

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

MODELO MATEMATICO DE SECADO DE PARTICULAS ESFERICAS

TESIS

que para obtener el titulo de Ingeniero Químico

Presenta

JUAN MANUEL ALFEREZ ESTRADA

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. **TESIS CON FALLA DE ORIGEN**

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

"MODELO MATEMATICO DE SECADO DE

PARTICULAS ESFERICAS"

JUAN MANUEL ALFEREZ ESTRADA

TESIS

INGENIERO QUIMICO

FAG. WE GINERAL

PRESIDENTE V O C A L SECRETARIO 1er. SUPLENTE 2do. SUPLENTE

<u>Roberto Andrade Cruz</u>
Jorge Ramírez Solis
Rodolfo Mora Vallejo
Mario Gonżalo Vizcarra Mendoza
Carlos Guzmán de las Casas

Sitio donde se desarrolló el Tema: <u>FAC. DE QUIMICA UNAM</u> Nombre completo y firma del asesor del Tema: <u>Jorge Ramfrez Solis</u> Nombre completo y firma del sustentante: <u>Juan Manuel Atterez Estrada</u>

		(C)	
NOME	NCLATURA		i
RESU	MEN		i i i
I	Introducción		1
н	Modelo Matemático		5
	Método de Solución		11
IV	Resultados	1999 - 1994 1995 - 1994	18
V	Discución		35
VE	Conclusiones		44
-	Bibliografía		45
	Apendice A	ан солон ал солон ал Солон ал солон ал соло	A-1
	Apendice B		B-1
	Apendice C		C-1
	Apendice D	,	D-1

INDICE

NOMENCLATURA

9	Area de transferencia por unidad de volumen sólido (cm2/cm3)
A	Area de transferencia (cm2)
D	Coeficiente de difusión (cm2/min)
Dp	Diametro de la partícula (cm)
h	Coeficiente de transferencia de calor (cal/min. cm2 °C)
н	Humedad en el sólido (Kg H2O/Kg sol. seco)
H°	Humewad inicial (Kg H2O/Kg sol. seco)
H*	Humedad en el equilibrio (Kg H2O/Kg sol. seco)
ĥ	Parámetro de humedad puntual en la partícula definido por - (H - H*) / (H°-H*). Adimensional.
<h̃></h̃>	Valor promedio de Ĥ
К	Coeficiente de transferencia de masa (cm/min.)
Kg	Coeficiente de transferencia de masa <u>Kg H20</u> cm2 min
m	m-ésimo punto experimental
r	Coordenada radial (cm)
R	Radio de la partícula (cm)

i

Sh	Biot. Número adimensional.	
t	Tiempo (min).	
т	Temperatura (°C).'	
Ts	Temperatura de saturación (°C).	
W	Masa de Humedad (Kg).	
Y	Humedad del aire (Kg H ₂ 0/Kg aire seco).	
Ys	Humedad de saturación del aire (Kg H ₂ 0/Kg aire seco).	
ß	Parámetro adimensional del modelo definido por β cot β =	1
λ	Calor latente (cal/Kg).	
f s	Densidad del sólido (Kg/cm ³).	4
•	Parámetro adimensional del modelo definido por tD/R ² .	

- Sh.

1.1

11

. •

RESUMEN

Los trabajos de investigación en secado de sólidos han mostrado la existencia de tres períodos diferentes de velocidad de secado durante la operación:

- 1. Inicial, inestable y de corta duración,
- 2. velocidad de secado constante y
- 3. velocidad de secado decreciente.

Ninguna importancia práctica se le ha dado al primer período de sec<u>a</u> do debido a su corta duración. El segundo período ha sido explicado, estudiado y trabajado hasta ahora en forma satisfactoria. El tercer período ha sido objeto de arduos y tenaces estudios; así como, de d<u>i</u> ferentes especulaciones con los fenómenos que ocurren durante él. Es precisamente este último período, a quien está dirigida la atención del presente trabajo, cuyo objetivo es presentar un modelo mat<u>e</u> mático que lo describa satisfactoriamente. El modelo aquí planteado describe el secado llevado a cabo por el fenómeno de difusión de la humedad en el sólido.

La ecuación aquí presentada,

$$\frac{H - H*}{H^{\circ} - H*} = \frac{6 \operatorname{Sh} e^{-\beta^2} \operatorname{Dt}/R}{\beta (\beta^2 + \operatorname{Sh}(\operatorname{Sh}-1))}$$

es solución de la segunda ley de Fick aplicada a particulas esféri-

cas en la que se han considerado las resistencias interna y externa a la transferencia de masa. Esta ecuación representa satisfactoriamente las curvas experimentales de secado, y aunque los valores obtenidos para los coeficientes de difusión son comparables con los reportados en la literatura, el modelo no ofrece una precisión aceptable en el estimado de dichos coeficientes.

INTRODUCCION

1

En forma general, por secado se entiende la eliminación de el agua con tenida en un material. Sin embargo, como operación unitaria, el térmi no se aplica no sólo a la eliminación del agua, sino también a la eliminación de cualquier líquido, debe igualmente hacerse notar que el -término no se aplica a todos los medios de lograr dicha eliminación, sino sólo al proceso de evaporar y remover respectivamente el líquidoý el vapor formado.

Diferentes equipos y mecanismos se han usado para realizar la opera--ción. Perry (1) presenta una clasificación de ellos, dividiendolos en secadores directos e indirectos, dependiendo de la forma en que se pro---porciona el calor necesario para la evaporación de la humedad. Los -más comunmente usados son los secadores rotatorios y los de lecho flui dizado. En ambos, la operación consiste en aplicar al sólido una co-rriente de gas suficientemente caliente para suministrar el calor re-querido y remover el vapor una vez que éste se ha formado.

Tres son los mecanismos importantes de transporte que se llevan a cabo durante el secado: la transferencia de calor del gas al sólido, tran<u>s</u> porte de masa del seno del sólido a la interfase sólido-gas y transpo<u>r</u> te de masa de la interfase sólido-gas al seno del gas. De la veloci-dad de estos procesos dependerá la velocidad con que se lleve a cabo el secado. La experiencia ha inducido a considerar la existencia de tres perfodos de velocidad durante el secado de un sólido:

- Período inicial. En el inicio de la operación, el sólido alcan za la temperatura de bulbo húmedo correspondiente a las condi-ciones de operación y al sistema gas-vapor con el que se trabaja. Su duración es corta y por ello también poca es su impor-tancia e influencia en la operación. En la práctica no se le considera.
- 2. Período de Velocidad Constante. Una vez que se ha alcanzado la temperatura de bulbo húmedo, se inicia el segundo período en el cual, la velocidad de secado se mantiene constante si las condiciones del gas utilizado se mantienen inalterables. En este período, se evapora solamente la humedad localizada sobre la su-perficie del sólido estableciéndose un equilibrio entre el ca-lor transferido al material, y el calor consumido en la evapora ción.

La masa de agua u otro líquido removida del sólido (la discu--sión es válida para cualquier líquido), está dada por el equili brio dinámico de transferencia de masa y calor:

$$\frac{dw}{dt} = Kg A (Ys - Y) = \frac{h A}{\lambda} (T - TS)$$
(1)

y en términos de contenido de humedad en el sólido, se tiene:

$$\frac{dH}{dt} = \frac{Kg a}{f_s} (Ys - Y) = \frac{h a}{f_s \lambda} (T - TS)$$
(2)

La velocidad de secado en este período de evaporación superficicl depende entonces del coeficiente de transferencia de masa (o de calor) externo, del área de transferencia y de la diferencia de temperatura o humedad entre el gas de secado y la su perficie húmeda del sólido.

3. Período de Velocidad Decreciente. Cuando la humedad de la película superficial ha sido evaporada, la velocidad de secado depende no solamente de los factores señalados en el párrafo anterior, sino también de la rapidez del movimiento de la hum<u>e</u> dad interna hacia la superficie externa del sólido. Este mov<u>i</u> miento es quien impone el paso controlante de velocidad de secado, la cual decrece hasta hacerse nula si se alcanza la hum<u>e</u> dad de equilibrio del sólido correspondiente a la temperatura y humedad del gas empleado para secar.

La naturaleza del movimiento de la humedad en la fase sólida ha si do explicada a través de varias teorías, de entre las cuales, las que han sido de mayor aceptación son: la teoría de difusión, la te<u>o</u> ría de flujo capilar y la teoría de evaporación-condensación.

La teoria de evaporación-condensación supone que el movimiento de la humedad se lleva a cabo en fase gaseosa dentro de los poros. E<u>s</u> ta suposición es aceptable cuando existen gradientes de temperatura a través del sólido y cuando el calor se aplica por una de las caras del sólido a secar como es el caso de secado de tortas.

La teoría de flujo capilar supone que el movimiento es de la humedad

líquida a través de los poros sobre cuya superficie ocurre una atrac ción molecular sólido-líquido.

Kisakurek-Peck-Cakaloz⁽²⁾ suponen que el mecanismo que controla el proceso de secado es el de flujo capilar y que el flujo de humedad por difusión es secundario; sin embargo, el modelo que presentan se desvia a bajas concentraciones de humedad y altas temperaturas, y creen entonces posible que sea el mecanismo de difusión quien contr<u>o</u> la el movimiento de humedad.

La teoría de difusión supone que el movimiento de la humedad a través del sólido, es debido a las diferencias de concentración que se presentan en el interior de sólido durante el secado, e identifica dichas diferencias como las fuerzas directrices para la difusión o el potencial que produce dicha difusión.

El presente trabajo presenta una solución analítica de la ecuación de difusión en la que se consideran las resistencias interna y supe<u>r</u> ficial en el período de velocidad decreciente de secado. Se le apl<u>i</u> ca a datos experimentales para estimar coeficientes de difusión y de transferencia de masa y se analiza el comportamiento de los resultados ante diferentes condiciones de operación.

-4

MODELO MATEMATICO

El modelo matemático que se presenta en este trabajo, es obtenido a través de la teoría de difusión, ésta establece que en un medio est<u>a</u> cionario constituido por más de un componente cuyas concentraciones varían de un punto a otro en el espacio, se presenta una transferencia de masa de los puntos de alta concentración hacía los puntos de menor concentración, e indica, que el flujo de masa por unidad de -área de transferencia es proporcional al gradiente de concentración.

La expresión matemática para este fenómeno es:

$$I = -D\overline{V}c \qquad (2.1)$$

Donde:

- N = Flux de masa por difusión
- D = Coeficiente de difusión de masa
- V = Operador Nabla
- c = Concentración del componente difundiéndose

La expresión 2.1 desde el punto de vista de la teoría de difusión, es válida para un punto en el espacio.

En el proceso de secado de un sólido, la concentración de humedad en el mismo, varía con el tiempo. Igualmente los gradientes de concen-tración no se mantienen constantes, y el flujo entonces no es constan

te, es decir, el secado es un proceso no estacionario. Para este tipo de procesos, la expresión de la variación de la concentración con respecto al tiempo debida al fenómeno de difusión es:

$$\frac{\partial c}{\partial t} = D\overline{V}^2 c \qquad (2.2)$$

expresión conocida como "Ecuación de Difusión", o "Segunda Ley de Fick". La expresión 2.1 es conocida como "Primera Ley de Fick" (3).

Las expresiones 2.1 y 2.2, son expresiones aplicables a cualquier sist<u>e</u> ma de coordenadas. En el presente trabajo, el modelo pretendido es para partículas esféricas, condición establecida para resolver la ecua-ción 2.2, pero que puede no ser limitante de la aplicabilidad del modelo al secado de partículas no esféricas si se considera la esfericidad (12) ó factor de disponibilidad de área (13) de dichas particulas. La ecuación de difusión expresada para coordenadas esféricas es:

$$\frac{\partial c}{\partial t} = D \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial c}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial c^2}{\partial \phi^2} \right)$$
Que simplifica a:
(2.3)

$$\frac{\partial c}{\partial t} = \frac{D}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c}{\partial r} \right)$$
(2.4)

para el caso de difusión exclusivamente radial.

De acuerdo a la momenclatura que se seguirá en este trabajo, la expre-sión de la ecuación 2.4 es:

$$\frac{\partial H}{\partial t} = \frac{D}{r^2} \qquad \frac{\partial}{\partial r} \left(r^2 \qquad \frac{\partial H}{\partial r} \right) \qquad (2.5)$$

Donde H es la concentración de humedad en el sólido.

El desarrollo de la solución presentada aquí de la ecuación 2.5 se pr<u>e</u> senta en el apendice A.

7

El cambio de variable

$$U = r (H - H^*)$$
, (2.6)

permite simplificar la ecuación 2.5 a:

$$\frac{\partial U}{\partial t} = D \frac{\partial^2 U}{\partial r^2}$$
(2.7)

que es la forma más simple de la ecuación de difusión (4), y para la cual Crank (5) presenta varios métodos de solución.

En forma adimensional, la ecuación 2.7 se expresa por:

$$\frac{\partial \emptyset}{\partial \theta} = \frac{\partial^2 \emptyset}{\partial \xi^2}$$
(2.8)

de acuerdo a la definición de las siguientes variables adimensionales:

$$\widetilde{H} = \frac{H - H^*}{H^\circ - H^*}$$
(2.9)

 $\Theta = \frac{tD}{R^2}$ (2.10)

$$\xi = \frac{r}{R}$$
 (2.11)

Es oportuno y necesario destacar que adelante solo r conserva su acepción de coordenada esférica dada por la ecuación 2.3, mientras que 0 y Ø estarán definidas por las ecuaciones 2.10 y 2.12 respectivamente.

8

 $Q = \widetilde{H} \xi$

Para la solución de la ecuación 2.8 se define el número de Biot por la relación

$$Sh = \frac{k R}{D}$$
 (2.13)

Donde k es un coeficiente de transferencia de masa definido por

$$-D\left(\frac{\partial H}{\partial r}\right)r = R \qquad = k (H - H^*) \qquad (2.14)$$

Las ecuaciones 2.14 y 2.15 son condiciones a la frontera, y 2.16 cond<u>i</u> ción inicial, condiciones que deberá satisfacer el modelo obtenido.

$$\left(\frac{\partial H}{\partial r}\right)r = 0 \quad \text{para } t > 0 \qquad 2.15$$

H = H° para t = 0, y ¥ r (2.16)

Considerando las definiciones 2.9, 2.10, 2.11, 2.12 y 2.13, las condiciones inicial y a la frontera para la solución de 2.8 son:

de 2.16 se tiene:

de 2.15 se tiene:

$$\left(\frac{\partial \left(\frac{\theta}{\xi}\right)}{\partial \xi}\right)_{\xi=0} = 0 \qquad \text{para } \theta > 0 \qquad (2.18)$$

De 2.14 se tiene:

$$-\left(\frac{\partial(\theta/\xi)}{\partial\xi}\right)_{\xi=1}^{\epsilon} = \operatorname{Sh}(\theta/\xi)$$
(2.19)

Las condiciones anteriores conducen a la solución general de 2.8 dada por:

$$\phi = \sum_{n=1}^{\infty} \frac{\operatorname{sen} (\beta_n \xi)}{\operatorname{sen} \beta_n} \quad \frac{2 \operatorname{Sh} e^{-\beta_n^2} \theta}{(\beta_n^2 + \operatorname{Sh} (\operatorname{Sh}-1))}$$
(2.20)

Donde las β_n 's son las raices de

$$\beta_n \cot \beta_n = 1 - Sh \qquad (2.21)$$

Esta expresión permite conocer los diferentes valores de \emptyset en la dirección radial mediante la variable $\xi = r/R$, así como los diferentes valo res de \emptyset en función del tiempo mediante la variable $\theta = (D/R^2)t$. Sin embargo, esta expresión de \emptyset que dá valores de humedad puntual, no es útil en la práctica donde se requiere conocer más que la distribución, el contenido total de humedad en el sólido, por lo que es más útil obt<u>e</u> ner la expresión del valor medio de \widetilde{H} , dado para una partícula esférica por:

$$\langle \tilde{H} \rangle = \frac{\int_{0}^{R} 4 \pi r^{2} \tilde{H} dr}{\int_{0}^{R} 4 \pi r^{2} dr}$$
 (2.22)

6

$$\langle \widetilde{H} \rangle = \frac{\int 0.4 \pi \xi^2 \widetilde{H} d\xi}{(4/3) \pi}$$
 (2.23)

Y usando 2.12 en 2.23:

$$\langle \widetilde{H} \rangle = 3 \int_{0}^{1} \int_{0}^{1} d\xi$$
 (2.24)

Sustituyendo 2.20 en 2.24 y resolviendo la integral se obtiene finalmente:

$$\langle \widetilde{H} \rangle = \sum_{n=1}^{\infty} \frac{6 \operatorname{Sh}^2 \exp(-\beta_n^2 \theta)}{(\beta_n^2 + \operatorname{Sh}(\operatorname{Sh}-1))}$$
 (2.25)

que es la «Presión del modelo matemático que sirve de base para el trabajo desarrollado en los siguientes capítulos.

Conviene tener presente las consideraciones hechas aqui para obtener - 2.25:

- La ecuación de difusión 2.2 es el punto de partida, esta ecuación considera a D (coeficiente de difusión o de difusividad) constante.
- ii) La difusión es únicamente en la dirección radial (ecuación 2.5).
- iii) Al inicio de la operación de secado, la humedad es uniforme en el sólido (ecuación 2.16).
- iv) En el centro de la partícula, la humedad es máxima durante el secado (ecuación 2.15).
- v) El flujo por unidad de área en la superficie de la particula,
 es proporcional a la diferencia de la humedad en la superficie
 del sólido y la humedad de equilibrio (ecuación 2.14).

METODO DE SOLUCION

La ecuación 2.25 representa la curva de secado tiempo-humedad útil para predecir el tiempo de secado cuando el coeficiente de difusión y el número de Sherwood son conocidos. En la práctica, el Ingeniero o el Químico deberá de llevar a cabo una serie de ensayos para dete<u>r</u> minar las condiciones apropiadas para realizar el secado. Es en esta etapa y después de ésta, cuando se destaca la utilidad de un modelo matemático que describa el fenómeno de secado; modelo que deberá pe<u>r</u> mitir predecir el tiempo necesario a que ha de someterse el sólido a la operación de secado para que éste alcance el grado de humedad requerido ya como producto final o como producto intermedio.

La determinación de los coeficientes definidos por 2.1 y 2.14, habrá de realizarse mediante una de las técnicas de estimación de parámetros por mínimos cuadrados (6) (7), es decir, determinar el valor de los parámetros adecuados del modelo tales que el valor de

$$F = \sum_{m=1}^{p} (\widetilde{H}_{m} - \langle \widetilde{H} \rangle_{m})^{2} \qquad (3.1)$$

sea minimo.

 H_m está dado por la ecuación 2.9 y calculado a partir de valores ex perimentales.

 $\langle \widehat{H} \rangle$ es el modelo matemático dado por la ecuación 2.25; sustituyendo ésta, y 2.9 en 2.1 se tiene la expresión:

$$F = \sum_{m=1}^{p} \left(\frac{Hm - H*}{H^{\circ} - H*} - \sum_{n=1}^{\infty} \frac{6 \operatorname{Sh}^{2} \exp(-\beta n^{2} \theta m)}{\beta_{n}^{2} (\beta_{n}^{2} + \operatorname{Sh}^{2} (\operatorname{Sh}^{-1}))} \right)^{2}$$
(3.2)

la cual debe minimizarse bajo las siguientes restricciones:

10

$$g_n \cot (g_n) + Sh - 1 = 0$$
 $n = 1, 2, 3, ...$ (3.3)
 $f(n-1) \pi < g_n < n \pi$ $n = 1, 2, 3, ...$ (3.4)

Es además, condición necesaria que 2.25 sea convergente. De los datos reportados por Vizcarra (8), Sh \ll 1, por lo que 2.25 para su análisis, se puede simplificar a:

$$\sum_{n=1}^{\infty} \frac{1}{\beta_n^4 \exp(\beta_n^2 \Theta)}$$
(3.5)

Ahora bien, si n aumenta, entonces g_n aumenta; por comparación como $\sum_{n=1}^{\infty} 1/n^2$ converge, entonces 3.5 converge; por lo tanto, 2.25 es también convergente. Una observación más que se obtiene usando los valores de Sh reportados por Vizcarra (8), es que se pueden despreciar en 2.25 los términos para n ≥ 2 ; ello se debe a que cada elemento de la su ma, es del orden de 10^{-2} veces el término anterior, es decir; el segun do término de la sumatoria es del orden de cien veces más pequeño que el primer término, el tercero es del orden de cien veces más pequeño que el segundo y así, sucesivamente. Esto permite simplificar 3.2, -3.3 y 3.4 a

$$F = \sum_{m=1}^{p} \left(\frac{H_m - H_m^{*}}{H^{\circ} - h^{*}} - \frac{6 \operatorname{Sh}^2 \exp(-\beta^2 \theta_m)}{\beta^2 (\beta^2 + \operatorname{Sh}(\operatorname{Sh}-1))} \right)^2 \quad (3.6)$$

$$\beta \cot (\beta) + Sh - 1 = 0$$
 (3.7)
 $0 < \beta < \pi$ (3.8)

Los parámetros de interés en el modelo matemático son: el coeficiente de transferencia de masa k, y el coeficiente de difusión D. Sin emba<u>r</u> go, de los dos, solo D es uno de los parámetros apropiados a considerar como independientes durante el proceso de minimización de 3.6. El otro parámetro adecuado es β , del cual, 3.8 dá y limita el intervalo de valores factibles para él. Los parámetros β , Sh y k, están relaci<u>o</u> nados entre sí, por las expresiones 2.13 y 3.7, de donde se deduce que solo uno de ellos podrá tomarse como independiente; el considerar de los tres a β como independiente, garantizará menor consumo de tiempo por la computadora, pues el seleccionar al Sh o al coeficiente k como independiente, implicaría obtener por iteraciones el valor de β util<u>i</u> zando la ecuación 3.7 y posteriormente, se requeriría hacer la prueba de que el valor así obtenido de β satisfaga la condición 3.8.

En conclusión, el problema es minimizar 3.6 en función de los parametros D y β con θ_m definido de acuerdo a 2.10 por

$$\Theta_{\rm m} = \frac{\beta^2 n D t_{\rm m}}{R^2}$$
(3.9)

y sujeta la minimización a las condiciones 3.7 y 3.8.

En forma general, el problema se puede expresar como:

minimizar f(X) (3.10)

sujeto a	<i>ч</i> .	$9k \leq x_k \leq h_k$	K = 1,2,,m	(3.11)
donde:		X = (×1, ×2,,	×n)	

n = Número de variables independientes
m = Número de restricciones; m≥n
gk = Límite inferior de k-ésima variable
hk = Límite superior de la k-ésima variable

El método de solución empleado en este trabajo y que a continuación se describe, es el método "Complex" desarrollado por M.J. Box (9):

- i) En el arranque de la búsqueda del mínimo se requiere de un punto inicial $X^{\circ}=(x_1^{\circ}, x_2^{\circ}, ..., x_n^{\circ})$ que satisfaga todas las restri<u>c</u> ciones de 3.11, es decir, X° debe estar en la región factible de 3.10.
- II) El método emplea K puntos del espacio vectorial al que perteneceX, donde:

$$K \ge n+1 \tag{3.12}$$

y donde los K-l puntos adicionales para la configuración inicial "complex", son obtenidos uno a uno en forma pseudoaleatoria por

$$x_i = g_i + r_i (h_i - g_i)$$
 $i = 1, 2, ..., n$ (3.13)

donde g_i y h_i son los límites de la i-ésima variable independien te, definidos por 3.11 y r_i es un número pseudo-aleatorio en el intervalo (0,1); un punto así obtenido debe satisfacer las restricciones explícitas, pero no necesariamente las restricciones implicitas $g_k \leq x_k \leq h_k$, donde k = n + 1, ..., m.

- iii) Si no se cumple una restricción implicita, el punto en prueba se mueve a la mitad del intervalo entre él y el centroide del resto de los puntos. Al inicio el centroide es X°.
- iv) La función objetivo f(X) es evaluada en cada punto.
- v) Se comparan los valores obtenidos en iv), y se determina el pun
 to para el cual f(X) es más alto; este punto se rechaza.
- vi) Se determina el centroide del resto de los puntos con:

$$x_{i}^{c} = \frac{1}{K-1} \left[\sum_{j=1}^{K} x_{i}^{j} - x_{i}^{R} \right]^{2}$$
 (3.14)

1

donde:

- x^c = Valor en el centroide de la i-ésima variable indepeni diente.
- K = Número de puntos que constituyen la configuración "com plex".

-x^j = Valor de la i-ésima variable independiente en el j-és<u>i</u> mo punto.

- ×^Ri
 - Valor de la i-ésima variable independiente en el punto rechazado.

vii) El punto rechazado se sustituye por un punto proyectado del cen

troide a la dirección contraria del punto eliminado. La distancia del nuevo punto al centroide es α veces la distancia del punto rechazado al centroide. El nuevo punto se determina por:

$$x_{i}^{N} = \alpha (x_{i}^{c} - x_{i}^{R}) + x_{i}^{c}$$
 (3.15)

donde:

 $x_i^N = i$ -ésima variable independiente en el nuevo punto X^N $\alpha = Factor de reflección.$

viii) Si el nuevo punto no satisface una de las restricciones explici tas $g_k \leq x_k \leq h_k$ donde k = 1, 2, ..., n, la variable cuya res tricción no se cumple es redefinida por un valor factible median te

$$x_{t}^{N} = L \left(1 \stackrel{+}{-} \epsilon\right)$$
 (3.16)

donde:

L = Límite g_i o h_i que ha sido sobrepasado.

 ϵ = Cantidad suficientemente pequeña $\epsilon \ll 1$.

ix) Si el valor de $f(X^N)$ es el más alto de la nueva configuración -"complex", se procede entonces a reducir a la mitad la distancia que hay entre este punto X^N y el centroide X^C :

$$x_{i}^{N} = \frac{1}{2} (x_{i}^{N} + x_{i}^{c})$$
 (3.17)

El proceso se repite desde el paso iii), hasta que la configuración "complex" se reduce esencialmente al centroide. En el apéndice B, se muestra una codificación en Fortran para la aplicación de este m<u>é</u> todo. parámetros calculados para el modelo matemático dado por

En las figuras 4.1 a 4.15, se presentan las gráficas de las curvas teóricas dadas por la ecuación 2.25 (despreciando los términos de n > 1), y los puntos experimentales tomados del trabajo de Vizcarra. Una tabulación más completa de los datos de Vizcarra se presentan en el Apéndice C.

CORRIDA 5 / DIAMETRO DE PARTICULA 0.0350 CM. / ALTURA DE LECHO ESTATICO 2.0 CM. / GASTO 11.60 L/MIN 1.000E+00-X

8.000E-01-

6.0005-01-

4.000E=01-+

0.

X ***X *** 24

U. 2.50E+01 5.00E+01 7.50E+01 1.00E+02 1.25E+02 1.50E+02 1.75E+02 2.00E+02 2.25E+02 (X) PUPUTA EXPERIMENTALES (X) CURVA TEORICA FIGURA 4.5

TIEMPO(MIN.) VS HUMEDAD ADIMENSIONAL (H-HE / HI-HE) CORRIDA DIAMETRO DE PARTICULA 0.0350 CM. F. ALTURA DE LECHO ESTATICO 4.0 CM. ¿ GASTO 5.40 L/MIN an -1.250E+00 1.000E+00-X 7,500E-01-+ 26 5.000E-01-+ 2.5006-01-0. 1.000+02 2.000+02 3.000+02 4.000+02 5.000+02 6.000+02 7.000+02 8.000+02 0. 9,006+02 {X} PUNTOS EXECTIVENTALES CURVA TEORICA 4.7 FIGURA

1.080E+00-

8.100E-01-+

5.400E-01-

×Х

2.700E-01-+

0.

N
TTEMPO(MIN.) VS HUMEDAD ADIMENSTONAL (H-HE / HI-HE) CORRIDA 9 50 : DIAMETRO DE PARTICULA 0.0350 CM. F ALTURA DE LECHO ESTATICO 4.0'CM. ¿ GASTO 8.20 L/MIN 1.0000700 8.0005-01-6.000E=01-*X 28 4.000E-01-5.000E-01-+ X×× 0. 0. CURVA TEORIEA (X) (*) **FIGURA** 4.9

8.000E-01-

6.000E-01-

4.000E-01-1

2.000E-01-+

0.

%. 2.50E+01 5.00E+01 7.50E+01 1.00E+02 1.25E+02 1.50E+02 2.00E+02 2.00E+02 2.25E+02
(X) PUNTOS EXPERIMENTALES
(X) PUNTOS EXPERIMENTALES

X

29

X

8.000E-01-

6,000E-01-

4.0000 -01-+

2.000E-01-

0.

0. 1.00C+02 2.00C+02 3.00E+02 4.00E+02 5.00E+02 6.00E+02 7.00E+02 8.00E+02 9.00E+02 (X) PUNIOS EXPERIMENTALES (X) CHRVA TEOFILEA

30

8.000E-01-+

Х×

XX

×.

6.000E-01-+

4.000E-01-

2.000E-01-

0.

0. 1.00E+02 2.00E+02 3.00E+02 4.00E+02 5.00E+02 6.00E+02 7.00E+02 8.0vE+02 9.00E+02 (X) PUNTOS EXPERIMENTALES (*) CURVA TEORICA

TIEMPO(MIN.) VS HUMEDAD ADIMENSIONAL(H-HE / HI-HE) CORRIDA 13 7 DIAMETRO DE PARTICULA 0,0350 CM. I ALTURA DE LECHO ESTATICO 7.6 CM. 2 GASTO 6.80 L/MIN -1.000E¥00-8.000E-01-+ 6.000E-01-32 4.000E-01-2.000E-01-0. 41 . PUBLICS EXPERIMENTALES CURVA TEOPICA (X) (A)

TIEMPO(MIN.) VS HUMEDAD ADIMENSIONAL (H-HE 7 HI-HE) CORRIDA 14 ; DIAMETRO DE PARTICULA 0.0350 CP. ; ALTURA DE LECHO ESTATICO 7.6 CM. ¿ GASTO 8.20 L/MIN 1.2500+00 1.000E+00-2 7.500E-01-+ 5.000E-01-Х× 2.500E-01-0. 1.002+02 2.000+02 3.000+02 4.000+02 5.000+02 6.000+02 7.000+02 8.000+02 9.000+02 13 . PUBLIOS EXPERIMENTALES CURVA TEORICA (X) (*)

		ц. "P				
				,		×3
00E+00→X +				у."	$\frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \right]$	
* *						
00E-01-+ *	×					
	×					
00E-01-	*			÷ -		
	**		•			
0.05-01-	X * 				- 10 B	
UUE #UI #		* X *** **				
		X *** X *				

DISCUSION

Un análisis visual de las figuras 4.1 a 4.15, revela que el modelo matemático representa adecuadamente los puntos experimentales, un aná lisis estadístico muestra que el modelo es significativamente diferen te (mejorando el ajuste de los puntos experimentales) al modelo prede cesor presentado por Vizcarra (8). Un análisis cualitativo de los re sultados conduce a observar la tendencia del coeficiente de transferencia de masa a aumentar con el gasto de aire, en cambio, ninguna tendencia o interrelación del gasto con el coeficiente de difusión a excepción de las cinco primeras corridas donde se aprecia una relación directa, las ⁵tablas 5.1 a 5.3, cuyas corridas corresponden a las del capítulo anterior, muestran los coeficientes de difusión y transferen cia de masa calculados indicando los diferentes gastos de operación reportados por Vizcarra (8); la figura 5.1 muestra una gráfica del coeficiente de transferencia de masa vs gasto de estas tabulaciones.

CORRIDA	GASTO 1/MIN	(K) (10 ⁵)	(D)(10 ⁵)
1	4.1	7.49	1.702
2	5.4	9.85	2.455
3	6.8	9.27	2.699
4	8.2	10.35	4.401
5	11.6	12.88	5.264

TABLA 5.1 Coeficientes calculados y gasto de aire para Dp=0.035cm y altura de cama de lecho de 2 cm. Referencia (8).

35

CORR IDA	GASTO 1/MIN	(к) (10 ⁵)	(D) (10 ⁵)
6	4.1	4.36	1.626
7	5.4	4.25	2.346
8	6.8	5.98	1.629
9	8.2	5.86	1.393
10	11.6	6.47	5.305

TABLA 5.2 Coeficientes calculados y gasto de aire para Dp = 0.035cm y altura de cama de lecho de 3.9 cm Referencia (8).

CORRIDA	GASTO 1/MIN	(K) (10 ⁵)	(D) (10 ⁵)
11	4.1	2.16	5.864
12	5.4	2.16	1.839
13	6.8	2.69	4.529
14	8.2	3.05	3.532
15	11.6	3.53	1.088

TABLA 5.3 Coeficientes calculados y gasto de aire para Dp= 0.035 cm y altura de cama de lecho de 7.6 cm Referencia (8).

FICURA 5.1

El ánalisis de las covariancias* de los coeficientes estímados, conduce a las observaciones siguientes:

Las desviaciones del coeficiente de difusión varían desde diez hasta mil veces el valor estimado de dicho coeficiente originando amplios intervalos de confianza; así como precisiones de los ordenes de cien porciento y hasta cien mil porciento, todo ello con el umbral usual-mente aceptado de cinco porciento. En el caso del coeficiente de tran sferencia de masa k, las desviaciones varían desde una décima a cien veces el valor estimado de k, originando precisiones (con 5% de umbral) del orden de diez porciento a mil porciento. Las tablas 5.4 y 5.5, muestran los valores de las covariancias y las precisiones de los coeficientes estimados; los mejores valores se tienen para las corridas 11 y 13, y los valores menos aceptables se tienen en la corrida 1.

La figura 5.2 muestra un mapeo típico de la ecuación 3.6, que explica por sí mismo el porque las precisiones obtenidas.

Una observación importante sobre el comportamiento requerido del modelo (primer término de la ecuación 2.25) es que a t = 0 debe cumplirse

H = 1, condición que cumplen satisfactoriamente los ajustes realizados; sin embargo, ello produce el siguiente problema:

H = 1 a t = 0 el factor preexponencial $\frac{6 \text{ Sh}^2}{\beta 2 (\beta 2 + \text{SH (Sh-1)})} = 1$

* La descripción de calculo de las covariancias se presenta en el apén dice D; en las tablas 5.4 y 5.5 se presentan los resultados.

38

Ē	CORRIC	A	COEF. D	COVAR.	% PRECISION
	1		1.702 x 10 ⁻⁵	6.0×10^{-4}	3.32×10^5
	2		2.455×10^{-5}	1.5×10^{-4}	1.11 x 10 ⁵
	3		- 2.699 x 10 ⁻⁵	5.5 x 10-9	6.20×10^2
	4	- ··*	4.401×10^{-5}	7.9 × 10 ⁻⁷	3.80×10^2
	5		-5.264×10^{-5}	4.1×10^{-7}	2.75×10^3
-	6		1.626×10^{-5}	1.2 × 10 ⁻⁷	4.96×10^3
	7		-2.346×10^{-5}	3.0 x 10 ⁻⁹	5.40×10^2
	8		-1.629×10^{-5}	1.7 x 10-9	5.80×10^2
	9	4	1.393 × 10 ⁻⁵	1.7×10^{-4}	2.15×10^5
	10		5.305 × 10 ⁻⁵	5.6 x 10 ⁻⁵	3.46×10^4
	11		5.864 x 10 ⁻⁵	2.6×10^{-9}	1.97×10^2
	12		1.839 × 10 ⁻⁵	4.1×10^{-6}	2.46×10^4
	13		-4.529×10^{-5}	8.6×10^{-10}	1.45×10^2
	14	·	3.532 × 10 ⁻⁵	1.1×10^{-8}	7.04×10^2
	15		1.088×10^{-5}	4.6×10^{-9}	1.41×10^3

TABLA 5.4

Covarianciæs y % de precisión con umbral de 5% de los valores estimados para el coeficiente de difusión D.

CORRIDA	COEF. K	COVAR.	% PRECISION
1	7.49 x 10 ⁻⁵	2.9 × 10-6	5.14×10^3
2	9.85 x 10 ⁻⁵	4.8 × 10 ⁻⁷	1.59×10^{3}
3	9.27 × 10 ⁻⁵	4.9×10^{-12}	5.40 x 10
4	10.35 × 10-5	2.2×10^{-10}	3.24 x 10
5	12.88×10^{-5}	1.2×10^{-10}	1.92 x 10
6	4.36×10^{-5}	3.8×10^{-11}	3.20 x 10
. 7	4.25×10^{-5}	3.4×10^{-12}	1.00 x 10
8	5.98×10^{-5}	2.7×10^{-12}	6.34 × 10
9	5.86×10^{-5}	6.6×10^{-7}	3.20×10^{3}
10	6.47×10^{-5}	2.0×10^{-9}	1.69×10^2
- 11	2.16×10^{-5}	1.3×10^{-12}	1.19 x 10
12	2.16×10^{-5}	1.2×10^{-10}	1.15×10^2
13	2.69×10^{-5}	8.1×10^{-12}	2.39 × 10
14	3.05×10^{-5}	2.2×10^{-12}	1.10 x 10
15	3.53×10^{-5}	2.6×10^{-12}	1.03 x 10

TABLA 5.5 Covarianciasy% de precisión con umbral de 5% de los valores estimados para el coeficiente de transferencia de masa k.

40

COEFICIENTE DE DIFUSION D 1.05-06 1.0E=05 1.0E=04 1.0E=03 ٥ 9 9 2 .00E-05 .25E-05 250L 05 2-75L-65 3-00E-05 3-25L-05 50F 05 TRANSFERENCIA 4.251-05 5.000-05 35F-0 0E-05 ٠ 254 -05 254 -05 254 -05 22 00E-05 MAPEO_TIPICO DE LA ECUACION 3.6 DONDE Fig. 5.2 .3. LA RELACION DE VALORES DE F SON: • < H < + < K < , < L < ¥ < 0

Simplificando practicamente el modelo a

$$\widetilde{H} = e^{-\left(\beta^2 D t / R^2\right)}$$
 (5.1)

Donde los parámetros β y D no son independientes y cuya dependencia anula cualquier confiabilidad práctica que pueda requerirse en la es timación de los valores de dichos parámetros mediante las técnicas de ajuste de curvas a partir de puntos experimentales.

Los intentos de romper esa dependencia de parámetros de ajuste media<u>n</u> te cambios de variables como el que a continuación se presenta a tít<u>u</u> lo de ejemplo, no condujeron a resultados favorables.

Sea 5.1 la ecuación a modificar y donde el valor del parámetro β es del orden de 10⁻¹, y el del parámetro D es del orden de 10⁻⁵; sea en-

$$x_1 = (10)^2 \beta^2$$
 6 $\beta^2 = (10)^{-2} x_1$ (5.2)

$$x_2 = (10)^5 D$$
 6 $D = (10)^{-5} x_2$ (5.3)

Substituyendo 5.2 y 5.3 en 5.1 y sacando log. natural se tiene:

$$\ln \tilde{H} = -(10)^{-7} \frac{t}{R^2} \times_1 \times_2$$
 (5.4)

Y sea para la separación de variables

$$x_1 x_2 = \frac{1}{2} \widetilde{\chi}_1^2 - \frac{1}{2} \widetilde{\chi}_2^2$$
 (5.5)

Donde:

$$\widetilde{X}_{1} = \frac{1}{2} (x_{1} + x_{2})$$
 (5.6)

$$\widetilde{X}_2 = \frac{1}{2} (x_1 - x_2)$$
 (5.7)

Se obtiene para 5.4 la ecuación:

$$\ln \tilde{H} = A \tilde{\chi}_1^2 - A \tilde{\chi}_2^2 \qquad (5.8)$$

Donde:

$$A = -(10)^{-7} \frac{t}{2R^2}$$
(5.9)

La expresión 5.8 es una modificación mediante cambio de variables de la ecuación 5.1.

En contraposición al problema de la dependencia de los parámetros de ajuste cabe señalar a favor del modelo las siguientes observaciones de los resultados con él obtenidos:

La precisión del coeficiente de transferencia de masa k es aceptable y los valores obtenidos para el coeficiente de difusión D son del o<u>r</u> den de los reportados en trabajos previos y presentados en la literatura Lequerica (10), Levenspiel-Kunii (11).

CONCLUSIONES

El modelo matemático para representar las curvas de secado de partículas esféricas presentado en este trabajo modela satisfactoriamente los puntos experimentales; sin embargo, los valores obtenidos para los parámetros de ajuste no son estadísticamente confiables por no da<u>r</u> se una independencia de ellos entre sí. Los cambios de variables en el modelo matemático como intento para obtener la independencia de -parámetros de ajuste no condujeron a resultados positivos.

Aunque la precisión y confiabilidad estadística de los valores estima dos para el coeficiente de difusión son desfavorables al modelo, la comparación de los valores estimados con los reportados en la literatura resulta favorable al modelo por observarse en ellos el mismo or-

Por las características matemáticas del modelo señaladas anteriormente, se recomienda para su uso, fijar el orden de magnitud del coeficiente de difusión, y determinar con el modelo y datos experimentales el coeficiente de transferencía de masa.

Por otra parte, el modelo debe ser substancialmente modificado, consid<u>e</u> rando en él, las condiciones físicas y de operación del procedimiento de secado.

-44

BIBLIOGRAFIA

(2)	Kisakurek-Peck-Cakaloz; Canadian J. of Chem. Eng. 53, 53 , Feb
101	Kisakurek-Peck-Cakaloz; Canadian J. of Chem. Eng. 53, 53 , Feb
(2)	
	(1975).
(3)	Terybal, R.E.; "Mass Transfer Operations", Mc Graw Hill (1968)
(4)	Gribben, R.J.; "Elementary Partial Differential Equations" Van
• •••	Nostrand Reinhold, G. Britain (1975).
(5)	Crank; "Mathematics of Diffusion", Claredon Press Oxford (1975)
(6)	Kittrell-Mezaki-Watson; Ind. and Eng. Chem. 57, 12, 18 (1965)
(7)	Himmelblau, D.; "Process Analysis by Statistical Methods"
	John Wiley & Sons Inc. New York (1970).
(8)	Vizcarra, M.; Tesis de Maestría, Fac. de Química UNAM (1976)
(9)	Box, M.J.; Computer J. 8,42 (1965)
(10)	Lequerica; A.T.A. 14,3 Nov. (1974)
(11)	Levenspiel-Kunii; "Fluidization Engineering", John Wiley & -
	Sons Inc. (1969).
(12)	Brown; "Unit Operations", John Wiley and Sons (1950)
(13)	Gupta-Thodos; Chem. Eng. Progr., 58, 7, 58 (1962)

APENDICE A

DESARROLLO DE LA SOLUCION DE LA ECUACION

DE DIFUSION 2.5

1

14

La ecuación de Difusión expresada en coordenadas esféricas y consid<u>e</u>

rando solo difusión radial es (Ver ecuación 2.5).

$$\frac{\partial H}{\partial t} = \frac{D}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial H}{\partial r} \right)$$
(A.1)

Sea:

$$J = (H - H^*) r$$
 (A.2)

Entonces:

$$\frac{U}{r} = H - H*$$

Que implica:

Y

$$\frac{\partial H}{\partial r} = \frac{\partial}{\partial r} \left(\frac{U}{r} \right)$$

$$\frac{\partial H}{\partial r} = \frac{1}{r} \frac{\partial U}{\partial r} = \frac{U}{r^2}$$
(A.4)

$$\frac{\partial H}{\partial t} = \frac{\partial}{\partial t} \left(\frac{U}{r} \right)$$
$$\frac{\partial H}{\partial t} = \frac{1}{r} \frac{\partial U}{\partial t}$$

(A.5)

(A.3)

Substituyendo A.4 y A.5 en A.1

$$\frac{1}{r} \quad \frac{\partial U}{\partial t} = \frac{D}{r^2} \quad \frac{\partial}{\partial r} \left(r^2 \left(\frac{1}{r} \quad \frac{\partial U}{\partial r} - \frac{U}{r^2} \right) \right)$$
(A.6)

;

Simplificando, aplicando el operador diferencial y simplificando:

$$\frac{\partial U}{\partial t} = \frac{D}{r} \frac{\partial}{\partial r} \left(r \frac{\partial U}{\partial r} - U \right)$$
$$= \frac{D}{r} \left(r \frac{\partial^2 U}{\partial r^2} + \frac{\partial U}{\partial r} - \frac{\partial U}{\partial r} \right)$$

Se obtiene:

$$\frac{\partial U}{\partial t} = D \frac{\partial^2 U}{\partial r^2}$$
(A.7)

Si definimos:

$$\widetilde{H} = \frac{H - H *}{H^{\circ} - H *}$$
(A.8)
$$\Theta = \frac{t D}{R^{2}}$$
(A.9)
$$\xi = \frac{r}{R}$$
(A.10)

Entonces de las ecuaciones A.2 y A.8, se tiene:

 $U = \widetilde{H} (H^\circ - H^*) r$ (A.11)

Y sea:

$$g = \frac{U}{(H^\circ - H^{\circ}) R}$$
(A.12)

Entonces de acuerdo a A.10 y A.11

 $\varphi = \widetilde{H} \xi$

(A.13)

De la ecuación A.12 se obtiene:

$$\frac{\partial U}{\partial t} = (H^\circ - H^*) R \frac{\partial \emptyset}{\partial t}$$
(A.14)

Y

 $\frac{\partial^2 u}{\partial r^2} = (H^\circ - H^*) R \quad \frac{\partial^2 g}{\partial r^2}$

De la ecuación A.9 se obtiene:

$$dt = \frac{R^2}{D} d \theta$$

Y de la ecuación A.10 se obtiene:

$$dr^2 = R^2 d \xi^2$$
 (A.17) dr^4

Substituyendo A.16 en el 2°miembro de A.14

$$\frac{\partial U}{\partial t} = \frac{D}{R} (H^{\circ} - H^{*}) \frac{\partial B}{\partial \Theta}$$
(A.18)

Y substituyendo a A.17 en el 2° miembro de A.15

$$\frac{\partial^2 u}{\partial r^2} = \frac{1}{R} (H^\circ - H^*) \frac{\partial^2 g}{\partial \varepsilon^2}$$
(A.19)

Y substituyendo finalmente A.18 y A.19 en A.7 se obtiene después de simplificar

$$\frac{\partial \beta}{\partial \theta} = \frac{\partial^2 \beta}{\partial \varepsilon^2}$$
(A.20)

(A.15)

(A.16)

Resolviendo por el método de separación de variables se sigue:

$$\emptyset = f(\xi) g(\theta) \tag{A.21}$$

Donde f es función de ξ , y g es función θ . Substituyendo A.21 en A.20, diferenciando y reacomodando se obtiene

$$\frac{1}{g} \frac{dg}{d\theta} = \frac{1}{\xi} \frac{d^2 f}{d \xi^2}$$
(A.22)

Donde un miembro es solo función de Θ , y el otro solo de ξ , por ta<u>n</u> to, ambos miembros deben ser igual a una constante que para los siguientes pasos se define esta constante como

cte. =
$$-\beta^2$$
 (A.23)

$$\frac{1}{g} \frac{dq}{d\theta} = -\beta^2$$
 (A.24)

Cuya solución es:

g

$$= e^{-\beta^2} \theta \qquad (A.25)$$

Y

$$\frac{1}{f} \frac{d^2 f}{d\xi^2} = -\beta^2$$

Cuya solución es:

 $f = A \operatorname{sen} \beta \xi + B \cos \beta \xi \qquad (A.27)$

Substituyendo A.25 y A.27 en A.21 se tiene la solución de A.20

(A.26)

$$\beta = (A \operatorname{sen} \beta \xi + B \cos \beta \xi) e^{-\beta^2} Q \qquad (A.28)$$

La determinación de las constantes A, B y β se obtiene a partir de las siguientes condiciones a la frontera.

$$\frac{\partial (p/\xi)}{\partial \xi} = 0$$
 a $p > 0$ y $\xi = 0$ (A.30)

$$-\frac{\partial (\emptyset / \xi)}{\partial \xi} = \operatorname{Sh} (\emptyset / \xi) \quad a \quad \xi = 1 \quad (A.31)$$

Donde:

$$St_{i} = \frac{k R}{D}$$
(A.32)

De acuerdo a la ecuación A.28

De donde:

$$\frac{\partial \left(\beta / \xi\right)}{\partial \xi} = \left[\frac{1}{\xi} \left(A \beta \cos \beta \xi - B \beta \sin \beta \xi\right) - \frac{1}{\xi^2} \left(A \sin \beta \xi + B \cos \beta \xi\right)\right] e^{-\beta^2} \theta$$
(A.34)

Por condición dada en A.30

$$\frac{1}{\xi} \left(A \beta \cos \beta \xi - B \beta \sin \beta \xi \right) - \frac{1}{\xi^2} \left(A \sin \beta \xi + B \cos \beta \xi \right) = 0$$

Multiplicando por ξ^2

$$\xi$$
 (A β cos $\beta \xi$ - B β sen $\beta \xi$) - (A sen $\beta \xi$ + B cos $\beta \xi$) = 0

Υ**ξ =** O implica

A sen
$$\beta \xi$$
 + B cos $\beta \xi$ = 0

6

(A.35)

Por lo tanto, A.28 se simplifica a

$$g = (A \operatorname{sen} \beta \xi) e^{-\beta^2} \theta \qquad (A.36)$$

Y A.34 se simplifica a

$$\frac{\partial \left(\beta / \xi \right)}{\partial \xi} = \frac{A}{\xi} \left(\beta \cos \beta \xi - \frac{1}{\xi} \sin \beta \xi \right) e^{-\beta^2 \theta} \quad (A.37)$$

Por condición A.31

$$-\frac{\partial (\emptyset / \xi)}{\partial \xi} = \frac{Sh}{\xi} \emptyset$$

Se obtiene sustituyendo A.37 y A.36

$$-\frac{A}{\xi} \left(\beta \cos\beta \xi - \frac{1}{\xi} \sin\beta \xi\right) e^{-\beta^2 \theta} = \frac{Sh}{\xi} \left(A \sin\beta \xi\right) e^{-\beta^2 \theta}$$

Simplificando y puesto que $\xi = 1$ se tiene:

sen
$$\beta$$
 - β cos β = Sh sen β

A-7

Dividiendo entre sen β y rearreglando

$$\beta \cot \beta = 1 - Sh \tag{A.38}$$

Que define el valor que debe tomar la constante β , es decir, β debe ser tal que se cumpla A.38.

La ecuación A.36 es una solución particular de \emptyset , y la solución general de \emptyset se obtiene por

$$\mathbf{z} = \sum_{n=1}^{\infty} (An \, \operatorname{sen} \beta_n \, \xi) \, e^{-\beta_n^2} \, \theta \qquad (A.39)$$

que es la combinación lineal de las soluciones del tipo dado por la ecuación A.36.

De acuerdo a la condición A.29.

$$\xi = \sum_{n=1}^{\infty} A_n \quad \text{sen } \beta_n \xi \tag{A.40}$$

Multiplicando ambos miembros por sen β n ξ e integrando de $\xi = 0$

6

$$\int_{0}^{1} \xi \operatorname{sen} \beta n \xi \, d\xi = \operatorname{An} \int_{0}^{1} \operatorname{sen}^{2} \beta n \xi \, d\xi$$

Implica

An =
$$\frac{\int_0^1 \sin \beta_n \xi \, d\xi}{\int_0^1 \sin^2 \beta_n \xi \, d\xi}$$

(A.41)

Integrando por partes la integral del numerador se tiene:

$$u = \xi \implies du = d\xi$$

$$dv = \frac{1}{\beta_{n}} \sin \beta_{n} \xi d (\beta_{n} \xi) \implies v = -\frac{1}{\beta_{n}} \cos \beta_{n} \xi$$

$$\int_{0}^{1} \xi \sin \beta_{n} \xi d\xi = -\frac{\xi}{\beta_{n}} \cos \beta_{n} \xi \Big|_{0}^{1} + \int_{0}^{1} \frac{1}{\beta_{n}} \cos \beta_{n} \xi d(\beta_{n} \xi)$$

$$\int_{0}^{1} \xi \sin \beta_{n} \xi d\xi = -\frac{\cos \beta_{n}}{\beta_{n}} + \frac{\sin \beta_{n}}{\beta_{n}^{2}} \qquad (A.42)$$

$$la integral del denominador de A.41 se tiene:$$

$$\int_{0}^{1} \sin^{2} \beta_{n} \xi d\xi = \frac{1}{\beta_{n}} \int_{0}^{1} \sin^{2} \beta_{n} \xi d (\beta_{n} \xi)$$

6

1

Y para

Si $u = \beta_n \xi$ entonces

$$\int_{0}^{1} \sin^{2} \beta_{n} \xi d\xi = \frac{1}{\beta_{n}} \int_{0}^{\beta_{n}} \sin^{2} u du$$
$$= \frac{1}{\beta_{n}} \left(\frac{1}{2} u - \frac{1}{2} \operatorname{sen} u \cos u \right) \Big|_{0}^{\beta_{n}}$$

6

$$\int_{0}^{1} \sin^{2} \beta_{n} \xi d\xi = \frac{1}{2 \beta_{n}} (\beta_{n} - \sin \beta_{n} \cos \beta_{n}) \quad (A.43)$$

Substituyendo A.42 y A.43 en A.41

An =
$$\frac{\frac{\sin \beta_n}{\beta_n 2}}{\frac{1}{2 \beta_n} (\beta_n - \sin\beta_n \cos\beta_n)}$$

$$A_{n} = \frac{\frac{\operatorname{sen} \beta_{n}}{\beta_{n} 2} \quad (1 - \beta_{n} \quad \cot \beta_{n})}{\frac{1}{2 \beta_{n}} \quad (\beta_{n} - \operatorname{sen} \beta_{n} \cos \beta_{n})}$$

Simplificando y de acuerdo a A.38

$$A_n = \frac{2 \text{ Sh sen } \beta_n}{\beta_n (\beta_n - \text{sen} \beta_n \cos \beta_n)}$$

De A.38 se deduce

-
$$(Sh - 1)$$
 sen β n = β n cos β n

$$\frac{1}{\beta n} (Sh - 1) \sin^2 \beta n = -\sin \beta n \cos \beta n$$

Que substituyendo en A.44 conduce a

An =
$$\frac{2 \text{ Sh} \text{ sen } \beta n}{\beta n (\beta n + \frac{1}{\beta n} (\text{Sh-1}) \text{ sen}^2 \beta n)}$$

An =
$$\frac{2 \text{ Sh sen } \beta n}{\beta n \left(\frac{\text{sen}^2 \beta n}{\beta h}\right) \left(\frac{\beta n^2}{\text{sen}^2 \beta n} + (\text{Sh - 1})\right)}$$

Simplificando

An =
$$\frac{2 \text{ Sh}}{\text{sen } \beta \text{ n} \left(\frac{\beta \text{ n}}{\text{sen}^2 \beta \text{ n}} + (\text{Sh} - 1)\right)}$$

Considerando que $1/sen^2 = csc^2$ y $csc^2 = 1 + cot^2$ se tiene

(A.44)

An =
$$\frac{2 \text{ Sh}}{\text{sen}\beta \text{ n} \left[\beta \text{ n}^2 \left(1 + \cot^2 \beta \text{ n}\right) + (\text{Sh} - 1)\right]}$$

An =
$$\frac{2 \text{ Sh}}{\text{sen} \beta n \left[\beta n^2 + (\beta n \cot \beta n)^2 + (Sh - 1) \right]}$$

Substituyendo

$$(\beta n \cot \beta n)^2 = (1 - Sh)^2 = 1 - 2 Sh + Sh^2$$

Y rearreglando

An =
$$\frac{2 \text{ Sh}}{\text{sen } \beta \text{ n} \left[\beta \text{ n}^2 + \text{Sh} \left(\text{Sh} - 1 \right) \right]}$$
(A.45)

Que substituyendo en A.39 se obtiene

$$\beta = \sum_{n=1}^{\infty} \frac{\operatorname{sen}\beta n\xi}{\operatorname{sen}\beta n} \quad \beta \frac{2 \operatorname{Sh} e^{-\beta n^2} \theta}{\beta n^2 + \operatorname{Sh}(\operatorname{Sh} - 1)}$$
(A.46)

La cantidad H̃ promedio de la partícula esta dada por

$$\langle \widetilde{H} \rangle = \int_{0}^{1} \frac{4\pi\xi^{2} \widetilde{H} d\xi}{4/3 \pi}$$
 (A.47)

o considerando A.13

Donde substituyendo A.46 se tiene

$$\langle \widetilde{H} \rangle = 3 \int_{0}^{1} \left[\sum_{n=1}^{\infty} \frac{\operatorname{sen} \beta_n}{\operatorname{sen} \beta_n} \left\{ \frac{2 \operatorname{Sh} e^{-\beta_n^2} \theta}{\beta_n^2 + \operatorname{Sh} (\operatorname{Sh}-1)} \right] d\xi$$
 (A.49)

Que conduce a resolver solo

$$\int_0^{\xi} \sin\beta n \xi d\xi$$

Cuya solución esta dada por la ecuación A.42.

$$\int_{0}^{1} \xi \sin \beta n \xi \, d\xi = \frac{\sin \beta n}{\beta n^2} - \frac{\cos \beta n}{\beta n}$$

$$= \frac{\sin \beta n}{\beta n^2} \quad (1 - \beta n \ \cot \beta n)$$

$$= \frac{\sin \beta n}{\beta n^2} \quad Sh \qquad (A.50)$$

Que substituyendo en A.49 conduce finalmente a

$$\langle \widetilde{H} \rangle = \sum_{n=1}^{\infty} \frac{6 \operatorname{sh}^2 e^{-\beta_n^2} \Theta}{\beta n^2 [\beta n^2 + \operatorname{Sh} (\operatorname{Sh}-1)]}$$
 (A.51)

A P E N D I C E "B"

OPTIMIZACION METODO COMPLEX

SE PRESENTA AQUI EL MANUAL DEL PROGRAMA PARA LA MINIMIZACION DE UNA FUNCION DE n VARIABLES INDEPENDIENTES SUJETA A m RES-TRICCIONES.

ATT:

PARA SU USO ADECUADO SE MUESTRA AL FINAL DE ESTE APENDICE UN EJEMPLO DE APLICACION.

INDICE DE VARIABLES (PROGRAMA)

Arreglo matricial de los límites de las m restricciones:

	lim. inf. 1	lfm. sup. 1
*	•	:
	līm. inf. n	Ifm. sup. n
	lfm. inf. n+1	lfm. sup. n+l
		•
	lfm. inf. m.	lîm. sup. m

ALFA

N

Α

usada en la ecuación 3.15

E sada en la ecuación 3.16

α

F (J) Valor de la función objetivo en el Punto j

IT Contador del número de iteraciones

K Número de vértices que forman el COMPLEX

M Número total de restricciones (Explicitas + implicitas)

Número de variables independientes

NC

NC = 0 Durante la optimización NC = 1 Cuando se ha alcanzado el óptimo

NRR Número auxiliar en el uso de la función RANDOM para generar números aleatorios.

X (I, J) i-ésima variable independiente del punto j

XC (I) i-ésima variable independiente del punto inicial X° o
 del centroide.

XN1, XN2,... Funciones definidas por las restricciones n + 1, n+ 2,...

DESCRIPCION Y USO DEL PROGRAMA

El programa consta de 82 instrucciones ejecutables y definición de 5 funciones útiles para las restricciones implicitas.

Presenta comentarios suficientes para entender lo que hace en cada una de sus partes.

Requiere de las subrutinas ENT y FOBJ (proporcionadas por el usuario).

1) Subrutina ENT.

En esta subrutina deben alimentarse como datos: N, M, A, y XC. Deben también alimentarse aquí (en caso de ser requerido), los datos necesarios para el cálculo de la función objetivo, y ser transmitidos a FOBJ por medio de un COMMON.

Las siguientes líneas deben aparecer en la subrutina ENT:

SUBROUTINE ENT (*,N,M,A,XC) DIMENSION A (15,2), XC (10)

READ (5,p,END=q) v

RETURN

q RETURN 1

END

Donde "p" y "q" son números enteros de etiquetas; "p" del FOR-MAT y "q" del RETURN no standard. Y "v" es la lista de variables que han de leerse cada vez que se llame a al subrutina -NET.

<u>Ventaja</u>: Que el proceso de optimización se repetira tantas v<u>e</u> ces como conjuntos de datos se alimenten.

2) Subrutina FOBJ.

Solo requiere que aparezcan las siguientes líneas:

SUBROUTINE FOBJ (X,F,N,NC) DIMENSION X(N)

De ser necesario, aparecerá un COMMON en ENT y FOBJ para tran<u>s</u> mitir datos adicionales alimentados en ENT.

En FOBJ se calcula el valor de la función objetivo y se le asigna a F.

NC llega a esta subrutina con los valores:

NC = 0 Durante el proceso de optimización

NC = 1 Cuando se ha alcanzado el óptimo.

B-5

3) Restricciones Implicitas.

Estas son las restricciones:

 $9n+1 \leq x_{n+1} \leq h_{n+1}$

 $g_{n+1} \leq x_{n+1} \leq h_{n+1}$

g_m ≤ ×_m ≤ h_m

Donde $x_i = f_i (x_1, x_2, ..., x_n)$ i = n+1, n+2, ..., m

Los valores de g_i y h_i se alimentan dentro del arregio A.

Las funciones fj i = n+1, n+2, ..., m

las define el usuario en las siguientes líneas del programa:

500	XN I	(X)	= 0
600	XN2	(X)	= 0
700	XN3	(X)	= 0
800	XN4	(X)	= 0
900	XN 5	(X)	= 0
yen el argumento. Y O, representa la expresión matemática.

Como ejemplo véase la línea 8 de el ejemplo de aplicación pág<u>i</u> na B-16.

Para el manejo de restricciones implicitas, se requiere también modificar la sección del programa:

3300	JW = KV
3400 97	DO 21 NP = N1, M
3500	NN = NP - N
3600	GO TO (1,2,3,4,5), NN
3700 1	FP = XN1 (ARGUMENTO)
3800	GO TO 20
3900 2	FP = XN2 (Argumento)
4000	GO TO 20
4100 3	FP = XN3 (ARGUMENTO)
4200	GO TO 20
4300 4	FP = XN4 (Argumento)
4400	GO TO 20
4500 5	FP = XN5 (ARGUMENTO)

Donde KV: K-ésimo vértice. Las posibles líneas a modificar, son las número: 3700, 3900, 4100, 4300 y 4500 que tiene las etiquetas 1, 2, 3, 4 y 5 respectivamente. La palabra ARGUMEN-TO representa la lista de variables independientes (separadas por comas), que han de constituir precisamente el argumento de su respectiva FUNCTION declarada en las lineas 500 a 900.

Como restricción, la notación de las variables listadas al modificar las líneas 3700, ..., 4500 debe ser:

..., X (i, JW),...

y donde el valor de i (i-ésima variable independiente) debe ser fijado por el usuario.

4) Rastreo.

Son cuatro puntos de impresión de datos en el programa con pos<u>i</u> ble interés para el usuario. Sin embargo, se les consideró en general innecesarios, y por lo mismo, poco práctico el consumir tiempo haciendo pruebas de cuando y cuales ha de imprimir a v<u>o</u> luntad del usuario.

A continuación se señalan los cuatro puntos con sus posibles datos de impresión:

a) Prueba a restricciones implicitas.

Entre las lineas 4600 y 4700 puede ordenarse imprimir las siguientes variables:

× _{n+i}	• • • • • • • • • • • • • • • • • • • •	FP
•		
n+i	•••••	NP

Núm. de vértice JW

Variables independientes .. (X(I,JW),I=I,N)

 b) Vértices iniciales y sus respectivos valores de la función objetivo.

Entre las lineas 6600 y 6700 puede ordenarse imprimir las siguientes variables:

Núm. de Vértice J Valor de la Función Objetivo F (J) Variables Independientes .. (X(I,J),I=1,N)

c) Número de iteración y nuevo vértice en el proceso de optim<u>i</u> du zación.

Entre las líneas 1000 y 10100 puede ordenarse imprimir:

Número de Vértice JW Valor de la Función Objetivo F(JW) Variables Independientes .. (x(1,JW), I=1,N) Número de Iteraciones IT

d) Vértices del COMPLEX final y sus respectivos valores de
 la función objetivo, o solo valores del punto óptimo.

Entre las lineas 11600 y 11700 puede ordenarse imprimir las siguientes variables:

B-9

- COMPLEX Final: ((J,F(J), (X(I,J),I=1,N)),J=1,K)

Con lo que imprime:

Número de Vértice J Valor de la Función Objetivo F (J) y Variables Independientes (X(1,J), I=1,N)

Valores en el punto óptimo:
 Número de iteraciones totales IT
 Número del vértice óptimo JOP
 Valor Optimo de Función F(JOP)
 Variables independientes
 del Vértice Optimo (X(1,JOP), 1=1,N)

B-10

CODIFICACION PROGRAMA COMPLEX

100		DIMENSION A(15,2),X(10,20),F(20),X0(10)	
2000		DEFINICION VADIABLES INDUICITAS	
100C		DEFINITION VARIABLES INFETCTIAS	
500		XN1(X)=0	
600		XN2(X)=0	
700		XN2(X) = 0	
800		$x_{N4}(x) = 0$	а ^к (
900	er i si	$x_{N5}(x) = 0$	Sec
10000	1 19		, e
11000		ALIMENTACION DE DATOS Y VERTICE INICIAL	
12000			
1300		NRR=219	
1400	1. C. C.	ALFA=1.3	
1500		E=0.000001	
1600	100	CALL ENT(641.N.M.A.XC)	1.1
1700	A 41-1	K=2*N	*
1800		NC=0	
1900	11.5	I T=0	
2000	- 12-12	N I=N+1	
2100	1	BK=K	
2200	1.1	DO 99 1=1,N	
2300	99	X(1,1)=XC(1)	
2400C			
2500C	2.00	OBTENCION DE K-1 VERTICES Y	
2600C	1.00	PRUEBA A RESTRICCIONES IMPLICITAS	
2700C	1. 1.		
2800	1.1	DO 22 KV=2,K	
2900		DO 98 1=1,N	
3000	- 98	X(1, KV) = A(1, 1) + RANDOM(NRR) * (A(1, 2) - A(1, 1))	,1))
3100		IF (N.EQ.M)GO TO 22	
3200C			
3300	÷	JW=KV	
3400	97	DO 21 NP=N1,M	
3500	1.51	NN=NP-N	
3600		GO TO(1,2,3,4,5),NN	
3700	1	FP=XN1 (ARGUMENTO)	
3800		GO TO 20	
3900	2	FP=XN2 (ARGUMENTO)	
4000		GO TO 20	

	4200		GO TO 20
	4300	4	FP=XN4 (ARGUMENTO)
	4400		GO TO 20
	-4500	5	FP=XN5(ARGUMENTO)
	4600	20	CONTINUE
	4700		IF(A(NP.1),GT.FP.OR.A(NP.2).LT.FP)GO TO 23
	4800	21	CONTINUE
	4900		IF(IT.GE.1)GO TO 37
	5000	22	CONTINUE
	5100		GO TO 25
	5200C		
	5300C		CORRECCION POR VIOLACION A RESTRICCIONES IMPLICITAS
ι.	5400C		
	5500C	23	NR=0
	5600	1	DO 24 I=1.N
	5700		1F(ABS((XC(1)-X(1,JW))/(XC(1)+X(1,JW))), LE.0.0001) NR=NR+
i.	5800	24	X(1, JW) = (X(1, JW) + XC(1))/2.
- 1	5900	15.1	IF (NR.GE.N) GO TO 38
ii.	6000	e inte	IF (M.GT.N) GO TO 97
÷,	6100		GO TO 37
ł.	6200C	t, '€	가는 것, 것, 것, 것, 것, 가 가 있는 것이라. 전화에 와드러 있는 것,
	6300C	Sec.	CALCULO DE LA FUNCION OBJETIVO EN LOS K VERTICES
	6400C		
	6500	25	DO 26 J=1.K
	6600		CALL FOBJ $(X(1,J),F(J),N,NC)$
	6700	26	CONTINUE
	6800	27	1T=1T+1
	6900C	5.0	
1	70000	11.24	SELECCION DEL PEOR VALOR DE LA FUNCION OBJETIVO
	71000	11-42	
	7200		00 33 J=1 K
	7300		IF(J, GT, 1) $IF(J-2)28, 28, 29$
	7400		GO TO 31
	7500	28	IE(E(I) GT E(IW)) GO TO 30
0	7600		
	7700	20	E(E(1) T E(1W)) E(E(1) - E(1)) 22 23 22
	7800	20	I = IM
	7000	21	11/2 1
	8000	יכ	CO TO 22
	8100	22	let
	8200	22	CONTINUE
	82000	"	
	8400c		OBTENCION DEL CENTROIDE

	DO 35 1=1,N
	SX=0.0
	DO 34 J=1,K
34	SX=SX+X(1,J)
35	XC(1) = (SX - X(1, JW)) / (BK - 1.)
	NUEVO VERTICE PRUEBA Y CALCULO DE LA FUNCION OBJETIVO
	$\frac{1}{1} \frac{1}{1} \frac{1}$
	X (1 , JW) #ALFA# (XU (1) #X (1 , JW)) #XU (1)
26	$\frac{1}{1} \left(X \left(1, J W \right) \cdot L \left[A \left(1, 1 \right) \right] X \left(1, J W \right) = A \left(1, 1 \right) + L \left[A \left(1, 1 \right) + L \right] $
20	$\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}$
	IF (M.GI.N) GU IU 97
27	CALL EOBT(X(1, W) E(W) N NC)
21	$(F(IW) \cap F(IW)) \cap TO 23$
	IT (I (5W). dL.I (5L)) d0 10 25
	PRUERA DE CONVERGENCIA
	TROUDA DE CONTENCENCIA
1.1	DO 38 I=1 N
÷.	$DO_{38} J=1.K$
1	IF(ABS((XC(1)-X(1,J))/(XC(1)+X(1,J))), GE(0,0001), GO(T0) 27
38	CONTINUE
× 4 -	NC=1
	SELECCION DEL VERTICE OPTIMO Y SALIDA DE RESULTADOS
	DO 40 J=1,K
	IF(J.GT.1) IF(F(J)-F(JOP))39,40,40
39	JOP=J
40	CONTINUE
-	CALL FOBJ(X(1, JOP), F(JOP), N, NC)
	GO TO 100
41	CALL EXIT
	END
	34 35 36 37 38 39 40 41

B-13

βΕ.

۰.

ALCANCE Y LIMITACIONES

El programa tal y como aquí se presenta, puede minimizar funciones hasta de 10 variables independientes y cero restricciones implicitas (M = N).

Con las modificaciones necesarias, el número de restricciones implicitas que puede manejar es de 5, o sea M = N + 5.

La capacidad de manejo de variables independientes y número de restricciones, puede aumentarse modificando el DIMENSION. Para hacer esto, debe tenerse en cuenta el satisfacer por lo menos las siguientes capacidades de almacenamiento de datos:

DIMENSION A (m,2), X(n,2n), F(2n), XC(n)

Donde :

n = Número de variables independientes

m = Número total de restricciones

EJEMPLO DE APLICACION:

Minimizar: $f(X) = (x_1 - 1/2)^2 + (x_2 - 1)^2$

Sujeto a: $(x_1)^2 + 2(x_2)^2 - 4 \le 0$

SOLUCION Y CODIFICACION (EJEMPLO)

De la restricción implicita dada ($x_3 \leq 0$) se deducen las siguientes

B-14

restricciones explicitas:

- 2 ≤ ×1 ≤ 2

$-\sqrt{2} \leq x_2 \leq \sqrt{2}$

Puesto que el programa lo requiere, debemos fijar un limite inferior para x3. Podemos tomar cualquier valor menor o igual a menos cuatro.

	PROGRAMA CODIFICO	HOJA	DE
	1 2 3 4 5 6 7 8 5 10 11 12 18 14 15 16 17 18 18 20 21 22 25 24 25 26 27 23 25 20 31 32 33 34 23 36 27 24 80 40	41 42 43 44 43 46 47 48 48 60 51 52 53 54 59 56 57 56 58	0 81 62 63 64 65 66 62 68 74 70 71 12 73 74 75 78 77 75 72 40
1	? NOBLEJEMPILO; USER=NYIJ/KK; CLASS=BLL		
2	P. T.N.HILLY, DISK=PINCK, OTHERWISE, DISKSBEGIN		
3	?, COMPLLE, COMPLIEX, FORTRAN LIBRARY, GO		
*I	FORTRAN FILE TAPE = COMPLEX	 	
S	?, FORTPAN FILE MENTAPE =, EDEMPLO; DATA	for the stand and a stand of the stand of th	
\$	\$ SETLMERGE NEW LILL LILLILLI	<u></u>	
7	$\frac{1}{1} + \frac{1}{1} \times \frac{1}{1} \times \frac{1}{1} \times \frac{1}{1} = \frac{1}{1} \times \frac{1}{1} \times \frac{1}{1} = \frac{1}{1} \times \frac{1}{1} \times \frac{1}{1} \times \frac{1}{1} \times \frac{1}{1} = \frac{1}{1} \times \frac{1}$	4Ø. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1111111100000500
8	$\frac{1}{1} F_{P_{i}} = X N I_{i} (X (1, J_{i})), X (2, J_{i}) J_{i} + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $		1.1.1.1.1.1. popi/3.7.00
1	LILISUBROUTJNE ENT (*, N, M, AL, XC) ILLILL	·····	11111111111111100
10	1111 DIMENSIONI A(15,2), NG(19)		111111 AGA12200
$[1]_{i}$	READ(5, 1, END=1), N, (XC(I), I=1, N)		1111111100001123700
12	$\frac{1}{1} = \frac{1}{2} = \frac{1}$		11111111111100
13	LILLINGEN NEW I I I I I I I I I I I I I I I I I I I		11111111111111
24	I I I RETURN ILLI ILLI ILLI ILLI ILLI ILLI ILLI IL		1111111 1 (AD 10) 3.2,6,80
15	LITTIEND, ILILIA CARALINA ALLANDA	<u></u>	1111111 \$ \$ \$ \$ \$ 12,7,00
16	1, 1, S, V, B, RO, V, T, I, N/E, F, OB J (X, F, N, N, C), 1, 1, 1, 1, 1	<u></u>	11111111000010
17	1. INTHEDISTON X(N) ISTITUTE		11111111111111129100
15	$ _{1} _{$	<u></u>	1111111400013,00,0
19	$F = (X_{1} - \phi, 5) * X_{2} + (X_{2} - 1, \phi) $		11111111111100
20	1.1.1.T.F.(NC. EQ. 1) WRITE(61, 1) X 1, X2, 1F	<u></u>	11111111440113200
21	LILLIBEN, UKN		111111111111111111111111111111111111111
22	1. 1 FORHAT (3(1/), X, P,V,NTIQ OPTIMO :: , 17X	, "X,1,=1",,F,8, 5, 5, 5, 1, 1, 1	1111111 010101131406
23	11 X 2: = ":, F81. 51, 3(/.), X, I", NALIOR DE ILA F	UNCILION FI = ", F.81. 15,)	11111111111111111111111111111111111111
24	END REALIZING CLARAGE CALLER C	and the stand of the stand of the stand of the stand of the	11111111111 Add 13,6 4 16
25	BONTIN NALLSCHEIMANN AUSTRALISCHEIMEN GER		
26	2, 10, 0, 1, William and a start a start and a start a start a		
29	131, 1-12. 0 1 12. 0 1, 1-1 4142 1, 11. 41142 1, 1-5	.0.1.10.01.11.11.11.11	
23	END JOB	49 41 42 45 44 55 44 67 40 43 80 81 82 82 81 88 26 57 84 8	1 60 81 62 63 64 63 66 67 69 63 76 71 72 73 74 74 73 74 73 74 73 66 66

PUNTO OPTIMO: $X_1 = 0.49995$ $X_2 = 0.999999$

VALOR DE LA FUNCION:

F = 0.00000

NOTA:

$$N = 2$$

$$M = 3$$

$$XC = \begin{bmatrix} \emptyset, \emptyset \\ \emptyset, \emptyset \end{bmatrix} \text{ o sea } X^{\circ} = (\emptyset, \emptyset)$$

$$A = \begin{bmatrix} -2 & 2 \\ -1.4142 & 1.4142 \\ -5 & \emptyset \end{bmatrix}$$

VALORES ALIMENTADOS

A P E N D I C E C

TABULACION DE RESULTADOS

TIEMPO	HUM. EXP.	HUM. CALC.	H EXP.	H CALC.
0.00	0.2200	0.2200	1.0000	0.9999
15.00	0.1733	0.1837	0.7776	0.8271
30.00	0.1505	0.1537	0.6690	0.6842
45.00	0.1381	0.1288	0.6100	0.5659
60.00	0.1205	0.1083	0.5262	0.4681
75.00	0.0937	0.0913	0.3986	0.3872
90.00	0.0697	0.0773	0.2843	0.3203
105.00	0.0623	0.0656	0.2490	0.2650
120.00	0.0480	0.0560	0.1810	0.2192
150.00	0.0472	0.0415	0.1771	0.1500
180.00	0.0289	0.0315	0.0900	0.1026

1 .

VALOR DE LA FUNCION = 1,202780E - 02 X = (D = 1.702388E - 05, BETA = 4,77009E - 01, HE = 1,000001E - 02) SH = 7,701924E - 02 K = 7,492379E - 05

CORRIDA

Q

TIEMPO	HUM. EXP.	HUM. CALC.	H. EXP.	H CALC.
0.00	0.2079	0.2079	1.0000	0.9999
15.00	0.1588	0.1653	0.7455	0.7790
30.00	0.1350	0.1321	0.6221	0.6068
45.00	0.1160	0.1062	0.5236	0.4727
60.00	0.0911	0.0860	0.3945	0.3683
75.00	0.0702	0.0703	0.2862	0.2869
90.00	0.0554	0.0581	0.2094	0.2235
105.00	0.0442	0.0486	0.1514	0.1741
120.00	0.0345	0.0412	0'. 1'01'1'	0.1356
150.00	0.0267	0.0309	0.0607	0'.0823
1/80.00	0.0245	0.0246	0.0492	0.0500

C

VALOR DE LA FUNCION = 7.007245E - 03X = (D = 2.454601E - 05, BETA = 4.557469E - 01, HE = 1.500002E - 02) SH = 7.021314E - 02 K = 9.848300E - 05

CORRIDA 2

TIEMPO	HUM. EXP.	HUM. CALC.	H EXP.	H CALC.
0.00	0.2324	0.2324	1.0000	0.9999
15.00	0.1858	0.1832	0.7986	0.7901
30.00	0.1480	0.1454	0.6353	0.6242
45.00	0.1245	0.1151	0.5337	0.4932
60.00	0.0958	0.0912	0.4097	0.3897
75.00	0.0716	0.0722	0.3051	0.3079
90.00	0.0514	0.0573	0.2178	0.2433
105.00	0.0387	0.0455	0.1629	0.1922
120.00	0.0315	0.0361	0.1318	0.1519
150.00	0.0208	0.0229	0.0856	0.0948
180.00	0.0140	0.0147	0.0562	0.0592

VALOR DE LA FUNCION = 4.245614E - 03 X = (D = 2.699355E - 05, BETA = 4.221303E - 01, HE = 1.000001E - 03) SH = 6.011581E - 02 K = 9.272796E - 05

CORRIDA 3

TIEMPO	HUM. EXP.	HUM. CALC.	H EXP.	H CALC.
0.00	0.2024	0.2024	1.0000	1.0000
15.00	0.1599	0.1566	0.7847	0.7679
30.00	0.1248	0.1214	0.6069	0.5898
45.00	0.1034	0.0944	0.4985	0.4529
60.00	0.0757	0.0737	0.3582	0.3478
75.00	0.0534	0.0577	0.2452	0.2671
90.00	0.0396	0.0455	0.1753	0.2051
105.00	0.0313	0.0361	0.1332	0.1575
120.00	0.0240	0.0285	0.0963	0.1210
150.00	0.0188	0.0191	0.0699	0.0714
180.00	0.0143	0.0133	0.0471	0.0421

VALOR DE LA FUNCION = 5.359731E - 03X = (D = 4.401266E - 05, BETA = 3.499529E - 01, HE = 5.000005E - 03) SH = 4.115957E - 02 K = 1.035167E - 04

CORRIDA 4

自日

TIEMPO	н	UM. EXP.	, ł	IUM, CALC	•	H EXP.		H CALC.
0.00		0.2030		0.2036		1.0000		1.0000
15.0 0		0.1501		0.1476		0.7328		0.7200
30.00		0.1126		0,1071		0.5434		0.5185
45.00		0.0806		0.0789		0.3818		0.3733 -
60.00)	0.0561		0.0582		0.2581		0.2688
75.00	÷	0.0384		0.0433		0.1687		0.1936
90.00		0.0281		0.0326		0.1167		0.1394
105.00		0.0220	the state of the	0.0249	ing and the	0.0859		0.1004
120.00	1	0.0189		0.0193		0.0702		0.0723
150.00		0.0148	14	0.0124		0.0495	·	0.0375
180.00	1. 1. 1. 1.	0.0125	da e de la	0.0088		0.0379	14	0.0194

VALOR DE LA FUNCION = 2.808396E - 03 X = (D = 5.264264E = 05, BETA = 3.569009E - 01, HE = 5.000005E - 03)SH = 4.282441E - 02 K = 1.288223E = 04

CORRIDA 5

TIEMPO	HUM EXP.	HUM. CALC.	H EXP.	H CALC.
0.00	0.2226	0.2226	1.0000	1.0000
30.00	0.1545	0.1810	0.6742	0.8010
60.00	0.1374	0.1477	0.5924	0.6416
90.00	0.1200	0.1210	0.5092	0.5139
120.00	0.1029	0.0996	0.4274	0.4116
150.00	0.0943	0.0825	0.3863	0.3297
180.00	0.0717	0.0688	0.2782	0.2641
210.00	0.0656	0.0578	0.2490	0.2115
240.00	0.0490	0.0490	0.1696	0.1694
270.00	0.0387	0.0419	0.1203	0.1357

VALOR DE LA FUNCION = 2.378037E - 02X = (D = 1.625516E - 05, BETA = 3.733121E - 01, HE = 1.355159E - 02) SH = 4.689138E - 02 K = 4.355582E - 05

CORRIDA 6

93

TIEMPO		HUM. EXP.		HUM. CALC.	H EX	Ρ.	H CALC.
0.00		0.2167		0.2167	1.00	00	1.0000
30.00		0.1804		0.1749	0.83	01	0.8046
60.00		0.1464		0.1414	0.67	10	0.6474
90.00		0.1251		0.1143	0.57	14	0.5210
120.00		0.1001		0.0926	0.45	.44	0.4192
150.00	-	0.0746		0.0751	0.33	50	0.3373
180.00		0.0576	•	0.0610	0.25	55	0.2714
210.00	in the	0.0442		0.0497	0.19	28	0.2184
240.00		0.0300	1.1.1	0.0406	0.12	63	0.1757
270.00		0.0266		0.0332	0.11	.04	0.1414

VALOR DE LA FUNCION = 9.294905E - 03X = (D = 2.345657E = 05, BETA = 3.075600E = 01, HE = 3.000003E = 03) SH = 3.173170E = 02 K = 4.253239E = 05

CORRIDA 7

TIEMPO	HUM. EXP.	HUM. CALC.	H EXP.	H CALC.
0.00	0.2009	0.2006	1.0000	0.9999
30.00	0.1540	0.1512	0.7528	0.7382
60.00	0.1235	0.1146	0.5921	0.5450
90.00	0.0927	0.0875	0.4297	0.4023
120.00	0.0669	0.0675	0.2937	0.2970
150.00	0.0478	0.0528	0.1931	0.2193
180.00	0.0365	0.0419	0.1335	0.1619
210.00	0.0317	0.0338	0.1082	0.1195
240.00	0.0263	0.0279	0.0798	0.0882
270.00	0.0235	0.0235	0.0650	0.0651

VALOR DE LA FUNCION = 4.881940E - 03 X = (D = 1.628616E = 05, BETA = 4.361576E = 01, HE = 1.116605E - 02) SH = 6.423018E = 02 K = 5.977505E = 05

CORRIDA 8

TIEMPO	1	HUM EXP.		HUM CALC.	H EXP.	b.	H CALC.	
0.00		0.2298		0.2298	1.0000		0.9999	
30.00		0.1813		0.1720	0.7843		0.7428	
60.00		0.1407		0.1291	0.6036	,	0.5519	
90.00		0.1003		0.0972	0.4239		0.4100	
120.00		0.0789		0.0735	0.3287		0.3046	
150.00		0.0482		0.0559	0.1922		0.2263	
180.00		0.0317		0.0428	0.1188		0.1681.	
201.00		0.0251	1. 1. 1. 1.	0.0331	0.0894		0.1249	
240.00		0.0230		0.0259	0.0801		0.0928	
270.00	1921 - 197 ³ (0.0166		0.0205	0.0516		0.0689	

CORRIDA 9

- 10

TIEMPO	HUM EXP.	HUM.CALC.	H EXP.	H CALC.
0.00	0.2074	0.2074	1.0000	1.0000
30.00	0.1540	0.1497	0.7387	0.7178
60.00	0.1031	0.1083	0.4897	0.5153
90.00	0.0652	0.0786	0.3043	0.3699
120.00	0.0790	0.0573	0.3718	0.2655
150.00	0.0513	0.0420	0.2363	0.1906
180.00	0.0190	0.0310	0.0783	0.1368
210.00	0.0155	0.0231	0.0612	0.0982

VALOR DE LA FUNCION = 2.358090E - 02 X = (D = 5.304675E = 05, BETA = 2.525751E = 01, HE = 3.000003E = 03) SH = 2.135571E = 02 K = 6.473434E = 05

CORRIDA 10

73,

TIEMPO	HUM. EXP.	HUM. CALC.	H EXP.	H CALC.
0.00	0 2075	0 2075	1 0000	1 0000
30.00	0.1749	0.1884	0.8208	0.8950
60.00	0.1728	0.1713	0.8092	0.8011
90.00	0.1614	0.1560	0.7465	0.7170
120.00	0.1373	0.1423	0.6140	0.6418
150.00	0.1241	0.1301	0.5415	0.5744
180.00	0.1223	0.1191	0.5316	0.5141
210.00	0.1095	0.1093	0.4612	0.4602
240.00	0.1030	0.1005	0.4255	0.4119
270.00	0.0934 ·	0.0927	0.3727	0.3687
300.00	0.0863	0.0856	0.3336	0.3300

C

12

VALOR DE LA FUNCION = 8.829151E - 03 X = (D = 5.864209E - 05, BETA = 1.389296E - 01, HE = 2.561643E - 02) SH = 6.442105E - 03 K = 2.158734E - 05

CORRIDA 11

TIEMPO	HUM. EXP.	HUM. CALC.	H EXP.	H CALC.
0.00	0.2087	0.2087	1.0000	1.0000
30.00	0.1889	0.1881	0.8993	0.8952
60.00	0.1673	0.1696	0.7895	0.8014
90.00	0.1561	0.1531	0.7326	0.7175
120.00	0.1457	0.1383	0.6797	0.6423
150.00	0.1311	0.1251	0.6055	0.5750
180.00	0.1127	0.1133	0.5119	0.5148
210.00	0.1051	0.1026	0.4933	0.4608
240.00	0.0942	0.0932	0.4179	0.4126
270.00	0.0791	0.0847	0.3411	0.3693
300.00	0.0655	0.0770	0.2720	0.3307

CORRIDA 12

TIEMPO	HUM. EXP.	HUM. CALC.	H EXP.	H CALC.
0.00	0.1955	0.1955	1.0000	1.0000
30.00	0.1773	0.1718	0.9008	0.8709
60.00	0.1640	0.1512	0.8283	0.7584
90.00	0.1396	0.1332	0.6954	0.6605
120.00	0.1234	0.1175	0.6071	0.5752
150.00	0.1086	0.1039	0.5264	0.5009
180.00	0.0961	0.0921	0.4583	0.4362
210.00	0.0805	0.0817	0.3733	0.3799
240.00	0.0667	0.0727	0.2981	0.3309
270.00	0.0554	0.0645	0.2365	0.2881
300.00	0.0471	0.0580	0.1913	0.2509

. ï.

CORRIDA 13

TIEMPO	HUM. EXP.	HUM. CALC.	H EXP.	H CALC.
0.00	0.2122	0.2122	1.0000	1.0000
30.00	0.1819	0.1828	0.8509	0.8552
60.00	0.1628	0.1576	0.7569	0.7314
90.00	0.1398	0.1361	0.6437	0.6255
120.00	0.1245	0.1177	0.5684	0.5350
150.00	0.1065	0.1020	0.4798	0.4575
180.00	0.0917	0.0885	0.4070	0.3913
210.00	0.0756	0.0770	0.3278	0.3347
240.00	0.0637	0.0672	0.2692	0.2862
270.00	0.0517	0.0587	0.2101	0.2448
300.00	0.0442	0.0515	0.1732	0.2093

VALOR DE LA FUNCION = 5.697930E - 03 X = (D = 3.531627E = 05, BETA = 2.126069E = 01, HE = 9.000009E = 03) SH = 1.511283E = 02 K = 3.049879E = 05 5

CORRIDA 14

TIEMPO	HUM. EXP.	HUM. CALC.	H EXP.	H CALC.
	0.0050	0.0056		
0.00	0.2056	0.2056	1.0000	0.9999
30.00	0.1764	0.1725	0.8552	0.8356
60.00	0.1546	0.1448	0.7470	0.6983
90.00	0.1383	0.1216	0.6662	0.5836
120.00	0.1076	0.1023	0.5139	0.4877
150.00	0.0880	0.0862	0.4167	0.4075
180.00	0.0702	0.0727	0.3284	0.3406
210.00	0.0546	0.0614	0.2510	0.2846
240.00	0.0458	0.0519.	0.2073	0.2378
270.00	0.0355	0.0441	0.1562	0.1988
300.00	0.0295	0.0375	0.1265	0.1661

16

VALOR DE LA FUNCION = 1.593187E = 02X = (D = 1.088083E = 05, BETA = 4.103890E = 01, HE = 4.000004E = 03) SH = 5.678033E = 02 K = 3.530383 = 05

CORRIDA 15

A P E N D I C E D

CALCULO DE COVARIANCIAS

Para modelos no líneales, el estimado de covariancias puede obtenerse Himmelblau (7) por

Covar
$$\mathbf{b} = (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \frac{\mathbf{E}^T \mathbf{E}}{\mathbf{n} \cdot \mathbf{m}}$$

Donde:

1

n = Número datos exp. puntuales

m = Número de parámetros estimados

$$\mathbf{E} = \begin{bmatrix} \mathbf{E}_{\mathbf{i}} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \mathbf{E}_{\mathbf{n}} \end{bmatrix} ; \mathbf{E}_{\mathbf{i}} = (\widetilde{H}_{exp} - \widetilde{H}_{modelo})$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{\widetilde{H}_{i}} & \mathbf{\widetilde{H}_{i}} \\ \mathbf{\widetilde{K}} & \mathbf{\widetilde{D}} \\ \vdots & \vdots \\ \vdots & \vdots \\ \mathbf{\widetilde{H}_{n}} & \mathbf{\widetilde{H}_{n}} \\ \mathbf{\widetilde{K}} & \mathbf{\widetilde{D}} \end{bmatrix}$$
$$= \begin{bmatrix} Covar \ K & Covar \\ Covar \ KD & Covar \end{bmatrix}$$

(D-3)

(D -l;)

(D-1)

(D-2)

1

Puesto que el modelo es

$$\widetilde{H} = \frac{6 \text{ Sh}^2}{\beta^2 (\beta^2 \div \text{ Sh} (\text{Sh}-1))} e^{-\beta^2} Dt/R^2$$

KD

D

Donde:

$$\beta \cot \beta = 1 - Sh$$

 $h = \frac{KR}{D}$

Entonces, las derivadas parciales de D-3, se obtienen como a conti-• nuación se indica:

Substituyendo D-6 en D-4 se obtiene:

$$\widetilde{H} = f(\beta, k, D)$$
 (D-7)

Substituyendo D-6 en D-5 y rearreglando se obtiene:

$$g(\beta, k, D) = 0$$
 (D-8)

Diferenciando D-7

$$d\tilde{H} = \frac{\partial f}{\partial \beta} d\beta + \frac{\partial f}{\partial k} dk + \frac{\partial f}{\partial D} dD \qquad (D-9)$$

Diferenciando D-8

$$dg = \frac{\partial q}{\partial \beta} d\beta + \frac{\partial q}{\partial k} dk + \frac{\partial q}{\partial D} dD$$
 (D-10)

Despejando d β de D-10

$$d\beta = -\frac{\begin{pmatrix} 2g\\ 3k \end{pmatrix}}{\begin{pmatrix} 2g\\ \beta\beta \end{pmatrix}} dk - \frac{\begin{pmatrix} 2g\\ 3D \end{pmatrix}}{\begin{pmatrix} 2g\\ \beta\beta \end{pmatrix}} dD$$
(D-11)

(D+5)

(D-6)

Substituyendo D-11 en D-9

$$d\tilde{H} = \begin{bmatrix} \frac{\partial f}{\partial k} & -\frac{\partial g}{\partial k} & \frac{\partial f}{\partial \beta} \\ \frac{\partial g}{\partial k} & \frac{\partial g}{\partial \beta} \end{bmatrix} dk + \begin{bmatrix} \frac{\partial f}{\partial D} & -\frac{\partial g}{\partial \beta} & \frac{\partial f}{\partial \beta} \\ \frac{\partial g}{\partial \beta} & \frac{\partial g}{\partial \beta} \end{bmatrix} dD \quad (D-12)$$

Si

 $\widetilde{H} = \widetilde{H} (k, D)$

• Entonces:

 $d\tilde{H} = \frac{\partial \tilde{H}}{\partial k} dk + \frac{\partial \tilde{H}}{\partial D} dD \qquad (D-14)$

Comparando D-12 con D-14

$$\frac{\partial \widetilde{H}}{\partial k} = \frac{\partial f}{\partial k} - \frac{\begin{pmatrix} \partial f}{\partial \beta} \begin{pmatrix} \partial q}{\partial k} \end{pmatrix}}{\begin{pmatrix} \partial q}{\partial k} \end{pmatrix}$$
(D-15)
$$\frac{\partial \widetilde{H}}{\partial D} = \frac{\partial f}{\partial D} - \frac{\begin{pmatrix} \partial f}{\partial \beta} \begin{pmatrix} \partial q}{\partial \beta} \end{pmatrix}}{\begin{pmatrix} \partial q}{\partial \beta} \end{pmatrix}$$
(D-16)

Que son las derivadas parciales requeridas en D-3 y que con D-15 y -D-16 pueden ser obtenidas a partir de derivadas parciales de funciones conocidas.