldsymbol{K} min

Ęa	L2/L1	Rigidez relative de vige $\alpha = \frac{EcbIb}{EcsIs}$					
		0	0.5	LO	2.0	4.0	
2.0	0.5-2.0	0	0.	0	0	0	
1.0	0.5 0.8 1.0 1.25 2.0	0.6 0.7 0.7 0.8	0 0.4 0.4 0.5	0 0 0 0.2	0 0 0 0	000000000000000000000000000000000000000	
0.5	0.5	1.3	0.3	0		0	
	1.25 2.0	1.9	1.0	0.5	0 0.3	0	
0.33	0.5 0.8 1.0 1.25	1.8 2.0 2.3 2.8	0.5 0.9 0.9 1.5	0.1 0.3 0.4 0.8	0 0 0.2		
an a	2.0	13.0	Z.0	1.2	0.5	0.3	

VALORES DE «min

2) si $\propto_c < \propto_{min}$, los momentos positivos ultimos en los tableros soportados por eses columas deben multi plicarse por el coeficiente:

 $\delta_{s} = 1 + \frac{2 - e_{\bullet}}{4 + e_{\bullet}} \left(1 - \frac{\alpha_{c}}{\alpha_{min}}\right)$

FIG. 2. 21.- EFEC TOS DE LAS CARGAS MODELO PARA M(+) DE LOSA, CON $l_1/l_2 = 0.5$, C) V_1 CON-TRA RIGIDEE DEL APOYO, D) β_2 permisible con-TRA RIGIDEZ DEL APOYO.

FIG. 2.23. - EFECTO DE LAS CARGAS MODELO PARA M(+) DE LOSA CON L1/L2 = 2.0, A) V1-RIGIDEZ DEL APOYO, D) BAPERMISIBLE - RIGIDEZ DEL APOYO. Para las franjas de diseño se debe de tomar la menor de $\ ^{1}1$ 6 $\ ^{2}$, para evitar la tendencia de que el momento se concentre en el eje de la columna, cuando el claro de la franja de diseño, sea menor que su ancho.

Las franjas de diseño se deben hacer en las dos direcciones. Las columnas de los marcos equivalentes, son las columnas reales pero modificadas o sea considerando los miembros adyacentes sujetos a torsión (las que ejercen las vigas sobre la losa).

El sistema de pisos sin vigas, se supone que hay una viga cuyo peralte es igual al de la losa y cuyo ancho es igual al de la columna o capitel en la dirección del marco equivalente.

En sistemas de piso con vigas, se supone que las vigas transversales, son vigas "T" o "L", cuyo ancho de patín es igual a la -proyección de la viga, encima o debajo de la losa, tomando la -mayor, pero sin exceder cuatro veces el espesor de la losa.

Esto se ilustra para los diferentes casos en las figs. 2.7.1 a -2.7.6. Cuando las losas se apoyan en vigas, las vigas de los -marcos equivalentes y su ancho respectivo de losa, forman una viga equivalente.

El método del marco equivalente es aplicable cuando no se cumpla al menos una de las limitaciones del método de diseño directo, o bien que se quiera hacer un diseño más exacto.

En seguida se presentan los pasos a seguir, del método del marco equivalente:

 CADA MARCO EQUIVALENTE, SE FORMA DE LA LOSA QUE SE (CON O SIN VIGAS, EN EL EJE DE COLUMNAS) LIMITA LATERALMENTE POR LAS LI-NEAS CENTRALES DE LOS TABLEROS A CADA LADO DE LOS EJES DE LAS COLUMNAS.

Cálculo de las rigideces. Se basan en los siguientes puntos:

- a) El momento de inercia de la unión viga-losa, entre los paños de los apoyos, se basa en el área bruta de la sección transversal de concreto. La variación del momento de iner cia a lo largo del eje de la viga-losa entre los apoyos, también se tome (sec. 13.7.3.2).
- b) Un apoyo se define como una columna, un capitel, una ménsula o un muro. En este método de diseño, una viga no se considera como un apoyo.
- c) El momento de inercia de la unión viga-losa, desde el paño del apoyo hasta el eje del mismo, se considera igual al momento de inercia de la unión viga-losa en el paño del apoyo, dividida entre el valor $(1-C_2/l_2)^2$, (sec. 13.7.3.3.).

En seguida se dan las secciones para el cálculo de las rigideces (Ksb), de la unión viga-losa, figura 2.25.

El término $(1-C_2/l_2)^2$, es el factor de amplificación, que al aplicarse al momento de inercia entre el paño del apoyo y el eje de éste, hace que la losa-trabe, tenga cuando menos un elemento de apoyo dentro del claro. Consecuentemente, los factores de rigidez y de transporte, así como los momentos de empotramiento basados en las consideraciones generales -para miembros prismáticos uniformes, no pueden aplicarse a miembros del sistema viga-losa.

FIG. 2.25,-SECCIONES PARA EL CALCULO DE LA RIGIDEZ (Ksb) DE VIGA-LOSA El cálculo de los coeficientes de rigideces, factores de trans porte y coeficientes de momentos de empotramiento, para los distintos ca**sos** de geometría y carga, se obtienen de las tablas (de la ref. 2, págs. 200-213) | y Z paginas II6 y II9.

2. RIGIDEZ DE LA COLUMNA EQUIVALENTE

La rigidez de la columna equivalente se da como:

 $\frac{1}{Kec} = \frac{1}{\xi Kc} + \frac{1}{\xi Kt}$ $Kec = \frac{\xi Kc \xi Kt}{\xi Kt}$

la tabla anterior puede utilizarse para determinar la rigidez de la columna real y los factores de transporte.

3. MIEMBROS SUJETOS A TORSIÓN.

Las secciones más comunes de miembros adyacentes sujetos a -torsión (ver figs. 2.71 a 2.7.6) se vieron en el método de -diseño directo.

La rigidez de un miembro sujeto a torsión (Kt se tiene de:

$$Kt = \frac{9EcsC}{l_2 \left[1 - (C_2 / l_2) \right]^3} EC. 2.11$$

donde: Ecs = módulo de elasticidad del concreto de una losa, y las literales C₂ y l₂, ya se definieron en el método de diseño directo. Si las vigas forman marco con el apoyo en la dirección en que se determinan los momentos, es necesario incrementar la rigidez a torsión (Kt) en la ecuación anterior, de la siguiente forma:

$$Kta = \frac{KtIsb}{Is}$$

donde: Kta = rigidez a la torsión incrementada debido a la viga paralela

l 2 h 3 /12

Isb =

Is

ιĥ

2

momento de inercia de la viga-losa, o sea incluyendo la porción del alma de la viga que se extiende por arriba y por abajo de la losa.

La rigidez de la columna equivalente Kec, considerando el cambio de Kt por la rigidez a torsión modificada (Kta), así como el de Kc por Kct, es:

$$Kec = \left[\left(K_{ct} + K_{cb} \right) \left(k_{ta} + K_{ta} \right) \right] / \left[\left(K_{ct} + K_{cb} \right) + \left(K_{ta} + K_{ta} \right) \right] EC.2.12$$

donde: Kct = rigidez a la flexión del extremo superior, para --una columna inferior.

> Kcb = rigidez a la flexión del extremo inferior, para -una columna superior.

DE LA COLUMNA, KC

77

4, DISTRIBUCIÓN DE LAS CARGAS VIVAS,

Una vez que se han calcularo las rigideces de la columna equivalente y la viga, se puede efectuar el análisis estructural del marco equivalente, pero hay que hacer ciertas consideracio nes de la carga viva.

Si se conoce la distribución de la carga viva, el análisis se hace para dicha carga. Si no es así, se debe cumplir:

b) Si la relación $(W_v/W_M) > 3/4$, es necesario analizar los cinco patrones de carga mostrados. El momento positivo máximo factorizado, en un claro dado, se calcula suponien do que el claro está cargado con (3/4) $W_v + W_M$, los claros adyacentes (claros alternados) se cargan sólocom la - W_M , ésto se ilustra en la figura. El momento negativo máximo factorizado, se calcula, suponiendo que dos claros adyacentes están cargados con $W_M + 3/4$ W_v , y los cla ros adyacentes a éstos se cargan solamente con la W_M , pero en ningún caso los momentos de diseño deben considerar se menores que los que se presentan cuando la carga vivatotal de diseño, está en todos los claros, o sea el patrón 1).

78

1) PATRONES DE CARGA PARA LOS MOMENTOS DE DISEÑO EN TODOS LOS CLAROS, CON WI ニテル」

2) PATRON DE CARGA PARA MOMENTO POSITIVO DE DISEÑO EN EL CLARO AB⁴

3) PATRON DE CARGA PARA MOMENTO POSITIVO DE DISEÑO EN EL CLARO BCH

APATRON DE CARGA PARA MOMENTO NEGATIVO DE DISERO EN EL APOYO A

5) PATRON DE CAREA PARA MOMENTO NEGATIVO DE DISEÑO EN EL APOYO B*

* LOS MOMENTOS DE DISEÑO NO DESEN SER MENORES QUE EL PATRON DE CARGA PRESENTADO EN 1).

FIG. 2.27.-ANALISIS PARCIAL DE UN MARCO, CON CARGA VERTICAL.

5, DISTRIBUCIÓN DE MOMENTOS FACTORIZADOS.

Las expresiones para los factores de distribución de momento (FD) en la unión, usando la rigidez de una columna equivalente (Kec). Estos factores de distribución FD, se usan directamente al hacer la distribución del momento.

Rigidez de la columna equivalente (ver la siguiente figura).

$$\leq e_{c} = \leq K_{c} \times \leq K_{t} / (\leq K_{c} + \leq K_{t}) \qquad = c \cdot 2 \cdot 13$$
$$= [(K_{cb} + K_{ct})(K_{t} + K_{t})] / [(K_{cb} + K_{ct}) + (K_{t} + K_{t})]$$

Factor de distribución de viga - losa:

$$FD_{2-1} = Kb_1 / (Kb_1 + Kb_2 + Kec)$$

$$FD_{2-3} = Kb_2 / (Kb_1 + Kz + Kec)$$

Factor de distribución de la columna equivalente (momento desequilibrado de la viga-losa):

 $FD = Kec/(Kb_1 + Kb_2 + Kec)$

El momento desequilibrado para la columna equivalente en los cíclos de distribución del momento, se distribuye en las columnas arriba y abajo de la losa en proporción a la rigidez de la colum na real en la unión.

De la sec. 13.7.7.6 del código se debe cumplir:

Porción del momento de desequilibrio para la columna superior.

= Keb/ (Keb + Ket)

Porción del momento de desequilibrio para la columna inferior.

Los momentos negativos factorizados de diseño, deben tomarse en los paños de los apoyos rectilineos, pero no a una distancia mayor de 0.175 l₁, a partir del centro del apoyo. Esto es con el fin de prevenir una reducción indebida en el momento de diseño para apoyos angostos.

Los miembros que funcionan como un apoyo ya han sido definidos anteriormente, así como sus secciones.

RESISTENCIA POR CORTANTE, SIN USAR NINGUN TIPO DE REFUERZOS, SE GÚN ACI.

El ACI-77 recomienda que el diseño de las secciones sujetas s - cortante, sin refuerzo por cortante, se basa en :

 $Vu \leq \emptyset$ Vc EC. 2.14.

Donde Vu, es la fuerza cortante factorizada en la sección considerada, Ø, es el factor de reducción de resistencia -para el cortante (=0.85), y Vc, es la resistencia de la fuerza cortante nominal, suministrada por el concreto.

La resistencia de la fuerza cortante nominal, de losas de concreto del peso normal, en dos direcciones se da como:

$V_{c} = (2 + \frac{4}{e_{c}})\sqrt{f_{c}^{*}} b_{o}d [1b] \leq 4\sqrt{f_{c}^{*}} b_{o}d [1b]$

donde: $\boldsymbol{\theta}_{c}$, es la relación de lado largo a corto, del área de la carga concentrada o de la reacción, fc', es la resistencia del -cilindro de concreto a comprensión (psi), d, es la distancia de las fibras más alejadas a el centroide del refuerzo de tensión de la losa (in), y b, es el perímetro de la sección crítica (in).

Cuando se usa concreto ligero, el término $\sqrt{f'c}$, en la ec anterior se multiplica por 0.75, para cualquier concreto ligero, 6 -por 0.85, para concreto ligero de arena.

Para un área de carga de cualquier forma, la sección crítica se se encuentra de tal modo que su longitud es mínima, y que no se aproxima a d/2, de la periferia del área cargada. La sección ---crítica para columnas de diferentes formas, como se ilustra en el comité 426 del ASCE-ACI, se muestran en la fig. 2.28. Nótese que éste comite, sugiere que un área cargada de forma circular se reemplaza por un área de carga de forma rectangular de igual perí metro.

Los códigos actuales, ignoran la diferencia, pero tiene que demos trarse finalmente que un área circular cargada, es capaz de trans mitir considerablemente más fuerza cortante, que un área cuadrada que tenga el mismo perímetro. La mejoría de la resistencia a - cortante, es aparentemente un resultado de no tener concentra ciones de esfuerzos, que ocurren en las esquinas de las colum nas rectangulares. La misma serie de pruebas demostraron claramente, que al incrementar la resistencia a flexión de la losa, puede aumentarse la capacidad del cortante, como fue demostrado por Moe y otros.

Fig. 2.28 sección crítica para cortante en losas.

En la ec. anterior, el esfuerzo cortante nominal último en la sección crítica es $4\sqrt{f'c}$ psi (0.33 f'c N/mm²)

donde: β_c , es la relación del lado largo a corto, de una columna rectangular, que está en el rango de 1 a 2. Para - $e_c > 2$, el esfuerzo cortante nominal último, se reduce linealmente a $2\sqrt{f'}$ psi (0.17 f' N/mm) cuando $\theta \rightarrow \infty$, que es el esfuerzo cortante nominal último, para la ac ción en una dirección. El esfuerzo cortante nominal último, cuando $\theta_c > 2$, es un promedio de la más compleja situación actual, en las que el esfuerzo de falla va ría desde 4 v f'c psi, cerca de los extremos del área cargada, hasta descender a $2\sqrt{f'}$ psi, o menor a lo -largo de los lados largos, entre los dos extremos. Para otras formas de área cargada diferentes de la rectangular, $\boldsymbol{\beta}_{c}$ se toma como la relación de la dimensión más grande del área efectiva cargada, a la dimensión más corta del área efectiva cargada, las direcciones de las dimensiones forman un ángulo recto. El área cargada -efectiva, es el área que encierra totalmente el área -real de carga para que el perímetro sea mínimo. El -término 6, para un área de carga en forma de L, se muestra en la fig. 2.29

FIG. 2.28

FIG. 2.29, VALOR DE ØC PARA UNA ZONA DE CARGA NO RECTANGULAR

El peralte efectivo d, en la ec. $Vu \leq \emptyset \bigvee_n$ no está explícitamente definido para refuerzo en dos direcciones en el código ACI, pero el comité ASCE-ACI, sugiere que 'd' se tome como:

$$d = \frac{A_{s1d1} + A_{s2d2}}{A_{s1} + A_{s2}} 2.16$$

^As1 ^{y A}s², son las áreas del refuerzo de tensión que atraviesan la sección crítica en direcciones perpendicu lares 1 y 2, respectivamente, y d1 y d2, los peraltes -efectivos de los refuerzos $A_{s1 y} A_{s2}$, respectivamente. El término 'd', es igual a el peralte efectivo promedio del acero, si el área cargada es aproximadamente cuadrada, y las proporciones del refuerzo aproximadamente -iguales para las direcciones 1 y 2.

RESISTENCIA POR CORTANTE, USANDO DIVERSAS FORMAS DE REFUERZO.

La resistencia a cortante y ductilidad de las losas, se puede incrementar con el uso de refuerzo por cortante, en las siguientes formas; barras inclinadas, alambres, estribos, 6 capitles de acero.estructural. Las barras dobladas y estribos, deben detallarse cuidadosamente con un anclaje apropiado. Algunas formas de refuerzo por cortante usadas en el pasado, no fueron plenamente efectivas, debido al anclaje deficiente. La fig. 2.30 muestra algunos tipos efectivos de refuerzo por cortante.

Refuerzo por cortante con estribos y barras dobladas. El ACI-77, recomienda que el diseño de secciones con estribos 6 barras do bladas, se base en :

donde:

donde: V_u , es la fuerza cortante factorizada, en la sección considerada, pes el factor de reducción de resistencia para - cortante (=0.85), y Vn, es la resistencia del cortante nominal de la sección.

La resistencia del cortante nominal, de losas de concreto de peso normal, se da como:

FIG. 2.30. REFUERZO POR CORTANTE EN LAS UNIONES LOSA-COLUMNA, Q) ESTRIBOS b) VARIHLAS DOBLADAS, C) COLLAR DE ACERO ESTRUCTURAL.

(b)

donde: f'c, es la resistencia del cilindro de concreto a compresión (psi), 'd', la distancia de las fibras de compresión más alejadas a el centroide del refuerzo de tensión en la losa, b_o, es el perímetro de la seccióncrítica, situado de tal forma que no se acerque muchoa d/2 del perímetro del área cargada (in), y Vs, es la fuerza cortante que toma el acero por cortante, dado en las dos ecuaciones siguientes. La resistencia al cortante se revisará en la sección crítica, a lo largo del perímetro b, definida anteriormente.

El cortante que necesita ser tomado por V_s , se hace más pequeño en secciones más alejadas del área cargada (es decir, para valores de b_o, en secciones a más de d/2 de la periferia del área cargada), y el refuerzo por cortante se continuará, fuera del área cargada, hasta que no sea mayor que el requerido.

El esfuerzo cortante nominal último en la sección crítica, con refuerzo por cortante, se toma como $2\sqrt{f'c'}$ psi $(0.17\sqrt{f'c'} N/mm^2)$, ya que aproximadamente para este esfuerzo, comienza a formar grietas por la tensión diagonal (grietas por cortante en el al ma) y el refuerzo por cortante se considera que toma toda la fuerza cortante, sobre ésta carga. El máximo esfuerzo cortante nominal último, lo puede tomar el concreto, y el refuerzo por cortante no se permite que sea mayor de 6 $\sqrt{f'c}$ psi $(0.5\sqrt{f'c}, N/mm^2)$.

Cuando se usa concreto ligero, el término $\sqrt{f'c}$, en la ec. 2.17 se debe multiplicar por 0.75 para cualquiertaligerado y 0.85, para concreto con arena ligera.

Cuando el refuerzo por cortante es perpendicular a el eje, se usa:

$$Vs = Av fy \frac{d}{s} EC. 2.18$$

donde: Av, es el área del refuerzo por cortante dentro de una distancia "S", fy, es el esfuerzo de fluencia del re -fuerzo por cortante, "d", es el peralte efectivo del acero longitudinal de la losa, y "s", es la separación del refuerzo por cortante a lo largo del acero de la losa. -La separación de los estribos no debe ser mayor que d/2. Debe ir una varilla de la losa en cada esquina del estri bo, y los estribos deben ir bien anclados en cada varilla, para desarrollar la resistencia de la fluencia del estribo. La fig. 2.30a muestra un arreglo típico de estribos. Para los arreglos particulares mostrados en lafig. anterior, Av. en la ec. 2.18 es el área de las ocho ramas del estribo. La fuerza cortante tomada por los estribos es Vs, en la sección crítica a d/2, de la perife ria del área cargada, y también se toma Vs, en todas las secciones más allá de la periferia del área cargada, has ta que los estribos sean discontínuos, suponiendo que --"s" permanece fija.

Los estribos cerrados son preferidos, debido a un mayor incremento en ductilidad de la losa, para la carga última. Los estribos inclinados, también se usan para re fuerzo por cortante, en éste caso la ec.2.18 se modifica multiplicando el miembro derecho de la ecuación por-(sen \ll + cos \ll), donde \ll , es el ángulo entre los estribos inclinados y las varillas longitudinales de la lo sa.

Cuando el refuerzo por cortante consiste de un sólo grupo de varillas dobladas, se tiene que:

 $Vs = A_v f_y sen \propto E.C.$ 2.19.

donde: Av, es el área del refuerzo por cortante, f_y, la resistencia de la fluencia del refuerzo por cortante, y ∝ , el ángulo entre las varillas inclinadas y las varillas

longitudinales de la losa.

Las varillas dobladas cruzarán la sección crítica, y se anclarán en cada extremo, para desarrollar su fluencia. La fig. 2.30 b, muestra un arreglo típico. Para el arreglo particular de tres varillas en cada dirección, mostrado en la fig. anterior, Av en la ec. 2.19, es el área de las 12 varillas. Las varillas dobladas a 45° en el arreglo mostrado en dicha figura, toma la fuerza cortante a través de la sección crítica a d/2 de la cara de la columna.

Los estribos cerrados son preferidos como refuerzo por cortante, más que las varillas dobladas, ya que éstas -tienen que anclarse cuidadosamente, asegurandose que intercepte con efectividad las grietas producidas por la tension diagonal.

COLLARES DE ACERO ESTRUCTURAL PARA CORTANTE

El refuerzo por cortante formado de secciones estructurales en "I" o en sección canal, se pueden usar en estas losas.

El collar se forma soldando las secciones de cuatro brazos -idénticos, en ángulos rectos. Los brazos deben ser contínuos a través de la sección de la columna. En la fig. 2.30 se muestra un arreglo típico. Los extremos de cada brazo del collar pueden doblarse en un ángulo mayor de 30° con respecto a la ho rizontal, previniendo que el momento resistente de la secciónadelgazada, pueda resistir la fuerza cortante atribuida a el brazo. La relación \ll v de la rigidez a la flexión de cada brazo del collar a la rigidez a flexión de la sección de losa compuesta agrietada de un ancho (C₂ + d) no deberá ser menor que 0.15. El diseño del collar se basa en dos criterios básicos. Primero, el collar tendrá resistencia a la flexión adecuada para tomar el cortante que se produce a lo largo de los brazos. Segundo, los esfuerzos cortantes en el concreto, pro ximos a el extremo de los brazos, serán limitados. La presencia del collar hace que el refuerzo longitudinal de la losa para momento negativo en la franja de columna, pueda ser reducido.

El momento plástico de resistencia requerido para cada brazo del collar, se calcula con la siguiente ecuación (basada en re portes de pruebas):

$$Mp = \frac{Vu}{80} \left[h_v + \alpha_v \left(\ell_v - \frac{c1}{2} \right) \right] EC. 2.20$$

donde: \emptyset = 0.9, es el factor de reducción de resistencia para flexión.

- Vu = fuerza cortante total factorizada, que toma la conexión.
- hv, peralte de los brazos del collar a través de la sección.
- lv, longitudinal de los brazos del capitel, del centro de este.
- C₁, Magnitud del rectángulo o el área cargada rectangular equivalente, medida en la dirección del bra zo.

La ecuación anterior se encontró suponiendo que la fuerza cor tante vertical está distribuida a lo largo de un brazo del co llar (ver fig. 2.31b), que está implícitamente basado en las -fuerzas aplicadas que se muestran en la fig. 2.31c. La fuerzacortante a lo largo de cada brazo se toma como $\propto_{\rm V}$ V_c/4, donde-Vc, es la fuerza cortante del agrietamiento por tensión diago-nal en la losa.

FIG. 2.31. DISTRIBUCION IDEALIZADA, DE LA FUERZA CORTANTE VERTICAL, ACTUANDO EN UN BRAZO DEL COLLAR O)BRAZO DEL COLLAR EN LA LOGA, D) DIAGRAMA DE FUERZA CORTANTE SUPURSTO, PARA EL BRAZO DEL COLLAR C)FUERZAS SUPURSTAS, ACTUANDO EN EL BRAZO DE L COLLAR.

FIG.2.32. - LOCALIZACION DE LA SECCION CRITICA, CON COLLARES DE ACERO ESTRUCTURAL. C.) SIN COLLAR, NCOLAR PEQUENO, C) COLLAR GRANDE. La fuerza cortante máxima en la cara de la columna se toma como $(V_u/4) - (V_c/4) (1 - \alpha_v)$, donde el primer término es la fuerzacortante total que se toma en el paño de la columna y el segundo término es la fuerza cortante en el paño de la columna, quese considera lo toma la zona de compresión del concreto, de la losa. El segundo término tiende a cero para un collar de brazos pesados, y tiende a $V_c/4$ para un collar de brazos ligeros.

La longitud ¹v, de cada brazo por cortante, se calcule al -prolongar los brazos lo suficiente para que Vu, no sea mayor que $\emptyset \ 4\sqrt{f'c}$ b_od (lb), en las siguientes secciones críticas. La sección crítica se considera a través de cada brazo del collar en 3/4 [lv - (C₁/2)] de la cara de la columna y está ubicada de tal modo que b_o sea mínimo, pero no debe acercarse a d/2 de la periferia de la sección de la columna. Lo antes dicho se describe en la fig. 2.32.

INFLUENCIA DE LAS ABERTURAS, BORDES LIBRES Y DUCTOS DE SERVICIO

Cuando las aberturas de losas están localizadas a una distancia menor que diez veces el espesor de la losa del área cargada, ocuando las aberturas en placas planas o losas planas, se encuen tran en franjas de columna, el código ACI nos dice que la sección crítica de la losa para cortante, debe ser modificada. --La parte de la sección crítica comprendida por las proyecciones radiales de los extremos de las aberturas al centroide del área cargada, se considera ineficaz en el cálculo de bod.

La parte eficaz de la sección crítica para las áreas de cargapróximas a las aberturas y bordes libres, se muestran con lí neas punteadas, en la siguiente figura.

fig. 2.33 efectos de las aberturas y bordes libres en secciones críticas para cortante.

Cuando la abertura en losas planas , quede en una franja de columna, se investigarán los efectos con base en el perímetro efec tivo reducido, de la siguiente manera:

a) Si no se usa refuerzo de collar de cortante, el perímetro -efectivo es = $(b_0 - x)$.

b) Si se usa refuerzo de collar el perímetro efectivo es = $(b_0 - x/2)$.

A continuación se presentan los casos más comunes de aberturas en un sistema de losas sin vigas (del ACI-77), seguente figura.

La influencia de los ductos de servicio dentro de losas próximas a columnas de entrepiso de placas planas, ha sido investigada por Hanson, con losas de 8 pulg. de espesor, en losas deun sistema de ductos de dos niveles, con ductos de sección -transversal de 7 1/4 pulg. por 1 3/8 pulg. 6 3 1/8 pulg. -1 3/8 pulg. Los ductos se tomaron en el plano horizontal de la losa cerca del peralte medio, pero totalmente en el lado de tensión del eje neutro de la losa.

De estudios se encontró que al poner un ducto cerca del extremo del brazo de un collar, reduce la efectividad del collar por lo que se recomienda no usar ductos cerca de estos extremos.

TRANSFERENCIA DEL MOMENTO NO EQUILIBRADO ENTRE LOSA Y COLUMNA

El reglamento especifica que el momento no equilibrado entre losa y columna, se transfiera por excentricidad del cortante -(sec. 11.12.2) y por flexión (sec. 13.3.4) en la unión losa -columna. Este mecanismo se ilustra en la siguiente figura:

En una junta monolítica de losa y columna, se produce transferencia de momento entre los extremos de la losa y la columna. Los momentos pueden producirse por cargas laterales aparte de las ya conocidas como son las de viento, sismo y también porcargas gravitacionales no equilibradas. La fuerza cortante en los extremos de las columnas y a lo largo de éstas, puedeconsiderarse en el diseño del refuerzo lateral en las columnas (sec. 11.12.1.1.).

ABERYIRA	RESTRICCION	REFERENCIA DEL ACI.
	a≤trci b≤trci	13.5.2.2
2	astmi bstcs	13.5.2.3
5	a≤mi b≤m2	15.5.2.1

Los resultados por Hanson, y Hanson, demostraron que cerca del 60% del momento es transferido por flexión y el resto lo toma el esfuerzo cortante no equilibrado, cerca de la periferia dela sección crítica a d/2 de la cara de la columna. El código del ACI (sec. 13.3.4) recomienda que el momento total factorizado Mu, se divida en un momento transferido por flexión M_f y otro que se transfiere por cortante M, (sec. 11.12.2.3). de tal modo que:

$$M_{f} = \frac{M_{4}}{1 + \frac{2}{3}\sqrt{\frac{C_{1}+d}{C_{2}+d}}}$$
E.c. 2.21
$$M_{y} = M_{4} - M_{f}$$
E.c. 2.22

El momento M_f es el que se transfiere a través de un ancho de losa de (C, + 3h). Donde h es el peralte total de losa o -abaco. La concentración del refuerzo en éste ancho puede lo grarse, reduciendo la separación de las varillas o aumentandoel refuerzo para resistir este momento.

E.C. 2.22

Si
$$C_1 = C_2$$
, la ec.2.21 queda así $M_f = 0.60 M_1$

Si $C_2 = 2C_1$ y C₁ = d, la ec. 2.21 queda así: M_f = 0.648M₁ Parece razonable que cuando C_{2} es mayor que C_{1} , el momento trans ferido por flexión sea mayor, ya que el ancho efectivo de la losa (C₂ + 3h) que resiste el momento es relativamente más grande.

En este trabajo se harán uso de las síguientes ecuaciones y grá-159-161, de la referencia 2): ficas (págs.

fracción de momento no equilibrado, transferido por excentricidad del cortante;

Las ecuaciones anteriores se resumen en la siguiente gráfica: (3.2.1)

El momento no equilibrado en el apoyo exterior de un claro extremo, no se calculará por lo general, en el centroide de la sección crítica de transferencia, al realizar el análisis del marco. Por lo tanto lo primero que hay que hacer, es transferir el momento no equilibrado a dicho centroide de transferen-

En el método de diseño directo, donde el momento no equilibrado de la columna exterior de un claro extremo está localizado en el paño de la columna, el momento en el centroide de la sección crítica se calcula con $M_{ii} = M_f + (3.25 + 0.75\%) (e/ln) M_o$

donde: M_u = momento negativo exterior factorizado en el paño de la columna.

= C_1 + C - a, considerando el signo que resulte.

Se supone que los esfuerzos por cortante varian linealmente respecto al centroide de la sección crítica (ver sec. 11.12.2.4) la distribución de esfuerzos se supone como se ilustra en la figura 2.35.

El esfuerzo cortante máximo afectado por el factor de carga, se calcula con las siguientes expresiones:

$$V_{u}_{AB} = \frac{V_{u}}{A_{c}} + \frac{\bigvee V_{u} C_{AB}}{J_{c}}$$
$$V_{u}_{CD} = \frac{V_{u}}{A_{c}} - \frac{\bigvee V_{u} C_{CD}}{J_{c}}$$

donde los parámetros A_c , J_c y C, se tienen de la figura anterior. (GRAFICA 3.2.2)

ERAFICA 3.2.1

PROPIEDADES DE LA SECCION PARA CALCULAR EL ESFUERZO CORTANTE

Encualquier case is excentricidad es: $e = c_1 + c_2$, con el signo que resulte (+) o'(--).

Ae=(++)d

J/c= (ad(a+4b)+d²(a+b)/a)/6 J/c¹= (a²d(a+4b)+d²(a+b)/(a+2b))/6 a= a²/(2(a+b)), c¹=a(a+2b)/(2(a+b))

Ac=(a+2b)d J/c=J/d=(ad(a+6b)+d²)/8 e=c=a/2

Ac=(2e+b)d J/c=(2ed(c+2b)+d²(2e+b)/a)/6

 $J/d^{2} (2a^{2}d(a+2b)+d^{3}(2a+b))/(6(a+b))$ $c=a^{2}/(2a+b), c^{2}=a(a+b)/(2a+b)$

Ac=2(a+b)d J/o=J/c=(ad(a+3b)+d²)/3 a=d=a/2

GRAPICA S.2.2

CAPITULO III

EJEMPLOS DE APLICACION

EJEMPLO 3.1. Análisis de la teoría elástica.

Calcular los momentos y deflexiones de una losa rectangular simplemente apoyada, sujeta a una carga patrón de tipo senosoidal,como se muestra en la fig. 3.1a.

Figura 3.1, placa rectangular, a) carga senosoidal, b) reacciones de una placa cuadrada simplemente apoyada, donde u=0.

solución:

la carga por unidad de área se expresa como:

 $q = q_0 \operatorname{sen} \frac{\pi \times \operatorname{sen} \pi y}{a}$ EC. 3.1

es necesario encontrar una función para la deflexión, que satisfaga, tanto la ec. de Lagrange (ec.1.1,) como la ec. de las condiciones de frontera EC (1.30).

En las condiciones de frontera se requiere, que W = 0, para x = 0, x = a y y = 0, y = b.

Así, también se requiere que $\frac{\partial^2 W}{\partial x^2} = 0$, para x =0 y x = a y que $-\frac{\partial^2 W}{\partial x^2} = 0$, para y = 0 y = b. Por tanto la función de la deflexión es:

$$W = Csen \frac{\pi x}{a} sen \frac{\pi x}{b}$$
 EC. 3.2

que satisface tanto a la ec. 1.1, como a las condiciones de frontera, ya que tanto la función de la deflexión y todas las derivadas parciales de segundo y cuarto órden con respecto a "x" o "y"son iguales a cero, en los bordes de la losa. El problema entonces es encontrar la constante "C", y una vez conocida ésta, se -sustituye W en las expresiones para las fuerzas internas y reac-ciones.

Por tanto la ec. 1.1, queda:

$$\frac{\partial 4W}{\partial x^{4}} + 2 \frac{\partial 4W}{\partial x^{2} \partial y^{2}} + \frac{\partial 4W}{\partial y^{4}} = \frac{q_{o}}{D} \operatorname{sen} \frac{\pi x}{a} \operatorname{sen} \frac{\pi x}{b} = EC.3.3$$

derivando la función de la deflexión (EC. 3.2):

$$\frac{\partial^{4W}}{\partial x^{4}} = C (T/a)^{4} \operatorname{sen} \frac{\pi x}{a} \operatorname{sen} \frac{\pi y}{b}$$

$$\frac{\partial^{4W}}{\partial x^{4}} = C (\pi/b)^{4} \operatorname{sen} \frac{\pi x}{a} \operatorname{sen} \frac{\pi y}{b}$$

$$\frac{\partial 4W}{\partial x^2 \partial y^2} = C \frac{\pi^4}{a^2 b^2} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b^2}$$

sustituyendo estas derivadas en la ec. 3.3:

$$C\frac{\pi^{4}}{a^{4}} + \frac{2\pi^{4}}{a^{2}b^{2}} + \frac{\pi^{4}}{b^{4}} \operatorname{sen} \frac{\pi^{2}x}{a} \operatorname{sen} \frac{\pi^{2}y}{b} = \frac{q_{o}}{b} \operatorname{sen} \frac{\pi^{2}x}{a} \operatorname{sen} \frac{\pi^{2}y}{b}$$

Se resuelve esta ecuación para encontrar el valor de "C", enton-ces:

$$C = \frac{q_o}{\pi^4 p} \frac{1}{(1/a^4 + 2/a^2 b^2 + 1/b^4)} = \frac{q_o b^4}{\pi^4 p} \frac{1}{[(b/a)^2 + 1]}^2 EC.3.4$$

y consecuentemente la deflexión de la losa, es:

$$W = \frac{q_o}{4D} \frac{\pi x}{\left[(b/a)^2 + 1 \right]^2} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}$$

entonces la deflexión queda en función de la carga, el claro a la cuarta potencia, la rigidez a flexión de la losa, así como para - el caso de una viga, y la deformación de la losa.

La flecha máxima se presenta en el centro del claro de la losa y el perfil varía en una curva senoidal en ambas direcciones. Ahora, ya se está en posibilidades de determinar las fuerzas inter-nas, por ejemplo, m_x de la ec. 1.12:

$$\mathbf{m}_{\mathbf{x}} = -\mathbf{D} \left(\frac{\partial^2 \mathbf{W}}{\partial \mathbf{x}^2} + \mathbf{u} \frac{\partial^2 \mathbf{W}}{\partial \mathbf{y}^2}\right)$$

pero W = C sen $\frac{\pi \times}{a}$ sen $\frac{\pi \times}{b}$ (EC. 3.2.)

$$\frac{dW}{dx} = C \operatorname{sen} \frac{\pi y}{b} \left[\frac{\partial}{\partial x} \operatorname{sen} \frac{\pi x}{a} \right]$$
$$= C \operatorname{sen} \frac{\pi y}{b} \left[\cos \frac{\pi x}{a} \left(\frac{\pi}{a} \right) \right]$$
$$= C \left(\frac{\pi}{b} \right) \cos \frac{\pi x}{a} \sin \frac{\pi}{a} \right]$$

$$\frac{\partial^2 W}{\partial x^2} = c \left(\frac{\pi}{a}\right) \operatorname{sen} \frac{\pi \gamma}{b} \left[\frac{\partial}{\partial x} \cos \frac{\pi \gamma}{a}\right]$$

$$= -c \left(\frac{\pi}{a}\right)^{2} \operatorname{sen} \frac{\pi \times}{a} \operatorname{sen} \frac{\pi \times}{b}$$

$$\frac{\partial W}{\partial \gamma} = c \operatorname{sen} \frac{\pi \times}{a} \left[\frac{\partial}{\partial \gamma} \operatorname{sen} \frac{\pi \times}{b}\right]$$

$$= C\left(\frac{\pi}{b}\right) \operatorname{sen} \frac{\pi \times}{a} \cos \frac{\pi \gamma}{b}$$

$$\frac{\partial^2 W}{\partial \gamma^2} = C\left(\frac{\pi}{b}\right) \operatorname{sen} \frac{\pi \times}{a} \left[\frac{\partial}{\partial \gamma} \cos \frac{\pi \gamma}{b}\right]$$

$$= -c \left(\frac{\pi}{b}\right)^{2} sen \frac{\pi x}{a} sen \frac{\pi y}{b}$$

•• $M_{\chi} = -D\left[-c\left(\frac{Tr}{a}\right)^{2}sen\frac{\pi\chi}{a}sen\frac{\pi\gamma}{b}-\mathcal{M}c\left(\frac{\pi}{b}\right)^{2}sen\frac{\pi\chi}{a}sen\frac{Tr\gamma}{b}\right]$

y sustituyendo el valor de la constante "C" (ec.3.4):

$$\Rightarrow M_{x} = + q_{0} \frac{b^{4}}{\pi^{2} [(b/a)^{2} + 1]^{2}} \left(\frac{1}{a^{2}} + \mathcal{U} \frac{1}{b^{2}}\right) \operatorname{sen} \frac{\pi x}{a} \operatorname{sen} \frac{\pi y}{b}$$

de igual manera:

$$M_{\gamma} = +q_{o} \frac{b^{4}}{\pi^{2} [(b/a)^{2} + 1]^{2}} \left(\frac{1}{b^{2}} + \mu \frac{1}{a^{2}}\right) sen \frac{\pi \gamma}{a} sen \frac{\pi \gamma}{b}$$

para obtener el momento torsionante

$$M_{XY} = -\frac{\partial^2 W}{\partial X \partial Y} D(1-M)$$
 (ec. 1.19)

se necesita calcular la derivada parcial mixta de la deflexión (W), por tanto;

$$\frac{\partial^2 w}{\partial x \partial y} = \frac{\partial}{\partial x} \left\{ \frac{\partial}{\partial y} \right\} = \frac{\partial}{\partial x} \left\{ c\left(\frac{\pi}{b}\right) \sin \frac{\pi - x}{a} \cos \frac{\pi - y}{b} \right\}$$
$$= c\left(\frac{\pi}{b}\right) \left(\frac{\pi}{a}\right) \cos \frac{\pi - x}{a} \cos \frac{\pi - y}{b}$$
$$= c\frac{\pi^2}{ab} \cos \frac{\pi - x}{a} \cos \frac{\pi - y}{b}$$

por tanto la ecuación del momento torsionante, queda:

 $M_{XY} = -\left[c \frac{\pi^2}{ab} \cos \frac{\pi \times}{a} \cos \frac{\pi \times}{b}\right] D(1-M), \text{ y sustainty. 'c':}$ $M_{XY} = -\left[\frac{4}{\pi^4 D} \frac{b^4}{[(b_A)^2 + 1]^2} \frac{\pi^2}{ab} \cos \frac{\pi \times}{a} \cos \frac{\pi \times}{b}\right] D(1-M) = -\frac{4}{9} \frac{b^3(1-M)}{\pi^2 a} \frac{1}{[(b_A)^2 + 1]^2} \cos \frac{\pi \times}{b} \frac{\pi^2}{b}$ Los momentos flexionantes son máximos en el centro del claro de la losa, y tienden a cero, cuando se aproximan a las esquinas, donde los momentos torsionantes alcanzan su máximo valor.

Para una losa cuadrada, con carga senoidal, el momento flexionante máximo y el momento torsionante, tienen el mismo valor numérico (si la carga está uniformemente distribuida, los mo mentos torsionantes son grandes.
El cortante se tiene de la ec. 1.27:

$$V_{x} = -D\left(\frac{3^{3}w}{3x^{3}} + \frac{3^{3}w}{3x^{3}y^{2}}\right)$$

$$\frac{3^{3}w}{3x^{3}} = \frac{3}{3x}\left\{\frac{3^{2}}{3x^{2}}\right\}$$

$$= \frac{3}{3x}\left\{-c\left(\frac{\pi}{a}\right)^{2}sen\frac{\pi x}{a}sen\frac{\pi y}{b}\right\}$$

$$= -c\left(\frac{\pi}{a}\right)^{2}sen\frac{\pi y}{b}\left(\cos\frac{\pi x}{a} \cdot \frac{\pi}{a}\right)$$

$$= -c\left(\frac{\pi}{a}\right)^{2}sen\frac{\pi y}{b}\left(\cos\frac{\pi x}{a} \cdot \frac{\pi}{a}\right)$$

$$= -c\left(\frac{\pi}{a}\right)^{2}sen\frac{\pi y}{b}\left(\cos\frac{\pi x}{a} \cdot \frac{\pi}{b}\right)$$

$$= -c\left(\frac{\pi}{a}\right)^{2}sen\frac{\pi y}{a}sen\frac{\pi y}{b}\right\}$$

$$= \frac{3}{3x}\left\{-c\left(\frac{\pi}{b}\right)^{2}sen\frac{\pi y}{a}sen\frac{\pi y}{b}\right\}$$

$$= -c\left(\frac{\pi}{b}\right)^{2}sen\frac{\pi y}{b}\left(\cos\frac{\pi x}{a} \cdot \frac{\pi}{a}\right)$$

$$= -c\left(\frac{\pi}{b}\right)^{2}sen\frac{\pi y}{b}\left(\cos\frac{\pi x}{a} \cdot \frac{\pi}{a}\right)$$

$$= -c\left(\frac{\pi}{b}\right)^{2}sen\frac{\pi y}{b}\left(\cos\frac{\pi x}{a}sen\frac{\pi y}{b}\right)$$

$$= -c\left(\frac{\pi}{a}\right)^{2}cs\frac{\pi x}{a}sen\frac{\pi y}{b}$$

$$= -D\left[-c\left(\frac{\pi}{a}\right)^{3}cas\frac{\pi x}{a}sen\frac{\pi y}{b}-c\left(\frac{\pi^{3}}{ab^{3}}\right)cs\frac{\pi x}{a}sen\frac{\pi y}{b}\right]$$

$$= -D\left[-\left(\frac{q}{a}\right)^{3}cas\frac{\pi x}{a}sen\frac{\pi y}{b}-c\left(\frac{\pi^{3}}{ab^{3}}\right)cs\frac{\pi x}{a}sen\frac{\pi y}{b}\right]$$

$$= D\left[-\left(\frac{q}{ab^{3}}\frac{1}{(bb)^{3}(t+1)^{2}}cos\frac{\pi x}{a}sen\frac{\pi x}{b}+D\frac{q}{bb}\frac{\pi^{3}}{a^{3}}\left[\frac{1}{(bb)^{3}(t+1)^{2}}cos\frac{\pi x}{a}sen\frac{\pi y}{b}+D\frac{q}{b^{3}b^{3}}\frac{\pi^{3}}{a^{3}}\left[\frac{1}{(bb)^{3}(t+1)^{2}}cos\frac{\pi x}{a}sen\frac{\pi y}{b}+D\frac{q}{a^{3}b^{3}}\left[\frac{1}{(bb)^{3}(t+1)^{2}}cos\frac{\pi x}{a}sen\frac{\pi y}{b}+D\frac{q}{a^{3}b^{3}}\left[\frac{1}{(bb)^{3}(t+1)^{2}}cos\frac{\pi x}{a}sen\frac{\pi y}{b}+D\frac{q}{a^{3}b^{3}}\left[\frac{1}{a^{3}}b^{3}(\frac{1}{a^{3}}b^{3}(\frac{1}{a^{3}}b^{3}(\frac{1}{a^{3}}b^{3}(\frac{1}{a^{3}}b^{3}(\frac{1}{a^{3}}b^{3}(\frac{1}{a^{3}}b^{3}(\frac{1}{a^{3}}b^{3}(\frac{1}{a^{3}}b^{3}(\frac{1}{a^{3}}b^{3}(\frac{1}{a^{3}}b^{3}(\frac{1}{a^{3}}b^{3}(\frac{1}{a^{3}}b^{3}(\frac{1}{a^{3}$$

$$= q_{\bullet} \frac{b^{q}}{T} \frac{1/a^{2} + 1/ab^{2}}{[(b/a)^{2} + 1]^{2}} \cos \frac{TTx}{a} \sin \frac{TTy}{b}$$

107

La reacción se calcula con la ec. 1.34:

$$R_{x} = V_{x} + \frac{\partial R_{xy}}{\partial y} = -D \left[\frac{\partial^{3} W}{\partial x^{3}} + (2 - u) \frac{\partial^{3} W}{\partial x \partial y^{2}} \right]$$

sustituyendo las parciales y siguiendo el procedimiento anterior se llega a:

$$Rx = q_0 \frac{b^4}{T} \frac{(1/a^3) + (2 - u) (1/ab^2)}{[(b/a)^2 + 1]^2} \cos \frac{T x}{a} \sin \frac{T y}{b}$$

donde x = 0 6 x = a, pero no valores intermedios entre 0-a. El cálculo del cortante Vy y de la reacción Ry, se obtienen de la - misma manera.

Para una losa cuadrada con u =0, y = b/2 x=0, y a=b se tiene:

$$R_{x} = \frac{q_{o}}{\pi} \frac{b^{4}}{\left[\frac{(1/b^{3}) + (2-0)(1/b^{3})}{\left[\frac{(1/b^{3})^{2} + 1\right]^{2}}\right]^{2}} \cos \frac{\pi(0)}{b} \sin \frac{\pi(b/2)}{b}$$

$$= \frac{q_{o}}{\pi} \frac{b^{4}}{\pi^{3}} \frac{1}{(1^{2} + 1)^{2}} \cos (0) \sin \pi/2$$

$$= \frac{q_{o}}{b} \frac{b}{3} = 3q_{o} (b/4\pi) \text{ oue es la reacción máxim}$$

 $\frac{1}{2} = \frac{1}{4} = 3q_0$ (b/4 π) que es la reacción máxima (ver figura 3.1.b).

y la reacción total de x =0 A y = b , en x=0 6 x=a
es
$$R_x = 6q_0 (\frac{b^2}{2})$$
.

Consecuentemente la reacción total, en los cuatro lados de la losa es $6q_0$ (b²/ π ²). La discrepancia entre la carga total :y la reacción total distribuida, es debida a las fuerzas de esquina, R₀. de la EC. 1.36, se tiene: = $2m_{xy}$, sustituyendo m_{xy} (EC. 1.19):

$$= -2D (1-u) \frac{\partial^2 w}{\partial \times \partial y}$$

$$= -2D (1-u) \left[c \frac{\pi^2}{ab} \cos \frac{\pi \times}{a} \cos \frac{\pi \cdot y}{b} \right], \text{ para } u = 0$$

$$= -2D \left\{ q_0 \frac{b^4}{\pi^{4D}} \frac{1}{\left[(b/a)^2 + 1 \right]^2} \right\} \frac{\pi^2}{ab} \cos \frac{\pi \times}{a} \cos \frac{\pi \cdot y}{b}$$

$$= -2 q_0 \frac{b^3}{\pi^2 a} \frac{1}{\left[(b/a)^2 + 1 \right]^2} \cos \frac{\pi \times}{a} \cos \frac{\pi \cdot y}{b}$$

como para una losa cuadrada a=b, y además en una esquina x=0,y=o6 x=a; sustituyendo estos valores en la EC. anterior, se tiene:

$$Ro = -2q_{0} \frac{b^{3}}{\pi^{2}(b)} \frac{1}{[(b/b)^{2} + 1]^{2}} \cos \frac{\pi(0)}{(b)} \cos \frac{\pi(0)}{b}$$

$$= -2q_{0} \frac{b^{2}}{\pi^{2}} \frac{1}{(1 + 1)^{2}} \cos (0) \cos (0)$$

$$= -2q_{0} \frac{b^{2}}{\pi^{2}} \frac{1}{4} (1) (1)$$

$$= -q_{0} \frac{b^{2}}{\pi^{2}} \frac{1}{4} (1) (1)$$

$$= -q_{0} \frac{b^{2}}{2\pi^{2}} - \frac{1}{3 \cdot 1 \cdot b}$$

REFORZADO, SIN VIGAS

3,2, DISEÑO DE UNA LOSA PLANA DE ENTREPISO DE CONCRETO

DATOS

f'c =	250	kg/cm ²	(losas)
=	300		(columnas)
fy =	4200		
columna	s 40	x 40	
altura	de en	trepiso:	3.0 m.

ESTIMACIÓN DE LA CARGA

Losa maciza de concreto (h = 12 cm) =	288.0	Kg/m ²
P/R	20.0	11
Firme $(e = 2 \text{ cm})$.	40.0	
Loseta vinilica	5.0	11
Plafond de yeso (e = 2 cm).	30.0	Ħ
Cancelería para división	50.0	
Herrería y vidrio	30.0	H
WM has a second seco	463.0	Kg/m ²
W _v (supuesta)	200.0	n n
\mathbf{w}_{+}	663.0	Kg/m ²

1. DISEÑO PRELIMINAR DEL PERALTE DE LA LOSA (H)

1,1. CONTROL DE DEFLEXIONES

```
El peralte total mínimo, para losas sin vigas, se obtie-
ne de:
```

hmin = l_n (800 + 0.07 f_y) / 36,000, (EC. 9.12 AC1). l_n , claro en el sentido más largo =430 cm. f_y = 4200 Kg./cm². Se debe cumplir:

a) Para losas sin vigas 6 ábacos, h≥12.5 cm.

- b) Para losas sin vigas, pero con ábacos que satisfagan la sección 9.5.3.2, h ≥ 10 cm. 9.5.3.1
- c) Para losas que tengan vigas en los cuatro bordes, con un valor de α_m . por lo menos, igual a dos____ h \ge 9 cm.

 $hmin = 430 \quad (800 + 0.07 \times 4200) \quad 36 \quad 000 = 13.1 \quad cm > 10 \quad BIEN$

De la sección 9.5.3.2 AC1, para un sistema de losas sin vigas, que tengan ábacos que se extiendan en cada dirección apartir del eje de apoyo a una distancia no menor de 1/6 ' \pounds '. Se podrá reducir 'h' un 10%,

el peralte total es entonces:

h = 13.1 x 0.90 = 12.0 cm. bien, ya que fue el peralte supuesto.

d=9 cm.

el peralte efectivo es:

NOTA. Como resultó una losa de un peralte de 13 cm. no seconsidera económico, por esta razón se optó usar --ábacos, con un espesor de 1/2 h. Por lo tanto, se propone una losa de 12 cm. de espesor.

1,2, RESISTENCIA DE LA LOSA AL ESFUERZO CORTANTE

1.2.1 CARGA ÚLTIMA

carga muerta factorizada 463x 1.4 = 648.2 Kg/cm². carga viva factorizada 200x 1.7 = 340.0 " carga última 988.2 " 114

1.2.2 REVISIÓN DEL CORTANTE DE LA LOSA CON ABACO EN LA DIRECCION DE 1_1 .

a) como viga ancha $Vu = W_{tu} \times b \times 1^2$ = 988.2 × 1.0 × 1.33= 1.3.T $V_c = \emptyset (0.53 \sqrt{f'c} b_d)$ = 0.85(0.53 $\sqrt{250'} \times 100 \times 9$ = 6.4T . 1.3 < 6.4 bien b_w , = Es el ancho del alma de la viga, en este caso es 1.0 m.

i e p		
р)	Por	penetración
•	¥ _u =	$ \begin{array}{c} W_{tu} \left[1_{2^{x}} 1_{1}^{*} - (c_{1}^{*} + d) \right] \\ (c_{2}^{*} + d) \end{array} $
	=	988.2 (4.3 x 4.2 -
		(1.49) (2.49)]
••••	=	15.6. T.
	V_ =	\$ (1.1 \ f'c' bod)
	•	$b_0 = 2 (149) + 2 (149) = 596.$
	=	$0.85 (1.1\sqrt{250} \times 596)$
		x9) = 79.3 T.
		15.6 < 79.3 bien.

De esta revisión se tiene que el peralte propuesto de la losa y el ábaco son suficientes para resistir el cortante.

- 2. RIGIDEZ A LA FLEXIÓN DE LOS ELEMENTOS DEL MARCO EQUIVALENTE
 - 2.1 RIGIDEZ A LA FLEXIÓN DE LA VIGA- LOSA (KSB) EN AMBOS EX-TREMOS.
 - Ksb = KEcsIs/11

K, se obtiene de la tabla 1

Ecs, módulo de elasticidad del concreto de la losa.

- Is, momento de inercia respecto al eje centroidal de la sección total de la losa.
- 1, longitud del claro en la dirección en que se de terminan los momentos de inercia, medida de paño a paño de los apoyos.

obtención de K:

 $C_{N1} = 40, \mathbf{l}_1 = 420, C_{N1}/\mathbf{l}_1 = 40/420 \doteq 0.10$ $C_{N2} = 40, \mathbf{l}_2 = 430 C_{N2}/\mathbf{l}_2 = 40/430 \doteq 0.09$

Entrando con estos valores a la tabla 1, se tiene:

K = K_{NF} = 6.02 F. T.= C_{NF} =0.5.99(se usa en el análisis) m = M_{NF} = 0.0935 (se usa en el inciso 3.2.2). Ecs = 15000 $\sqrt{f'c}$ = 15000 $\sqrt{250}$ = 2.37x10⁵ Kg/cm².

Cm7/8 2	C ₁₀ /1 ₂	Factores de rigidez	Factores de transporte	Coeficiente de cerge uniforme del momento de empotremiento	Coeficien	te del momento	de empotramian	10 (m _{NP}) pera (l	
		"NF	-NF	I''NF'					
				C ₇₁ = C					
0.00	° - j	5.84	0.59	0.0926	0.0164	0.0335	0.0279	0.0128	0.0020
1.1	0.00	5.84	0.59	0.0925	0.0164	0.0335	0.0279	0.0128	0.0020
0 10	0.10	6.04	0.60	0.0936	0.0167	0.0341	0.0282	0.0126	0.0018
4.10	0.20	6.24	0.61	0.0940	0.0170	0.0347	0.0285	0.0125	0.0017
	0.30	6.43	0.61	0.0952	0.0173	0.0353	0 0267	0.0123	0.0015
	0 00	5.84	0.59	0.0926	0.0164	0 0335	0 0279	0.0128	0.0020
0.20	0.10	6.22	0.61	0 0942	0 0168	0.0346	D.0285	0.0126	0.0018
4.44	0.20	€ 62	0.62	0 0957	0.0172	0 0356	0 0290	0.0123	0.0016
	0.30	7.01	0.64	0.0971	0.0177	0 0366	D 0294	0.0120	0.0014
	0.00	5 54	0.59	0 0926	0.0164	0.0335	0.0279	0.0128	0.0020
0.30	0,10	E 37	0.61	0 0947	D.C168	0.0348	D.0287	0.0126	0.0018
	0.20	6.95	0.63	D 0967	0.0172	0.0362	0.0254	0.0123	0.0016
	0.30	7.57	0.65	0.0966	0.0177	0.0375	0.0300	0.0119	0.0014
		.		C ₇ , = 0.5C,	NI; CT3 = 0.5C	2		м. 1. т	
0.00	-	5.84	C.50	0 0826	0.0164	0.0335	0.0279	0.0128	0.0020
	0.00	5.84	D.50	0.0926	0.0164	0.0335	0.0279	0.0128	0.0020
0.10	0.10	6.00	0 60	0 0945	0.0167	0.0343	0.0285	0.0130	0.0020
	0.20	6,16	0 60	0.0962	0.0170 -	0.0350	0.0291	0.0132	0.0020
	000	5.84	0.50	0.0926 .	0.0164	0.0335	0.0279	0.0128	0.0020
\$.20	0.10	6.15	0.50	0.0957	0.0109	0.0348	0.0290	0.0131	0.0020
	0 20	6 47	C 62	0 0967	0.0173	0.0360	0 0390	00134	0.0020
l ·				C = 2C-	··· C				
1			•	01-10	N11 083 - 8085				
h		5.84	0.59	0.0926	0.0164	0.0335	0.0279	0.0128	0.0020
1	-		4.55	U.UILU	5.0.04		U		A.GATA
10 20	0.00	5.84	0.59	0.0926	0.0164	0.0335	0.0279	0.0128	0.0020
	0.10	6.17	0,60	0.0907	0.0186	0.0337	0.0273	0.0116	0.0015
1				· .					18 A.

 $Is = 12h^3/12 = 430 (12)^3/12 = 6.19 \times 10^4 cm^4.$

• Ksb = $6.02 \times 2.37 \times 10^5 \times 6.19 \times 10^4 / 420$

117

 $= 5.49 \times 10^8$ Kg - cm.

2.2 RIGIDEZ A LA FLEXIÓN DE LAS COLUMNAS REALES (K_{C}) EN AMBOS EXTREMOS

$$K_c = KE_{cc}I_c/I_c$$

K, se obtiene de la tabla 2

Ecc, módulo de elasticidad del concreto de la colum na.

1, longitud de la columna

obtención de K:

Ecc = $15000\sqrt{f'c}$ = $15000\sqrt{300}$ = 2.59×10^5 Kg /cm² $I_c = \frac{C_2C_1^3}{12} = \frac{40(40)^3}{12} = 2.13\times10^5$ cm⁴

£ = 300 cm.

: $kc = 4.94x2.59x10^{5}x2.13x10^{5}/300 = 9.08x10^{8} Kg-cm.$

2.3 RIGIDEZ A LA TORSIÓN (KT) . DEL MIEMBRO ADYACENTE.

Kt = 9 Ecs C/
$$(12 (1-C_2/l_2)^3)$$
, (EC. 13.7).

 $Ecs = 2.37 \times 10^5 \text{ Kg/cm}^2$

C, constante de la sección transversal para definir las propiedades torsionantes. Ver la sección 13.7.5 de los comentarios del ACI.

$$= \leq (1-0.63 \text{ x/y}) \text{ x}^3 \text{ y} /3, (EC. 13.8).$$

C₂ = 40, l₂ = 430. (Ver la siguiente figura) x, y, menor y mayor dimensión de la parte rec-tangular, de una sección transversal, respectivamente.

Ê		<u> </u>	+==	싙녇		1 · ·			1.	к _с =	k Ela
۱ _с		H.		c		H _e	le	3 -1	He	Pare v KBA (1./1b	slores de y cgA lásti como tg/tg
	T	t - F		٦Ē	<u>-</u>	1. 1	ا آ	٤,	T.	aprex z/2	Intectementi
-		1.45	1.18	1.18	1.30	1.35	1.30	1.86	1.40	1.46	1.30
1	CAB	:::	4.40	8.95	1:2	1:37	1:5	1:5	1:3	: !: # .	1:8
2	AAB SAB	4.31	4.67	4.56	1.20	5.06	6.522 0.66	8.48 9.91	0.00	7.20	··· 7.82
	CAB	4.3	4.70	5.22 0.06	5.67 0.70	6.15 6.74	0.70	7.16	1.14 1.0.07	A.32 0.91	
••	LAD CAD	0.44	4.91	9.60	5 10 0.07	0.70	7.15	7.81 0.77	1.00	8.23 0.83	10.01
	LAB CAB	- 4.40 8.54	5.01 9.54	5.50 0.81	0.64	0.85	7.56	8.31 0.72	8.12 9.75	9.10	10.00
ý	AAB CAB	4.52 . 0.54	5.00	\$.71 0.00	8.38 0.02	7.11	7.80	A73	9.60 6.71	10.80	11.42
1.2	has Cas	4.54	5.16	5.82 9.36	8.54	7.32	. 0.85 ·	9.68	10.67 0 68	11,12 /	12,25
1.4	han Can	4.54	5.21- 0.96	5.91	6.98 0.80	7.51 0.01	8.41 0.83	9.30	10.43	11.57	12.78
1.8		4.00	5.26	5.50	6.78	7.04	0.81	9.64	10.75	11.00	13.24
1.8		4.82	1.30	1.00	6.90 0.90	7.60	8.79	8,87 0,61	11.40	12,20	11.06
20		483	8.94	6 12	6.06	7.92	8.94 0.90	10.06	11.27	12.50	14.50
22	34	4.88	8.17	6.17	7.08	8 DF	100	10,34	11.40	12.86	14.31
24	hat	4.80	5.4	6.22	7.12	A.11	9.20	10.30	11.00	13.06	14.00
2.0	hall	4.87	14	• 2	7.14	120	8.31	10.13	11.40	13.20	14.8
	LAB	4.86	5.44	6,70	7.23	6.57	\$41	10.06	12.01	13.46	15.87
1.0	448	4.80	5 46	130	7.2	-13	9.50	10.77	12.15	1365	15.8
20	hat	4.70	5.44	836	7.33	140	9.56	10.87	12.28	13.81	15.47
24	Call	479	1.50	8.36	7.37		9.66	10.97	12.40	13.00	15.44
3.0	- 648	4.71	8.57 8.51	6.33	7.41	8.51	8.72	11.66	12.51	14.00	15.00
	- 448	4.72	22	• 40	7.44		6.78	11.13	1740	14.21	15.66
	448	4,72	1.54	0.10	7 47	8.00	9.84	11.21	12.76	14.32	14.00
	CAR BAR	4.73		6.47	7.50	8.83		11,27	12,78	14 42	16 20
	AAB	4.73	U.S.T 5.36	6.49	7.83	U.S.Z	9.52	11.34	12.86	14.55	18.32
	- C48	474	9.52 8.57	8.51	7.86	0.MI 0.71	1.547	11.40	17 82	14 81	9.90 14 43
	C	0.51 4.74	0.52 5.90	8.52 8.53	0 <u>6 2</u> 7.60	8.92 875	9.52 10.60	8.\$1 11.46	13 M	0.50 14.60	14.53
	Ca8	4.75	- 9.52 · 	8.12 8.54	0.92 7.80	0.07 678	9- 9.51 18.87	11.50	12.67	14.77	HAT
	C48	. 8.81 6.76	0.51 3.60	0.52 6.00	0.64 7.00	0.51 8 80	8.81 10.34	0.81	11.33	8.40 15.10	17.60
7.0	CAB BAB	4,70	8.51 1.66	6.51 5.66	7.76	9.00	0.50 18.37	11.00	0.40 13.54	15.35	8.47
	CAB NA	4.76	0.51	6.60	0.00 7.02	0.50	38.47	12.01	13.76	13.34	17.50
	Can I	1.51	0.51	0.50	0.50	• • • •	0.40	0.40	- 8.47 j	- 046	8.46 ()
	has	4.79	5.00	6.71	7,86	0.13	10.16	12.11	13 63	15.70	17,74

FACTORES DE RIGIDEZ Y TRANSPORTE PARA COLUMNAS

119 TABLA 2

н

 $= 1.86 \times 10^4$

 $Kt = 9 \times 2.37 \times 10^5 \times 1.86 \times 10^4 / (430 (1-40/430)^3)$ = 1.23 \times 10^8 Kg - cm.

2.4 RIGIDEZ DE LA COLUMNA EQUIVALENTE (KFC)

Kec = $\leq K_c \times \leq K_t / (\leq K_c + \leq K_t)$ (EC.13.6). = 2x(9.08 x 10⁸) 2 (1.23x10⁸)/(2x9.08x10⁸ + 2x1.23x10⁸) = 2.93 x 10⁸ Kg-cm.

2.5 RESUMEN DE RIGIDECES (EN POTENCIA DE 10⁸)

Kec = 2.93.

2.6 FACTORES DE DISTRIBUCIÓN (FD) DE LA UNIÓN DE LA VIGA-LOSA 2.6.1 EN LA UNIÓN EXTERIOR (NUDOS AYD)

$$FDA = K_{s}b_{AB}/K_{s}b_{AB} + Kec)$$
.

= 5.49/(5.49 + 2.93) = 0.65

FDD = 0.65

2,6,2 EN LA UNIÓN INTERIOR (NUDOS B Y C)

 $FD_{B} = K_{B} b_{BA} / (K_{S} b_{BA} + K_{S} b_{BC} + Kec)$ = 5.49/ (5.49 + 5.49 + 2.93) = 0.39

FDC = 0.39

3. ANÁLISIS PARCIAL DE LA ESTRUCTURA DEL MARCO EQUIVALENTE.
3.1. REVISIÓN DE LA CARGA VIVA (DE LA SEC. 13.7.6):

 $W_{\rm M} \leq 3/4 W_{\rm M}$

 $200 \leq 3/4$ (463) = 341.2 Kg/m² bien

3,2, CARGA FACTORIZADA Y MOMENTOS DE EMPOTRAMIENTO.

3.2.1. CARGA ULTIMA (VER INCISO 1.2.1)

3.2.2. MOMENTOS DE EMPOTRAMIENTO (ME) PARA LA VIGA-LOSA.

$$ME = m(w_{+1}) l_2 l_1^{4}$$

m = 0.935 (del inciso 2.1).

 $w_{+11} = 0.988 \text{ T/m}^2$

 $1_1 = 420$ cm.

 $1_2 = 430$ cm.

ME = $0.0935 (0.988) 4.3 \times (4.2)^2 = 7.0 t-m$.

3,3 CARGA POR METRO LINEAL

W = W_{tu} x ancho equiv. = $\frac{988.2 \text{ k}}{\text{m}^2}$ x 4.30 m = 4.25 t/ml.

3,4 MOMENTOS POSITIVOS EN EL CENTRO DEL CLARO SE OBTIENEN DE LA SIGUIENTE FÓRMULA:

 $M_{\bigstar} = M_{g} - 1/2 (M_{I} + M_{D})$

- M_I, momento final en el extremo izquierdo, en valor absoluto.
- M_{D} , Momento final en el extremo derecho, en el valor absoluto.
- $M_s = wl^2/8$ (como viga simp. apoyada).

ANALISIS POR EL METODO DE CROSS

$$N = 4.25 t/m^2$$

Kc = 9.08 × 108, Ksb = 5.49×108 Kg-cm

123

+ 3.0 1	K .				K.c.				r Ka		w		
3.0 1	Ka	K 4.	sb 20		K۹	•	(sb .20		Kc	1	<sb .20</sb 		
				E	3			Ċ					>

			67 <u>-</u> 19				1.14	1. S. S. S.		김 사람이 있는 것이 같아.					. 영국 8	19 g. (۳.
CONCEPTO	21	cs	TI		TD	CI	cs	TI]	TD	CI	C B	TD		TD	:1	C
FD	3		0.65		0.39			0.39		0.39			0.39		0.65		
FT			0.599		0.599			0.599		0.579			0-699		1.577		
ME			+7.0		-7.0			-7.0		-7.0	1		+7.0		-7.0		
10			-4.55		0			0		0	[0		1455	1	
17		L	0		+2.72	1		0		0	<u> </u>		-2.72		0		
2 D			-012		-1.06			+1.06		+1.06		· .	+1.06				4.2
27			+0.4					-0.63		-0.63					+4.63	1	•
3D	4		+0.41		-0.24			+0.24		+0.24			+0.24		-1.1		
Mf			+2.23		-5.58			-6.83		-6.33		1	+5.55		223		5
٧i			+89		-8.9		-	-8.9	Ι	-8.9			+8.9		-89		
Vh			-0.8		-0.8			0]	0			+0.8		10.5		
٧f			+8.1]	-9.7			-8.9	l	-8.9			+ 9.7		-8.1		
					1.11				- · ·		r	11		- A			-

Ke

Cuando los momentos en los extremos no son iguales, el momento máximo en el claro, no se presenta en el centro, pero su valor es cercano al encontrado en ese punto.

🛠 Cálculo de los momentos positivos en el centro del claro.

$$M (\pounds)_{AB} = \frac{4.25 (4.2)^2}{8} - \frac{(2.23 + 5.58)}{2} = 5.5 \text{ t-m.}$$

$$M (\pounds)_{BC} = \frac{4.25 (4.2)^2}{8} - \frac{(5.33 + 6.33)}{2} = 3.0 \text{ t-m.}$$

4. DIAGRAMAS DE CORTANTE Y MOMENTO (FIGS. 4.A Y 4.B).

Los cortantes y momentos se toman en los paños de columnas. -Los momentos deben estar comprendidos en una distancia que sea 0.175 l₁ del centro de los apoyos interiores (SEC. 13.7.7.1)

o sea $\frac{C_1}{2} \leq 0.175 \ l_1$ (SEC. 11.11).

 $\Rightarrow \frac{40}{2} ≤ 0.175$ (420) =73.5 bien.

5, MOMENTOS DE DISEÑO

NOTA.

Se tienen en la fig. 4.b y deben cumplir las especificaciones de la SEC. 13.7.7.4

 $Mo = \frac{w_{tu} l_2 ln^2}{B} = 0.988 \times 4.3 (3.8)^2 = 7.7t - m (EC. 13.3)$

 $l_n = 3.8 > 0.65 l_1 = 0.65 (4.2) = 2.7$ bien

donde: l_n es de paño a paño de columnas.

5.5 + $(0.8 + 3.2)/2 = 7.5 < 7.7$ bier claro interior: $3.0 + (3.5 + 3.5)/2 = 6.5 < 7.7$ bier	claro extremo	: M (+)	$+ (M_{T} + M_{D})$) /2	
clano interior: $3.0 + (3.5 + 3.5)/2 = 6.5 < 7.7$ bier		5.5 +	(0.8+3.2)	12 = 7.5 4	7.7 bien
	claro interior	3.0 +	(3.5 +3.5)	1/2 = 6.5 <	7.7 bien

6. DISTRIBUCIÓN DE LOS MOMENTOS DE DISEÑO (A PAÑO DE COLUMNA)

Esta distribución se hace usando las figuras 3.16 y 3.17 entrando con los siguientes parámetros:

0	(A	(D		(Ð		Ē
	CLARO EXTRE	MO	CLA	RO INTER	non	CLAR		LEMO
MOMENTO	0.80 5.5	3.2	3.5	3.0	3.5	3.2	5.5	0.80
% # . col.	/00 60	75	75	60	75	75	60	100
% F. Cent.	0 40	25	25	40	25	25	40	0
	MOME	NTO	S	DISTR	184	005		
F. Col,	0.80 3.3	2.4	2.6	1.8	2.6	1.4	3.3	0.80
F. Cent.	0 2.2	0.B	0.9	1.2	0.9	0.8	2.2	0

 $1_2/1_1 = 430/420 \approx 1.0$

 $\propto 1 = 0$, ya que no hay vigas, y $\propto 1(1_2/1_1) = 0$

§t = 0, por no haber elemento rigidizante en el extremo, perpendicular a la dirección en estudio.

7. MOMENTOS EN LAS COLUMNAS.

Columna exterior: momento no equilibrado (nudo A) = 2.23 t-m Columna interior: momento no equilibrado (nudo B) = 0.75 t-n donde: 0.75 = 6.33 - 5.88

1 C.		N 19 M.	- 4 - C.,	່ສະບ	0 3	د r	. 00	. T	ويعاس	23	1.15		A. 1997	sa di l		ം ടം	UO	् ा मार	1.0	0	÷.,			2
. L	al se	5 A 4		5 - 5 Q	114	1.6.1	20 J - 60 -						·										1 X. A.	
	1.1.1.1		1. J. J.	1.1.1.1.1.1	, ä.	194 ⁽¹ 14)			1.1	1 1 1 L	1.4.4	1.1.1		1.12				$\alpha_{1},\ldots,\alpha_{n}$						N (1
- M				ດ : ມ	7 1	1 2	. 23	=	່ 1.	. 0.5	T		M			ി.	5.3	сΟ.	. 75				1.1	
<u>ار او </u>	1.1		·	.		• • •			-												199.00	1.11	· • .	
		- · · ·		1.0		- 1 - P	1 af 1	1.1	1. L. L.	11.1.1	الراجع وأراجع	С, ч.	i an phip	a far ri 🛉		0.	38	- t.	- m .					
12.1	1.1	477 L	- A. 2	والارتداح	14. J.	1.1							11.14			. T I	. 7 7.	9 - TA		1.1	5		5.6.25	÷
	1.540.2	1.1	t é u			- A		~ _		See.		18.51			_3, s (č.)	۰ <u>م</u> ۲	00	(1 . F	- o .	<u></u>	~ ~ ~	10 a.	1.00
. M	sup) =	승규는 것	1.0	12:3	¢∶υ.	. 52	ຮຸ່=	୍ୟା	. 35		1.1-11	_msu	ip -		. U .	38	\mathbf{x}	1.2	28	. F . I	U . Z L	J·τ	M.
1975		고장인		• 5 ¹ • •	. t. t. t	- 1º - 1	1984.1				• 14 J.	5 A. J.	1 1 10	76.5				$h \in \mathcal{L}(h)$	ar Shiri				1.1	
1.00	14 P			•		신 문화		e - 1994	1.11.1	. 14 1				St. 1.		1.1.1.1.1	1997 B.	1.164					1.5.5	YY
M	finf	7 · · · · · ·			1.11	. i. m. s.	같아. 그		0	65	S. C. 1	·	Min	f.		4. 1.	S. 11.				2 😓 👌 I	າ ເ ີດ	1 i H	_m`
				1.144.4	1.11.11	- N - N	- A. A.				1. C. M. M. M. M.	· · · ·								10 A	- -			

8. ESFUERZOS CORTANTES DESARROLLADOS POR LA TRANSFERENCIA A LA COLUMNA DEL MOMENTO NO EQUILIBRADO

De la sec. 11.12.2.4 del ACI en sus comentarios se tiene que el esfuerzo cortante es:

$$Vu_{C} = \underbrace{V_{u}}_{Ac} + \underbrace{\delta v M u}_{j/c}$$

$$Vu_{C'} = \underbrace{Vu}_{Ac} - \underbrace{\gamma v M u}_{J/c'}$$

dónde: Ac, c, j/c, j/c'; se tienen de la gráfica (#) y $\delta v = 0.40$ de la gráfica 3.21.

8.1 REVISIÓN EN LA COLUMNA EXTERIOR 2-A, QUE CORRESPONDE AL CASO III DE LA GRÁFICA 3.2.2

De análisis $\begin{cases} Vu = 7.25 t-m \\ Mu = 0.8 t-m \end{cases}$

del caso III.

6

Ac = (2a + b)dj/c = $[2ad(a+2b) + d^3 (2a + b)/a]$ /6 j/c' = $[2a^2d (a+2b) + d^3(2a + b)]$ / [6 (a + b)] c = a^2 / (2a +b).

* GRAFICA ANTERIOR 3.2.2

sustituyendo valores:

= (++)=

= (2a + b) dAC $= 2x 94.5 + 149) 9 = 3042 \text{ cm}^2$. $j/c = (2(94.5) 9 (94.5 + 2x 149) + 9^3 (2x 94.5 + 149)$ /94.5] /6

= 111,708.32 cm³.

 $j/c' = [2 (94.5)^2 9 (94.5 + 2 \times 149) + 9^3 (2 \times 94.5 + 149)]$ [6 (94.5 +149)] = 43,352.92 cm³

- $= \frac{7250}{100} + \frac{0.40 \times 0.8 \times 10^5}{100} \doteq 2.7 \text{ Kg/cm}^2 \frac{\text{rige}}{100}$ Vug 111,708.32
- $V_{u_{c}} = 7250 0.40 \times 0.8 \times 10^{5} = 1.6 \text{ Kg/cm}^{2}.$ 3042 43,352.92

8.2 REVISIÓN DE LA COLUMNA INTERIOR 2-B CASO IV DE LA GRA-FICA 3:2.2

En donde:

- Ac = 2(a+b)d
 - $= 2 (149 + 149)9 = 5364 \text{ cm}^2$.
- $j/c = j/c' = [ad(a+3b) + d^3] /3$
 - = 149 x 9 (149 +3x149)+9³)/3 = 266,655 cm³.
- $Vu = 8.85 T y M_{ii} = 3.2 T-m.$
- $V_{uc} = \frac{8850}{5364} + \frac{0.40 \times 3.2 \times 10^5}{266,655}$
- = $1.65 + 0.48 = 2.13 \text{ Kg/cm}^2$. Vu_{cl} = $1.65 - 0.48 = 1.17 \text{ Kg/cm}^2$.

de donde se tiene que el cortante que rige es el del caso III, donde Vuc = 2.7 Kg/cm^2 .

1)
$$V = \emptyset (2 + 4) 0.27 \sqrt{f'c}$$

BC

= 0.85 (2 + 4) 0.27 $\sqrt{250}$ = 16.5 > 2.7 bien

2) $V_{p} = 1.1 \sqrt{f'c}$

= $1.1\sqrt{250}$ = 17.4 > 2.7 bien.

 $\beta_{c} = \frac{1 \text{ ado } 1 \text{ argo }}{1 \text{ ado } corto }$ de la sec. crítica del caso III lado corto donde rige el cortante.

$$\frac{149}{94.5} = 1.57$$

con lo que se tiene, que la losa con abaco y las dimensiones consideradas, no necesitan refuerzo por cortante.

9. DISEÑO POR FLEXIÓN

Para este diseño se tienen del punto 6, los momentos distribuidos, con los que se formará una tabla para el diseño de la losa.

La separación del refuerzo por flexión, se tiene de las restricciones siguientes:

S $\begin{cases} 3h \\ 45 \\ b/\#Vs \end{cases}$ SEC. 7.65 rige la menor.

Esta separación resulta aveces muy grande y además en la construcción se debe seguir una cierta modulación, o sea una separación práctica (S_p), recomendandose que $S_p \leq 30$ cm.

Además la SEC. 13.4.2 del reglamento dice:

S 🗲 2 h en la sec. crítica,

También se necesita una cantidad mínima de acero por contracción y temperatura.

 $Pmin_t = 0.002$

	la de la companya de	Y	?
MATO OL.	M,	0.8 5.5 3.2	3.5 3.0
ABACO	Mz	- 5.5 -	1.2 3.0 2
	Yo F. Col	100 60 75	75 60
	% F. Cont.	0 40 25	25 40

ADMENTOS DISTRIBUIDOS

C WIA	0.8 3.3 2.4	2.6	1-8 +
F.Cal L WI z	- 3.3 -	0.9	1-8
F. (M,	0 2.2 0.8	0.9	1.2 4
Cent. Ms	- 2.2 -	0.3	1.2

NER DIAGRAMA

Para el diseño de la losa, se debe considerar que el momento no equilibrado (MN.E.) entre losa y columna, se transfiere por ex centricidad del cortante (SEC. 11.12.2) y por flexión (SEC. 13.3.4). La fracción del MN.E. por flexión, lo toma un ancho de C_2 + 3h, válido sólo para M (-).

DISENO POR XION

FRAMA C1+3h Mit 0=0 0=0 0

MI MORPARO DE COLUMNA

- m.	IMOM.	PANO	DL	AD
- C.	na seo careció del	- 10 というかくろうかん		
	Sector Contractor	- N. S. S. 1993	영 문화가 다	
		고 한테 말을 하는		
		i na standar		n da Me

	a na shi ka shi kata k	가 분장 왜 의사와?
MOMENTO	0.48	0.18
h	10	10
	15	15
b= C2+3h	94	94
8=W/P1st	0.009	0.0024
•	0.005	0.0034
P = \$få/fg	0.00 2	0-001
As=pbd	2.82	2.92
VARILLAS	3#4	3#4
ASREAL	3.81	3.91
•	31	31
SREAL	25	25

MY

0.6=0.15

MON. NO

Manc

1

		요즘 아파	*	
0.16	3.3	Rigs	.21	.1.8
10	12		18	12
15	٩		15	٩
60.5	215		60.5	215
0.0047	a.075		0.036	0.041
0.0047	0.076		0.035	0.041
0.002	0.0045		0.902	0.0024
1.01	8.70		(.81	4.64
2#4	7#4		2#4	4#4
2.64	8.9		2.54	5.08
30.2	80.7		30.2	36

	a te sei te aire	24 이상 전 이상하는	a set a sur frie	
1. 	3.3		0.36	1.0
	12		18	18
	٩		ſ	9
	215		60.5	215

133

O

NTE HOJA

135

FRANJA DE COLUMNA

MISPARO DE COLUMNA						
	ð .					
Momento	o	2.1	RIGE	••	1.2	
	12	12		12	12	
đ	•	٩		9	¶	
b=12/4	9				٩.	
Q=M/bd ¹ f'e				0.04	0.06	
	0	0.11		0.04	0.06	
P= \$+\$/+2	. 9.861	0.0065		0.0013	0.0086	
Asophi	1.93	6.2.9		2.2.)	3.48	
# VARILLAS	2#4	5#4		2#4	1#4	
ASREAL	2.54	6.35		2.54	3.81	
6	26	21.5		36	15.8	
SHEAL	30	20		30	30	

DISERO

CONCLUSIONES

La elaboración de este trabajo, presenta los fundamentos en que se basan los métodos de diseño de losas, contemplando aquellos casos en que el peralte de las trabes está restringido, o no lo hay. Estas losas son propias para salvar claros relativamente grandes, y se emplean en estructuras de; oficinas, hoteles, almacenes, losas de cimentación, etc.

La teoría expuesta se apoya en los estudios realizados por in vestigadores que dieron aportaciones al código del ACI. Cabe destacar que las gráficas para la distribución de momentos, de ducidas por Sutherland y Appleton, no tuvieron mucha aceptación, ya que conducen a errores de aproximación al hacer la lectura. Por esta razón se adiciona la tabla de la distribución de momentos del ACI-77, así como unas ecuaciones en función de los parámetros de rigidez $\propto y$ St.

Se deduce de lo descrito anteriormente, que es recomendable para el caso de aberturas que se dejan para escaleras y ductos de servicio, que estos se coloquen de preferencia, fuera del perímetro de la sección crítica y en la intersección de las franjas centrales. Además, el acero que se interrumpe en una abertura, se debe distribuir en todo lo ancho de ésta.

Finalmente, se dan algunas ventajas y desventajas que se tienen en estas losas.

137

Ventajas:

Se reduce el altura de entrepiso, y por tanto la de la estructura. Se reduce la carga muerta.

La cimbra resulta más fácil de colocar.

Se facilita la colocación de las instalaciones, debido a que hay pocas vigas o bien se eliminan.

Desventajas:

Los análisis que aquí se presentan, son para carga vertical. Si actúa carga lateral, la estructura debe rigidizarse con muros o contraventeo, para evitar excesivos desplazamientos de entrepiso.

BIBLIOGRAFIA

- 1. Reiforced concrete slabs, de: park, R y gamble
- 2. Diseño de estructuras de concreto conforme al reglamento ACI-318-77, tomo 2 edición del IMCYC.
- 3. Reglamento de las construcciones de concreto reforzado ACI-318-77.
- 4. Aspectos fundamentales del concreto reforzado.

Autores:

Oscar M. González Cuevas Francisco Robles Juan Casillas Roger Díaz de Cossio