

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

CALCULO DE PROPIEDADES TERMODINAMICAS CON UNA ECUACION DE ESTADO GENERALIZADA DE CADENA DE ROTORES.

T E S I S QUE PARA OBTENER EL TITULO DE INGENIERO QUIMICO P R E S E N T A : EDUARDO VILLARREAL MARTINEZ

Máxico D.F.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

Capf	tilo	I.	Intro	ducció	in.
------	------	----	-------	--------	-----

	Capítulo II. Modelo de cadena de rotores.	3
-	Generalidades -	4
-	Potencial intermolecular -	6
-	Teoría de perturbación	8
-	Teoría de Prigogine para cadenas moleculares -	10
-	Deserrollo de la función de partición -	12
-	Ecuación de estado y propiedades termodinámices -	14
•	Cálculo de la presión de vapor -	16
	Capítulo III. Correlación de parámetros de la ecuación de	
	estado con propiedades críticas.	21
-	Conceptos generales -	22
-	Cálculo del punto crítico -	22
-	Algoritmo para la obtención de correlaciones -	29
	Correlaciones -	32
-	Parámetros -	34
	Capítulo IV. Analisis y comparación de resultados.	53
-	Presiones de vapor -	56
-	Volumen de vapor seturedo -	62
+	Volumen da líquido saturado -	66
-	Datos pVT (isotermas) -	71
•	Segundo coeficiente virial -	82
-	Datos de una curva de saturación en un diagrama	
	presión-entalpia -	88
-	Programas para generar las propiedades mencionadas -	124
	Cepítulo V. Conclusiones.	129

	Cepítulo VI.	Apéndice A	
		Elementos de termodinámica estedística.	131
-	Conceptos gener	reles -	132
-	Ley de distribu	ción de Maxwell-Boltzman -	132
•	Cálculo de las	propiedades termodinámicas -	138

Capítulo VII. Bibliografía.

- LISTA DE SIMBOLOS -

A	energía libre de Helmholtz.	
Anm	constante de la ecuación de estado COR.	
8	segundo coeficiente virial.	
81, 82,	83 constantes de la ecuación de estado COR.	
Cv	capacidad calorífica a volumen constante.	
Ср	capacidad calorífica a presión constante.	
C	grados de libertad rotacionales equivalentes de una molé	cula.
ε	energía total de un sistema.	
٤ _T	error total.	1. ¹
ε _i	error i (capítulo III)	
E1	estado energético i (apéndice A)	
F ·	fuerza de interacción entre dos moléculas.	
f	fugacidad.	
G	energía de Guibs.	
9 ₁	degeneración o multiplicidad de un estado,	
н	entalpia.	
k	constante de Boltzman.	
N	número de moléculas.	
N	número de parejas de datos. (capítulo III)	
N	número total de partículas (apéndice A).	
n _£	número de partículas en el nivel i.	
n	número de moles.	
p	presión.	
p ⁰	presión de vepor.	
q	función de partición de un sistema de particulas.	1
q	función de partición de una particula.	
R	constante universal de los gesee.	
r	distancia entre centros de masa de dos moléculas.	
5	entropia.	
T	temperatura.	en e

- T* temperatura característica T* = u/k
- \tilde{T} temperatura reducida $\tilde{T} = T/T^*$.
- u energía característica.

U energía potencial.

Uo potencial molecular de un sistema de referencia.

V volumen.

Vo volumen empacado más cercano,

- \vec{v} volumen raducido $\vec{v} = V/Vo$.
- z factor de compresibilidad.

LETRAS GRIEGAS

constante de Una molécula-cadena de dos segmentos ó constante α dumbbell, dada en términos de la relación r/o ß = 1/kT. Δ indica una diferencia, un valor final-inicial o diferencia en una propiedad al pasar de un estado a otro. potencial químico. μ probabilidad de obtener una distribución dada. 0_ factor acéntrico de Pitzer. 1d perturbación. ω!

w' perturbacion.

- diámetro molécular.
 - $= \pi \sqrt{2/6}$

τ

SUPERINDICES

0	propiedad	de	gas	ideal.

- V propiedad del vapor.
- L propiedad del líquido.

SUBINDICES

- c propiedad en el punto crítico.
- db propiedad para una cadena-molácula de dos segmentos ó dumbbell.
- i propiedad definida en un punto inicial.
- r propiedad reducida.

CAPITULO I INTRODUCCION

El diseño de procesos de separación en ingeniería química requiere in formación cuantitativa acerca de las propiedades termodinámicas de las mezclas y sustancias que se encuentran en cada proceso. Dado que existe une gran cantidad de mezclas y sustancias de interés que puede involucrar un proceso, es difícil obteher todos los datos necesarios directamente e partir de mediciones experimentales, es por eso que son tan importantes los métodos de correlación para predecir la información requerida mediante datos ya existentes. Continúe siendo una necesidad la interpolación y la extensión en forma fragmentaria de los datos, para predecir y diseñar procesos.

Existen tres métodos que se utilizen con mucha frecuencia en correlaciones de propiedades termodinámicas, estos son:ecuación de estado, coeficientes de actividad y mátodos de contribución de grupos.

Las ecuaciones de estado se usan en forma amplia para el cálculo de propiedades de fluidos en procesos de ingeniería química, la utilidad de estas scuaciones ha impulsado un continuo deserrollo de nuevas ecuaciones.

Las ventajas que tiene el método de ecuaciones de estado son: 1) Se utiliza la misma ecuación para calcular propiedades de vepores y líquidos sin necesidad de introducir estados de referencia hipotéticos. 2) Calcula tanto propiedades de componentes puros como de mezclas, incl<u>u</u> vendo altas presiones sin necesidad de relaciones adicionales.

Las ecuaciones de estado se pueden clasificar en: empiricas, teóricas y semiteóricas. Las ecuaciones empiricas se han proyectado gracias a la exactitud adecuada con que se representan los datos experimentales obser vados. Estas ecuaciones facilitan grandemente la diferenciación e integración de los datos para obtener propiedades termodinámicas derivadas, y así construir tablas y diagramas como por ejemplo las tablas de propi<u>s</u> dades del vapor de egua.

Le exectitud de ajuste se consigue con el uso de un gran número de términos empíricos y un correspondiente gran número de parámetros de ecuación para cada sustencia. Las desventajas de estas ecuaciones son:

1) Dificultad para obtener los perámetros necesarios, usualmente del ordan de 10 a 20 constantes, y 2) la incortidumbre para extender su apli cación a mezclas. Lo anterior plentes la necesidad de desarrollor ecuaciones que se apoyen en le teoría de modo que el número de perámetros ses poqueño, tras o cuatro, que además tengon sentido físico y puedan sor extendidas fácilmente a mezclas.

La ecuación de estado C.O.R. (chain of rotators) fué desarrollada por C.H. Chien y colaboradores (1983), esta ecuación tiene basos de mecánica estadística; está fundada en la teoría de porturbación e incluye las con tribuciones rotacional y traslacional del movimiento molecular además de la contribución de fuerzas de atracción. En la ecuación aparecen tres constantes que son parámetros caractorísticos pere cada sustancia. En el artículo escrito por Chien y colaboradores (1983) se presentan los valores de estos tres parámetros para 22 sustancias; la forma en que los obtuvioron ellos fué le siguiente: para metano, stano y propano, e partir de la teoría de perturbación y teoría de cadenas moleculares, después calcularon las constantes de le ecuación mediente ejueto de datos exper<u>i</u> mentale: para dichas sustancias y finalmente obtuvieron los parámetros característicos para sustancias de estructura molecular más compleja a través del ajuste de la ecuación para datos experimentales de presión de vapor y densidad del líquido saturado.

Existen sustancias pora las cuales no se encuentran datos experiment<u>a</u> les disponibles fácilmente ni de presión de vapor ni de densidad del líquido saturado, y como se mencionó anteriormente, a veces es difícil obtener los datos necesarios a partir de mediciones experimentales directas; por lo tento en dichos casos será necesario buscar otra forma de ev<u>e</u> luar los parámetros de las ecuaciones de estado. En este sentido es útil plentear la ecuación de estado en el marco de un teorema de estados correspondientes que pormita evaluar los parámetros con un mínimo de informa mación experimental.

El objetivo del presente trabajo es deserrollar una correlación median te la cual se puedan obtener los parámetros de la ecuación de ostado C.U.R. a partir, por ejemplo de datos críticos, los cuales se encuentran disponibles en forma géneral pare una cantidad más extensa de sustancias.

CAPITULO II

MODELO DE CADENA DE ROTORES

- Generalidades -
- Potencial intermolecular -
- Teoría de perturbación -
- Teoría de Prigogine para cadenas moleculares -
- Desarrollo de la función de partición -
- Ecuación de estado y propiedades termodinámicas -
- Cálculo de la presión de vapor -

- Generalidades -

Durante los últimos años, le idea de contribución de grupo se ha incorporado a los métodos de coeficientes de actividad para predecir propiedados termodinámicas en la fase líquida. En estos métodos las moléc<u>u</u> las se tratan como si estuvieran compuestas por grupos estructurales, y las propiedades termodinámicas son las sumas de las contribuciones de estos grupos. Dado que el número de especies de grupo es mucho menor que el número de especies moleculares existe la posibilidad de predecir varios tipos de datos, de un gran número de sistemas, con parámetros de grupo determinados a partir de un número relativamente pequeño de moléculas.

Los métodos de contribución de grupo comenzaron a desarrollarse en forma empirica; se puede decir que el concepto de contribución de grupo aparece por primera vez en los trabajos de Langmuir (1925) quien partió de la premisa básica de que el campo de fuerzas alrededor de un grupo es una característica de ese grupo y que ésta es independiente de la na turaleza del resto de la molácula. Esjo ésta premisa fué capaz de derivar expresiones para las presiones parciales de los componentes de una mezcla líquida.

El siguiente trabajo sobre este campo fué el de Butler y colaboradores (1935), en dicho trabajo, Butler consideró la solución a dilución infinita de une serie de solutos en un solvente dado y observó una rel<u>a</u> ción simple entre el número de carbonos en el soluto y propiedades teles como coeficientes de actividad.

En 1962, Uilson y Deal presentaron un modelo de contribución de grupo de coeficientes de actividad a concentraciones finitas. Ellos supusieron que la energía libre de exceso de una solución se obtiene de dos partes: una asociada con las diferencias en la forme y la medida de las moléculas, y otra con las interacciones energéticos entre los grupos.

En 1969 Derr y Deal obtuvieron una expresión analítica para la parte de interacción energética entre grupos. Sus métodos se conocen generalmente como ASOG (analytical solutions of group methods) métodos de coluciones enalíticas de grupo.

Fredenslund, Jones y Prousnitz deserrollaron un modelo de contribución de grupos (1977) llamado UNIFAC basado en el UNIQUAC (Universal Qu<u>a</u> sichemical Equations); en su modelo usen una expresión, que depende de la temperatura, para los parámetros de interacción.

En 1974, Wilson y Cunningham introdujeron la ecuación de estado PFGC, combinaron el concepto de contribución de grupo con la aproximación a la ecuación de estado.

Todos los mátodos anteriores se han ido sucediendo unos a otros mejorandose cada vez más, pero el hecho de ser métodos empíricos los mantiene sújetos a cambios y están propensos a mejorarse mediante nuevas modificaciones que permitan un cálculo de propiedades más aproximado a la realidad.

Otra manera de establecer un modelo para el cálculo de propiedades termodinámicas es a partir de una ecuación para la función de partición de configuración o configuracional para la mezcla de grupos que contribuyen. Una ecuación de este tipo está basada en mecánica estadística y puede lograr una predicción tan buena como la de una ecuación empírica.

Un modelo bastente utilizado para al estado líquido es el modelo de celda, que se introdujo por primera vez en los trabajos de Lennard-Jones y Devonshire (1937), en este modelo se supone que cada molécula está con finada en una celda a causa de las fuerzas repulsivas de sus vecinas, y se supone que cada celda es la misma para todas las moléculas.

Este moldeo ha servido como base para el desarrollo de otros modelos en los cuales, tomando en cuenta ciertas consideraciones, se amplía el campo de aplicación para la descripción del comportamiento de fluidos po lares y cadenas de moléculas con mayor grado de complejidad.

Es a través de este desarrollo que se llega a la ecuación de estado C.O.R. (cadena de rotores), la cual está basada en un modelo de ecuación para la función de partición configuracional, esta función de partición de configuración ce formula para la mezcla de grupos que contribuyen, en este caso se desarrolla combinando la teoría de perturbación con la teorío de Prigogine para cadenas moleculares.

La ecuación de estado COR tiene un campo da aplicación más amplio que

las desarrolladas con anterioridad, pues funciona tan bien pare moléculas estructuralmente complejas como para moléculas simples, y os tan buena en la región de baja y moderada densidad como para la región densa del flui do .

La función de partición de configuración del fluido se compone de dos partes:

$$Q_{conf} = Q_{repulsión} Q_{atracción}$$
 (1)

en donde la $Q_{repulsión}$ se desarrolla mediante la teoría de Prigogine y toma en cuenta la forma y tamaño de las moléculas. La $Q_{atracción}$ se obtiene a partir de teoría de perturbación y proporciona la contribución de las fuerzas intermoleculares de atracción.

- Potencial intermolecular -

Las moléculas tienen cargas electricas en movimiento y no obstante que una molécula se concidere electricamente neutra, sus cargas pueden interactuar con otras, por lo que existen fuerzas de interacción electromagnéticas entre las moléculad. Esto se debe a que cuando una molécula se acerca a otra, las cargas de ambas se alteran y se separan ligeramente de sus posiciones originales de manera que la distancia media antre dos cargas opuestas en las dos moléculas es ligeramente menor que la distancia entre cargas iguales, de aquí resulta una fuerza de atracción molecular; pero por otro lado si las moléculas se acercan mucho más una a otra, de modo que sus cargas externas se traslapen, aparece una fuerza intermolecular de repulsión, las moléculas se repelen porque no hay forma de que una molécula se reordene para impedir la repulsión de los elec trones externos.

Si se supone que las moléculas son de simetría esférica, se puede explicar el comportamiento de fuerzas intermoleculares nobre un diagrama de enrgía potencial mutua entre das moléculas en función de la distancia r entre sus centros de ozoa. La fuerza F que actúa sobre cada molécula está relacionada con la energía potencial mediante la ecuación:

F = -dU/dr

Sobre la figura 1 se puede ubicar una molácula en el origen y observar que cuando se acerca la segunda molácula, ésta es atraida por la primera cuando la pendiente de U es positive y si se acerca más será repelida cuando la pendiente de U see negativa.

Sobre la figure 2 se puede observar el cambio de la energía o fuerza de interacción molecular a medida que la segunda molécula se acerca a la primera ubicada en O. Se puede ver que en $\mathbf{r} = \mathbf{r}_0$ no actúa fuerza alguna entre las moléculas y se tiene entonces un punto de equilibrio; en $\mathbf{r} > \mathbf{r}_0$ se tiene una fuerza de atracción de suave variación con respecto a la distancia, mientras que en $\mathbf{r} < \mathbf{r}_0$ so tiene una fuerza de repulsión con una variación brusca; de aquí parte lo que se conoce como teoría de pre-turbación, donde se habla de fuerzas intermoleculares de corto alcance (repulsión brusca) y fuerzas de largo alcance (atracción suave).

A altas dencidades y bajas temperaturas la estructura de un fluido es tá determinada por efectos de empaquetamiento geométrico asociados con la parte repulsiva del potencial intermolecular, mientras que las fuerzes de atracción proporcionan la energía suficiente para mantener juntas las moléculas teniendo poca influencia en la estructura del fluido; es decir, que a estas condiciones de temperatura y densidad, las consideraciones de energía del sistema hacen que un par de moléculas próximas tiendan a separarse una distancia dada que corresponde a un mínimo en el potencial intermolecular, vibrando alrededor de un punto r dentro de un rango de distancia que esté en proporción directa con el contenido de energía de las moléculas, logrando un determinado orden entre ellas bajo un equilibrio dinámico de fuerzas.

De lo anterior se puede observar que para la estructura de la materia existe desde un ordenamiento de corto alcance, cuando las moléculas sesitúan a una distancia promedio r_o , característico del estado sólido, hesta un movimiento alcatorio de las moléculas característico del estado gaseoso, por lo que en principio mediante el conocimiento del comportamiento del potential intermolecular a través de los conceptos de teoría de perturbación se podría explicar el comportamiento del sistema dado en toda la goma de densidades observando simplemente la forma que teman tan

7-A

to el potencial de atracción como el de repulsión.

- Teoría de perturbación -

Para desarrollar una ecuación de estado mediante contribuciones de grupo, que se pueda aplicar tanto en el estado líquido como en fase vapor, es necesario establecer una ecuación en la que los parámetros tengan sentido físico significativo.

La función de partición configuracional (ec. 1) contiene en si el con cepto de Van Der Waals y si se expresaran en forma apropiada les fuerzas de repulsión y atracción, entonces se estaris expresando directamente la ecuación de estado de Van Der Waals.

Ya que el papel principal dentro de la estructura de un fluido lo ti<u>e</u> nan las fuerzas de repulsión y una menor parte se debe e las fuerzas de atracción, se puede entonces relacionar las propiedades de un estado dado con un sistema de referencia que caracterice a las fuerzas de repulsión con propiedades al equilibrio perfectamente conocidas, mientras que las fuerzas de atracción se tratan como una perturbación.

La teoría de perturbación ha contribuido mucho en los últimos años p<u>e</u> ra comprender el comportamiento de flúidos densos; según Henderson (1979) existen tres métodos para obtener la función de partición. El primer método es la simulación, en donde se toma un juego de aproximadamente 100 moléculas en una caja con condiciones de frontere periódices (pare minimizar los efectos de superficie) y se simula tanto el tiempo como la evo lución estadística del sistema, una revisión detallada se puede encontrar en Barker y Henderson (1976). El método involucra bastantes cálculos y a causa de ello no llega a ser una herramienta de rutina en ingeniería química, sin embargo es un método completamente general.

Las simulaciones por computadora no dan directamente la función de ~ partición, pero se obtienen derivadas de la misma y entonces esta se obtiene por integración.

El segundo método es el de ecuación integral, en ésta se formula y se resuelve alguna ecuación integral aproximada para la función de distrib<u>u</u> ción radial. El método utiliza mucho menos cálculos por computadora que las simulaciones, pero de cualquier forma incluye aún los suficientes co

mo para que ses práctico como herramiente de rutina en ingeniería química; sin embargo, en algunos casos en los que estes ecuaciones integrales tienen soluciones enalíticas, el método pudiera ser interesente para los ingenieros químicos.

En Barker y Henderson (1976) se puede encontrar una discusión acerca de la derivación de veries ecuaciones integrales y detalles en cuanto a su solución, usualmente numérica.

La teoría de perturbación es el más antiguo de los tres métodos; este se remonta a Van Der Waals, sin embargo su utilidad no había sido apreciada por los teóricos hasta las dos últimas decadas.

En teoría de perturbación se supone que se tiene un conocimiento completo acerce de algún sisteme de referencia, o sisteme no perturbado. Se considere que las interacciones moleculares son aditivas por pares y es posible introducir dentro de estas interacciones el efecto de otras de mayor orden, de modo que el potencial de un par de moléculas (i,j) se puede escribir de la siguiente forma:

U(i,j) = Uo(i,j) + w'(i,j)

donde Uo es el potencial molecular por pares del sistema de referencia y w' es la perturbación. De aquí que la función de partición de la energía potencial se puede escribir en la forma de la ecuación (1):

donde Q_{rep} se determina a partir del tamaño de las moléculas y Q_{atr} esta ré definido por el campo de potencial uniforme originado por las fuerzas de atracción.

(2)

El sistema de esferas duras ha sido el más empleado como sistema de referencia, el potencial de este sistema se define de la siguiente forma:

donde 🖷 es el diámetro molecular para acão caso.

La teoría de perturbación es une horramiente práctice de cálculo en ingeniería químico; todo lo que se requiere es la salacción de aleán par potencial y una determinación del parámetro potencial.

Para nuchos escor el ostancial 6:12 de Lennard-Jones es una selección conveniente, ya que los parámetros e y o están tobulados (Hirschfalder y Curtis, 1954) para muchos sustancias: La teoría de perturbación puede ser una quía útil para seleccionar una ecuación de estudo.

- Teoría de Prigogine pera cadenas moleculares -

Pora fluidos simples en los que el estado de referencia es el de esfe ra dura, la función de partición del fluido describe simplemente el movi miento traslacional de la esfera dura, pero cuando tenenos moléculas com plejas existen adomás del novimiento traslacional los modos de retación y vibración que tembien contribuyen en el comportamiento de la molécula.

Para densidades tan altas como las del estado sólido o las del estado líquido más abajo de la temperatura crítica, se nuede esperar que exista un cierto orden en la distribución de las moléculas por un lado, no puede haber distancias intermoleculares menores que el diámetro molecular ya que el efecto de las fuerzas repulsivas entre moléculas vecinas no lo por mite; por etro lado, las distancias más grandes que las distancias inter moleculares medias son estadísticamente muy improbables, asto introduce una regularidad en el especie de moléculas vecinas con una distancia intermolecular media del orden del diámetro molecular. Por esta razón las fluctuaciones de densidad decrecen fuertemente cuendo el voluman dispori ble por molécula tiende a su valor mínimo.

Esta estructura más o mànas reguler forme las bases del modelo da ce<u>l</u> da, introducido por Lonnard-Jones y Devonshire (1937), en su forma más simple.

Portigndo de este modelo Prigogino 1957, establece que una cadena molecular como la de la figura 3 se puede tratar de la siguiente forma:

El primer segmento tiene un movimiento de treslación como el de uno molécule libre, os decir en tres dimensiones; el segundo segmento rota Figura 3 : Modelo de cadena de rotores que represente a la molécule real.

Partiendo del modelo de celda, Prigogine establece los grados de libertad de movimiento de una cadena molecular como la de la figure y en este modelo de cadena molecular se basa la acuación de estado cadena de rotores para representar a la molécula real.

10-A

en una superficie esférica alrededor del primer segmento, o sea en dos dimensiones; si el ángulo 123 puede adoptar cualquier valor, entonces el movimiento del segmento 3 será tambien en dos dimensiones, pero si el án gulo 123 se mantiene fijo por las fuerzas de valencis entonces el segmen to tras rotará solemente en una dirección describiendo un circulo. De igual forma se puede analizar el movimiento de los siguientes segmentos. En el modelo desarrollado para la scuación de estado COR, todos los movi mientos rotacionales se consideran equivalentes, y habrá tentos como gra do de libertad rotacionales existen en la molécula, incluyendo las rotaciones internas alrededor de lineas de valencie. Se definirá a "c" como el número de grados de libertad rotacionales equivalentes de la molécula.

El parámetro "c" mide la flexibilidad en la menera de rotar del ángulo 123 esí como la similitud en el movimiento del tercar segmento con el se gundo. Entre más flexible sea el ángulo, mayor es el valor de "c", y entre menos flexible, menor es el valor de "c". Aquí tento los grados de libertad rotacionales como la manera de rotar contribuyen al valor de c; además se toman en cuenta tembien otros modos vibracionales, como son los alargamientos, que se tratan como modos rotacionales equivalentes y que contribuyen en forme adicional al valor de "c".

Combinando los grados rotacionales equivalentes de todos los segmentos se obtiene la función de pertición rotacional de la molécula entera; y tomando en cuenta el movimiento traslacional, se puede expreser la ecu (1) como:

$$Q_{conf} = Q_t q_r^{Nc} Q_{at}$$

donte Q_t es la función de partición traslecional; q_r la función de part<u>i</u> ción de un rotor elemental; N el número de moléculas; y c los grados de libertad de rotación equivalentes para toda la cadena molecular.

(3)

Ye que haste el momento no se conoce una función de partición rotaci<u>o</u> nal configuracional, Prigogine reemplazó q_r con una función de partición traelacional equivalente; Beret y Prouenitz (1975) extendieron la aprox<u>i</u> mación traelacional equivalente mediante una función de partición que es la función más simple para satisfacer las condiciones de fronters, incl<u>u</u> yendo la ley de gas ideal a volumen infinito. Las funciones de partición de la ecuación (3) se pueden expreser en función de N,V y T. Para la traslacional se usen las funciones de partición obtenidas por Nitta y colaboradores (1977) a partir de la ecuación de estado para esfera dura de Carnahan y Starling.

$$Q_{t} = \frac{V^{N}}{NI} \exp \left[-\frac{N\left(4\frac{\tilde{v}}{t} - 3\right)}{\left[\frac{\tilde{v}}{t} - 1\right]^{2}} \right]$$
(4)

donde v es el volumen reducido que se define como V/Vo, Vo es el volumen empecado más cercano, y t = $\pi \sqrt{2/6}$ = 0.7405 .

Para obtener la función de pertición de rotación, se hace lo siguiente; consideremos e una molécula-cadena de dos segmentos, que tiene tres grados de movimiento traslacional, dos grados rotacionales, y no tiene fuerzas de atracción, esí para un conjunto de estas molécules la ecuación (3) se simplifica de la siguiente manera:

$$Q_{db} = Q_t q_r^{2N}$$
(5)

Por otro lado se conoce la ecuación de estado para estas moléculas desarrollada por Boublik y Nezbeda (1977), que es la siguiente:

$$P_{db} = \frac{NkT}{V} \left[\left[\frac{V}{\tau} \right]^3 + (3\alpha - 2) \left[\frac{V}{\tau} \right]^2 + (3\alpha^2 - 3\alpha + 1) \frac{V}{\tau} - \alpha^2 \right] / \left[\frac{V}{\tau} - 1 \right]^3$$
(6)

donde p_{db} es la presión para este sistema de moléculas y es una constante dada por la relación de la distancia intermolecular entre los centros de las dos esferas con el diámetro de las mismas; esta ecuación la usaron Kohler (1979) y Fisher (1980) como presión repulsiva de referencia en su teoría de perturbación para moléculas diatómicas, y obtuvieron muy buenos resultados, si la integramos de acuerdo a:

$$\frac{\partial \ln q_{db}}{\partial V}_{T,N} = \frac{P_{db}}{kT}$$

y utilizando la condición de frontera cuando V $\longrightarrow \infty$, $Q_{db} = V^N/VI$ se obtiene la función de partición de N moléculas diatómicas duras,

$$Q_{db} = \frac{\sqrt{N}}{N!} \left[\frac{\tilde{v}}{\tilde{\tau}} \right]^{\alpha - 1!} exp \left[-\frac{(\alpha ^2 - 3\alpha)}{[\tilde{\tau} - 1]^2} \right]^{N}$$
(7)

combinendo las ecuaciones (4), (5), (6) y (7) se obtiene la función de partición rotacional:

$$q_{\mathbf{r}} = \left[\frac{\frac{\vec{v}}{\vec{\tau}}}{\frac{\vec{v}}{\tau}-1}\right]^{\frac{(\alpha^2-1)}{2}} \exp\left[-\frac{(\alpha^2+3\alpha-4)\frac{\vec{v}}{\vec{\tau}}-3(\alpha-1)}{2\left[\frac{\vec{v}}{\tau}-1\right]^2}\right] \quad (B)$$

Finelmente el término de atracción perturbativa Q_{atr} , lo expresaron Alder y colaboradores (1972) en términos de series de potencias,

$$Q_{atr} = exp \left[-\frac{Nu}{kT} \sum_{niff} \frac{Anm}{T^{n-1}} \right]$$
(9)

en donde u es la energía característica, $T^* = u/k$, y $\tilde{T} = T/T^*$.

Para moléculas no esféricas, Chen y Kreglawski encontraron que u/k es dependiente de la temperatura; Chien y Chao (1983) llegaron a un result<u>a</u> do similar, expresado de la siguiente forma:

$$\frac{U}{R} = 7^{*} \left[1 + \frac{C}{2} \left(B_{0} + \frac{B_{1}}{T_{1}} + B_{2} T \right) \right]$$
(10)

Para moléculas simples c = 0 y entonces u/k toma su valor de T*. Para obtener el término de atracción utilizado por Chien, solamente se sustituye (10) en (9). De esta manera se obtiene finalmente la función de partición configurecional completa mediante la sustitución respectiva de los términos(4), (8) y (9) en la ecuación (3).

$$Q_{\text{conf}} = \frac{U_{\text{N}}^{\text{N}}}{\text{N}^{2}} \exp \left[-\frac{N(4\frac{\tilde{v}}{\tilde{\tau}} - 3)}{\left[\frac{\tilde{v}}{\tilde{\tau}} - 1\right]^{2}} \right] \cdot \left[\frac{\tilde{v}}{\tilde{\tau}} - \frac{1}{\tilde{\tau}} \right]^{(\alpha - 1)} \left[\frac{\tilde{v}}{\tilde{\tau}} - 1 \right]^{(\alpha - 1)} \left[\frac{\tilde{v}}{\tilde{\tau}} - \frac{1}{\tilde{\tau}} \right]^{(\alpha - 1)} \left[\frac{N_{\text{C}}}{\tilde{\tau}} - \frac{1}{\tilde{\tau}$$

- Ecuación de estado -

De este manera Chien y Chao obtienen la ecuación de estado cadena de rotores COR que se deriva de la función de partición (11) a través de procedimientos estándar de termodinámice estadística, (ver table 1A del apéndice A)

$$\frac{pV}{nRT} = 1 + \frac{4\left(\frac{\psi}{t}\right)^2 - 2\left(\frac{\psi}{t}\right)}{\left[\frac{\psi}{t} - 1\right]^3} + \frac{c}{\left[\frac{\psi}{t} - 1\right]^3} + \left[1 + \frac{c}{2}\left(Bc + \frac{B_1}{T} + B_2 \tilde{T}\right)\right] \sum_{nm} \frac{Anm}{\tilde{T}^n} \frac{Anm}{\tilde{T}^n}$$

(12)

Los valores de los coeficientes Anm los determinaron Chien y Chao mediante el ajuste de la ecuación para datos de presión de vapor, energía interne y datos pVT; tambien determinaron las constantes Bo, B_1 , y B_2 ajustando para datos de presión de vapor de etano.

Las constantes se dan en la siguiente tabla:

i	86	= 0.20095	⁸ 1 = 0.0	19 8 ₂ =	-0.0632		
Anm	f	<u> </u>	• 2	• 3	4	5	6
	1	-9.04214	-125.11	525,415	- 859.803	634.635	- 167.336
	z	-1.12517	548,709	-2566.20	4471.80	-3402,75	939,226
	3	-0.809958	-838,503	4398.77	-8598.81	7409.90	-2365.34
	4	-02672378	438.783	-2482.01	5289.80	=5017:d9	1784,58

Tambien se puede utilizar la relación de energía y encontrar la energi gis interna (table 1A del apéndice A)

$$\frac{E}{nRT} = 1 + \frac{c}{2} (B_0 + \frac{B_1}{T} + B_2 \tilde{T}) \sum_{nm} \frac{A_{nm}}{\tilde{T}^n \tilde{v}^m} + \frac{c}{2} (\frac{B_1}{\tilde{T}} - B_2 \tilde{T}) \sum_{nm} \frac{A_{nm}}{\tilde{T}^n \tilde{v}^m} + \frac{E^0}{nRT}$$
(13)

y el coeficiente de fugacidad:

$$\ln \frac{f}{p} = -\ln \frac{pV}{nRT} + \frac{4 \frac{v}{2} - 3}{\left[\frac{v}{2} - 1\right]^2} - \frac{c}{2} (\alpha - 1) \left[(\alpha + 1) \ln \frac{\frac{v}{2}}{\frac{v}{2} - 1} - \frac{(\alpha + 4) \frac{v}{2} - 3}{\frac{v}{2} - 1} \right] + \left[1 + \frac{c}{2} (Bc + \frac{B}{1} + B_2 \tilde{T}) \right] \sum_{nm} \frac{Anm}{\tilde{T}^n \tilde{v}^m} + \frac{pV}{nRT} - 1$$
(14)

Se puede tambien obtener la expresión para la entropia;

$$S = \frac{E - E^{O}}{T} - nR \left[ln \frac{f}{p} + 1 - \frac{pV}{nRT} \right] + S^{O}$$
(15)

y el segundo coeficiente virial a partir de la ecuación de estado,

$$\frac{B}{V_0} = \tau \left[4 + \frac{3\alpha}{2} (\alpha - 1) \right] + \left[1 + \frac{\alpha}{2} (B\alpha + \frac{B_1}{\widetilde{T}} + B_2 \widetilde{T}) \right] \sum_{nm} \frac{Anm}{T^n} (16)$$

La ecuación de estado desarrollada en este capítulo, (ecuación 12) tiene tres parámetros característicos para cada compuesto: T*.Vo v c.

T* representa la energía de atracción entre las moléculas, Vo representa el tamaño de la molécula y o la flexibilided de la misma, que es el número de grados de libeztad rotacionales equivalentes.

La ecuación (12) está escrita en función de términos reducidos:

$$z = z \left(\frac{T}{\sqrt{T}}, \frac{V}{\sqrt{T}}, c \right)$$

Como se verá en el capítulo siguiente T* es proporcional a la tempera tura crítica y Vo al volumen crítico. Por consiguiente esta ecuación de estado pertenece al teorema de estados correspondientes de tras parámetros. Además el parámetro c está relecionado con el factor acántrico de Pitzer.

Note 1. En las ecuaciones (13) y (15), E⁰ y S⁰ representan la energía i<u>n</u> terna y la entropía del gas ideal a la temperatura y presión del fluido real.

- Cálculo de la presión de vapor -

Mediante algún mátodo numérico como el de Newton-Raphson se puede ob tener la presión de vapor, el procedimiento es el siguiente: Se supone un valor inicial para el volumen del vapor y uno para el volumen del li quido, $\tilde{\mathbf{v}}_1^V$ $\tilde{\mathbf{v}}_1^L$; con ellos se calcula la presión y la fugacidad para vapor y líquido respectivamenta, haciendo uso de las ecuaciones (12) y (14)

$$p = \frac{zRT}{V}$$

Le presión y la fugacidad deben ser prácticamente iguales tanto para vapor como para líquido, esta condición se vigila mediante una tolerancia, es decir:

> error en le presión = $p_1^V - p_1^L$ error en le fugecided = $f_1^V - f_1^L$

dichos errores deben ser menores que la tolerencia, le cual se fija a criterio personal. Si la condición se cumple entonces se ha encontrado la presión de vapor; pero como generalmente no se cumple a la primera suposición, entonces se dan valores incrementedos de volumen para vapor v líquido y se calculan les presiones y fugacidades correspondientes

$$v_2^{L} = v_1^{L} + 0.1 - p_2^{U} + p_2^{V}$$

luego se obtienen les derivedes numéricas de presión y fugacidad con re<u>s</u> pecto al volumen:

$$\frac{3p}{3V}^{L} = \frac{p_{1:}^{L} - p_{2}^{L}}{0.1} ; \frac{3p}{3V}^{V} = \frac{p_{2}^{V} - p_{1:}^{V}}{0.1}$$
$$\frac{3p}{3V}^{L} = \frac{r_{1:}^{L} - r_{2}^{L}}{0.1} ; \frac{3p}{3V}^{V} = \frac{r_{2}^{V} - r_{1:}^{U}}{0.1}$$

Como se tiene que:

$$p^{L} = p^{1}L + \frac{2p}{30}L \wedge \overline{v}^{L}$$
$$p^{V} = p^{1}V + \frac{2p}{30} \wedge \overline{v}^{V}$$

y se debe cumplir la igualdad;

entonces,

$$\mathbf{p}_{\mathbf{I}}^{\mathbf{L}} + \frac{\mathbf{p}_{\mathbf{D}}}{\mathbf{p}_{\mathbf{V}}}^{\mathbf{L}} - \frac{\mathbf{p}_{\mathbf{D}}}{\mathbf{p}_{\mathbf{V}}}^{\mathbf{L}} = \mathbf{p}_{\mathbf{V}}^{\mathbf{V}} + \frac{\mathbf{p}_{\mathbf{D}}}{\mathbf{p}_{\mathbf{V}}}^{\mathbf{V}} - \mathbf{p}_{\mathbf{V}}^{\mathbf{U}}$$

v también;

$$\frac{\partial f}{\partial \mathcal{F}} \nabla \mathcal{F}^{V} - \frac{\partial f}{\partial \mathcal{F}} \nabla \mathcal{F}^{L} = -(f)^{V} - f)^{L}$$

de las dos últimas expresiones se obtienen les incógnites $\Delta \vec{v}^V \ y \ \Delta \vec{v}^L$, una vez obtenidos los valores de talos deltas o incrementos, se puede obtener un nuevo valor para los volumenes del líquido y vapor, y probar nuevamente la condición de error una vez obtenidas las nuevas presiones y fugacidadas.

$$\vec{v}^{L} = \vec{v}_{1}^{L} + \Delta v^{L}$$

$$\vec{v}^{L} = \vec{v}_{1}^{L} + \Delta v^{L}$$

Este método es iterativo o de pruebe y error, es decir que se van probando los valores hasta cumplir la condición, y estos se van obteniendo del antorior.

A continuación se presenta el diagrama de flujo para obtener la presión de vapor mediante el método descrito y se anexa el programa en lenquaje fortran.

Nota: Para calcular presión y fugacidad con la ecuación de estado se requiere específicar los parámetros c y T*.

KFILE:	EVM/PVC	1 (01/06/35)						
100	\$ RFS	ET FREE	20					
200	Č PŘČ	GRANA PARA CA	LCULAR PRES	TONES DE M	ላቦንወ			
400 500 700 800		DIMENSION A Conton/Read	(1),10) (/E_51,01,01,02)	, A, X, Y				
858 1000 1001 1200		J=4; K=6 READ(5,/)E,A READ(5,/)E,A		0L (₩,₩),₩=1,1	K),N=1,J),	X,Y		
1300		PRINT/ "C="	הענייב חעיינ י ניי	,"TN=",TN		•		
1200		00 100 L =1,0 VIV=VV	•	•		· · · ·		
1800 1900 2000 2100		DO 10 I=0.25 CALL PF(V1V CALL PF(V1L ERBORP=P1V-P		•				
2200		ERRORF#F1V~F IF(A3S(ERROP	1L P).LE.(TOL+	(P1V+P1L))	_AND_ARSCE	RRORF) .LE.	(TOL+(F1L	.+F1V
2500		CALL PECVIV+ CALL PECVIL+	1. 1001 . P2V.	F2V,Z7V)				
2300		DPL=(P1L-P2L DFV=(F2V-F1V	3/ 11 0001 +V					
3000 3100 3200		DFL=(F1L-F2L DELVL=((DFV+ DELVV=(DPL+)	D/(D+DDD1*V ERRORP/DPV) ELVL→ERRORP	1L) -ERRORF)/()/DPV	(DEV*DPL/D	PV)-DFL)		
3300 3400 3500	10	V1V=V1V+DELV V1L=V1L+DELV PV=(P1L+P1V)	V 1 72					
3707	100	- 48110(3,30)T - TD=T0+DT - FORMAT(//15/	6,7V 8754059878	0.44 <u>6</u> ¥ 40 1	N.C. V.ADUN			
3900 4000 4100	30	FORMAT (/15X) END	61125,4x,61	1.55	UE VAR I			
4300	C	SUBRUTINA PAR	A CALCULAR	PRESION Y	FUGACIDAD			
4500		SUBROUTINE P DIMENSION AC	10,175 FUG,Z)				
7800 4900 5000		COMMON/READ/ COMMON/READ/ T=TD/TO	E,B7,B1,B2, T6,C,Y7,T0;	A,X,Y R				
5200 5300		Fv=0-1 s2=0;.s1=7						
5500 5600 5700	1	D0 1 H=1 K S0=S0+M*A(H, S1=S1+A(N,4)	3) / (T* +1) * (V / (T* *') * (V+E	+E)**M))**M)	···· . ·			
5300 5900 6000	.5	CONTINUE F1T=1+(C/2)+ F1V=1+(4+U++ FV++3	\$23#13/FV#2	*T) 3+(c/2)*(Y-	-11*(3*U++)	2+3+4+1)-(4	+1>>/	
6200 6300 6400		Z=F1V+F1T+S7 VD=V0+V P=Z+3+TD/VD		. *	•			
6500 6600 6700		FI=(1/2)*EXP *)*U=3)/FV FUG=FI*P	((4*1-3)/FV **?))+F1T*S	**2-(C/2)* 1+Z-1)	(Y-1)*((Y+	1)*AL0G(U/	FV)-(((Y+	4
2900 2900		RETURN End						
	· ·						•	
			,	1. A.				

CAPITULO III

CORRELACION DE PARAMETROS DE LA ECUACION DE ESTADO CON PROPIEDADES CRITICAS.

- Conceptos generales -
- Cálculo del punto crítico -
- Algoritmos para la obtención de correlaciones -
- Correlaciones -
- Parámetros -

- Conceptos generales -

Los perámetros T*, c y Vo de la ecuación de estado COR para fluidos puros se obtienen mediante el ajuste de datos de equilibrio líquido-vapor. Chien y Cheo (1983) den una lista con dichos parámetros para elgunos compuestos y dicen que los valores de los mismos están sujetos a modificaciones en la medida en que llague a ser disponible una extensión mayor de datos.

La ventaja de una correlación generalizada es que puede empleares pare predecir propiedades de sustancias sobre las cuales se conocen muy po cos detos experimentales.

Algunas ecuaciones generalizadas sólo necesitan la temperatura y la presión críticas de la sustancia, aquí la suposición bésica es que el factor de compresibilidad y algunas otras propiedades termodinémicas de cualquier gas se pueden determinar e través de su temperatura y presión reducidas ya que el princípio de estados correspondientes sugiere que es posible obtener una correlación de los datos experimentales cuendo las diversas sustancias están en sus estados correspondientes, es decir a iguales velores de Tr, Pr y Vr (temperatura, presión y volumen reducidos) pero como esto es cierto sólo en parte, se han desarrollado correlaciones generalizadas que incorporan un tercer parámetro para contrarrestar las limitaciones del principio de los estados correspondientes. El factor acéntrico de Pitzer (w) es el que ha tenido una aceptación general, y está definido con referencia a la presión de vapor de cada sustancia.

De aquí que para obtener una correlación generalizada de la ecuación de estado COR, es necesario que se pueda definir en función de temperatura y presión críticas y factor acéntrico de Pitzer (Pc, Tc, w), para no depender de los parámetros T*, c y Vo; llavar a cabo esto requiere establecer una relación entre los parámetros de la ecuación y los datos críticos.

- Cálculo del punto crítico -

La idea general es obtener los datos críticos de algunas sustancias utilizando la ecuación de estado y sus parámetros originales T*, c y Vo; luego calcular la presión de vapor a una temperatura reducida de 0.7 Tc, y de equí obtener el factor w; une vez obtenidos estos datos hay que ver cual es la mejor forma en que se pueden relacionar los factores w y c para poder generalizar la ecuación.

Se tiene la siguiente expresión deducida de la ecuación da estado CDR

si de fija c, se pueden obtener \vec{v} y $\vec{1}$ en el punto crítico, utilizando el método numérico de Newton-Raphson para dos variables de la siguiente manara:

Se sebe que en el punto critico

$$\frac{2p}{\partial V_T} = 0 \qquad V \qquad \frac{\partial^2 p}{\partial V_T} = 0$$

además

$$\frac{\partial p}{\partial \vec{v}_{T}} = \mathbf{f}_{1} (\vec{v}, \vec{T})$$
(1)
$$\frac{\partial^{2} p}{\partial \vec{v}_{T}^{2}} = \mathbf{f}_{2} (\vec{v}, \vec{T})$$
(2)

si se toma una diferencia de este par de funciones desde un punto inicial i;

$$df_{1} = f_{1} (\vec{v}, \vec{\tau}) - f_{1} (\vec{v}_{1}, \vec{\tau}_{1}) = \frac{\partial f_{1}}{\partial \vec{v}} \Delta \vec{v} + \frac{\partial f_{1}}{\partial \vec{\tau}} \Delta \vec{\tau}$$
$$df_{2} = f_{2} (\vec{v}, \vec{\tau}) - f_{2} (\vec{v}_{1}, \vec{\tau}_{1}) = \frac{\partial f_{2}}{\partial \vec{v}} \Delta \vec{v} + \frac{\partial f_{2}}{\partial \vec{\tau}} \Delta \vec{\tau}$$

y como para encontrar los valores de v y T que sean raíces debe cumplirse que:

$$f_1(\vec{v}, \vec{T}) = 0$$

 $f_2(\vec{v}, \vec{T}) = 0$

entonces,

$$-\mathbf{f}_{1}\left(\vec{v}_{1}, \, \vec{T}_{1}\right) = \frac{\partial f_{1}}{\partial \vec{v}} \, \mathbf{v}_{1}\vec{T}_{1} \, \Delta \, \vec{v} + \frac{\partial f_{1}}{\partial \vec{\tau}} \, \vec{v}_{1}\vec{T}_{1} \, \Delta \, \vec{\tau}$$
(3)

$$-f_{2}(\tilde{v}_{1},\tilde{t}_{1}) = \frac{\partial f_{2}}{\partial \tilde{v}} \tilde{v}_{1}\tilde{t}_{1} \Delta \tilde{v} + \frac{\partial f_{2}}{\partial \tilde{\tau}} \tilde{v}_{1}\tilde{t}_{1} \Delta \tilde{t}$$
(4)

de aquí se pueden obtener los incrementos $\Delta \tilde{v} \neq \Delta \tilde{T}$ cuando se tiene un valor inicial de volumen y temperatura $\tilde{v_1} \neq \tilde{T_1}$; para poder utili_sar este método se dan primero dichos valores iniciales, luego se calculan les funciones $f_1 \neq f_2$, y si los valores supuestos son raíces entonces 'as funciones $f_1 \neq f_2$ deben valer cero, pero si esto no sucede se deben obt<u>e</u> ner nuevos valores de volumen y temperatura con :

$$\vec{\mathbf{v}} = \vec{\mathbf{v}}_{\mathbf{i}} + \mathbf{\Delta}\vec{\mathbf{v}}$$
$$\vec{\mathbf{T}} = \vec{\mathbf{T}}_{\mathbf{i}} + \mathbf{\Delta}\vec{\mathbf{T}}$$

para volver e calcular $f_1 \ y \ f_2$; como estas funciones no llegan a valer absolutamente cero, se da una tolerancia próxima al cero y se limita con los incrementos $\Delta \ \tilde{v} \ y \ \Delta \ \tilde{t}$, cuando estos tengan un valor suficientemente pequeño ya no habrá gran variación en los valores nuevos de volumen y temperatura, y por lo tanto tampoco en los valores de las funciones $f_1 \ y$ f_2 , entonces se tendrán los valores de las raíces $\vec{v} \ y \ \tilde{t}$, para los cuales $f_1 \ y \ f_2$ serán muy cercanos a cero.

Aplicando las ecuaciones (1) y (2) en (3) y (4) respectivemente se obtiene el sistema de ecuaciones que junto con la ecuación de estado permiten obtener los incrementos $\Delta \tilde{v} y \Delta \tilde{T}$

$$- \frac{\partial p}{\partial \vec{v}} \tilde{v}_{1} \tilde{r}_{1} = \frac{\partial^{2} p}{\partial \vec{v}^{2}} \tilde{v}_{1} \tilde{r}_{1} \Delta \tilde{v} + \frac{\partial}{\partial \tilde{\tau}} \frac{\partial p}{\partial \vec{v}} \tilde{v}_{1} \tilde{r}_{1} \Delta \tilde{\tau}$$
$$- \frac{\partial^{2} p}{\partial \tilde{v}^{2}} \tilde{v}_{1} \tilde{r}_{1} = \frac{\partial}{\partial \tilde{v}} \frac{\partial^{2} p}{\partial \tilde{v}^{2}} \tilde{v}_{1} \tilde{r}_{1} \Delta \tilde{v} + \frac{\partial}{\partial \tilde{\tau}} \frac{\partial^{2} p}{\partial \tilde{v}^{2}} \tilde{v}_{1} \tilde{r}_{1} \Delta \tilde{\tau}$$

Como se hable del punto crítico, los valores obtenidos son \tilde{v}_c y \tilde{t}_c ; pero para la ecuación de estado se tienen las siguientes igueldades,

$$\vec{v} = \frac{V}{V_0}$$
 y $\vec{T} = \frac{T}{T_*}$

por lo tanto se pueden calcular los datos críticos

y

Teniendo To se puede calcular la presión de vapor a una temperatura reducida Tr = 0.7 To mediante el método, descrito en el capítulo enterior, para presión de vapor.

De aquí so puede obtener el factor acéntrico como:

$$w = -\log \frac{p^0}{P_c} - 1$$

El siguiente programa sirve para calcular, partiendo del valor "c", toda la serie de valores descrita hasta llegar a w. Este valor del factor acántrico es el que predice la ecuación de ostado COR, el cual no es necesariamente igual al valor experimental, y es función solemente del parámetro "c".

122	ARES'	T FRES
400	r.	PROJEKTA PARA INITILAR PATOS CRETTINS Y V A PARTER DEL EACTOR C
200 200 200 100 100 100 100 100		918693491 3(11,13) 2(30) 70(0) 200(20) 91861340 4 8(2) 7(50) 70(0) 200(20) 638434786 92(2) 1(53) 32 42% 706 63944782 92(2) 2(5) 1(5)
101		₩R IT 9(5, 57) J = 5/2 K = 5/2 J RE 10(5, 2/3) 1/212, ((1(1/4), 3=1, 2)) 1 = 1, 2) X, Y, TOL RE 10(5, 2/3 , for(1), L=1, 2), (T) (1) 2, 2 = 7, 0), (V) (L) 2, L=1, 0) BE 10(5, 2/2 = 2, 4) (2, 2), (T) (1) 2, 2 = 7, 0), (V) (L) 2, L=1, 0) BE 10(5, 2/2 = 2, 4) (2, 2), (T) (1) 2, 2 = 7, 0), (V) (L) 2, L=1, 0) BE 10(5, 2/2 = 2, 4) (2, 2), (T) (1) 2, 2 = 7, 0), (V) (L) 2, L=1, 0) BE 10(5, 2/2 = 2, 4) (2, 2), (T) (1) 2, 2 = 7, 0), (V) (L) 2, L=1, 0) BE 10(5, 2/2 = 2, 4) (2, 2), (T) (1) 2, 2 = 7, 0), (V) (L) 2, 2 = 7, 0), (T) (1) 2, 2 = 7, 0), (V) (L) 2, 2 = 7, 0), (V) (V) (L) 2, 2 = 7, 0), (V)
2012	J	TF=1, 120, 777, 17, 17, 17, 17, 17, 17, 17, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12
		S1=7, 12=7, 31+1, 3+=7, 3+=7, 5+=7, F/=(U(C)/(1) F(V=-1/V(L)++3+(+7, 2+=3)(V(L)++3)(1)++3=(/+(L)/(++3=4/(++2+(((L)/ Y7)+7)=1)+(7)/(+2)+(1)++3) Y(V+3)((L)/(++3)+(1)++3)
·		E2V12/V(L)**3-13/(3**7*FV**3*(63*V(L))/2***********************************
100 1500 1500	ŗ	55-3-3+4-55 - 31-35+5-4-4-4-4-4-4-4-4-10 + - 64-25+4-7+10+7-25+4-3+66407-25+4-10 - 33-33+4(3+4-3+5+10+2-5+10+4-4(3-10)+4-(3-10+4-0)+7-4-4-4-4-4-
, <u>, , , , , , , , , , , , , , , , , , </u>	1	CONTINE FIVE FIVE FVETT(L)+FIVETT+SI FVETT(L)+FIVETT+SI IS((19355)/T)+(15(F)/T)+LC.(7+R)) SO TO 7
	7	0/=0//2 0/=0//2 9 TO 1 9=0.03(F1/T) 9=0.03(F1/T)
4107 1177		1/201523 Way52 2017-33(1)/2)+(-3*/73(1)+*?+32) 2013-1/25 2014-14
		S3::33*{*'}***:5:1**3=11*******:*11*********************
111 111 111	4	ማሽ # ኃይታቸሽ 1 ትህን ቅሽ ነት ቀን ቀንቅ ነቶ ትግራሽ ትህኑ አንድ በ1000 የምርቱ እትትህት የምርት እትትህ የመጠላቸው ነት ምንት ምር በእንዲሆኑ የርሆኑን እስለ የርሀኑን እስለ የርሀን ትህን የሆኑን ትህን የመለስ የርሀን እስት የርህት እስት እርሱ ትግራ ርስት የርሀን እ ምር በእንዲሆኑ የርህት የርህት እስለ የርሀን እስለ የርህን ትህን የሆኑን ትህን የመለስ የርህን እስት የርህት እስት እርሱ ትግራ ርስት የርሀን እ መስከር የርህት የርህት የርህት እስለ የርህት እስለ የሆኑን ትህን የሆኑን ትህን የመለስ የርህን እስት የርህት እስት እርሱ ትግራ ርስት የርህን እ መስከር የርህት የርህት የርህት እስለ የርህት እስለ የርህን ትህን የሆኑን ትህን የሆኑን የሆኑን የሆኑን የሆኑን የሆኑን ትህን የርህን የትህን የርህት እስት የርህት የርህት እስ የርህት የርህት የርህት የርህት እስለ የርህት እስለ የሆኑን ትህን የሆኑን ትህን የሆኑን የሆኑን የሆኑን የሆኑን የሆኑን የሆኑን የሆኑን የሆኑ
72 <u>7</u> 9 1127		

DR FILE: RV1/CON (31/36/36)

27 • -7 - 17) • Y / (+ +) - (+) / (+) + (+) / (+) + メトラダブ しんやてんびしし シップトロート ちょう くちしてゃう 2 \$7-51 27-52 - 14-121 27-33 - 14-124 31-352 + 14-124 51-342 (11) 51-342 (11) 51-342 (12) 24 ÷ 27 CALCULD OF DATOR SHITISON C 25=1+24=1+=>-3+1>/=(+++7+25(2>+5)+5/=5)+(3+3+2+7+4=(*+1)) /= /=V++7+5(1+1) T6=Y(L)+Y(1)+ V6=Y(L)+Y(2) T7==*7+F6 CALL PY(CTR, /17, /12, PY,L) ٠ CALCHED DOL FARTOR ADDITINGO " C W==ALJJ17(JV/5)1-1 FD73AT(2)(JTAL) 12 Y5C0823 CALCULADOS A PARTIR DE C Y SA SOLUCION * 16 LA 25 JACIDI (1977)24 (1977) # 25 HAVE JACIDI (1977)24 (1977) # 25 HAVE JACIDI (1977)24 (1977) # 25 JACIDI (1977)24 (1977) # 25 JACIDI (1977)24 (1977) # 25 JACIDI (1977)24 (1977) # 27 FT JACIDI (1977)24 (1977) # 27 FT JACIDI (1977)24 (1977)2 50 27 -67 : -ĒÐ IN PRODICT OF VIOR CON UNA TENPERATURA 1173 JTT 4A (2 A) A (1 A) (4 C) (2 A) 35590 IO A (1 C) (2 A) (4 C) C GUID JIIIE F 100(TT) / 10 / 10 / 10 / 10 90 10 IT F 7 CALL PE(/40) / 70 / TOL CALL PE(/40) / 70 / TOL CALL PE(/40) / 20 CALL PE(/40 / 10) / 2 • • रहेर ये स्थ 540

. . . 7 27

ว่าา :17

. . . .

.....

ະບຸກ ,,,,,

34- 7

 $\frac{1}{2}$

1011 1212

វិវីហ៍ ן גערין געריקען געריקען

133-7

1201

1407

່າງ į 1320 320 101

FALLA DEORIGEN
13200	C SUBRUTIAN PARA CALCH C TEVIENDO CO 10 DATI CI	AR PRESSON Y FUGACIONS CON LA ECUACIÓN COR . Volumen.
1500 15700 15700 15700 15700 15700 15700 14100 14200	SUBROUTINE PE(); DIMENBION ACTO J=4;K=6; DET COMMON/READ/E;T COMMON/READ/E;T T=TOTACL U=V/X	555757557777770L
44700 44700 44700 44700 44700 44700 44700 44700 44700 44700 44700 44700 44700	FY=U-1 S1=:; S1=1 D0 1; H=1; K S0=S0=M+X(H, H)/(1 S1=S1+A(N, H)/(T+ CONTINUE F1T=1+(5(L)/(2)*(1)	[**]*(}+E)**M) *4*(}+E)**M) \$]+]]/T+R]*T)
155560000000000000000000000000000000000	FV = *(4 × 1)**** Y = FV +*1 Z = FV1 + F1 T*S^ V >= Y0(L) *V P = Z * R*TD / V) F I = (1/2) * EX > ((*) *) *(U = 3) / FV * 3)) *' FUG = F1 *P P = T *P	J-3\/FV**2-(C(L)/2)*(Y-1)*((Y+1)*ALOG(U/FV)-(((°1T*S1+Z-¶)
13007	END	

En la table 1A se dan, para algunas sustencias, los valoros de datos críticos reducidos que se han calculado a partir de la ecuación de estado COR tal como la proponen Chien y Chao; en la tabla 18 se dan los valo res de datos críticos y factor acéntrico calculados con la misma ecuación y se comparan con los datos experimentales reportados para cada sus tancia.

En base a esta tabla se puede ver que aún cuando la ecuación de estado no predice en forma muy apropiada el punto crítico, si existe realme<u>n</u> te una relación entre el parámetro o y el factor acéntrico w, únicamente se necesita un polinomio que los relacione con el menor error posible.

Se puede establecer el parámetro c en función del factor acéntrico, y a su vez las propiedades críticas reducidas Tc y v_c en función de "c", de esta manera los parámetros T* y Vo quedarían en función de Tc, Pc y w y entonces la ecuación estaría generalizada.

- Algoritmos para la obtención de correlaciones -

Si se tiene una curva formada por parejas de datos (x,y) y se le qui<u>e</u> re ajustar una función f(x) = y, se puede minimizar el error de la siguiente manera; por ejemplo para un polinomio de segundo grado:

El error total sería la suma de todos los errores

$$\boldsymbol{\varepsilon}_{T} = \sum_{i=1}^{N} \boldsymbol{\varepsilon}_{i}$$

$$\mathbf{E}_{T} = \sum_{i=1}^{N} (\mathbf{y}_{celculada} - \mathbf{y}_{experimental})_{i}^{2}$$

donde,

 $y_{calculada} = k1 + k2 \pm k3 x^2$

Y_{experimental} = datos

N = número de parejas de datos

entonces

$$\mathbf{E}_{T} = \sum_{i=1}^{N} (k1 + k2 x + k3 x^{2} - y_{B})_{i}$$

$$\frac{\partial \epsilon_{T}}{\partial k1} = 2 \sum_{i=1}^{N} (k1 + k2 + k3 x^{2} - y_{e})_{i} (1)_{i} = 0$$

$$\frac{\partial \epsilon_{T}}{\partial k2} = 2 \sum_{i=1}^{N} (k1 + k2 + k3 x^{2} - y_{e})_{i} (x)_{i} = 0$$

$$\frac{\partial \epsilon_{T}}{\partial k3} = 2 \sum_{i=1}^{N} (k1 + k2 + k3 x^{2} - y_{e})_{i} (x^{2})_{i} = 0$$

arreglando el sistema de ecuaciones,

 $N k1 + k2\Sigma x_{i} + k3\Sigma x_{i}^{2} = y_{ie}$ $k1\Sigma x_{i} + k2\Sigma x_{i}^{2} + k3\Sigma x_{i}^{3} = y_{ie} x_{i}$ $k1\Sigma x_{i}^{2} + k2\Sigma x_{i}^{3} + k3\Sigma x_{i}^{4} = y_{ie} x_{i}^{2}$

entonces se resuelve el sistema de tres ecuaciones simultáneas para obt<u>e</u> ner las constantes k1, k2, k3, del polinomio.

El mismo procedimiento se puede seguir cuando se trata de ajustar un polinomio de mayor grado al conjunto de datos que forman la curva, para minimizar el error y obtener un mejor ajuste.

Otra forma de obtener una correlación con buena minimización delerror podría ser, cuando existe un cambio de dirección muy marcada en algún punto de la trayectoria de la curve, dividir la curve y obtener una carrelación en dos partes; por ejemplo dado el punto x_0 tener una función $Y_1 = f_1(x)$ para $x > x_0$ y otra función $Y_2 = f_2(x)$ para $x < x_0$; pero para asegurar la continuidad de la curve se debe cumplir que: en $x = x_0$ tento les dos funciones como sus derivadas sean iguales:

$$f_1 = f_2 \qquad \text{en } x = x_0$$

$$\frac{df_1}{dx} = \frac{df_2}{dx} \qquad \text{en } x = x_0$$

Así si una parte de la curva se aproxima a una línea recta y la otra parte a una parábola, se puede hacer lo siguiente:

Para la primera parte cuando $x > x_n$ proponer

$$Y = k1 + k2 x$$

y para la aegunda parte cuando x < x_

$$Y = k1 + k2 + k3 (x_{1} - x)^{2}$$

de esta manera cuando $x = x_{a}$

$$Y = k1 + k2 x_{1}$$

 $\frac{dY}{dx} = k^2$

en ambos casos.

Para obtener los valores de las constantes k1 y k2 se sigue el procedimiento de minimización del error para un polinomio de primer grado, y para encontrar los valores de M3 y x_0 'se pueden reacomodar las variables y luego proceder a la minimización del error de la misma manera, es decir:

$$Y = k1 + k2 \times + k3 (x_0 - x)^2$$
$$Y - k1 - k2 \times = k3 (x_0 - x)^2$$
$$(Y - k1 - k2 \times)^2 = \sqrt{k3} \times_0 - \sqrt{k3} \times_0^2$$

Si se tienen las parejas de datos (x,y) y los valores de las constantes k1 y k2, se pueden reacomodar las variables y ver la última expresión como una ecuación de primer grado que tiene como incognitas la pendiente m = $\sqrt{k3}$ y la constante b = $\sqrt{k3}$ x_n, una vez obtenidas estas, se pueden despejat k3 y x_0 , el valor de x_0 se puede redondear y entonces corregir el valor de k3 mediante la siguiente expressión:

$$k3 = \frac{\sum (Y - k1 - k2 x) (x_{0} - x)^{2}}{(x_{0} - x)^{4}}$$

- Correlaciones -

Se tiene en la gráfice 1 (pag. 49) le curva del perámetro c en función de ω de la tabla 18 (pag. 39), esta curva puede ser representada por una ecuación cúbica o por un correleción obtenida en dos partes.

Tomando la ecuación cúbica, una primera función de w sería:

$$c = k1 + k2 \omega + k3 \omega^2 + k4 \omega^3$$
 (A)

(8)

cuyas constantes son:

k1 = -0.909049128

k2 = 19,1097147

k3 = 38,520286

k4 = -38,610245

Para una correlación obtenida en dos partes, en donde se toman los últimos tres puntos como una parte, se tendría una segunda función de w:

 $c = k1 + k2 \omega + k3 (\omega_0 - \omega)^2 \quad \text{para } \omega < \omega_0$ $c = k1 + k2 \omega \qquad \text{para } \omega > \omega_0$

donde las constantes tienen los siguientes valores:

 $w_0 = 0.23$ k1 = -2.34762449 k2 = 31.98991k3 = 27.65

y

La table 2 (pag. 40) muestre el error que se tiene calculando el

parémetro o mediante cualquiera de las dos funciones anteriores.

La gráfica 2 (pag.50), dada por la curva de temperatura crítica reducida Te en función de c, da la impresión de poder ser representada sin problemas por un polinomio do segundo grado,

$$\overline{Tc} = k1 + k2 c + k3 c^2$$
 (C)

que tiens como constantes:

k1 = 1,23666 k2 = 0,055346 k3 = -0,0016543

En la tabla 3 (pag. 42), se puede ver que realmante el error an el cálculo de la Tr es mínimo.

Le gráfice 3 (pag. 51) contiene une curve de volumen crítico reducido V_c en función del parámetro c, la cual está representada en una forma bag tante buene por una ecuación cúbica en donde las constantes son:

$$\tilde{v}_{1} = k1 + k2 c + k3 c^{2} + k4 c^{3}$$
 (D)

k1 = 4.84003123 k2 = 0.0278635937 k3 = 0.0145518556

k4 = -7.40088791 € -04

Le table 4 (peg. 43) muestre le diferencie de los velores calculados y los detos de $\tilde{v}_{\rm c}$.

Existe tembien la posibilidad de graficar el cociente z_c/\tilde{v}_c , obtenido de la tabla 1A (pag. 38), en función de c (gráfica 4) en donde la curva queda bastante bien representada por cualquiere de las dos funciones siquientes:

$$f_1(c) = z_r / \tilde{v}_r = k1 + k2 c + k3 c^2 + k4 c^3$$
 (E)

$$f_2(c) = z_c / \tilde{v}_c = (F)$$

$$k1 + k2 c \qquad para c > c_o \qquad (F)$$

$$k1 + k2 c + k3 (c_o - c)^2 \quad para c < c_o$$

an donde los coeficientes para ambas funciones son:

f ₁ (c)		f ₂ (c)
k1 = 0.0599386495	C =	2.0
k2 = −1.25662439 E −0	3 k1 =	0.058865
k3 = 1.59634067 € -04	k2 =	-0.0004723
k4 = −9.38121365 € −0	i k3 =	0.00029

En la tabla 5 (pag. 44) hay una comparación de los valores calculados con las dos funciones y los datos de z_c/\bar{v}_c .

- Parámetros -

Los parámetros c, T*, y Vo se obtienen a partir de las correlaciones anteriores como se muestra a continuación;

El valor de c está en función del factor acémtrico "w" mediante las ecuaciones (A) o (B).

Para T* se tiene la expresión siguiente:

 $\tilde{T}_{C} = T_{C}/T^{*} = f(c)$ $T^* = Tc/\tilde{T}c = Tc/f(c)$

de donde.

entonces,

y f(c) está representada por la ecuación (C), por lo cual con la tempera tura crítica y la función de c se puede obtener T*.

Finalmente Vo se obtiere tambien de datos críticos y una función de c as decir:

$$\widetilde{\mathbf{v}}_{c} = Vc/Vc$$

$$z_{c} = (fc Vc)/(R Tc)$$

$$Vc = Vc/\widetilde{\mathbf{v}}_{c} = (z_{c} R Tc)/(Pc \widetilde{\mathbf{v}}_{c})$$

$$= (z_{c}/\widetilde{\mathbf{v}}_{c}) (R Tc/Pc)$$

$$y como (z_{c}/\widetilde{\mathbf{v}}_{c}) = f(c)$$
estances

donde f(c) se obtiene madiante las acuaciones (E) o (F).

En el caso en que se tenja el volumen crítico reducido en función directa de c, otra alternativa para calcular el perámetro Vo es utilizar el valor experimental del volumen crítico y la ecuación (D), esto es

 $Vo = Vc/\tilde{v}(c)$

Todas las correlaciones presentadas para obtener los parámetros fueron obtenidos e partir de los detos de las tables 10 y 18 cuyos valores fueron generados con la ecuación de estado COR.

Dentro de las correlaciones se ha visto que hay tres mediante las cue las se puede obtener el volumen Vo, existen dos para obtener el parámatro c y una para la temperatur T*; pero las correlaciones que se ucan pa ra obtener Vo y T* llevan implicita una función de c, por lo tanto estas se deben combiner para formar un juego de allas que permita colcular los parámetros c, T* y Vo a partir del factor acéntrico "w" y los datos criticos.

Existen seis formes posibles de combinar dichas correlaciones y de é<u>s</u> teo se debe escoger la combinación mediante la cual el error sen mínimo en la obtención de los parámetros y de propiedades calculadas par la ecuación generalizada.

En las tablas de la 6 o la 11 (pag.45-47) se dan los perámetros c, T* y Volobtenidos, con ayuda de las correlaciones, para algunas sustancipo a partir de datos críticos y "w".

Se ha establecido una última correlación que no se genera con los datee de les tablas 12 y 18, sino que relaciona directamente el parámetro o con el factor acéntrico "W" experimental modiante una ecuación cúcida cuyos constantes don:

(5)

$$c = k1 + k2 \omega + k3 \omega^{2} + k4 \omega^{3}$$

k1 = -0.391335829 k2 = 75.0411025 k3 = -8.37095139k4 = 17.5930137 La temperatura crítica reducida queda como una función cuadratica de "w" experimental con:

$$\tilde{T}_{c} = k1 + k2 \omega + k3 \omega^{2}$$
 (6)

k1 = 1.21619769

k2 = 1.35814661

k3 = -0.884968831

y la relación $z_{\rm c}/\tilde{v}_{\rm c}$ como una función cúbica de u experimental donde:

$$z_{c}/\tilde{v}_{c} = k1 + k2 \omega + k3 \omega^{2} + k4 \omega^{3}$$
 (7)

k1 = 0.0604133979k2 = -0.0330948208k3 = 0.100091615k4 = -0.140627434

En la tabla 12 (pag. 48) se dan los valores de los parámetros calcula dos con esta oéptima combinación de correlaciones, para algunas sustancias.

En el siguiente capítulo se presentarán tablas comparativas de propi<u>e</u> dades calculadas con la ecuación de estado generalizada, para lo cual se rá útil detallar las combinaciones posibles de las correlaciones y saber cuales do ostas se están utilizando en cada caso; según las siete combinaciones que existen, hay igual número de formas para generalizar la ecuación de acuerdo a la siguiente tabla:

To z / v ó v

VALUR UBTENI	1 D L	1
--------------	-------	---

FOR 1

IRMA	A PARTIR C	DE LA ECUACION	
1	(A)	(0)	(E)
2	(A)	(3)	(D)
3	(A)	(8)	(F)
4	(8)	(0)	(E)
5	(8)	(0)	()
6	(E)	(C)	(F)
7	(5)	(6)	(7)

С

Por último, en la tabla 12A (pag. 48) se den los valores de los parámetros originales de la ecuación para algunas sustancias.

SUSTANCIA	C	Tc	<mark>ت</mark>	z _c
metano	0.0	1.2362	4.8382	0.29048
CO	0,2	1.2472	4.8469	0,28937
N ₂	0,64	1.2711	4.8664	0,28754
etileno	1.7	1.3264	4.9255	0,28545
etano	2.0	1.3414	4.9467	0.2868
propano	3.2	1,3977	5,0519	0,28926
isobuteno	3.8	1_4238	5.1148	0,29139
n-butano	4.4	1.4485	5.1818	0,29393
neopentano	4.5	1.4525	5,1931	0.29405
banceno	4,8	1.4643	5,2285	0.29645
ciclohexano	4.92	1.4689	5.2421	0,29609
isopentano	5.2	1.4795	• 5,2751	0.29723
n-pentano	5.6	1.4941	5.3234	0.29996
tolueno	6.0	1.5083	5,3715	0.30183
n-hexano	6.8	1.5352	5.4669	0,30408
n-octano	9.6	1.6164	5,7942	0,31473

SUSTANCIA	Te cale.	Тс ехр.	Pc calc.	Pc exp.	w celc.	w exp.
metano	187.54	190.6	4.42	4.6	0.0429	0.007
CO	132.32	132.9	3.46	3,495	0.05259	0.041
No	124.25	126.2	3.21	3,394	0.07176	0.04
etileno	369.83	282.4	8,72	5,0359	0,115	0.086
otano	302.4	305.4	4.78	4.884	0.1268	0.091
propano	368,39	369.8	4.22	4,245	0,1681	0.145
isobutano	408.3	408.1	3.67	3.647	0,1826	0.176
n-butano	424.77	425.2	3.83	3.799	0.2082	0.193
neopentano	432.17	433.0	3.19	3,2	0.2121	0.197
benceno	562,92	562.1	5.08	4.892	0.2231	D.21
ciclohexano	552.27	553.4	4.12	4.07	0,2259	0.214
isopontano	460,27	460.4	3.42	3,384	0.2345	0,227
n-pentano	471.57	469.6	3.6	3.374	0.2487	D.251
tolueno	596,09	591.7	4.39	4.1138	0.26158	0.257
n-hexano	512.55	507.4	3.2	2.9680	0.28515	0.296
n-octano	576.34	568.8	2.72	2.4025	0.37365	0.394

Tabla 18 : Comparación del punto crítico experimental con el calculado a partir de la ecuación de estado.

ы

Table 2 : Comparación de velores del parámetro c. El valor de ω es el predicho por la ecuación de estado COR, los valores de c son los que dan Chien y Chao, y los valores de c $_1$ y c $_2$ son los obtenidos con las ecuaciones (A) y (8) respectivamente.

لنا ب	C	^C 1	°2
0,0429	0.0	-0,02139	-0,00733
0.05259	0.2	D. 1968	0,2049
0,07176	0.64	0.6463	0.64032
0.115	1.7	1,7392	1.6968
0.1268	2.0	2.0547	2.0031
0.1681	3.2	3.208	3.1358
0.1826	3.8	3.6296	3.5558
0,2082	4.4	4.39	4.3258
0.2121	4.5	4,508	4.4462
0.2231	4.8	4.8428	4.7906
0,2259	4.92	4.9284	4.8793
0.2345	5.2	5.1925	5,154
0,2487	5.6	5,6321	5,6082
0,26158	6.0	6.034	6.0202
0.28515	6.8	6,7769	6.77429
0,37365	9.6	9.595	9.6054

Table 2A : Valores de c $_1$ y c $_2$ obtenidos con las ecuaciones (A) Y (B), pero en este caso a partir de ω experimental.

ш	experimental	c ₁	°2
	0.007	-0.77341	-0.74869
	0.041	-0.06346	-0.04835
	0.04	-0.08545	-0.06986
	0.086	0,99472	0,97686
	0.091	1.1198	1.0977
	0.145	2.554	2.4907
	D.176	3.437	3.3632
	0.193	3.9364	3.8643
	0.197	4.0553	3,9845
	0.21	4.4452	4.3813
	0.214	4.5661	4.5053
	0.227	4.9621	4.9143
	0.251	5.7038	5.6818
	0.257	5.891	5,8738
	0.296	7.1211	7.1214
	0,394	10.238	10,256

-24

Table 3 : Comparación de los valores de Tr obtenidos de la table 1A, con los calculados por la ecuación (C).

C	Ťe	Tc calc.	error
0	1.2362	1,23666	+0,0005
0.2	1.2472	1.2477	+0,0005
0.64	1.2711	1.2714	+0,0003
1.7	1.3264	1,3260	-0.0004
2.0	1.3414	1.3407	-0,0007
3.2	1,3977	1.3968	-0.0009
3.8	1.4238	1.4231	-0,0007
4.4	1.4485	1.4482	-0.0003
4.5	1_4525	1.4522	-0.0003
4.8	1.4643	1.4642	-0.0001
4.92	1.4689	1.4689	0.0
5.2	1.4795	1.4797	+0.0002
5.6	1.4941	1.4947	+0.0006
6.0	1,5083	1.5092	+0.0009
6.8	1.5352	1.5365	+0.0013
9.6	1.6164	1.6155	-0.0009

Tabla	4	:	Compa	ració	n de	los v	alores/	para	۶,	obtenio	dos	de	la	tablo
			1A con	1 10s	cald	culado	is usanı	do la	eci	uación ((0).	,		

C	Ϋ́ _c	ν _c calc.	error
0	4.8382	4.84	+0.0018
0.2	4.8469	4.8462	-0.0007
0.64	4,8664	4.8636	-0,0027
1.7	4,9255	4.9258	+0.0003
2.0	4.9467	4.948	+0.0013
3.2	5.0519	5.0539	+0,002
3,8	5.1148	5.1154	+0.0006
4.4	5.1818	5.1813	-0.0004
4.5	5.1931	5.1926	-0,0004
4.8	5,2285	5,2272	-0.0012
4,92	5,2421	5.2412	-0.0008
5.2	5,2751	5.2743	~0,0007
5.6	5,3234	5,3224	-0,0009
6.0	5,3715	5.3712	-0.0002
6.8	5,4669	5,4696	+9,0027
9.6	5,7942	5.7938	-0.0007

Table 5 : Comparación de los valores de z_c / \tilde{v}_c obtenidos de datos experimentales (table 1A) con los valores de $(z_c / \tilde{v}_c)_1 y (z_c / \tilde{v}_c)_2$ obtenidos con las ecuaciones (E) y (F) respectivamente.

C	z _c ∕¥ _c	(z _c /v _c) ₁	(z _c /⊽ _c) ₂
0	0.060039	0,059938	0,05908
0.2	0.059702	0.0596936	0.05886
0.64	0.059087	0.0591973	0.058456
1.7	0.058156	0.0582176	0,057946
2.0	0.057978	0.057988	0,05792
3.2	0,057258	0.0572447	0.05735
3.8	0,056968	0.0569538	0,05707
4.4	0,056724	0.05670	0,05678
4.5	0,056623	0.056661	0.05673
4.8	0,056699	0.056547	0,05659
4.92	0,056483	0.0565029	0.05654
5.2	0.056346	0.056401	0,0564
5.6	0.056347	0.05626	0.05522
6.0	0.056191	0.056119	0.05603
6.8	0.055622	0.05582	0.05565
9.6	0.054310	0.054287	0.05433

Table 6 : Perámetros calculados de la forma 1

SUSTANCIA	C	T*	Vo
metano	-0,77341	159.78	21.017
etano	1.1198	235.55	30.527
butano	3.9364	297.57	52,941
pentano	5,7038	313.38	65.06
isopentano	4,9621	313.08	63.895
hexano	7.1211	328.01	79.143
etileno	0,99472	218,90	27,432
benceno	4.4452	387.66	54.127

Table 7 : Parámetros calculados de la forma 2

SUSTANCIA	C	T+	Vo
metano	-0,77341	159.78	20,507
etano	1.1198	235.55	30.275
butano	3.9364	297,57	49.707
penteno	5.7038	313,38	56,982
isopentano	4.9621	313.08	58.328
hexano	7.1211	328.01	67.161
etileno	0.99472	218.9	26.427
benceno	4,4452	387.66	49,938

Tabla 8 : Parámteros calculados de la forma 3

SUSTANCIA	C	1+	Vo
mateno	-0.77341	159.78	21.173
etano	1.1198	235,55	30.445
butano	3,9364	297,57	53.046
pentano	5.7038	313,38	64.999
isopentano	4.9621	313,08	63,933
hexano	7.1211	328.01	78.865
etilena	0,99472	218,9	27.362
benceno	4.4452	387.66	66.321

Tabla 9 : Parámetros calculados de la forma 4

.

SUSTANCIA	C	Ĩ*	Va
metano	-0,74869	159.9	21.004
etano	1.0977	235.75	30,537
butano	3.8643	298,21	52,971
pentano	5,6818	313,54	65.069
isopentano	4.9143	313.48	63,915
hexano .	7.1214	328.01	79.143
etileno	0,97686	219,05	27.44
benceno	4.3813	388,35	54,151

SUSTANCIA	C		T*	Vo
metano	-0.74869		159.59	20,507
etano	1.0977		235.75	30.283
buteno	3,8643		298.21	49.782
pentano	5.6818		313.54	57.01
isopentano	4,9143		313.48	58,391
hexeno	7,1214		328,01	67.161
etileno	0,97686	•	219.06	26.432
benceno	4,3813		388,35	50,008

Tabla 11 : Parámetros calculados de la forma 6

SUSTANCIA	C	T*	Vo
metano	-0,74869	159,59	21,155
etano	1.0977	235.75	30,456
butano	3.8643	298,21	53,068
pentano	5.6818	313.54	65.011
isopentano	4.9143	313,46	63,959
hexano	7.1214	328,01	78.865
etileno	0.97686	219.06	27,371
benceno	4,3813	398.35	54,234

Tabla 10 : Parámetros calculados de la forma 5

SUSTANCIA	C	7*	Vo
meteno	-0,21635	155.51	20.734
stano	1.8479	229.2	30.218
butano	4.3308	294.18	52,802
pentano	5.7708	312.79	65.019
isopenteno	5.1705	311.31	63,881
hexano	6.9189	329.34	79.204
etileno	1.7263	212.9	27,143
benceno	4.7522	384.37	54.024

Tabla 12 : Perámetros calculados de la forma 7

Tabla 12A : Parámetros originales de la ecuación COR

SUSTANCIA	C	7*	Va
meteno	0.0	151.71	21,192
etano	2.0	255.44	30.52
butano	4.4	293,25	52.24
pentano	5.6	315.61	63.1
isopentano	5.2	311.11	63.0
hexano	6.8	333.87	73,96
etileno	1.7	211.0	27.3
benceno	4.8	384.44	52.25

CAPITULO IV ANALISIS Y COMPARAGION DE RESULTADOS

- Presiones de vapor -
- Volumen de líquido saturado -
- Volumen de vapor saturado -
- Datos pVT (isotermas) -
- Segundo coeficiente virial -
- Datos de una curve de saturación en un diagrama presión-entalpia -

En este capítulo se presenten las tables comparativas de resultados en donde se puede ver que diferencias existen y las desviaciones que ti<u>e</u> nen los detos calculados con respecto a los experimentales, se da el % de desviación. Las tables incluyen: datos experimentales y datos calcul<u>a</u> dos, los segundos se presentan en ocho columnas. La primera de las cuales es madiante la ecuación de estado COR con sus parámetros originales; las otras siete columnas son datos calculados a partir de la ecuación de ostado generalizada, es decir que en ellas se utilizan parámetros de la ecuación calculados o estimados a partir de datos críticos y factor acén trico de Pitzer, para lo cual se emplearon las correlaciones del capítulo anterior; son siste formas celeccionadas en las cuales las correlacion nes se combinan para obtener los tres parámetros de la ecuación, c, T*, y Vo.

En la tabla 13 (pag. 56) se muestre el $\frac{1}{2}$ de desviación en el cálculo de la presión de vapor para algunas sustancias.

En las tablas de la 14 e la 18 (pag. 57-61) se muestra una comparación detallada de dotos de presión de vapor para las siguientes sustancias: metano, etano, n-butano, n-hexano y benceno. De estos resultados se puede observar la variación en el cálculo de la presión de vapor con los parámetros obtenidos de las distintas formas, así como con la variación en el tamaño de la cadena en los hidrocarburos.

En las tablas de la 19 e la 21 y de la 22 e la 24 (pag. 62-69), se den los datos de volumen del vapor saturado y volumen de líquido saturado respectivamente, paro las siguientes sustancias: metano, n-pentano, isopentano y n-hexano. En ostas tablas edemás de poder observar las dif<u>e</u> rencias entre los detos experimentales y los datos calculados, se da tam bien el % de desviación. La tabla 25 (pag. 70) muestra en forma comperativa este % de desviación tanto para volumen de vapor como para volumen de líquido saturado de las sustancias que se mencionaron.

Las tablas de la 26 a la 31 (pag. 71-76) contienen datos pVT par meteno, cada tabla presenta una isoterma calculada de las distintas formas y comparada con la isoterma experimental; es decir que cada tabla contiene datos de presión, calculados a partir de volumen, a tomperatura constante. Se da tombien el 5 do desviación de las isotermas calculadas con reg

secto a la experimentel.

Las toblas de la 32 a la 36 (pag, 77-61) presentan detos cimilares a las anteriores, sólo que esta vez para n-notano, con lo cual de oueda og servar el comportaciento de la ecuación con moléculas más grandos.

Las tablas de la 37 a la 42 (peg. 92-97) muestran en forma comparativa los datos experimentales y los calculados de segundo coeficiente virial pora las siguientes custancias: moteno, benceno, n-buteno, n-hexeno etileno y n-octano.

Se puede obsérvar también dentro de estas tablas el % de desviación con respecto a datos experimentales para cada una de las formas de cálou lo.

Finalmente, las tablas de la 43 a la 75 (pag. 08-123) contienan datos de una curva de saturación, en un diagrama preción-entalpia, para las aj guientes sustancias: n-butano, metano, etileno y n-hexano. Se anexan a dichos tablas datos experimentales de saturación para cada sustancia con el fin de poder comparar los datos calculados mediante la ecuación SOR con los calculados por la ecuación generalizada, ací como de observar la variación que tienen éstos com respecto a los experimentales.

En seguida de las tablas se enexan los programas que se utilizaron p<u>a</u> ra el cálculo de los datos obtenidos haciendo uso de la ecuación de est<u>a</u> do COR, o la cuel se la alimentan ya sea los parámetros originales o bien los modificados que se obtienen por medio de las correlaciones del capitulo anterior.

· .	COR	1	2	3	í,	- 5	6	7
metano	D.69779	4.009	5.6	3.79	3.70	5.09	3.54	4.235
etano	2.087	6.42	7.16	6.32	6.77	7.5		4.904
n-butano	5.34	6.5	7.58	6.2	6.94	3.01	7.402	6.499
n-pentano	1.41	1.6	15.9	1.99	1.85	14.057	2.334	1.289
isopentano	0.77	1.48	21.4	1.36	1.9	11.5	2.193	0.62
n-hexena	5,56	3.67	27,93	4.96	8.4	20.9	4.04	5.059
etileno	1.19	6.04	8.2	6.07	6,31	Å.5	5.849	7.84
bencano	0.792	0.804	8,32	18.4	0.876	8.49	0,925	1.299

Tablo 13 : % DE DESVIACIÓN CON RESPECTO A DATOS EXPERIMENTALES. Para datos de presión de vapor.

т (лк)	p exp.	p calc.			cor	rolación			
	(MPa)	CUR	1	2	3	4	5	6	7
95	0.02	0.0197	0.0223	0.0229	0,0221	0.0221	0.0350	0,0219	0.018607
100	0.0345	0.0343	0.038	0.0391	0.0379	0,0379	0.0388	0.0376	0.032543
105	0,0563	0.0566	0.0517	0.0633	0.0613	0.0613	D.0628	0.0609	0.05367
110	0.0884	0.0688	0.0954	0.0977	0.0946	0.0943	0,0971	0.0941	0.08420
115	0.1328	0,1335	0,1413	0.1449	0,1403	0.1406	0.144	0,1396	0.1263
120	0.1919	D . 1934	0.2025	0,2075	0.2009	0.201	0,206	0.2	0.184
125	0,2698	0.2716	0.2815	0,2885	0,279	0.28	0,287	0,2782	0,2588
130	0.3681	0 .371 0	0,38	0.39	0.377	0,379	0,388	0,3767	0,35309
135	0.4918	0.4950	0,504	0,5165	0.5	0.502	0.514	0,4987	0,47272
140	0.6422	0.6466	0.6332	0,6694	0.6462	0,651	0.687	0.6466	0,6179
145	0.8251	0,8296	0.0329	0.8531	0,826	0.83	0.55	0,8243	0,79357
150	1.0414	1.047	1.0435	1.0695	1.0355	1.0412	1.066	1.337	1.0018
155	1.2974	1.3031	1.2908	1.323	1.281	1.2684	1.3196	1.2792	1.::473
160	1.5939	1.6019	1.5779	1.6171	1.5659	1,5753	1.6135	1.564	1.5336
165	1.93825	1.9483	1,9087	1.9563	1.8942	1.9031	1.9523	1.6925	1.0652
170	2.3308	2,3482	2,2883	2,3452	2.2709	2.2656	2.341	2,2693	2.2472
175	2.7805	2,8089	2.7227	2.7904	2,702	2.7201	2,736	2.7	2.686
100	3.2863	3.3406	3.22	3.3	3,1956	3.2176	3,2956	3,1947	3,1903

Tebla 14 : PRESION DE VAPOR : METANO

.

57

s.

Т (•К)	р ехр.	p calc.	correlación						
	(MPa)	COR	1	2 · .	3	4	5	7	
135.726	.002418	.002389	.00207	.0029	.00288	.0029	.00292	.002192	
143.26	.005152	.905157	.006029	.00507	.00604	.00607	.00612	.0047505	
147.31	.00752	.0075186	.00656	.008729	.009679	.00871	.00879	.0069313	
154.45	.014616	.013814	.01558	.01571	.01562	.01559	.01581	.012804	
165.52	.03119	.031626	.03463	.03492	.03472	.03401	.0351	.02941	
171.69	.04681	.047569	.05143	.05106	.05157	.05167	.0521	.04438	
175.7	.05093	.060995	.05546	.06601	.06564	.06575	.0663	.057032	
179.74	.078911	.077342	.00235	.08304	.08257	.0827	.0033	.07238	
183.77	.095076	.096891	.10246	.10331	.10273	.1030	.10373	.090/109	
186.0	.1066	.10933	.11521	.11617	.1155	.11565	.1165	.10257	
107.02	• 1173	. 12023	.12635	. 1274	.1266	.12682	. 1278	.112-7	
169.85	• 1309	. 13344	.13977	. 14093	.14015	.14027	. 1414	.12533	
191.42	• 1416	. 14442	.15049	. 15215	.1513	.15142	. 1526	.13556	
192.767	• 1514	. 15436	.16097	. 16231	.1614	.16152	. 1623	.14509	
184.46	• 19794	. 16058	.10625	. 10714	.1065	.10557	. 1075	0943	
210.95	.3369	.34652	.3533	.3552	.3542	.35415	.3571	.3274	
225.09	.57515	.59085	.5833	.59327	.5949	.59451	.5994	.55948	
237.89	.9108	.9039	.89856	.90604	.9	.09997	.9075	.8585	
253.02	1.3859	1.4151	1.3912	1.4028	1.395	1.3928	1.4045	1.3467	
258.72	2.09072	2.1430	2.9871	2.1045	2.0927	2.0888	2.1063	2.0445	
273.08	2.32353	2.3094	2,3196	2.3389	2.3259	2.3213	2.3407	2.2767	
278.83	2.64052	2.7434	2,6554	2.6775	2.6626	2.657	2.6793	2.6171	
283.57	2.97113	3.0651	2,9599	2.9045	2.0679	2.9679	2.9062	2.9227	
288.25	3.303	3.4174	3,2876	3.3149	3.2969	3.289	3.3166	3.2645	
298.15	4.0820	4.2569	4,0848	4.1100	4.0958	4.086	4.1203	4.0604	

Table 15 : ETAND : PRESION DE VAPUR

58

e

Т ('К) pexp.	p calc.	1	2	3	4	5	6	7
	(MPa)	GOR			corre	elación			
226.23	0.011411	.01143	.01219	.0129	.012	.0123	.013	.012332	2 .011304
246.51	.0332679	.03332	.03495	.0371	.034	.0352	.037	.03515	.03299
262.32	.0571065	.06732	.06951	.0741	.069	.0702	.0747	.07	.0664
270.39	.09294	.093	.09563	.10186	.095	.0963	.1025	.03619	.09166
273.49	.101925	.1447	.10754	.1145	.1073	.1032	.11519	.10803	.10324
305.45	.003133	.002931	.0032	.034	.00319	.00325	.00346	.00325	.0029
228.15	.01327	.01274	.01355	.0144	.0135	.0137	.0146	.0137	.01259
250.45	.04144	.04007	.04178	.0445	.0417	.0422	.0449	.04213	.03934
261.85	.06639	.06603	.05829	.0727	.0681	.0688	.0733	.06875	.06512
273.15	.1033	.1034	.1061	.103	.1058	.1069	.1137	.10668	.10193
278.75	. 1273	.12707	.13	•1385	. 1290	.1309	.1393	.13071	.1253
313.15	. 6466	.37806	.38089	•40567	. 380 14	.3824	.4069	.30162	.37221
323.15	. 5732	.4953	.49715	•5295	. 496 17	.4939	.53086	.49786	.48757
333.15	. 7109	.6373	.63743	•6789	. 636 17	.6393	.68025	.638	.62716
343.16	. 8932	.8078	.8055	•6579	. 0039	.80744	.35916	.8058	.79482
363.15 373.15 303.15 393.15 403.15	1.4265 1.6665 1.9598 2.4131 2.7464	1.2481 1.5252 1.8462 2.216 2.641	1.2377 1.5091 1.8228 2.1837 2.5981	1.3183 1.6073 1.9414 2.3258 2.7671	1.2353 1.5061 1.8192 2.1794 2.593	1.2395 1.5108 1.8241 2.1846 2.5984	1.319 1.6075 1.941 2.3246 2.7548	1.2371 1.5077 1.0204 2.1802	1,2275 1,4998 1,0151 2,1784 2,5957

Tabla 16 : n-BUTAND : PRESION DE VAPOR

Т (АК)	p exp.	p calc.	1	2	3	4	5	6	7
1. A.	(MPa)	COR			COFF	clación			
190.15	.66 ∑-5	1.10 E-5	.822 E-5	.19 E-5	.24 E-5	.88 E-5	.81 E-5	.91 E-5	.74 E-5
196.95	.16 ∑-4	.117 E-4	.133 E-4	.20 E-4	.15 E-4	.16 E-4	.22 E-4	.14 E-4	.17 E-4
215.85	1.0 ∑-4	1.07 E-4	.110 E-3	.13 E-3	.11 E-3	.11 E-3	.13 E-3	.11 E-3	.11 E-3
229.23	3.2 ∑-4	3.42 E-4	.351 E-3	.41 2-3	.35 E-3	.35 E-3	.41 E-3	.35 E-3	.38 E-3
262.45	.003338	.0033529	.003422	.00403	.003433	.003421	.00403	.003433	.003576
270.35	.005219	.005232	.005336	.00529	.005356	.00533	.006289	.005354	.005557
273.15	.006059	.006085	.0062	.0073	.006223	.0062	.0073	.00622	.00645
293.15	.01599	.016179	.01642	.01935	.01648	.0164	.01936	.01647	.016962
313.15	.03689	.037127	.0376	.0443	.03773	.0376	.04431	.03773	.038589
333.15	.07548	.075895	.0766	.0903	.07696	.0766	.09036	.07695	.07827
353.15	.141588	.14135	.1423	.1677	.1428	.1423	.1677	• 1426	.1448
373.15	.24478	.24396	.24515	.2888	.246	.2451	.2838	• 2459	.24853
383.15	.314374	.31294	.31432	.3704	.3151	.3143	.3703	• 3154	.31824
393.15	.397567	.396	.397	.4679	.3984	.39705	.4678	• 3904	.40142
413.15	.61408	.61035	.6112	.7202	.6133	.61117	.7202	• 6133	.61625
433.15	.905659	.9026	.9021	1.0631	.9053	.9021	1.0631	.9053	.90764
453.15	1.286695	1.2872	1.2862	1.5157	1.2908	1.2862	1.5156	1.2907	1,2914
473.15	1.77972	1.7839	1.7803	2.0979	1.7866	1.7802	2.0978	1.7865	1,7858
493.15	2.41314	2.4148	2.4092	2.839	2.4176	2.4091	2.8308	2.4175	2,4 1 39

Table 17 : n-HEXAND : PRESION DE VAPOR

T (3K)	p exp.	p calc.		1 - P	corre)				
	(MPa)	CUR	1	2	3	4	5	6	7
353,15	.10066	.10059	. 10264	.11125	.0838	.10339	.11196	.10323	• 1 9926
373.15	. 17799	.17977	. 1809	. 196	.14764	.1819	. 197	. 18.16	.17604
393.15	.29731	.29757	.2009	.324	.244	.3004	.325	.2999	.29249
413,15	.4693	.46876	.468	.507	,332	.4698	.505	.4691	.46007
433.15	,7066	.70596	.70123	.76	.572	.7033	.761	.7022	.69195
453.15	1,0155	1.0229	1.0115	1.0963	.8255	1.0138	1.0970	1.0121	1.0015
473.15	1.4199	1.4356	1.414	1.5326	1.154	1.4163	1.533	1.474	1.4042
493.15	1,936	1.961	1.9249	2.0864	1.571	1.927	2.086	1.924	1.9165
513.15	2,5801	2.6189	2.5634	2.7780	2.0921	2.565	2,777	2,5609	2.5578
533,15	3.3769	3.435	3.3544	3.6357	2.7376	3.355	3.633	3.3498	3.3533
553.15	4,3706	4.4389	4.3278	4.6906	3.5319	4.327	4,685	4.3204	4.3321

Table 18 : BENCENO : PRESION DE VAPOR

	Tabla	19 	VOLUWII DI BUBBBBBBBB	L VAPOR SA	7118,200 : m 2122222222	etano nermerener	兰森市 自然方言的名言			,
TUIP	V EXP V CALCULADO									
2001049 e10-24	L/PCL		а 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	••••••••••••••••••••••••••••••••••••••	4	, 1 4 9, 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6	7	
										•
מיר זק א	Vzaczen	JL 36 44 1	5100170	5_31016	5, 222 37	5.63964	6.19465	5.597(2	6.14234	

YOLUWU DUL VAPOR CATHRADE .

Tabla 19 VOLUMEN DE VAPOR SATURADO : METANO

,1 - 1	* 1 AF								
1949-9 9-9 9-9 9	17.50 and	termaa oo katema oo k GC 7.	нан китанка 1	2392499499299 	12:42:16:01:00.1000.1000 2	iktyra a ar en ar er er e e e	1911-199-11 (1917) 2011-199-11 (1917) 2017 2017 2017 2017 2017 2017 2017 2017	те ет вани ве на не не 5	kaanontaliseisit en eri 1. 1.
T OF DES	427626B	3.005	1 2,00265	11, 17702	2.51513	5 2152666	11 _24755	3.61955	2.05265

Tabla 19a VOLUMEN DE VAPUR SATURADO : n-PENTANU

YOLUMEN DEL WAPON SATURADO

aust, na fender stat atta atta internationalitationalitationalitationalitationalitation atta atta atta atta att

W/ 110 U EVE

1

H. O.M. OPL. NO

ដ
-1-12	V EXP			1 V C	al sulado				
nemente dis dictorie :	1/// (1	000 100	и, фрикулын 1 1	א א א א א א א א א א א א א א א א א א א א	16 2 - 16 7 849 869 864 86 18 19 	ειησικου ο οι οριέτη το ζ	1991 AND A 18.3 A 19 	с. С. С.	antinasin ang samena an ng s
* 11 177	V7.7 C2 GH	7,44317	2+37204	7,14732	2_10054	2. 54622	7.33937	2.615	2 2.15429

YOU DITTE SEL MARON DAYOLLOC

Table 20 VULUMEN DE VAPOR SATURADE : ISUPENTANI:

64

7671P	V CXP			11 1	CALCULA SC				
	EZ MOL	\$0 <u>5</u>	1	2	3	4	Ş	6	?
3 PE - FF	windson	4, 3233	4- 5350	1 15_6741	9 4_0101	L 4. JC 51;	15.6635	2 4.3242	3 0,2590

VOLUMER DEL VAFOR SATURADE

;

Tabla 21 VOLUMEN DE VAPOR SATURADO : n-HEXANO

71 47	VIXP			УC					
1 1	L/CCL	scr	2 2	an 1975 - 1976 - 1986 - 1976 - 1986 - 19 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 19 1976 -	3	4	5 	6	7
3 25 355	nteres	5_1-1-5	2,06370	4.50576	1-31541	2.13011	4.61524	4.05115	7.42645

VOLUMIN BEL I EQUILO SALUMADO

Tabla 22 VOLUMEN DE LIQUIDO SATURADO : METANO

ŝ

71" MP	V EXP	A CUFCATED										
	LAUNE	<u>205</u>	1	2 2	3	4		6				
1 DF DF CV	127.020 V	0_ 37 766	4_02150	9_00037	4_44288	4. 53592	3.95940	4 . 4 51-1 C	4.5296			

Table 22a VULUMEN DE LIQUIDO SATURADO : n-PENTANO

ŧ

63

.

VOLUMER OFF LICHTED SATURADO

					r 1 / - 6 9 00 1 5 000 2 8 15 4 1	12041 b.(\$317 b.(800.0010	14998. 868 - 863 - 97 - 97 - 98		
	LZCOL	000.	1	, 2		4	5	6	• 7
1 DE DE 10 F	27 62 61	0_00141	3_13271	7115738	2.34023	2. 19365	7. 07132	2.25.15	7.013(L

VOLUMEN DEL LIGMENT CATUMADO

.

TENP V EXP

..

.

V CALCULT DE

Table 23 VOLUMEN DE LIQUIDO SATURADO : ISOPENTANU

58

-

,

.

-1 375	4 F.YF			V C.	ni Culnde				
MARKAL A TOPPOL	1/801	205	4 +4 48 + 48 + 49 49 49 1 + 1 4 4 4	, 1.1648 1 1 1 1 1 1 1 10000		6-899-3-8-8-8-8938-81 4	1999 1999 1994 1994 1997 1997 1997 1997	ć	1155 E & E € 9 #6 8 # 73 1
1 DF DF 7	A.1. 2301.	5_47774	0_47177	7,0000	3+10040	0.32140	7.91560	8.19702	2.42671

为我们,你你就你你们你是我的你们就是这些我们你就没有你们们,我们们你的你,我们你能不同,你们你的好你做我的心理的我们的你就是我们的你的是那么?"他说着我们是我们在我们会是没有这些是我的吗

•

VOLUMIN OF L LIDDUCK COTURADUS

Tabla 24 VOLUMEN DE LIQUIDO SATURADO : n-HEXANO

69

,

ھ

	CUR	1	2	3	4	5	6	7
netano	.0644	5.9	6.5	5.8	5.6	6.18	5.00	6.14
n-pentanu	3.06	2.58	11.87	2.51	2,52	11.64	3.0	2.582
isopentano	2.44	2.65	7.14	2.63	2.64	7.33	2.60	3.15
n-hexano	6.03	4.58	15.67	4.31	4.6	15.66	4.3"	3,93
		Para d	atos de vo	lumen de	vapār sa	turado.		• • •
	003	1	2	3	4	5	G	7
retono	.1314	2.05	4.6	1.42	2.13	4.6	4.85	3,42
n-pantano	.12706	4.52	9.0	4.44	4.53	8.9	$l_{1,\bullet}l_{1,0}$	4,55
Loopentano	-9544	0.4	7.9	9.1	8.4	7.0	8.1	5.4

Para datos de volumen de líquido saturado

Teblo 25 % DE DESVIACION CON RESPECTO A DATOS EXPERIMENTALES

.

.

님

1000 FE 4				racsIONES					
_	b tzb	C ÚP	1	ş	CUPKELAC 3	LONES 4	5	5	7
227725 227725 227725 200 227725 200 227725 200 200 200 200 200 200 200 200 200 2			-33.27 -34.21 -34.24 -4.27 -4.27 -4.27 -2.27 -1.4.27 -2.27 -1.4.27 -2.27 -1.1.27 -2.27 -1.1.27 -2.27 -1.1.27 -2.27 -1.1.27 -2.		1107 1007 1007	- 0.4.3 - 0		- 2	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

IJOTE	•MA JE 145.	UIL GRADUS KI	CLVII PARA VI	ETANU TABLA	27				
VOLUTEI				PRESIONES					
	P EYP	COK	1	· · · · · · · · · · · · · · · · · · ·	CONGELAC:	IONES 4	5	, 5	7
X DE 96	5JIACION	2.3451	92-570	269.90	53.130	112.79	270.66	129.24	275.96

. .

ISOTENIA DE 190.00 BRADIS KLEVIN MARA METANO - TABLA 28

۰.

5

VULUMEN

.

.

PARSIGNES

	P F22	COP	1	2	CORRELACI	ONES 4	5	ó .	7
13.5500 14.500 14.500 14.500 15.5000 15.50000 15.50000 15.50000000000	44440040000000000000000000000000000000	4 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	375111308402 44557717308402 4455771740471303147130314703 44557717404713 1144527723 1144527723 114452723 1114523 11117723 114452 11117723 1111772463	113331;0001;4001;4001;400 54570;577;40;40;1105230 554570;5331;005;40;11055230 554570;5331;00;540;11055230 554570;5331;00;540;110;52300 54550;5257;540;50;100;50;50;50;50;50;50;50;50;50;50;50;50;5	2 D 31 7 U 4 5 D 7 4 5 1 7 1 1 7 5 5 2 4 2 9 3 4 4 4 4 4 4 5 7 6 5 7 7 4 5 1 7 1 1 7 5 5 2 4 2 9 9 4 5 6 9 7 5 3 2 4 2 9 9 4 5 6 9 7 5 3 2 4 2 9 9 4 5 6 9 7 5 3 2 9 4 7 5 3 2 9 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	4 74 74 75 75 75 77 80 25 75 50 95 4 4 74 74 75 75 75 77 80 25 75 75 76 4 4 75 75 75 75 75 75 75 75 75 75 75 75 75	4 4 4 4 4 4 5 7 5 7 7 7 17 17 4 6 9 7 4 7 0 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	44444500000000000000000000000000000000
¥ 0 د 0 ا	ESTIACION	2.4905	14.952	21.368	7.5495	11_155	21.351	8.2618	14.916

1.4D.CA				PRESIONES					
	r tyr	COF	1	, , , , , , , , , , , , , , , , , , , ,	CUP ELAC	IONES 4	5		,
	<pre></pre>		n ori 12015757 site 711111111111111222222222222222		5 17450 JPC - 07760 701111111111111 COROLONDA 4 00 9440 JPC - 07760 701111111111111100 00100000000000	39 540 02 5499 60 2 24 42504 5 25 34 30 24 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C C	38143495364777871981U9856460777U672775340304780 748777871947782830779714411111111111111222272355349508	

ISOTEPHA DE 240.00 SPADUS KALVIS PAPA VETANO - TABLA 29

24

•

ISOTERIA DE SZOLUDI SKALOS KELVIN PARA KLTANO - TRELA 30

JULUMEN

PRESIDES

	Рсар	C 0P	1	2	60K92L4CI 3	JHES 4	5	ć .	7
10000000000000000000000000000000000000	123 407 - 5 1 1 1 1 1 1 7 2 2 2 2 2 1 2 2 2 2 3 4 4 5 2 2 5 5 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2		1 1 <td>03/83/5/6116249+302020202020303444530 322552122222222222222222222222222222222</td> <td>10325 J/7437 52527460 415 J0510517537457 35779 J11111111111277 4407914671057727457 35779 J11111111111111100774407914671472726619</td> <td>0 333472440 0550 34 J94 J9 J4 77 37376 34 J30 35700 71 11777 1177724 42 37 37 4 44 75 45 35700 71777 11777 117774 42 37 47 47 54 54 74 75 45 35700 71777 11777 117774 42 37 47 47 54 54 75 45 75 79 35700 71777 11777 117774 42 37 47 47 54 54 75 45 75 75 70 35700 71777 11777 117774 42 37 31 42 44 75 45 75 75 70 35700 71777 11777 117774 42 37 31 42 44 75 45 75 75 70 35700 71777 11777 117774 42 37 31 42 44 75 45 75 75 70 35700 71777 11777 117774 42 37 31 42 44 75 45 75 75 75 75 75 75 75 75 75 75 75 75 75</td> <td>7 10446 14 3406 36 3155 + 3107532 3484 4 210</td> <td>9 529 -2 47 650359 64 02075757547765990 35749 -1</td> <td>- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2</td>	03/83/5/6116249+302020202020303444530 322552122222222222222222222222222222222	10325 J/7437 52527460 415 J0510517537457 35779 J11111111111277 4407914671057727457 35779 J11111111111111100774407914671472726619	0 333472440 0550 34 J94 J9 J4 77 37376 34 J30 35700 71 11777 1177724 42 37 37 4 44 75 45 35700 71777 11777 117774 42 37 47 47 54 54 74 75 45 35700 71777 11777 117774 42 37 47 47 54 54 75 45 75 79 35700 71777 11777 117774 42 37 47 47 54 54 75 45 75 75 70 35700 71777 11777 117774 42 37 31 42 44 75 45 75 75 70 35700 71777 11777 117774 42 37 31 42 44 75 45 75 75 70 35700 71777 11777 117774 42 37 31 42 44 75 45 75 75 70 35700 71777 11777 117774 42 37 31 42 44 75 45 75 75 75 75 75 75 75 75 75 75 75 75 75	7 10446 14 3406 36 3155 + 3107532 3484 4 210	9 529 -2 47 650359 64 02075757547765990 35749 -1	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
YOLDE	SVIACION	2. (896	5.1549	5.2274	4.0099	5.143)	6.1491	7767	3.3593

ISUTERMA DE SUDJUD GRADUS KLEVIN PARA METANO - TABLA 31

•

in the second second

and and a second and a second se

. .

•

and the second second

VOLU (E	EN .		2	RESIDNES					
	P éXP	CÚI	1	?	CJKRELACI 3	IDNES 4	5	ó	7
			>4 >1 <	1238/305191312495444233/9 44510323791312495444233/9 777747111171444234 3011122472414495444233/9	3145 ¥2 0.551 0218 J.265 622568 9 337 J47 47 138 J77 173256 4041173 1111 J.46 4.46 1173 J77 173256 4041173 000 100 100 100 100 100 100 100 100 100	U 3 5 3 6 9 / D 3 7 9 7 10 7 19 7 5 5 6 6 7 2 6 7 1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 5 5 6 6 7 1 1 1 1 1 1 2 2 2 2 3 3 2 4 4 5 5 6 6 7 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2	2 6 35 4 6 2 1 1 1 5 2 2 4 5 3 5 1 1 1 2 5 2 4 6 5 5 5 6 5 1 1 1 1 5 2 7 5 5 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	U 67727 24 24422805772388429 43549772724412799724445566 737297727244127997245727394445566	
. 4 UE	DESVIATION	4.9512	5.9051	o_\$U32	5.7356	5 . 837 .	6.4215	5.0555	4.3467

 			>1=210 *=2					
				CUTIELACI	ONES			
P 612	200	1	,	Ŧ	4	٩	5	7*
	7,7,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,		- 22 4 4 - 22 4 4 - 22 4 4 3 5 - 22 4 4 3 5 - 22 4 4 3 5 - 1 2 4 4 5 - 1 2 4 5 - 1 2 4 5 - 1 1 4 - 1 1	71.4471570	444444 44444 44444 44444 44444 44444 4444	- 21, 240 - 24, 217 - 24, 217 - 24, 217 - 24, 217 - 24, 217 - 21, 217 - 11,	71274 553274 6937274 93121755330 9437274 93121755330 9437274 953774 953774 953774 953774 953774 953774 957774 95777474 957774 957774 957774 957774 957774 957774 957774 95	40000000000000000000000000000000000000

ag ze e al de mind z in de de l'ine e no al la cola communitations de s

VOLUS	(dr./.+1.		1	al estimates exectores	, na se		8.8817. *A8."		
					CURRELACI	 läyfs			
	PFIP	C0F		د	د	4	5	5	7
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			-12.4153 -17.4240 -11.0240 -11.021 -11.021 -11.021 -1.027444 -1.027444 -1.027444 -1.027444 -1	1,55 1,25 1,25 1,25 1,27 1,27 1,27 1,27 1,27 1,27 1,27 1,27		-17.444 -12.174 -11.77 -11.035 -11.035 -13.900 -7.3451 -7.3451 -7.755 -2.5696	779214251	555545575 315495575 31545575 31545575 317545177 317545177 317545177 317745177 317745177 317745177 317777 31777 31777 31777 31777 31777 31777 31777 31777 317777 317777 317777 317777 317777 317777 3177777 317777 317777 3177777 317777777 3177777777
د ۱۰ ۲	ES71-C101	40.011	\$5,128	327, 27	3+.105	\$3.031	323.42	54.070	54.473

TABLE 33 TERMENT SCHULT SUBJECTAVE DELATE TABLE 33

VOLUIN	···· ·			-na sloves					
		············			C)49FL4C1	1455			
	D FLP	10.1	1	2	د	4	\$	۴	7
				2202 22/07 - 2 1004 - 7 12/ - 7 12	222222345	4 5 4 5 1 0 1 0 9 10 1 5 5 4 5 4 5 1 0 1 0 9 10 1 5 6 5 4 5 1 0 1 0 7 10 1 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		21	
2 74 36	SULACIAN.		411-713	2931.11	Å1. 779	60.4.29	\$ \$25 - 0	31.765	32.117

STEETERMA OF 44, TO SEALOD RELATE EXPLOREMENT TABLE 34

CONTER & DE GASSIO UNADOS ADELLE MALE MALE MELA 35

and a constant and and a constant of the state that that the state of a state of a state of the state and a state of the state of the

VOLUMENT

221.012300

•		CON3F_4C104FS										
	Pitt	COI	1	7	- 5	4	۲	5	7			
4.4.1.1 4.4.1.1 4.4.1.1 4.4.1.1 4.4.1.1 4.4.1.1 4.4.1.1 4.4.1.1 4.4.1.1 4.4.1.1 4.4.1 4.4.1 1 1 1	1.57732 1.57732 1.57552 1.57552 1.57552 1.57552 1.5752 1.5	2. 4117 2. 4117 2. 4117 7. 777 1. 4. 777 1. 7777 1. 77777 1. 77777 1. 77777 1. 77777 1. 777777 1. 7777777 1	11111111111111111111111111111111111111	- 1. 72 57 - 72 5	155 - 112 - 1 U 155 - 112 - 1 U 157 - 125 - 102 157 - 102 1	255329 345350 1235450 1255450 155255 34570 35770 35770 35570 357700 357700 357700 357700 357700 357700 357700 357700 357700 357700 357700 357700 357700 35770000000000	-1.7548 -1.75568 -1.7548 -1.75	151 151 151 151 151 151 151 151 151 151	1117217388 23467737388 23467737388 23467737388 23467737388 23467737388 23467737388 23467737388 23467737388 23467738 234677738 234677738 234677738 234677738 234677738 234677738 234677738 234677738 234677738 2346777778 2346777777777777777777777777777777777777			
1 26 U	FSJIALIOA	54 7 *	12. 333	350.14	74.169	72.937	34 à. 31	7++157	74.557			

8

<u>م</u>

) such that be so all build be keeper of a porter $\hat{\mathcal{T}}_{i}$. TABLE 36

addite the second second second second second date for the second s

4323 444

PALEJUNES

		· · · · ·			COPRELACI	OVES			
	PFXP	C Ø ¢	ì	2	د	4	5 1	5	7* 1
3353 * 4444 3557 * 513 * 19 3557 * 513 * 777 3557 * 513 * 777 3 * * * * * * * *		23454	5 4 1 4 7 4 7 7 7 4 7 7 7 4 7 7 7 4 7 7 7 4 7 7 7 4 7 7 7 4 7 7 7 4 7 7 7 4 7 7 7 4 7		54-55 125-55 125-55 125-65 15-65 125-	5 5 5 5 5 5 5 5 5 5 5 5 5 5	2. 477 2. 477 3. 477 5. 4777 5. 4777 5. 4777 5. 4777 5. 4777 5. 4777 5. 4777 5. 47777 5. 4775	555555555555 755555555555555 255755555555	54 9515591 757574 97455 74 97555 74 975555 74 97555 74 975555 74 975555 74 9755555 74 9755555 74 9755555555555555555555555555555555555
z ac a	SVIACIUN	19.520	55.0%2	50.264 *	57.207	55.631	59-386	57.203	55.747

and and a second se

TETERAT	JA 8	TAB	LA 37 :	SEGUN	IDD CJEFICIEN	TE VIPIAL P	METAJO		
		44444041718.	1		CORRELACI	UNÉS			
*******	a Exp	CiJR `		د د د د	3	4	5		7
		11111111111111111111111111111111111111		11111111111111111111111111111111111111			11111111111111111 58500000000000000000000000000000000000	7	
X DE DES	VIACION	11.430	10.173	9.6173	10.636	9.9321	9.3343	10.411	17.473
							· · ·		
 Other transmission 		ئى يىت بىت يىشە بى	i nister e	مىرىلەردى مىزمار يۇر. ر	ารรรณ์กล่างกรุงสุดภาพ และเกิดกรุง			- Carrier and a state of the second	a water groot

.

.

23

.

					CURRELACI	04ES	****		
	8 Eve		1	?	3	4	5	5	7
	- 11 22 - 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				277334321+JUU3367*+J555283383 30323	0303 0303 04 04 04 04 04 04 04 04 04 04		7554 5902659429704445444444 57576542777711045797194445444444 57576557777711045797194775444554444 12275757157655791957544455444 12275757157655791957544455444 12275757414145444 1227575744455444 12275757444 12275757444 1227575444 1227575444 1227575444 1227575444 1227575444 1227575444 1227575444 1227575444 1227575444 1227575444 1227575444 1227575444 1227575444 122757544 12275754 1275575754 1275575757575757575757575757575757575757	
1 UL 05	VIACION	3.1. 664	27.251	37-925	7.1477	27.341	37.867	27.146	27.015

, **'**

and an environment of the second second second

TERMERAT	Unn		TABLA 39	. SEGUN	DO CJEFICIEN	IFE VIRIAL P	BUTANO		
********		مدعاف بتقتري فاطار				************	tokeljajkj23		341183
					CORRELACI	JNES			
				** ********					
	- EXP	CUK -	1	5	3	4	5	6	7
				2514 34 U7 14 7 1309 1 4 2 117 233 250 9 15 29 3 37 4 200 25 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7		7 3015/7 0U262446777 3338 4076 UU537 1741847930 4054 60 4039744 1741847930 40396 40740 30356 151741847930 40396 401400 151741847930 40396 40140 151741847930 4000 151741847930 4000 151741847930 4000 151741847930 1517418479 1517418479 1517418479 1517418479 15174184 1517418479 1517418478 1517418478 151748478	5 J4 5 8 4 4 V7 1502 5 1 J7 6 70 V J4 27 1 V 1 4 7 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	1 1 <th></th>	
X JE WE	PAIDALES	11.310	10.552	10.504	9.2499	9-3590	16.372	9.1310	¥. #135

the second s

.

124.1

1 a

R

	27) - 1 (King - 1 a)	122 1 11 11 11 12 12 12 12			to; ==[ac.	(.)= .			
.	5 77 p		, 84 44 8 144 146 146 1 1 146 14 1 146 14 1 146 14 1 1 4		· · · · · · · · · · · · · · · · · · ·	L .	······································	K	7
Proceeders: José and Structure State Structure State Structure State Structure State St									
्रम् ज उन्ह	ant uter	26.477	- 10 - 1 / -	41. 77F	20.6*6	20.265	41.71*	20.684	20.544

CTURE & CONFUT PLAT VINCH PLA-HEXELO

8

TENPIS, THE

.

TABLA 40 :

A DUT COT 14DF

TABLA 41 : SE

.

SECURAL COLFECTION VIETAL P/ETILENO

nini tenenter paramente aran ill'AMAMUNICE el tet tet tet tet di licitati di par andare deveneratare desta dest

CULTELASIONES

Menow praw draw as are a pre-print period of the electric menow research are selected and Menoperiod and are a substantiable and an area and a substantiable and a substantia						*****			
	5 IXC	200	;	2	3	4	5	6	7
1 31. 17	+433.00	+ 57 34 35		6332.16	+374_07	+ 375	-352.16	• 275.03	+375 . 45
121.10	1251222	P-27,2002	· · · · · · · · · · · · · · · · · · ·		• EE7-E2	• 337.52	-335-51	- <u>337-17</u>	- 317 - 43
1				y -	· • • • • • • • •	1 2 27	2364-24		- 1923
51-11				# 58 ° 2 *			2515.7c		363 55
200 01				- 277 27	-2:12.70	- 222 - 66	-272,29	211:03	-212163
213 22	• 70 - 70	1072 47	10000	106.65	276 . 3	+226-22	-266.66	• 276.13	+2 <u>71+23</u>
220, 17	1337221	0.000	-237/02	+-[4]]34	+ 317+ 43	* 355+13	- 243 - 65	******	-257.45
222112				1111		-353-56	233226	- 522 57	
fyl -	1 4 4 4 4 A	أمرية المراسع		5 × , • • •	22.2	54- A.X	552 31	1999-19	511 61
2000						1997.91	-2.0.32	- 216.76	-215.37
24	·	-212225		-200 - 20		- 217 - 76	-216.53	+ 232432	-212.94
1122.32	-232100	-102132	·	+124201		-711-43	- 194+ (3	- <u>21</u> L • E Z	
				114-+12	13 - 3 - 3 - 3 - 3 - 3			130-68	
177 10	- + + + +		A	1 - CZ	1.17 42	4-7-52	244*86	112:13	
3 mm 4 c	12.42.44		11112.05	122 201	170.01	171	-122.(4	• 165 36	+167.51
295, 16	• 17 5 70		16.77	1	• 1322.35	+142-07	~ 137. 72	• 142 • 61	<141.25
272.14	11235	117772	17, 222	• 111 . 49	171-01	* 171+2E	-116-57	12(. 57	-111.55
177			المحر ملار	2	• • • • • • •	17.706	- 62 - 238		111 133
44 9 4%	h	÷		57.7	-2.7.2	74. 776	-72.131	74.321	-71
17-14			-1		6.411	-6641	-61.303	• 63.431	+ 61 - 629
19-17-1	+ 117.62	632		-0000000	• 11. (1	232 65	- 3(2, 32	• 317 . CC	- 515,34
222122	• 21512C	*232222	+ 201020	- 42 - 3	+375 +62	-211-22	= 24 2+ 5 2	1 2 3 4 6 5	• ? - • • • • •
5.5.5.9.9			144 - Ar						1/9.01
5 42		بيدين والمرود		132-54	126.54	156155	182.22	165 6	121.51
14- 44	112111			+100132	11111	-110.27	-1.2.36	• 102.00	-114.11
15, 12, 25	-145 - 0		+1335.22	-120214	-146 . 06	+141+37	- 134. 10	• 141• • 2	-138-63
171X 42	124-55	119-22	1.1.1.1.1	• 33(+73	-12/-22	-15) - 79	<u>=116-3</u>	141.43	
		1 20	11-12	4-2-23		114	172.2		11.1.1.1
	10:22			.136.21	125 24	176 25	-164.14	175 25	-162.91
24-14	• • • • • • • • •	11525	1	1122274	+152215	n151+60	-152.77	156.20	+157+63
372.44	11111		يتروا بمرور وال		141.11	-162-55	2133-192	142 36	
1.1.1				117/-23	 345-53 	157:57	- 112:25	118:187	111.95
44-47	ichter -			110.12	117.00	113.33	-1.0.17	-112.C	+111.19
12-19		11111	-1.3.17	122.22		1(6,2)	-1(2,33	- 1/5227	-1,3,93
212X 14	·		-20-224	• 23. 917	-21-210	-12-639	÷25-562	- 2: - 7.7	- 27 - 282
291.12				27-379	124-187	12.202			
141.19	***		2 2/-	2.2.2.215		124.224	281:464	221281	- 51 - 625
775,43	42 000		-452512	45.1832	14: 14	-451 377	-43.736	- 45. 283	- 42 23
									·
X 10 PC	everezen	5, 7057	519522	6-5523	5.9718	5.9700	0.0691	5.7516	5.2770

TABLA 42 : SECOND CONFICTENTE VIRIAL P/ M-OCTANO

TELEVATURA

 $\mathcal{L}_{\mathcal{L}} = \mathcal{L}_{\mathcal{L}}$

CORRELACIONES

	ς, εγ _α	cha	1	2	3	4	5	6	7 *
								4 0 - 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• 7 • 6 2 B 7 • 6 7 0 5 0 5 7 • 7 • 6 2 B 7 • 6 7 0 7 0 5 1 0 8 7 • 7 • 1 • 1 • 1 • 1 • 1 • 7 7 5 5 7 • 7 • 1 • 1 • 1 • 1 • 1 • 1 • 7 7 5 5 7 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1
X UE 0E:		31-097	LN.321	21.540	23.451	24.319	1	25.629	24.372

Datos experimentales de un diagrame presión-entalpis para n-bu tano seturado.

.

1

ł

T.	P	H LIQ	H VAP
20.0	11.590	-780.2	-613.3
40.0	17.620	-769.1	-606.7
50.	21.550	-763.5	-603.4
60.0	26.020	-757.9	-600 -0
70.0	31.200	-752.2	-596.7
80.0	37.240	-746.6	-593.3
90.0	43.91	-740.8	-590.0
100.0	51.37	-735.0	-586.6
110.0	60.27	-729.1	-583.3
120.0	69 .98	-723.2	-580.0
130.0	80.83	-717.2	-576.8
140.0	92.87	-711.1	-573. 5
150 .0	106.20	-704.9	-570.3
160.0	120.90	-698.7	-567.1
170.0	137.00	-692.3	-563.9
180.0	154.68	-685.8	-560.9
190.0	173.88	-679.2	-557.8
200.0	194.70	-672.4	-554.9
210.0	21,7.40	-665.5	-552.0
220.0	241.60	-658.3	-549.2
230.0	268.20	-651.0	-546.6
240.0	297.20	-643.4	-544.3
250.0	328.30	-635.5	-542.2
260.0	361.90	-627.2	-540.5
270.0	398.20	-618.2	-539.3
280.0	437.30	-608.3	-538.9
290.0	479.30	-596.0	-540.1
300.0	524.90	-574.1	-546.3

0.1	4.4.	۷٦.,	57. 14	, T7=,	273.25,
				* * *	

LAS VARIABLES DE LA CURVA TIBLEN LAS SIGUIENTES UNI DADES: TEUPERATURA ----CRADOS F DE VAP ------PIA VOL LIG SAT ---PTE CUB/LB

TENPERATURA	יוע דכ פ	V LIA SAT	V VAP SAT	H LIQ	H VAP	DH DE VAP
24-635 24-635		1 - 6520	457.87	-783.89	-614-57 -611-10	169.32 167.36
50 010 61 010		1.7716	217.61	-767.41	-600.55	163 32
70,000 30,000 20,000		1 - 7407 1 - 7596 1 - 7913	193.36 155.00 133.23	-756.07 -759.28 -744.41	-597_01 -593_44 -580_87	159-06 156-84 154-54
110.00			115 44	-738.46	-586.29	152 16
130.00 130.00 140.00	33 375	1-3747	74_452	-720.03	-575-61	144.42
	131-13	1 7 7 7 5	57.023 57.108	-707.22	-568-57	138.64
131 15	123-11 173-11	2 1264	33 990 34 404	-687.09	-558.37	128.72
210.00		2.1910	30.447 26.940 23.344	-672.95 -665.62 -658.10	-551.97 -548.95 -545.93	121.05
230.17		2.3137	21 079 13-527	-650.34	-543 20 -540 73	107,14
230 00 230 00 270 00	· · · · · · · · · · · · · · · · · · ·	2 3033	14-310	-625.24	-536.47	88.576 84.641
130,00 120,10 101,01		2 2722 2 2791 7 7041	17,419	-605.94 -504.64 -580.55	-534,97 -535,85 -539,65	70 973 58 795 40 901
310 00		4 7 7 3 1 8 6 7 1 7 1 1 0 7 7	4 9222	-519.67	-551 10 -519 67	2,4910 - 26151F-02 47225F-01

•

C+, 3, 7364, MD+, 32, 741, MD+, 297, 57,

. .

LAS VARIBLES DE LA CURVA TIEREN LAS SIGUIENTES UNI DADESE TENERATURA ---GRADOS E DE VAP -----OSIA 7DE VAP ----PTE CUR7LB 7DE VAP SAT ---PTE CUB7LB ETTALOIA DE LIQ --STU7LB ETTALOIA DE VAP --STU7LB

TENPERATURA	2 91 949	V LIG SAT	V VAP SAT	H LIQ	H VAP	DH DE VAP
<u>20</u> -010	12-21:	1 - 5727	447-90	-781-02	-614.62	160.40
41-444	11-1-1	1 2053	30.00	-770 22	-6:7.07	162 55
33.001		1 7417	213.43	-759.15	-600.62	159.54
53:031	<u> </u>	1.7306	153.69	-747 79	-593.50	154.2
100.00		1 3723	113.35	-736-09	-586.34	149.75
120.00	70.315	1.3672	35.167	-724-04	-579-19	144.85
130.00	11.12	1.3947	74 212	-711.59	-572.09	139.51
152.83		1 2435	57 049	-705-21	-565 7	130.64
170 00	114-24	2.0107	44.310	-692 00	-501.65	130 44
120 00	11111	2 1 3 1 3	34 455	-678-44	-554 98	123.46
210 00	211.77	2.1407	37 277	-664-16	-548.66	115.50
234.23	263.45	2 263	21.376	-649-12	-542.91	106.21
250 77	321 22	2 4135	15.642	-633-04	-538.05	94 992
280 00	322.23	2.5232	12.727	-615-61	-534.65	36-758
290.00	473. B	2 9 0 0 0	10.301	-594.75	-534.69	6 <u>0</u> .057
300.00	512-45	3 2495	7 3689	-581-44	-537.7.	6.7911
320 00	751 77	8,1963 11,456	8 1959	-521-96	-521.96	- 22913E-02 38596E-01

C=, 3_2364, LAS TEMPERATURA 20.000 50.000 40.000 20.000 20.000	VARIABLES VARIAB	TO =, 297.57, E LA CURVA TIT RATURAGRAD VAP	YEN LAS SIGUIE OS F CUB/LB CUB/LB TU/LB TU/LB TU/LB V VAP SAT 420.53 345.16 235.52 738.339	H LIQ -781.02 -775.65 -776.22 -764.72 -759.15	S: H VAP -614.62 -611.16 -607.67 -604.15 -604.56	NH DE VAR 166.40 164.50 162.55 160.57 153.4
7% 1111111000000000000000000000000000000		111111111111111000017884041025 57013070536657-4265977884041025 57013570536657-426597788573000000000000000000000000000000000	9923449343321636075236084878 5264566065102447676075286687897 ••• 1096514758560757104278976 ••• 109665476772004278976 ••• 109665476772004278978			4855531.4 420755531.4 5555444454545454545454545454545454545

Tabla 45 : n-BUTANO. Forma 2

.

1

C = ,	3.9734,	Vna,	37, 116,	T07/	797.27.
-------	---------	------	----------	------	---------

.

TEMPERATURA	9 DE 719	V LTQ SAT	V VAP SAT	H LTQ	H VAP	DH DE VAP
		199171213,419947745509468794687948	477771111097657677777777111197581 	25225198014701104404523481554374 7777777777777700687766437454547095	26752602460397050866U14525692474 616752602460397050866U14525692474 112605087277665555544480856767676 11260708972776655555444808767676 117607705557776655555444808767676 117607705557776655555444808767676 11760755602460397050866601 11760755602460397050866601 11760755602460397050866601 117607556602460397050866601 11760755602460397050866601 11760755602460397050866601 117607556024603970508667601 117607556024603970508667600 117760755602460397050866600 11760755602460397050866600 1176075560246039705086600 1176075560246039705086600 1176075560246039705086600 1176075560246039705086600 1176075560246039705086600 117607555600 11760755600 117760000000000000000000000000000000000	UUS574485555314745630519258078887646 4555744855554445630519258078887 6670866707474533874745630519258078887 6670866707474333877211111048875556478887 877111111111111111111111111111111

Tabla 46 : n-BUTANO. Forma 3

92

(r, 3.33)7, Jr., 12.271, Tor, 799.21,

LAS VARIANES DE LA CURVA TIEVER LAS STOUTENTES UNI DADES:

- 1 1 1 2 () <u>1</u> UKA	
-) DE VAP	PSIN
YOL LTH SAT	PTE CUA/L3
13L JAP SAT	PIE CUB/LB
EITALPIA DE	LIN ATU/18
- FILVERA DE	YAP →-379763

TE AP ERATURA	n 04,749	V LIA SAT	V VAP SAT	HLIQ	H VAP	DH DE VAP
		1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	444 15 15 15 15 15 15 15 15 15 15	-780 52 -7760 75 -760 75 -764 26 -758 69 -758 69 -747 36 -741 56	-614.17 -611.17 -6077.67 -6000.67 -60073.51 -5886 -5886 -5886 -5886	16540 16540 16540 1660 15574 15774 157774 157774 157777777777
		1 • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		-5772 -57752 -57752 -57752 -5772 -5772 -5772 -5772 -5772 -5772 -5772 -5772 -5772 -5772 -5772 -5772 -5772 -5772 -5772 -5772 -5772 -57757	14445 14445 14445 1390 1390 1390 1277 1307 1207 1277 1207 1277 1207 1277 1207 1277 127
			1 1 <td></td> <td>-5420 -5420 -5420 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5244 -524 -52</td> <td>110.797 101.90 94.807 80.407 8</td>		-5420 -5420 -5420 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5324 -5244 -524 -52	110.797 101.90 94.807 80.407 8
		2.7175 3.2477 4.1473 3.1494 11.407	7.1603 7.3786 4.9954 8.1489 11.442	-594.04 -581.39 -557.17 -522.11 -544.02	-534.00 -537.57 -550.15 -522.11 -504.5	00-041 43.812 7.0145 21976F-62 -93274F-11

C=, 4.3343, 933, 47.732, TBH, 203.71,

темрекатиса	9 94 IVP	V LIR SAT	Y YAP SAT	HLID	H VAP	TH DE VAP
22.232	12-312	1-3771	417-41	-790.52	-014-55	165.99 166
		1.2732	11117	-766.26	-517 42	160-09
<u>3</u> 7. [0]		1 . 2275	1 12 12	-758 60	-400-43	155.48
	11.12	1.4740		-747-34	-503.51	153 83
	17.11	1 4 4 4 7	1 1 T T	-775	-> 14 - 70	142.31
1 22 22	21.11	1.2572	79724	-723-64	- 79 2	140 42
1 1 2 2 2 2	22.11	1,7335	57.433	-717.49	-575-54	141.85
		1.07	22.027	-704-84	-565,09	153.27
1.11		1 7300	41.541	-691-75	-561.66	130.09
12.11.01		1 2241	11.400	-073 12	-554-98	127 15
			11.551	-463 87	-548 45	110.22
รัฐวีรี (เรื่ วันที่ วิว		3.1325	21.062	- 648. 96	- 542.99	105.92
		5.555	12-431	-532-32	-539.01	24. 507
		4.352	1.053	-314-54	-534-54	91 41
12.12	331151		3. 5032	-594 64	-534.60	60.041
	33:13	3.1475	6.0144 4.4971	-581.39	-537 57	7 0 35
<u>44</u>];]1		7,4373	7 4 4 7 7	-584 23	-522 12	- 21899L-'2 274161- 1

.

,

.

0a, 3.133, 974, 33, 133, Tea, 293, 37,

- 方に フィネ 支計	
SITULTIA DE	LT1 179/L3
CHANTELV DE	VAP'ITU/LD

тенрезатина	-): //>	A FIU RVA	4 94P SAT	H LIG	H VAP	DH DE VAP
2000 2000 2000 2000 2000 2000 2000 200	 A subscription statute with the first the first the first statute with the fir	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44 44 57 57 77 77 77 77 77 77 77 77	2775 97775 9775 9775 9775 9775 9775 9775 9775 9775 9775 9775	-641-7-7 -641-7-7 -641-7-7 -641-7-7 -641-7-7 -641-7-7 -641-7-7 -641-7-7 -641-7-7 -641-7-7 -641-7-7 -641-7-7 -641-7-7 -641-7-7 -641-641-7 -641-641-641-641-641-641-641-641-641-641	16
		1	713 109 109 109 109 109 109 109 109	-648, 8992 -648, 992 -648, 992 -648, 992 -651, 555 -51, 45 -552 -51, 45 -552 -51, 45 -552 -552 -552 -552 -552 -552 -552 -5		163.97 163.87 94.201 94.201 94.201 94.201 44.274 60.974 44.274 - 1934178-07 - 934178-01 934178-01

.

Tabla 49 : n-BUTANO. Forma 6

Ĵ.

2-2 (4.77 (2) V(2) (37.3 (3) TF2) (294.13)

UND WATE THES DE LA CURVA TERVEN LAS SEGUTENTES UNE RADES:

1 1 1 1 1 1 1 1 A	
111 1 2 547	
151 544 544	Pic cuaria
TITILPIA DE	Lt1 370/L3
EITALPIA DE	V17 1+0/C9

T THPE EATHER	201 /A2	V LIA SAT	V VAP SAT	HLIO	H VAP	DH DE VAL
	د در این استخدار در از این مسلحه می از این ایا این مولواند. - بار حالی این می بارد این مراجع این	1 * * * * * * * * * * * * * * * * * * *	4("Y" "," "," "," "," "," "," "," "," ","			21 21 21 21 21 21 21 21 21 21

Tabla 50 : n-8UTANO. Forma 7

Detos experimenteles de un diagreme presión-entelpie pera meteno saturedo.

T	P	H LIG	H VAP
-258.7	14.696	-1915.4	-1697.0
-250.0	21.710	-1907.9	-1693.7
-240.0	32.400	-1899.2	-1690.1
-230.0	46.400	-1890.3	-1686.8
-220.0	64.500	-1881.3	-1683.9
-210.0	87.600	-1872.6	-1681.4
-200.0	115.700	-1863.1	-1679.4
-190.0	150.000	-1853.6	-1677.8
-180.0	191.500	-1844.0	-1676.9
-170.0	240.000	-1833.9	-1676.6
-160.0	297.000~	-1823.3	-1677.2
-150.0	364.000	-1811.8	-1679.1
-140.0	440.000	-1799.1	-1682.5
-130.0	527.000	-1784.2	-1688.5
-120.0	627.000	-1764.0	-1701.1

estos datos se pueden comperar con los calculados en las tablas de la 52 a la 59.

		۰.	• *	2,00		·		 	· •,	,,	•••		
т	1	1	n	7.3	. D1	: y	10	 -']	Ψ1	17	4.	7	

. .

.

.

те заваятика	a at Ma	V LIG SAT	Y TAP SAT	H LTA	4 VAP	TH DE VAP
-111.01	14,157	- 2.3634	571,59	-1014.2	-1-1-2.5	221.92
-111.04	1.11.133	7.1135	731.47	-1904.5	-1499.4	217.11
	57,775	2.4654	.354.36	-109%,0	-1480.7	212.05
-23	11.171	· 7.5311	137.46	-1890-9	-1694-2	205.69
-223,33	57,733	2.5177	170,01	-1837.9	-1631.0	611.95
-119.09	ריד.וי	- T., 54 Si	1 34 . 46	-1974.6	-1479.0	104.74
- :11.11	117.14	- P 1 - C	72.079	-1866.1	-1579.2	187.96
-12.1.	.171.34	7.3"	13,054	-1857.5	-1576.9	180.42
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	177.41	2,1035	43,540	-1848.1	-1474.2	171.91
-174.50	213, 31	n, ncan (73,105	-1838.3	-1476.2	167,19
-140.00	רי נורד	17,1790	30.050	-1827.8	-1677.3	150.51
-150.00	312, 33.	5.7777	27.484	-1116+3	-1579.9	130.54
-140.00	443.35		**.23*	-1962-9	-1685.1	11/.94
-134,00	5,1,21	7. 76.14	17.970	-1785.3	-1494.0	01.854

Tabla 52 : METANO. Ecuación COR

0=, -9177348, V(H), 01.(117, Thu, 150.73)

LAS "ATLALES DE LA CURVA TIENER LAS SIGUIENTES UNT DADES: TUPERATURA ----GRADAS F ADE VAP -----PSIE ADE LIQ SAT ---PIE CUP/LB "DE LIQ SAT ---PIE CUP/LB EITALPIA DE LID -- TTU/LB EITALPIA DE VAP --TTU/LB

TEMPERATURA	вод ИЛР -	V LIN SAT	Y VAP SAT	HLIG	H VAP	DH DE VAP
⊷⊴un,an	15,117	2.1319	53?.63	-1996.4	-1692.4	213.98
-250.00	11.117	2.7334	3ú".d1	-1899.2	-1689.5	209.71
-247.13	54,110	2.4312	253.64	-1897.0	-1084.8	215.21
-220-00	57,577	7.4376	137.75	-1894.6	-1634.1	200.43
-220.00	55.757	2.5733	134.43	-1877.1	-1691.7	195.33
-210,00	37,774	i":005	193.76	-1869.2	-1470.4	199.85
140 00	111,57	2. 5654	19,040	-1851.2	-1677.4	193.87
-120-00	131.33	7.7417	62.700	-1853.0	-1675.7	177.28
-112.20	101.54	3.9263	49.633	-1944 . 3	-1674.5	149.87
-176.00	273.77	J.0142	37. 754	-1835.2	-1673.8	161.39
-130,00	221.74	7,0415	71.046	-1825_5	-1674.5	151_48
-150.00	173.11	3.1265	25.061	-18th_0	-1675.4	1 39 . 56
-140_00	473.71	7, 773*	10.549	-1903.1	-1678.5	124 - 56
-114.90	523.45	5.3434	14.971	-1738_8	-1584.4	104.22
-1:0.01	171.73	4. 5777	5.1230	-1759.3	-1751.4	7.9679
112.70	1711.1	3.3671	7.9073	-1770.5	-1770.4	.582418-32

99

.

Table 53 : METAND. Forma 1
c=, -0.77341, V0+, 21.173, T0=, 159.73,

LAS VARIADLES DE LA CURVA TIEMEN LAS SIGUIENTES UNI DADES: TEMPERATURA ----GRADOS F DE VAP -----PSIA JOL LIA SAT ---PIE CUB/LB VAD SAT ---PIE CUB/LB TALPIA DE LIQ ---TU/LB EVITALPIA DE VAP ---JTU/LB

TEMPERATURA	P DE VIP	V LIG SAT	V VAP SAT	HLIQ	H VAP	DH DE VAP
-240.00	15.035	2.3562	536-59	-1906-4	-1692.4	213.98
-250_00	23.934	2,4011	363.29	-1899.2	-1689.5	209.71
-240.00	37.357	2,4472	255,52	-1892.0	-1686.8	205.20
-230.00	43.077	2.5010	185.13	-1884.6	-1684.1	200.43
-220.00	65_273	2,5572	137.44	-1877_0	-1681.7	195.33
-210_00	33.041	2.6185	104.53	-1869-2	-1679.4	189.85
-200.00	11.5.76	2.6851	80.654	-1861-2	-1677-4	183.87
-190.00	173.22	2.7616	63. 765	-1853.0	-1675.7	177.28
-1 30 .00	123-12	2.8472	50.056	-1844_3	-1674-5	169.87
-170.00	27-15	2,94 52	39.849	-1835.2	-1673.8	141.39
-140.00	27 2. 17	3,0641	31.780	-1825-5	-1674-0	151_48
-150_01	355.17	3.2102	25.246	-1815.0	-1675-4	139.56
-140_00	430.51	3.4032	19.795	-1803-1	-1678.5	124.56
-130_00	51 3. 70	3.6908	15,082	-1788.0	-1684.6	104,22
-120.00	537.41	4.6636	5.0603	-1759.3	-1751_4	7.9675
-110-09	10 23.3	3 8957	3.8960	-1770.5	-1770.4	_57809E-02

<u>5</u>

Tabla 55 : METAND. Forma 3

ca, -0.74367, V1=, 21.104, TD=, 159.59,

LAS VARINGLES DE LA CÚRVA TITHEN LAS SIGUIENTES UNI DADES: TEMPERATURA ----GRADOS F P DE VAP ----PSIA VOL LIQ SAT ---PIE CUB/LB VOL VAP SAT ---PIE CUB/LB EITALPIA DE LIQ --BTU/LB EITALPIA DE VAP --BTU/LB

TEMPERATURA	P DE VAP	V LIQ SAT	'V VAP SAT	HLIQ	H VAP	DH DE VAP
-269.00	15.756	2.3373	`535.94	-1906.8	-1692.4	214.42
-250.00	23.006	2.7318	357.58	-1899.7	-1689.5	210.13
-240.00	33,954	2.4276	254.36	-1892-4	-1486-8	205.61
-239.09	43.240	2.4310	134.54	-1884-9	-1684.1	200.81
-220.00	54.534	2,5367	136.93	-1877.4	-1681.7	195.70
-210,00	32.371	2.5975	104.10	-1869.6	-1679.4	190.21
-270.00	117.32	2.5646	80.283	-1861_6	-1677.4	184.20
-190.00	151.00	2.7395	62.950	-1853.3	-1675.7	127.59
-180.00	171.17	2,8245	49.790	-1844-6	-1674-5	170.16
-170.00	273.54	2.0227	39.621	-1835-5	-1673.9	161.66
-160.00	223.95	3.0397	31.589	-1825-8	-1674-1	151.73
-150.00	753.43	3.1946	75.037	-1815.2	-1675.5	139.77
-140.00	433.35	3.3761	19-665	-1803.3	-1675.6	124.74
-130.00	530.14	3.6614	14.976	-1789_0	-1684.7	104.35
-120.00	573.53	4-6267	5.0215	-1759.6	-1751.6	8.0029
-110.00	1010.0	3. 3666	3-3666	-1770-16	-1770.6	.98802E-u4

Tabla 56 : METAND. Forme 4

C=, -0.77341, VA+, 20.507, 100, 139.73,

LAS VARIABLES DE LA CURVA TIENEN LAS SIGUIENTES UNI DADES: TETPERATURA ----GRADOS F D'E VAP -----PSIA VOL LIG SAT ----PIE CUB/LB VOL VAP SAT ----PIE CUB/LB

ENTALPIA DE LIQ -- TU/LB ENTALPIA DE VAP -- BTU/LB

TEMPERATURA	P DE VAP	V LIG SAT	V VAP SAT	H LIQ	HVAP	DH DE VAP
			•			
-26 n_ 0n	17,525	2.7921	519.71	-1906-4	-1692.4	213.98
-250.00	23.735	2-3526	351,96	-1399_2	-1639.5	209.71
-240.01	31.030	2.3732	247.48	-1892.0	-1496.8	205.20
-230_üh	40.513	2.47.24	179.30	-1884_6	-1684.1	200.43
-220.00	03.4°6	7.4767	133.12	-1877_0	-1681.7	195.33
−210.00	21.203	2,5361	101.24	-1869,2	-1679.4	189.85
-200.00	120.05	2.6716	78.117	-1861_2	-1677.4	183_87
-1 20.00	155.13	2.5749	61_275	-1853-0	-1675.7	177.28
-180.00	125.50	2,7577	49.482	-1844.3	-1674.5	169.87
-170.00	244.36	2.9536	38.594	-1835-2	-1673.0	161.39
-1 60.00	301.34	2.9677	30.790	-1825.5	-1674.0	151.48
-150.00	75-14	3.109?	24.452	-1815.0	-1675.4	139.56
-140.01	445.50	3.2962	19.173	-1803-1	-1678.5	124.56
-130.00	533.37	3.5747	14.618	-1788_8	-1684.0	104.22
-120.00	571.55	4_5161	4.9012	-1759.3	-1751.4	7_9694
-117.00	1756.3	3.7730	3,7733	-1770.5	-1779.4	-03189E-02

Tabla 54 : METANO. Forma 2

ca, -0.74360, VD4, 31.155, TD4, 157.50,

.

LAS VARINILS DE LA CURVA TIENEN LAS SIGUIENTES UNI DADES: TENESATURA ----GRADOS F DE VVP -----PSIA UDE LIA SAT ---PIE CUB/L3 UDE LIA SAT ---PIE CUB/L3 UDE VAP SAT ---PIE CUB/L3 E ITALPIA DE LIA ---DTU/L8 E ITALPIA DE VAP ---DTU/L8

•

TEMPERATURA	a D.4. A.46	V LIG SAT	' V VAP SAT	H LIQ	HVAP	DH DE VAP
-201.00	14_143 5	2.7541	537.30	-1906-8	-1692.4	214-42
-258.30	<u></u>	5-2006	355.10	-1890.7	-1689.5	210.13
-240.01	37,712	2.4471	256.69	-1992.4	-1686.8	205-61
-230.00	47_374	7.4933	135.37	-1884.9	-1684.1	200-81
-220.00	55.757	7.5549	92 ייד 1	-1877.4	-1681.7	195.70
-210.00	33.434	2.6162	104285	-1869.6	-1679.4	190.21
-200_00	115.43	2.4333	99.960	-1861_6	-1677_4	1 84 - 20
-190.00	147.72	3.7522	63,402	-1853.3	-1675.7	177.59
-130.00	137,31	2.1443	50.147	-1944.6	-1674.5	170.16
-170.03	233.34	2.9437	39.906	-1835.5	-1673-9	161.66
-1.60_00	101.15	3.9615	31.816	-1925.8	-1674-1	151.73
-150.00	111.11	7. 2075	25.267	-1815.2	-1475.5	139.77
-t40.00	577.75	3.40/14	19.306	-1803.3	-1678.6	124.74
-137.00	51 5.43	3.6373	15.033	-1789.0	-1684.7	104.35
-120.00	572.37	4.4503	5.0577	-1759-0	-1751-0	8.0034
-110.00	1111."	3.3945	3,3945	-1770.6	-1774.0	228816-04

Tabla 58 : METANO. Forma 6

C=, -0.74369, 10+, 20.507, TO=, 159.59,

LAS YARI WLES DE LA CURVA TIENEN LAS SIGUIENTES UNI DADES: TENDEMATHRA ---GRADOS E

P 75 YAP	PSTA
VOL LIN SAT	PIE CUR/LB
YOL VAP SAT	PIC CUB/1.3
ENTALPIA DE	LT2 3TU/LB
CATALPIA DE	VNPITU/LD

TEMPERATURA	0.91 VAP	V LEA SAT	V VAP SAT	H LTQ	HVAP	NH DE VAP	
-269_00	15.421	n.23 .0	523.26	-1906-8	-1677.4	214.42	
-150-00	77.355	2.7755	354.01	-* 990 7	-1489.5	210.13	
-240.00	34.777	2.3731	343.83	-1397.4	-1686.5	205-61	
-254 -00	47.432	2.4.023	130.17	-1884-9	-1694.1	200.41	
-230.00	63.145	7.4757	133.69	-1077_4	-1681.7	195.70	
-210.00	21.417	7.534	101.63	-1809-6	-1679.4	190,21	1
-200.00	123,15	2,6116	73.333	-1861-6	-1677-4	184.20	ដ
-1 90.00	174.16	2.6747	51 46	-1853.3	-1675.7	177.59	
-130.00	177.31	7.7576	43.510	-1844.4	-1074.5	176.14	
-170_00	245.32	°. 3536	73.634	-1935.5	-1673.9	161.10	
-160,00	511,01	2.0477	30.747	-1825.8	-1674-1	151.73	
-150,00	337.13	3.1002	74.493	-1815_2	-1675.5	139.77	
-140.00	447-36	3-2067	19.300	-1803-3	-1678-6	124.74	
-130.00	333.75	3.1743	14.671	-1739.0	-1684.7	104.75	
-120.00	513,17	4.5163	4.0034	-1759.4	-1751.6	5.0213	
-110-00	1174.7	3_7747	3.7747	-1770-6	-1770.6	.10037E-03	

Tabla 57 : METAND. Forma5

C-, -7. 21 575, V.3=, 20.754, TD=, 155-74,

Ă

LAB VARIALES DE LA CURVA TIEVEN LAS SIGUIENTES UNI DADES: TE PERTURA ---GRADOS F DE VAP ----PIC CUR/LB VOL LAB SAT ---PIE CUB/LB TALPIA DE LIG --BTU/LB TITALPIA DE VAP --BTU/LB

TEMPERATURA	0 01 7AP	V LIA SAT	V VAP SAT	HLIQ	H VAP	DH DE VAP
-240.00	13,423	2.3051	ú73 . 14	-1915.3	-1 192.2	273.10
-258,00	21.217	ה"בי לי לי	417.01	-1907.8	-1499.3	219.55
-240,00	71,143	2.2025	279.39	-1900.2	-1686.5	213.70
-270 O	44.706	2.4434	109.59	-1892_5	-1683.9 +	2C ^x • 57
-251.01	52.472	2.5030	145-54	-1984_6	-1481.5	203.10
-210_00	34.775	3.7644	110.35	-1876_5	-1679.3	107.23
-200,00	112.04	2.6314	84.358	-1868.2	-1677-4	197.82
-120.00	147. 32	2.7061	05.423	-1959.7	-1675-9	123.77
. −1 30 ⊥ 00	115.17	2.7117	51.521	-1850.7	-1074_9	175.86
-170.00	223.50	2.8333	40.715	-1841-3	-1474.5	164_83
-167.00	233.11	3.0055	32,249	-1831-3	-1675-0	156-31
-150.00	317.10	3.1505	25.446	-1820.3	-1676.7	145.68
-141.01	423.00	3.3426	19.812	-1808_1	-1680.2	127.83
-130.00	217.73	3.6301	14_039	-1793-3	-1637.6	104.28
-120.00	333.13	4.1196	4.1208	-1774.3	-1774.2	_23219E-01

Tabla 59 : METANO. Forma 7

· .

.. ...

يحاط ومدردي البروون ووجوا الممح بمناحات وال

Detos experimenteles de un dirgrame presión-entripie para etileno seturado.

Ţ	Р	H LIQ	H VAP
-220.0	0.885	763.1	998.7
-200.0	2.484	777 • 7	1004.1
-180.0	5,899	791.5	1009.2
-160.0	12.310	804.7	1014.0
-150.0	17.15	811.1	1016.3
-140.0	23.18	817.3	1018.4
-130.0	30.60	823.5	1020.5
-120.0	40.23	829.6	1022.5
-110.0	52.15	835.7	1024.2
-100.0	66.55	841.8	1025.8
- 90.0	83.21	847.9	1027.3
- 80.0	101.20	854.0	1028.8
- 70.0	122.60	850.1	1030.1
- 60.0	146.50	865.4	1031.3
- 50.0	173.30	872.8	1032.4
- 40.0	206.20	879.3	1032.9
- 30.0	244.50	886.0	103 3.1
- 20.0	285.00	893.0	1033.2
- 10.0	332.50	900.3	1032.6
0.0	384.60	908.0	1031.7
10.0	442.70	916.4	1029.9
20.0	507.70	925.6	1027.1

interpretation of the prototogeneration of the

LAT MATCHELL OF LA COUVA TITIGE LAS SUBURNIES DAT CADES:

- 7 - 7 7 7 -	
70L 1.12 SAT	
115 212 117	
TITAL TA HE	Eth
TITICALA OF	ທີ່ໄດ້ການກຸ່ມມີຄູ່

14/19/2012/11/27	5 31 374	Y LTA SAT	4 AV5 241	经收益证	н уар	DU DE VAP
			· · · · · · · · · · · · · · · · · · ·	-1150.3 -1145.4 -1145.4 -1145.4 -1145.4 -1145.4 -1175.3 -1175.3 -1177.2 -1177.2 -1177.2 -1166.7	- 995 - 995 - 997 - 997	2072 2072 2072 2073 2073 2073 2074 1007 2074 1007
			<pre>%</pre>	-1030,7 -1075,2 -1075,2 -1063,2 -1060,4 -11,57,4 -1037,0 -1027,0 -1027,0 -1027,1 -2057,72 -2057,72	-924 -924 -927 -927 -927 -927 -927 -927 -927 -927	164 - 66 153 - 79 152 - 37 1457 - 15 157 - 157

Tabla 60 : ETILENO. Equación COR

C+, 0.00471, V0+, 17.571, TP=, 013.0,

	LAS VA	71 43475 34 TE19Ei 2 9E 1 734 13 734 13 74 74 74 74 74 74 74 74 74 74 74 74 74	T LA CURVA TIE RATURA	TEN LAS SIGUTE DS F Cub/lb Cub/lb Tu/lb Tu/lb	YTES UNI	DADES:	
an a		TITAL	PÎĂ ĐĚ ŸĂP →-A	TIJŹĽB			
TEMPERATUR	4 P	DI VAP	V LEQ SAT	V VAP SAT	H L	[Q	

-1.50.00 -1.50.00 -1.50.00 -1.10.00 -1.10.00	1 - 74 40 1 - 77 10 1 - 77 10 1 - 77 10 1 - 34 60 1 - 34 60	538.31 401.31 704.37 134.97 134.90 134.91	-1145.4 -1145.4 -1145.4 -1130.4 -1125.3 -1120.0	-9449-754 -933754-93 -933754-227 -933720-227	203 - 83 710 - 91 197 - 72 194 - 51 187 - 73 184 - 11
-100.00 -91.000 -31.000 -31.000 -31.000 -31.000 -31.000 -51.000	1 915 1 977 1 9777 1 97777 1 9777 1 9777 1 9777 1 9777 1 9	131-04 31-074 31-074 31-074 55-076 45-076 47-5 56 56 57 57 57 57 57 57 57 57 57 57 57 57 57	-1109-2 -1103-6 -1097-9 -1095-9 -1085-9 -1079-6	-9275-52 -9275-52 -9275-52 -92275-52 -92275-52 -92275-52 -92275-52 -92275-52	170-27 170-27 171-98 167-46 157-08
	27.2.4.0 3.4.4.0 3.4.4.0 7.2.4.0 7.2.4.0 7.1.4.0 7.7.7 7.4.0 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7	540 740 740 740 740 740 740 740 740 740 7	-1046-0 -1050-0 -1051-4 -1043-1 -1043-1	-922 -922 -922 -922 -922 -922 -922 -922	144 - 75 137 - 50 129 - 72 108 - 31 53 - 907 73 - 707

Tabla 61 : ETILEND. Forma 1

DE VAP

DH

H VAP

ca, 1. 77477, 914, 21. 127, TO3, 213.9,

LAS VARIAUES OF LA CURVA TIRMEN LAS	SIGUIENTES	INI	DADES:	
DI VAP				
VOL VAP SATPIE CUB/LB CITALPIA DE LIQGTU/LB TITALPIA DE VAPGTU/LB				
STURESS DO THE STOLED				

тепрезатиза	a 37 77a	9 LIG SAT	Y VAP SAT	H LIQ	H VAP	NH DE VAP
	$ \left\{ \begin{array}{llllllllllllllllllllllllllllllllllll$	1	00078001446030 14652741547474754757760 1787274154747475770 1787274154747475770 1787274154747477777777 1787277415474777777777777777777777777777777	-11435-55 -114355-54 -114355-4 -1114355-4 -1112200-72-9 -1110077-9 -100850-9 -100850-9 -100851-1 -100351-1 -100351-1 -100351-1	-9937719 -9937719 -993775-97150 -993775-97150 -9993775-150 -9992775-150 -99975-100 -99975-100 -99975-100 -99975-100 -99975-100 -9075-100 -9075-100 -9055-100 -905-	2030 - 7519 20974 - 7519 19974 - 7519 1974 - 778 17777 - 778 17777 - 778 16571 - 4468 1571 - 4468 1571 - 468 1571 - 728 16571 - 720 1571 - 720 107 107
22.000		5.013.	4 3700	-1017_4	-937.19	73.707

Tabla 62 : ETILEND, Forma 2

c=, 0.97472, V7-, 27.352, T0=, 713.9,

TEMPERATURA	517 EC 9	V LIQ SAT	V VAP SAT	H LTQ	H VAP	DH DE VAP
-167-00	17.377	1.7474	537.44	-1145-4	-941.57	203-83
-141.07	11.031	122000	515.55	-1135.5	-937.77	197.72
-130.00	41.235	1.1254	236 27	-1125-3	-935.91	194 51
-110-20	12.277	1 3705	149.53	-1120-0	-932.29	187-73
-91.011	31 573	1.9321	97.784	-11/10:2	-928.91	80.30
-30.000		1.9651	80 510 44 775	-1103.6	-927-35	176.27
-20:000	135-11	2.3413	55 709	-1092.0	-924 58	167 .40
-59,000	20 1 4 4	2,1345	40.430	~1085.9	-923-47	107,40
-30.000	141.24	2 1839	33.463	-1073 0	-921.80	157 23
-10.000	321-3	2.5057	24.023	-1039.0	-621-46	137.50
0 10 000		2.3934	70,301	-1051_4	-922_09	129.27
22 020	415.12	2 3043	14.175	-1034 1	-925 90	103 30
40,000	343.15	3-6936	3, 3861	-1023-8	-937-19	73.707

Tebla 63 : ETILENO: Forma 3

C=, 7.97586, V74, 27.44, T0=, 219.04,

· '

LAS VARIADLES DE LA CURVA TIENEN LAS SIGUIENTES UNI DADES: TEMPERATURA ---GRADOS F P DE VAP -----PSIA VDL LIQ SAT ---PIE CUB/LB VDL VAP SAT ---PIE CUB/LB ENTALPIA DE LIQ --DTU/LB ENTALPIA DE VAP --DTU/LB

TEMPERATURA	P OT VAP	V LIQ SAT	V VAP SAT	H LIQ	H VAP	DH DE VAP
		4744 7779907557601 7779907557601 7779907557137079866501 78840997004978866501 788407077537137079866501 797986650176971 7779836510 777986650176971 77798510 77797557760 77797557760 77797557760 77797557760 77797557760 77797557760 77797557760 77797557760 77797557760 77797557760 77797557760 77797557760 77797557760 77797557760 777977557760 77797557760 77797557760 77797557760 77797557760 77797557760 77797557760 77797557760 77777777777777777777777777777777	54 51 82 87 21 94 24 1 25 5 9 0 9 7 4 7 1 1 1 7 8 4 5 4 7 5 5 1 7 2 5 5 9 0 9 7 4 7 1 1 7 8 4 5 7 4 7 1 2 5 5 9 0 9 7 4 7 1 1 7 8 4 5 7 4 7 1 2 5 5 9 0 9 7 4 7 1 1 7 8 4 5 7 4 7 1 2 5 5 9 0 9 7 4 7 1 1 9 6 4 8 4 5 7 4 7 1 2 5 5 9 0 9 7 4 7 1 1 9 6 4 8 4 5 7 4 7 1 2 5 5 9 0 9 7 4 7 1 1 1 9 6 4 8 4 5 7 4 7 1 2 5 5 9 0 9 7 4 7 1 1 1 9 6 4 8 4 5 7 4 7 1 2 5 5 9 0 9 7 4 7 1 1 1 9 6 4 8 4 5 7 4 7 1 2 5 5 9 0 9 7 4 7 1 1 1 9 6 4 8 4 5 7 4 7 1 2 5 5 9 0 9 7 4 7 1 1 1 9 6 4 8 4 5 7 4 7 1 2 5 5 9 0 9 7 4 7 1 1 1 9 6 6 4 5 1 1 1 1 1 9 6 6 4 5 1 1 1 1 1 9 6 6 4 5 1 1 1 1 1 9 6 6 4 5 1 1 1 1 1 9 6 6 4 5 1 1 1 1 1 9 6 6 4 5 1 1 1 1 1 9 6 6 4 5 1 1 1 1 1 9 6 6 4 5 1 1 1 1 1 9 6 6 4 5 1 1 1 1 1 9 6 6 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		87 FC80275182093879734793 5679075575182093879734793 690997528757754403781128 690997528757774403781128 6909975287577714793	**************************************

.

Tabla 64 : ETILENO. Forma 4

.

c=, 9-97183, VO=, 35.477, TO=, 219.06,

١.

LAS VARIABLES DE LA CURVA TIEMEN LAS SIGUIENTES UNI DADES: TEMPERATURA ----GRADOS F P DE VAP -----PSIA VOL LIQ SAT ---PIE CUB/LB VOL VAP SAT ---PIE CUB/LB ENTALPIA DE LIQ --RTU/LB ENTALPIA DE VAP --BTU/L9

TEMPERATURA	P DE VAP	V LIQ SAT	V VAP SAT	HLIQ	H VAP	DH DE VAP
		2747607413540410002506 67477607413540410002506	75° 34 6834 7799 7888776° 97 	23332185057874919200784450578749192007868.0071554343549937157688.0071554343787491700077668.007886	87 c 280825 182093c7440 94353355325 182093c8797340 943533553242087543214 17235975 943533553242087543214 17235978 943533553242087543214 17235978 94353557543214 17235978 943535575420875543214 17235978 943535575420875543214 17235978 94353575420875543214 17235978 94353575420875543214 17235978 94353575420875543214 17235978 94353575420875543214 17235978 94353575420875543214 17235978 94353575420875543214 17235978 94353575420875543214 17235978 94353575420875543214 17235978 94353575420875543214 17235978 94353575420938754408778 9435357542093874408778 943535754208754408778 9435357542093874408778 943535754408778 943537544087744408778 94357544087744408778 94357544087744408778 94357544087744408778 94357544087744408778 94357544087744408778 94357544087744408778 94357544087744408778 94557544087744408778 9457544087744408778 9457544087744408778 945754408774408778 94575474408774408778 9457547440877440778 9457547744080877440778 94575477440778 94575477440778 945754778778 94575778778 94575778778 9457778778 9457778778 94577787778 9457778778 9457778778 94577787787778 9457778778778778 9457778778778778778 945777877877877877877877877877877877877877	20007.551 1097.551 1097.551 1880.551 1880.551 1880.551 1880.55 1880.55 1880.55 1880.55 1880.55 1771.55 1667.63 1567.531 1567.531 1567.531 1567.531 1567.531 1575.55 1775.55 17
60.070 70.000	375.73	4.7231	4.7168 6.0750	-964.45	-964-54 -944-64	- 93536E-01 - 14199E-01

Tabla 65 : ETILEND. Forma 5

c=, 0.97636, V14, 27.371, T0=, 219.96,

١.

YOL LIN SAT	PIE CUB/LB
VOE VAP SAT	PIE CUB/LB
ENTALPIA DE	LIA STU/LS
EITALPTA DE	VAP ~~ BTU/LB

	•					
TEMPERATURA	0 0 5 V 19	V LIA SAT	V VAP SAT	H LIG	H VAP	NH DE VAP
-162-28	13.713	1-3439	535.75	-1145.2	-941-58	203-61
=148-83	24 - 242	1-7928	394-74	-1135-3	-837-78	197-51
-120-00	41 267	1.3423	195.81	-1125-1	-934-08	191.00
-100 -000			11958	-1114-5	-930-58	183.92
-80-000	(97-23	1 9656	30339	-1103:5	-927-35	176.10
-60.000	14 - 25	2.0421	55 739	-1091-8	-924 -58	167.24
-43.000		2 1371	47.453	-1070 4	-922.50	156.94
-20.000	231-27	2.2431	33.373	-1066-1	-921-43	144 . 43
		2.3890	21 793	-1051.2	-922-07	129.17
20.038	237 IS	2 2025	14 172	-1034-0	-925.77	108.23
27 370 50-000	14	3 0 121	8 9872	-1010-8	-937.14	73.677
60 000 70 000	325 31	4 9120	4 9160	-964-14	-964 24	- 94589E-01 - 11788E-01

Tabla 66 : ETILENO, Forma 6

c=, 1.7263, 4)=, 27.143, TN=, 212.9,

L A 7	5 VARI HLES D TEMPE 701 L 701 L 701 V ENTAL 51TAL	S:				
TEMPERATURA	B DE AVS	V LIQ SAT	V VAP SAT	H LIQ	H VAP	DH DE VAP
		111111777740300 7779025577739003000 7779025577739003000 777902557773900300 777962277745070990 77796227796227796 7779622790 7774570622790 77745706270	9720103030403530850481495 53224495030403530850481495		-99.99.99.75.41.43.70 4.375.72.08.75.41.43.70 9.4375.72.08.75.41.43.70 9.4375.72.08.75.41.43.70 9.4375.72.08.75.41.43.70 9.4375.72.08.75.41.43.70 9.4375.72.08.75.41.43.70 9.4375.72.08.75.41.43.70 9.4375.72.71.41.43.70 9.4375.72.71.41.43.70 9.4375.72.71.41.43.70 9.4375.72.71.41.43.70 9.4375.72.71.41.43.70 9.4375.72.71.41.43.70 9.4375.72.71.41.43.70 9.4375.72.71.41.43.70 9.4375.71.41.43.70 9.4575.71.43.70 9.4575.70 9.4575.70 9.4575.70 9.4575.70 9.4575.70 9.4575.70	2129-64 2200295-1-203 199-7-203 199-7-203 199-7-3-800 199-7-3-800 199-7-3-90 199-7-3-90 199-7-3-90 199-7-3-90 1462-90 1400-900-900-900-900-900-900-900

Tabla 67 : ETILENO, Forme 7

Datos experimentales de un disgrama presión-entalpia pere n-hexano saturado.

T	P	H LIQ	H VAP
150.0	13-283	-622.0	-479.1
160 0	15.823	-616.3	-475.1
170.0	18.73	-616.3	-471.0
180.0	22.03	-604.7	-466.9
190.0	25.80	-598.8	-462.8
200.0	30.01	-592.9	-458.6
210.0	34.65	-586.9	-454.5
220.0	39.85	-580.8	-450.3
230.0	45.60	-574 - 7	-446.1
250.0	59 • 34	-562.3	-437.7
270.0	75.35	-549.6	-429.3
290.0	95.05	-536.6	-421.0
300 .0	106.10	-529.9	-416.9
320.0	131.30	-516.2	-408.7
340.0	160.30	-502.1	-400.6
360.0	193.60	-487.4	-392.8
380.0	231.70	-471.9	-385.3
400,0	277.50	-455.2	-378.8
420.0	301.30	-446.0	-375.6
420.0	327.50	-435.9	-373.0
430.0	356.50	-423.8	-371.4
440.0	386.00	-406.7	-370.4

C=, 6.3, VN=	, 73. 74, TI=	333.87,				•
LAS	VARINGLES D TEMPE P DE VOL L VOL L ENTAL	E LA CURVA TIEL RATURAGRADI VAPPSIA IQ SATPSIE AP SATPIE PIA DE LIQ PIA DE VAP	IEN LAS SIGUIE DS F CUB/LB CUJ/LB CU/LA CU/LB	NTES UNI DADE	S:	
TEMPERATURA	₩ PD¶ VAP	V LIQ SAT	V VAP SAT	H LIQ	H VAP	DH DE VAP
	<pre>************************************</pre>	6104389775779088887999589987647759 124078577777888887999000000007509 12467857777788888799900000000000000000000000	524684393866029961740940688796747474 487857459876029961740940987967474747474747474747474747474747474747			2278 2278 2278 2278 2278 2278 2278 2278

Table 68 : n-HEXAND. Ecuación COR

LAS VARIALES DE LA CURVA TIENEN LAS SIGUIENTES UNI DADES: Temperatura ----grados f

TEMPERATURA	P DE VAP	V LIQ SAT	V VAP SAT	H LIQ	H VAP	DH DE VAP
149-07	11.131	1.7358	474.46	-632.63	-435-34	147-28
150 07	13.931	7685	360.23	-828-99	-476-94	144.05
170-00	13 177	1.785*	248.39	-615-06	-472_69	142.38
190 10	111144	1 8210	184.33	-602.99	-464 09	138.90
210.10	34.717	1 3210	139-25	-590-62	-455.39	135 23
226100	32-242	1.3318	121.76	-584-31	-451-02	133.30
240 00	51.213	1 9263	93.957	-571:45	-442 22	129.23
328-22	<u>.</u>	1.9502	33-013	-564-89	-437-81	127.08
270.00	75.042	2 001 2	45 302	-551-48	-728-97	122.51
230-00	75.177	2-0599	51,814	-544-05	-420-16	117.51
ຊີດດີ ລັງ	171-22	2 1917	46 278	-530-61	-219-79	114-83
320.01	行信访	2 1/25	37,045	-318.17	-407.13	109 01
<u>33</u> 3•33	143-24	3-3031	33-215	-508,71	-402.86	102-49
350.02	13.23	2 2927	26.714	-493-41	-394-51	98.902
300-00	171 R	2.4038	21:227	-297:22	-336.54	90.901
130 01	133.13	2 4703	19.176	-469-14	-382.75	86.388
284.04	134 SH	5:3329	15.195	-251: 73	-375:78	75.947
228-83	331-32	2.7453	13-438	-442-48	-372.72	69.764
430 02	ji: 2]	3 2693	10,256	-422-17	-367.97	54.205
233:33	417.17	3-3598	8-2470	-395.66	-370-03	25.638
430 22	443-22	5-9389	5.9330	-368-65	-368-66	- 18834E-02
265:55	343113	13: 663	131 575	-328.62	-323-61	96934E-UZ

Tabla 69 : n-HEXANO. Forma 1

	V''=, 1'+10',	10=, 323-07,	•			
LAG	S VARIABLES DE TE PER DE V VOL LI VOL VA	LA CURVA TIS ATURA	NEN LAS SIGUIE) DS F CUB/LB CUB/LB	ITES UNI DADES	S:	• • •
	ENTALP	IA DE LIQ TA DE VAP	TU/L8 TU/L9			
TEMPERATURA	P DE VAR, 1	V LIQ SAT	V VAP SAT	H LTQ	H VAP	DH DE VAP
11111111122222222222222222222222222222		11111111111111111111111111111111111111	2510 5277 27 502570 1477 89 10779 40234051 32577 1467 27 50257 51 52 52 52 52 52 52 52 52 52 52 52 52 52	3406795212593838144141244938179656 08900986394806414714544938179656 2665555555555555557944444443217965 26656655555555555555799873657457287457 26750666795555555555555579987365555587 2675057471481477145541574795745787457 26755555555555555555579574572457457457 26755555555555555555579574572457457457457457 267555555555555555555555579444544512445938747955 26755555555555555555555555555555555794446745555555555	46490959222197669535651745482571366 488722849554444473324251772840551745482571366 4887228495554444473324251772840551745482571366 44474444733242517728405517454540675467667667 4447444444444444444465177456405717457667264 44575667557467567 445444475324205177284055174557135667264 445444475324205177284055174557135667264 4454546455554655174557135667264 44545455554655174557135667264 44545455554655174557135667264 44545455554655174557135667264 44545455554655174557135667264 44545455554655174557135667264 44545455554655174557135667264 4454545555465551745557135667264 4454545555465551745557135667264 445454555546555545557135667264 4454545555465555455571356675557135667 4454545555465555455571356675557135667 4454545555545555455555555555555555555	88338600930078417 26038600930078417 75423853197426741857 44445333379742674175995045537 4545454575 1111111111111111111199504744857 455575 4556757 411111111111111111119995887648557 41111111111111111111119957 465547 41111111111111111111111111111111111

Tabla 70 : n-HEXAND. Forma 2

LAS	S VARI VƏLES DI TEMPE Ə ƏR V Vol Li Vol Vi Entalı Talı	E LA CURVA TIE RATURA GRAD VAP PSIA IO SAT PIE PTA DE LIG	NEN LAS SIGUIEN DS F CUB/LB CUB/LB TU/LB TU/L9	NTES UNI DADE:): 	
TEMPERATURA	Р DЦ VAР	V LIG SAT	V VAP SAT	H LIG	H VAP	DH DE VAP
		77741300708546000370470040085746604004 2447011354014602005994579456786780 244701135401460200599574556786780 24470113540146020059957456786780 244701135401460200570455040678780 244701135401460200570455040678780 244701135401460200570455040678780 244701135401460200570455040678780 244701135401460000000000000000000000000000000000	437.07.87.07.77.74.27.25.856 F.0.7.44.7.00.24.07.7.7 04.84.135.37.07.74.27.25.856 F.0.7.14.7.00.24.07.7.7.7 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	340679521250383814414124409381706562 2605926079521250383814414124409381706562	4649095922197669536617455825713061 	88586093F0384171788815924788974885776249 7542036993F038417171705288592478997488577737777777777777777777777777777777

Table 71 : n-HEXAND. Forme 3

119

C=, 7.1311, V1=, 73.345, TD=, 328.01,

c=, 7.1214,	VJ=, 77.143,	TO=, 328.01,				
LA:	S VARIABLES DE	LA CURVA TIE	NEN LAS SIGUIE DS F	NTES UNI DADE	S:	
	VOL LI VOL VA ENTALP EVTALP	A SATPIE P SATPIE IA DE LIQ	CU8/LB CU8/LB TU/L8 TU/L8			
TEMPERATURA	P 05 VAP	V LIG SAT	V VAP SAT	H LIQ	H VAP	DH DE VAP
		11111111111111111111111111111111111111	472727 1* 1**0 %7 6557468705887588947558855 64728749075485745716870588708947558855 41287490757865240*1833479148706750637597878 412874975765447878577941*174874787875 412874975765447183302779441*174874787875 412874987865240*183347914870637197578785 4128747876574577557168700531097578785 4128747877771******************************		4649005922199766953651635582571-257676526661 4444444455544355582571-257676526661 	445-755 2985 208

Table 72 : n-HEXAND. Forma 4

C≈, 7.1214,	90a, 17.161,	TO=, 328.01,				
LAG	S VARINBLES D TEMPE POE VOL U VOL V ENTAL ENTAL	E LA CURVA TIE RATURAGRAD VAPPSIA 19 SATPIE AP SATPIE PIA DE LIQ PIA DE VAP	VEN LAS SIGUTE DS F CUN/LB CUN/LB TU/LB TU/LB	NTES UNI DADES:		
TENPERATURA	P DE VAP	V LIA SAT	V VAP SAT	H LIQ	H VAP	DH DE VAP
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	0777340379770391700917451937679730030 74057462965446928535655095170673797	65306388339529724898011144757077 		-447514622 -44451462 -44451462 -44451462 -44451462 -44451462 -44451462 -44451462 -44451462 -44451462 -44451462 -44451462 -44451462 -44451465 -14451462 -44451465 -14451465 -14451465 -14451465 -14451465 -14451465 -14451465 -14451465 -14451465 -14451465 -14451465 -14451465 -14451465 -14551465 -1555165 -1555165 -1555165 -1555165 -1555165 -1555165 -1555165 -1555165 -1555165 -1555165 -1555165 -1555165 -1555165 -1555165 -1555165 -1555165 -15551655165 -1555165555 -15556555 -155565555 -155565555555555	985871030 2605871030 754208517130 754208517130 754208517130 754208517130 754208517130 754208517130 754208517130 75858 7604758

	AS VARIABLES D	E LA CURVA TIE Ratura GRAD	NEN LAS STOUTE	NTES UNI DADE	S:	
	YOL U YOL V ENTAL ENTAL	AP SATPIE AP SATPIE PIA DE LIQ	CUB/LB CUB/LB TU/LB TU/LN			
FEMPERATURA	ው ወደ VAP	V LIQ SAT	V VAP SAT	HLIG	H VAP	DH DE VAP
	<pre>114440.4.1.4.4.1.4.4.4.1.4.4.4.4.4.4.4.4</pre>	7734156428574006730447046857874579 24679156428574006730447046857765757 2467915545791466090000011115978546765775757 2457955791466090000011115978566757555757 24579557914560900000111159785757575757 25579554575	86043037474397158181543045821457777474397158181524304582145777774743971581910524304582145821458214582145821458214582145821	34977 D522359 383824414124497807807807662		9858710301385174391505752316318001885 - 0136910346915058915052316801880 - 1444420851710745856589915052316801880 - 1444447335374974797458915058455552316801880 - 14444473353749747974589150584555523168018854455 - 14005887762424241111111111111111111111111111111

Ca, 7.1214, VDa, 71.365, TOA, 128.01,

Tebla 74 : n-HEXAND. Forme 6

LAS	VARINCES DE TEMPE P DE VOL LI VOL V/ ENTALS ENTALS	E LA CURVA TIS RATURAGRAD VAPPSIA IG SATPIE AP SATPIE PIA DE LIG9 PIA DE LAP9	NEN LAS SIGUIE OS F CUB/LB CUB/LB TU/LB TU/LB TU/LB	NTES UNI DADES	3 1			
TEMPERATURA	P DI VAP	V LIQ SAT	V VAP SAT	H LIQ	H VAP	DH DE VAP		
00000000000000000000000000000000000000		677.23115.617.956.4277.577.611.2767.57 777.7 8.387.97.956.4277.57.57.611.27.575.57 777.7 8.387.97.00.404.94.54.64.74.74.74.75 777.7 8.387.97.00.404.94.74.64.74.74.75 777.7 8.387.97.956.427.75 777.7 8.387.97.956.427.75 777.7 8.387.97.956.427.75 777.7 8.387.97.956.427.75 777.7 1.57.75 777.7 1.57.75 777.7 1.57.75 777.7 1.57.75 777.7 1.57.75 777.7 1.57.75 777.7 1.57.75 777.75 </td <td>490150017473687124037013132500340573 53887742857702547124037013132500340573 939428877402547124037013132500340573 939428877424736871240370131327104723 939428877424736871240370131327104723</td> <td>474350076705074184911771698665826049 579000867050741884911771698665826049 555555555555555555555555555555555555</td> <td>79713293566421002858627454601460f48 514628495166421002858627454601460f48 5887746655164433940517884089520879828 5887777666284051772840629520879828 5887777666284051772840629520879828 58877776669648</td> <td>144219764219552821165528211000111000111000000000000000000000</td>	490150017473687124037013132500340573 53887742857702547124037013132500340573 939428877402547124037013132500340573 939428877424736871240370131327104723 939428877424736871240370131327104723	474350076705074184911771698665826049 579000867050741884911771698665826049 555555555555555555555555555555555555	79713293566421002858627454601460f48 514628495166421002858627454601460f48 5887746655164433940517884089520879828 5887777666284051772840629520879828 5887777666284051772840629520879828 58877776669648	144219764219552821165528211000111000111000000000000000000000		

n-HEXAND.

Table

Forma 7

C=, 6.9139, Vn=, 77.274, TN=, 329.34,

)" (PIG 14	11/03 (T1/1/135) 124	
	N RELEY FOR RELEY FOR RELEVANT AND THE PARTY OF THE STREET STREET	
) I'I i i i i i i i i i i i i i i i i i i	:1v
77 55 45 70 45 70	C SUBRUTINA PARA CALCULAR PRESION Y FUGACIDAD	
	<pre>SUBROUTLINE 7T / P SIG, T DIAELS174 \(1), 10 J44* K=3 COM10 1/ EAU/T J7 J7 J7 J, R T=TD/T4 U=V/X FysU=1 S1=7 + 14 J D f 134* K S1=5 + 14 (1, 1) / (T**1*(Y*E)**M) 1 S1=5 + 14 (1, 1) / (T**1*(Y*E)**M) 2 S1=5 + 14 (1, 1) / (T**1*(Y</pre>	

100		\$	RE	SE	F	REC						-					1.11					,				000	10100
3707 5700 7700		0000	PR LA OR DE		RAM CUA NID Ato		ARA IED (PE	OB COR IAN RIM	TE L TE ENT	ER Dig Ale	DATO SUS TINT S P/	PAI PAI RAS	RAM CO CA	PRE ETR RRE DA	STO OS LAC For	OR I	OLU GIN ES,	NEN- Ales Asi	TEN Y L CO	PER CON MO	ATUR PAR La d	A UI	TILI: TROS [ACI)	ZAND DN	0	000' 000' 000' 000'	0300 0400 050P 0650P 0600 00706
1000 1100 1100 1300	•				DIN J=4 REA REA		IDH	A(1,0 8,4	10, 1 ₆ 3	10) 143	, PD(2, r(, ZC	(50) (A (1) _ C N _ N	C (1) , M	0), ≓1,	.TT (10) N=1	, VV (, 1)	(10) , X, Y	,st	10),	PC 10	0,0	(10)		1000 1000	
1407 1577 1600 1700	. •		:	ļ				(CC VD (PD) T	[) [] [] []	5Υ ,L=	()), 1,1)		(0)	, 0	=1,	.K+2						•					
1900 2000 2100 2200		• 1	n	1	L=L C=C T()=	1 3 0 5 (0 1 T (,1,))	K+2								•			· ·			•	•				
					1=T V=1 J=V FV	5) ta 102. 122. 121.	;, icv	D+A	າ								- <u>1</u> -								÷		125
2300 2900 3000 3100 3200	•		1		SU= 00 SU= CON	1 2 Ni 1 Ni 57+1 1 Ni		J K CN,	477	(T*	+14+1	(¥)	- M	••• ••• •••				• ²									
3300				*	F11 FV1 FV Z=F P(0	-1+ -1+ -1- /1+ 	[Ç/ [4+ F]T	2)* U** *S() TD*	<u>{</u> 2 2 2 2	+81 *9) 1 70	/T+8 /FV4 0	32±1	Rc	/?)	*(1	/-1)	*(3	*U+1	¢2+3	5 * Y * 1	I)- (Y	+1)1			н ¹ 		
3200 3200 4007 4100			8 7	•	S (Ö IRT FOR	TEC IAT	(ö) 17 1 x	+ AB > VD - G1 - 1 x	577 1. 7	₽ĈÓ (L) ¶_5)-PD (P) (51) (1)	(L) (0)))/ /1X	PC0))) K+2 1.61) (1) (1)	۶ ⁶¹	1.5,	, İx,	611	.5,1	X, 6'	11.5	•			•
4300 4300 4400			5.	1	/D= [F (00 0 (0	10+ 5 0 1=10	SV I I I NΩ≦)GQ K+2 S()	т1)/L	13							•									10 00	4100 14500
4300 4700 4800 4200			15 6	•	FOR G1 FOR	TE(1AT 0.5	(7) (7)	51 (73X - G1 5X	•(0 0 1 1 1) SE STE	0=1 DES G10 R1A	K+ SV I J _ S	2) ACI ,2X	0N" 61 FA	56X	G G	0.5 61	12X 1.51 5 KI	610 //) ELVI).5, (N. P	ZX,G ARA	10. Meti	5,2X	•		000	14 600 14 700 14 700 14 700
5000 5100 5200 5300				**	// 11X E'ID		ÅÇ	IÓN	//2	;1]	VOLU X	JHE S	Ë I L	358	\$	79 79	ĨOŅ	ĘS"	s{ <i>!</i> ;	112	,"2"	211	×, −3	ĥ,		1000 1000 1000 1000	15100

. •

10000	T RESET FREE C PROGRAMA PATA COMPARAT SEGUNDOS COE C CON LOS PARAMETROS QUE DA CHIEN, Y C SE COMPARAN SONTRA DATOS OUTENIDOS I	FICIENTES VIRIALES GALCULADOS A PARTIR DE DATOS CRITICOS. De la Bibliografia.	1010010 1010-720 2011-720 2011-720 2011-720 2010-720 2010-720 2010-720 2010-720	
700 700 1000 1100 1200 1200	DINERSION A(5),CC(3),TT(3),VV(8) J=4; K=3 READ(5,/>90,91,92,(A(N),N=1,J), READ(5;/) L(CC(0),TT(0),VV(0), READ(5,/) L(CC(1),D5(1), I41,L) WRITE(6,1)),T>(50),BB(50),B(50),D(8),DE(8) K∫Y K∫∃1,K)	000:5070 00000080 (0000090 (0000190 0000110	0000
1455 1507 1607 1700 1700 1200 2000	00 3 0=1;K 00 3 0=1;K C=CC(0) T0=T(0) V0=VV(0) T=T0(1)/T7 S=0			
2100	DO (1 14=1 J O S=S+A(N) (1++1)		•	
2207	B(0)=V0*(X*(4+(3*C/2)*(Y-1))+(1- B(0)=D(0)+A35(T((1)-9B(I))/B(0) 9 WBITE(4,1)TD(I),BB(I),(B(0),0*	•(C/2)*(90+B1/T+82*T))*S) 1,K)		
2700	15 DECOMPTON 10070	•	5	à
2010	1 FORMAT (7///1) "TT IF GRATURA" 40X	"STGUNDO COEFICIENTE VIRIAL",//1X,	a	ĥ
3100	10 FORMAT (611 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	14, 61f. 5, 1x, 611.5, 1x, 611.5, 1x,		
3400	20 FORMAT(///23 *** 16 DESVIACION**	57, g11, 5, 1X, G11, 5, 1X, G11, 5, 1X,		
3600 3700	30 STOP	• • • • • • • • • • • • • • • • • • • •	t di San National San National	

RESET FREE PROGRAMA PARA CALCILAR CURVAS DE SATUPACION CON LA ECUACION DE ESTADO "COR" 100 3 ຊຸ່ລະກ C 300 DITENSION ((1), 1) COMMON/READ/2) 31, 37, 1, X,Y COMMON/READ/2) 97, 27, 37, 37, 4 COMMON/READ/2) 97, 27, 37, 34 COMMON/READ/2, 21, 54 COMMON/READ/2, 21, 54 COMMON/READ/2, 21, 54 COMMON/READ/2, 21, 54 READ(5,/) 30, 31, 37, 4 (4, 1, 2, 4) READ(5,/) 30, 31, 37, 4 (4, 1, 2, 4) READ(5,/) CORRES(34, 4), 42, 83 READ(5,/) CORRES(34, 4), 43, 73 READ(5,/) CORRES(35, 4), 43, 73 READ(5,/) COR C=",C,"VD=",VI,"TO=",TK VV=VVV D3 103 L=1,0 T3=TEMP+44 VV=VV D3 10 IL=1,0 T3=TEMP+44 VV=VV D3 10 IL=1,0 CALL PF(VVL*01/FTL/2L/T3) CALL PF(VVL*01/FTL/2L/T3) CALL PF(VVL*1,074,732,FTL/22L/T3) CALL PF(VVL*1,074,732,FTL/22L/T3) D4L=(F1L-71,1,1) CALL PF(VVL*1,074,732,FTL/22L/T3) D4L=(F1L-71,1,1) D4L=(F1L-71,1) D4L=(F1L-10 วที 100 15 25 \$300 5410 5410 30 5300

KFILE: EV0/CURVA (01/11/35)

SUBRUTENA PARA INLOULAR PRESENV Y FUSACEDAN C ç U+V/X FV=U-1 3J=9 3J=9 3J=7 3J=7 3J=1 S1=31+A(J, J)/(T*+J*(Y)**Y) S1=31+A(J, J)/(T*+J*(Y)**Y) COMTINUE F1T=1+(C/2)*(Y-1)*(Y+U+X+U-(Y+1))/ F1Y=1+(4*U**7-7*U)/FY**3+(C/2)*(Y-1)*(T*U**2+3*Y*U-(Y+1))/ FV+F1 FV+F1+F1+S7 Y=F1Y+F1+S7 Y=F1Y+F1 FTY=FV 1-1 ٠ 23F(VFF)=73 V9=V3+V P#Z*31*T7/V7 FI=(1/Z)*E(2((\$*J-3)/FV**2-(C/2)*(Y→1)*((Y+1)*ALOG(U/FV)→(((Y+4))* _______)*U=3('S'+2))+F1T*51+Z+1) _______ FUG=FT*P RFTURN END SUBRUTIAN PNRA CALOUNN ENTALPIAS COMMONAREAD/CI 2012 (2012) SUBRUTALE SUBRUTAN S C SUBRUTIAN PARA CALIBUAR ENTALPIAS Ĉ C C FILD

128

1998 10107

3 . . <u> ភ្នំពុំព</u>ាព្

6410 สู่รถา ร่าวว่ 330 l 3777

177 ร์ ก

100

<u>400</u>

6°10 'n

11

230

211-

11356 1200

CAPITULO V CONCLUSIONES

Un primer punto de observación es la existencia de una relación entre datos críticos y factor acéntrico da Pitzer con los parámetros de la ecuación de estado COR. Tal relación muestra ser aceptable dado el error pequeño que aparece al utilizar las correlaciones obtenidas para calcular los parámetros de la ecuación de estado a partir de datos críticos.

Un segundo púnto e trater es la forma en que la ecuación original pre dice el punto crítico y el factor acéntrico. Dicha predicción no es acep table, sobre todo para u, cuyos valores predichos por la ecuación distan mucho de los valores experimentales con que se cuenta (tabla 18).

De acuerdo a la primera observación se puede decir que con la generalización de la ecuación se esperaría obtener buenos resultados. Sin embargo al utilizar ésta y observar las tablas que muestran los porcenta; jos de desviación de los valores calculados con respecto a los experimen tales, para distintas propiedades termodinámicas de varias sustancias, se puede ver que los errores obtenidos en el cálculo de la® propiedades cón la ecuación generalizada son mucho mayores que los obtenidos con los parámetros originales. Además se observa que para algunas sustancias les propiedades se corren sistemáticamente en un sentido y para otras en sen tido contrario. Por ejemplo, para el metano la presión de vapor obtenida por la ecuación generalizada es casi siempre mayor que la experimental, en cambio para el bonceno es casi siempre menor.

Una situación similar se tiene para la densidad del líquido saturado e isotérmas a bajos temperaturas.

Para el cálculo del segundo coeficiente virial, en la mayoría de los casos los datos obtenidos con la ecuación generalizada son más cercanos a los valores experimentales que los obtenidos con el uso de los parámetros originales en la ecuación de estado.

For otro lado, de la segunda observación se puede deducir que al no predecir la ecuación original en forme muy exacte el punto crítico, cuen do se utilican las correlaciones con detes críticos y factor acéntrico

experimentales los valores de los parámetros resultantes estarán desviados en cierta forma de los originales, impidiendo así uno de los objetivos del presente trabajo, el utilizar las correlaciones para obtener lo más fielmente posible los valores de los parámetros de la ecuación orig<u>i</u> nal. Tales resultados se pueden var en le table 2A del capítulo III.

Esto muestra un poco el perque de los resultados obtenidos en el cap \underline{i} tulo IV.

Por todo lo dicho anteriormente se puede concluir lo siguiente:

Primero que las correlaciones para generalizar la ecuación son buenas aún cuando la ecuación generalizada no funciona de la manera esperada.

Segundo, lo antorior se debe a que la ecuación original no predice co rrectamente el punto crítico; por lo tanto se puede decir que para poder generalizar una ecuación uno de los puntos principales necesarios es que diche ecuación tenga una predicción correcta del punto crítico.

Existe la posibilidad de que la ecuación COR prediga un buen punto cr<u>í</u> tico. En dicho caso aerá necesario efectuar un reajuste de varias de las funciones dependientes de la temperatura para lograr une buena predicción an primer término de la presión de vapor, y en segundo término, de las restantes propiedades termodinámicas. Una posibilidad sería la siguiente: a) reajuster los valores de las constantes Anm para representer apropiadamente las propiedades del metano, usendo la restricción de que la ecu<u>a</u> ción de estado prediga correctamente el punto crítico.

b) resjustar los valores de les constantes Bo, 81 y 82 pars que les propiedades de los compuestos peeqdos queden representadas apropindamente, sobre todo en lo que respecta e la presión de vapor y en particular el valor de u (factor acéntrico de Pitzer) predicho por la ecuación de esta do. CAPITULO VI APENDICE A ELEMENTOS DE TERMODINAMICA ESTADISTICA

- Conceptos generales -
- Ley de distribución de Maxwell-Boltzman -
- Cálculo de las propiedades termodinámicas -

- Conceptos generalos -

Un sistema macroscópico está compuesto de un gran número de constituyentes microscópicos. Es evidente que las propiedades termodinámicas de un sistema no son independiontes de la naturaleza de sus constituyentes microscópicos, la mecánica estadística se encarga de estudiar la naturaleza, estructura y estados energáticos de estos constituyentes, a partir de lo cual derivan las propiedades macroscópicas del sistema.

Una función de partición es una expresión matemática que da una idea de la forma en que están distribuidas o repartidas las partículas micros cópicas en los diferentes estados o niveles de energía del sistema, por lo tanto tambien se le puede llamar función de distribución o reparto.

Cuando se tiene una ecuación de estado que no proviene de une función de partición, es posible obtener las variables termodinámicas de alguna manera partiendo de las ecuaciones fundamentales de la termodinámica y las relaciones de Maxwell; pero dado el caso en que la ecuación de esta do se haya derivedo de una función de partición, entonces se podrán obt<u>e</u> ner las propledades termodinámicas de un sistema particular a partir de la misma función de partición.

- Ley de distribución de Maxwell-Boltzman -

Hay una posibilidad de distribución de las partículas a través de los diferentes estados dinémicos en los cuales estas se pueden encontrar, es to no implica que las partículas se muvan al azar, existen suposiciones referentes a la posibilidad de su distribución.

La loy de distribución de Maxwell-Boltzman nos dice en que forma se reparten las partículas en los distintos niveles de energía. Tales estados de energía se pueden expresar como $\epsilon_1, \epsilon_2, \ldots, \epsilon_i$, y como n_1, n_2, \ldots . n_i las partículas que existen en cada nivel energético; existe además una gran cantidad de formas posibles de arreglo para las partícules del sistema en sus diferentes niveles, es decir, distintes maneras de acomodar las partículas en la forma n_1, n_2, \ldots, n_i dentro del sistema, cada uno de estos posibles erregios o formas de distribución se denominen microestado, pero de nuclquier forma se dece cumplir para un sistema o macroestado cualquiera, viento, que lo suma de todas las partículas dis-

tribuidas es el número total de partículas, y segundo, que la suma de las energías de las partículas distribuidas en los distintos estados energéticos es la energía total del sistema, es decir:

$$\Sigma_{n_{i}} = N \tag{1}$$

$$\sum_{i=1}^{n} \epsilon_{i} = E$$
 (2)

Si a cada microestado se le da la misma probabilidad, o sea que todos los estados de energía tienen la misma probabilidad de ser ocupados, entonces se puede establecer que la probabilidad de obtener una determinada partición o reparto es proporcional al número total de arreglos diferentes o formas distintos en que las partículas se pueden distribuir.

La siguiente fórmula combinatorial represente tal número de formas d<u>i</u> ferentes o número total de microestedos.

$$\mathbf{A} = \frac{NI}{n_1 I n_2 I n_3 I \cdots}$$
(3)

Por otro lado, si no se le da le misma probabilidad a cada micrestado puede suceder que los diferentes niveles tengan una cierta probabilidad intrinsece que los favorecería con respecto e los demás, esta probabilidad intrinsece está representada por la degeneración o multiplicidad de un estado y se representa por g_i ; entonces la probabilidad de encontror una partícula en el estado \mathbf{E}_i será:

con esto la ecuación (3) queda de la siguiente forma:

$$\mathbf{n} = \frac{N_1 \, \mathbf{g}_1^{\,\mathbf{n}} \mathbf{1} \, \mathbf{g}_2^{\,\mathbf{n}} \mathbf{2} \, \dots \dots}{n_1 \, \mathbf{n}_2 \, \mathbf{n}_3 \, \mathbf{1} \, \dots \dots} \tag{4}$$

Si se considera que las partículas son identicas no se puede diferenciar una de otra, entoncas estas pueden cambiar de lugar indistintamente y todas las NI permutaciones conducan a la misma partición; así dividien

$$\hat{n} = \frac{g_1^{n_{11}}}{n_1! n_2! n_3! \cdots}$$

(5)

tomando logaritmos,

$$\ln \mathbf{A} = \sum \mathbf{n}_i \ln \mathbf{g}_i - \sum \ln \mathbf{n}_i \mathbf{I}$$

aplicando la fórmula de Stirling para logaritmo de un fectorial,

$$\ln \mathbf{A} = \sum n_{\underline{i}} \ln g_{\underline{i}} - \left[\sum n_{\underline{i}} \ln n_{\underline{i}} - n_{\underline{i}} \right]$$
$$\ln \mathbf{A} = \sum n_{\underline{i}} \ln g_{\underline{i}} - \sum m_{\underline{i}} \ln n_{\underline{i}} + \sum n_{\underline{i}}$$
$$\ln \mathbf{A} = N - \sum n_{\underline{i}} \ln \frac{n_{\underline{i}}}{g_{\underline{i}}}$$

Para encontrar el estado de equilibrio ó estado más estable, se tiene que encontrar la distribución más probable ó máxima, que se obtiene buscendo un valor máximo de por lo tanto la diferenciación de la expresión anterior con respecto a n, e igualando a cero de como resultado:

$$-d(\ln \alpha) = \Sigma(1 + \ln \frac{\eta_i}{\eta_i}) d\eta_i = 0$$
 (6)

Para la solución de esta ecuación se aplica el método de Lagrange som bre multiplicadores indeterminados.

Tomando en cuenta que las condiciones (1) y (2) deben cumplirse se di ferencian, se multiplican por $\ll y \not \beta$ respectivamente y se suman a (6),

$$dN = \Sigma dn_{i} = 0$$
$$dE = \Sigma E_{i} dn_{i} = 0$$
$$\sum \left[\ln \frac{n_{i}}{g_{i}} + 1 + \alpha + \beta E_{i} \right] dn_{i} = 0$$

que se cumple siempre y cuendo

$$\ln \frac{n_i}{p_i} + 1 + \alpha + \beta \epsilon_i = 0$$

de donde

$$n_{i} = 0_{i} e^{-(1^{i} + \alpha_{i}) - \beta E_{i}}$$

utilizando la condición (1);

$$N = \Sigma n_i = e^{-(1 + \alpha)} \Sigma g_i e^{-\beta E_i}$$

despejands:

$$\mathcal{C}^{-(1 + \alpha c)} = \frac{N}{\Sigma \mathfrak{g}_{1} \mathcal{C}^{-\beta} \mathfrak{E}_{1}}$$

sustituyendo esta última expresión en (7)

$$\frac{\mathbf{n}_{i}}{\mathbf{N}} = \frac{\mathbf{g}_{i} \mathcal{C}^{-\lambda \mathbf{E}_{i}}}{\sum \mathbf{g}_{i} \mathcal{C}^{-\lambda \mathbf{E}_{i}}}$$

se obtiene la función de distribución de las energías de Boltzman.

Se puede expresar esta función de Boltzman para la distribución de las energías, más probable o máxima, sin tomar en cuenta la degeneración de los niveles, de la siguiente forma:

$$n_{1} = \frac{N C^{-AE_{1}}}{\Sigma C^{-AE_{1}}}$$

expresando en logaritmo:

$$\ln n_{i} = \ln N - \beta E_{i} - \ln (\Sigma e^{-\beta E_{i}})$$
$$\ln N - \ln n_{i} = \beta E_{i} + \ln (\Sigma e^{-\beta E_{i}})$$

(8)

(9)

(7≱
multiplicando esta expresión por Nk se obtiene,

Nk ln N - kN ln n_i = Nk
$$\beta E_i$$
 + Nk ln ($\Sigma C = \beta E_i$)

y aplicando la condición (1),

Nk ln N - k
$$\Sigma$$
n_i ln n_i = k $\beta \Sigma$ n_i ε_i + Nk ln ($\Sigma Q^{-\beta \varepsilon_i}$) (10)

Por otra parte se sabe que la entropia es una función de probabilidad y que una función de probabilidad es igual a la constante de Boltzman por el logaritmo natural de la distribución más probable, más una constante de integración.

$$S = f$$
 (probabilidad)
 $f(\mathbf{A}) = k \ln \mathbf{A} + cte.$

con esto se puede expresar la entropia como:

$$S = k \ln \Omega$$

de la ecuación (3);

por lo tanto

$$S = k \left[\ln N! - \sum \ln n_1 \right]$$

aplicando la fórmula de Stirling para logaritmo de un factorial

$$S = Nk \ln N - kN - k(\sum_{i=1}^{n} \ln n_{i} - n_{j})$$
$$S = Nk \ln N - k\sum_{i=1}^{n} \ln n_{i}$$

sustituyendo la expresión antorior en la ecuación (10) y aplicando la condición (2)

$$S = k_{\beta} \sum_{i} e_{i} + Nk \ln (\Sigma e^{-\beta E_{i}})$$

$$S = k_{\beta} E + Nk \ln (\Sigma e^{-\beta E_{i}})$$

derivando con respecto a E, se obtiene la ecuacióne (11)

$$\begin{bmatrix} \frac{\partial S}{\partial E} \end{bmatrix}_{V} = \beta k + kE \begin{bmatrix} \frac{\partial R}{\partial E} \end{bmatrix}_{V} + Nk \frac{\sum E_{1} \mathcal{C}^{-\beta E_{1}}}{\sum \mathcal{C}^{-\beta E_{1}}} \begin{bmatrix} \frac{\partial R}{\partial E} \end{bmatrix}_{V}$$

sustituyendo el valor n_{ij} de la ecuación (9) en la condición (2)

$$E = \frac{\sum E_{i} e^{-AE_{i}}}{\sum e^{-AE_{i}}}$$
(12)

y sustituyendo a su vez este valor en la ecuación (11)

$$\begin{bmatrix} \frac{\partial S}{\partial E} \end{bmatrix}_{V} = k \beta$$

sebiendo que

$$\begin{bmatrix} \frac{\partial S}{\partial E} \end{bmatrix}_{V} = \frac{1}{T}$$

entonces

$$k\beta = \frac{1}{T}$$

por lo tanto el volor del perámetro sin considerer la degeneración de los niveles es:

$$k = \frac{1}{k\Gamma}$$

de aquí que la ecuación (8) queda de la siguiente forma

$$\frac{n_{i}}{N} = \frac{y_{i} \mathcal{L} - \varepsilon_{i}/kT}{\Sigma g_{i} \mathcal{L} - \varepsilon_{i}/kT}$$

que es la ley de distribución de Maxwell-Saltzman donde:

se conoce como la función de partición o de reparto.

- Cálculo de las propiedades termodinámicas -

Si expresamos el logeritmo natural de la función de portición y se deriva con respecto e la temperatura,

$$\ln q = \ln \Sigma g_i \mathcal{C}^{-E_i/kl}$$

$$\begin{bmatrix} \frac{\partial \ln q}{\partial T} \end{bmatrix}_{V} = \frac{1}{kT^{2}} \frac{\sum g_{1} \varepsilon_{1} c^{-\varepsilon_{1}/kT}}{\sum g_{1} c^{-\varepsilon_{1}/kT}}$$

rearreglando la expresión:

.

$$\frac{\Sigma g_1 \varepsilon_1 C^{-\varepsilon_1/kT}}{\Sigma g_1 C^{-\varepsilon_1/kT}} = kT^2 \left[\frac{\partial \ln g}{\partial T}\right]_V$$

si se observa la expresión anterior, se puede ver que el término de la izquierda, es muy paracido a la expresión para la energía de la ecuación (12), por lo tanto se puede expresar el valor absoluto de la energía total del sistema como:

$$E = NkT^{2} \left[\frac{\partial \ln q}{\partial T} \right]_{V}$$

Si se toma la sumatoria desde i = 1 hasta N partículas totales del sistema para la función de partición, entonces la energía total se puede calcular como

$$E = kT^2 \left[\frac{\partial \ln \zeta}{\partial T} \right]_{J, \eta}$$
(13)

para un valor constante en al número total de partículas N.

De squí se puede partir pare obtener otres propiedades, por ejemplo, sabemos que:

$$\mathbf{E}_{\mathbf{V}} = \begin{bmatrix} \frac{\partial \mathbf{E}}{\partial \mathbf{T}} \end{bmatrix}_{\mathbf{V}}$$

entonces

.

$$C_{V} = 2 \text{ NkT} \left[\frac{\partial \ln q}{\partial T} \right]_{V} + \text{NkT}^{2} \left[\frac{\partial^{2} \ln q}{\partial T^{2}} \right]_{V}$$

$$C_{V} = 2 \text{kT} \left[\frac{\partial \ln q}{\partial T} \right]_{V,N} + \text{kT}^{2} \left[\frac{\partial^{2} \ln q}{\partial T^{2}} \right]_{V,N}$$

en cuyo caso as más práctico obtener la energía y luego C_y , y no C_y , directamente.

Para la entropia se tiene que:

$$dS = \mathbf{E}_{V} dT/T$$

$$dS = 2k d \ln Q + kT d (d \ln Q dT)_{V,N}$$

$$\int dS = 2k \int d \ln Q + k \int T d (d \ln Q/dT)_{V,N} + So$$

utilizando u=T y dv = d (d ln Q/dT) $_{V,N}$ como cambios de variables para resolver la integral:

$$S = 2k \ln Q + kT \left(\frac{d \ln Q}{dT} \right)_{V,N} - k \int d \ln Q + So$$
$$S = k \ln Q + kT \left(\frac{d \ln Q}{dT} \right)_{V,N} + So$$

sustituyendo la ecuación (3) en esta expresión:

$$S = k \ln Q + \frac{E}{T} + 50$$

$$S = \frac{E}{T} + k \ln Q \tag{14}$$

Utilizando la relación termódinámica para energía libre de Helmholtz,

A = E - TS

junto con la expresión (14) para la entropia:

$$A = E - E - kT \ln Q$$
 (15)
 $A = - kT \ln Q$ (15)

de las ecuaciones fundamentales de la termodinámica se tiene:

$$dA = -pdV - SdT + \Sigma \mu_1 dn_1$$

A partir de la expresión anterior y la ecuación (15), junto con algunas relaciones termodinámicas se puede conocer cualquier función termodi námica a partir de la función de partición.

la siguiente tabla muestra dichas variables termodinámicas.

TABLA 1A

Variables termodinámicas a partir de una función de partición.

 $E = kT^2 \left(\frac{d \ln Q}{dT}\right)_{VAV}$ $C_{v} = \left(\frac{\partial E}{\partial T}\right)_{V,N} = kT \left[2\left[\frac{\partial \ln Q}{\partial T}\right]_{V,N} + T \left[\frac{\partial^{2} \ln Q}{\partial T^{2}}\right]_{V,N}\right]$ $A = -kT \ln Q$ $= -\left(\frac{2}{3T}\right)_{V,N} = k \ln Q + kT \left[\frac{d \ln Q}{dT}\right]_{V,N}$ $P = -\left(\frac{\partial A}{\partial V}\right)_{T=N} = kT \left[\frac{\partial \ln Q}{\partial V}\right]_{T=N}$ $\mu_{1:} = \left(\frac{\partial A}{\partial N_{1:}}\right)_{T_{in} V_{in} N_{in}} = -kT \left[\frac{\partial \ln Q}{\partial N}\right]_{T_{in} V_{in} N_{in}}$ $G = A + PV = -kT \left[ln Q - V \left[\frac{\partial ln Q}{\partial V} \right]_{T,N} \right]$ $H = E + PV = kT \left[T \left[\frac{\partial \ln Q}{\partial T} \right]_{V,N} + V \left[\frac{\partial \ln Q}{\partial V} \right]_{T,N} \right]$ $C_{p} = \left(\frac{\partial H}{\partial T}\right)_{p N} = kT \left[2 \left[\frac{\partial \ln Q}{\partial T}\right]_{V = N} + T \left[\frac{\partial^{2} \ln Q}{\partial T^{2}}\right]_{V = N} + \frac{V \left[\frac{\partial \ln Q}{\partial V}\right]_{T = N}}{V \left[\frac{\partial V}{\partial V}\right]_{T = N}}\right]$ CAPITULO VII BIBLIOGRAFIA

۱۳

- Alder, B.J., D.A. Young, and M.A. Mark, J. Chem. Phys., <u>56</u>, 3013 (1972).
- 2 Barker, J.A. and D.Henderson, J. Chem. Phys. 47, 4714 (1967).
- 3 Bezúa, R.E., Apuntes de termodinámica, Facultad de Química, UNAN.
- 4 Beret, S. and J. M. Prausnitz, Macromolecules, 8, 878 (1975).
- 5 Boublik, T. and I. Nezbeda, Chem. Physics Letters, 46, 315 (1977).
- 6 Butler, J.A.V., C.N. Ramchandon and D.W. Thompson, J.Chem. Soc. London, 280 (1935).
- 7 Butler, J.A.V. and C.N. Ramchandon, J. Chem. Soc. London, 952 (1935).
- 8 Chien, C.H., R.A.Greenkorn and K.C. Chao, AIChE J., 29. 560 (1983).
- 9 Felsing, W.A., G.M. Watson, J. Am. Soc., <u>64</u>, 1822 (1942).
- 10 Fischer, J., J.Chem. Phys., 72, 5371 (1980).
- 11 Fredenslund, A., J. Gmehling and P. Rasmussen, <u>Vepor-Liquid Equiliptic Using UNIFAC</u>, Elsevier 1977.
- 12 Goodwin, R.D. The Thermophysical Properties of methane from 90 to 500 PK at presures to 700 bar, National Bureau of Standarda, (1974).
- 13 Henderson, D., <u>Practical Calculations of the Equations of State of Fluids and Fluids Mixtures Using Perturbation Theory and Related Theories</u>, in <u>Equations of State in Engineering and Research</u>, K. C. Chao and R.L. Robinson, Published by Am. Chem. Soc., Wash. D.C.
- 14 Hirschfelder, J.C., C.F. Curtis and R.S. Bird, <u>Molecular Theory of</u> Games and Liquids, Wiley, N.Y. 1954.
- 15 Kohler, F.N. and J.M. Perram, J. Chem. Phys., 71, 4128 (1979).
- 16 Kenneth, E.S., <u>Fluid Thermodinamic Properties for Light Petroleum</u> Systems, Gulf Publishing C. 1973

- 17 Langmuir, I., Third Colloid Symposium Monograph, E.Y. Chemical Catalog Co. 1925.
- 18 Lennard-Jones, J.C. and A.F. Devonshire, Proc. Roy. Soc. A., <u>163</u> 53 (1937).
- 19 Nitta, T., E.A. Turek, R.A. Greenkorn and K.C. Chao, AIChE J., 23, 144 (1977).
- 20 Prigogine, I., N. Trappeniers and V. Mathot, Disc. Faraday Soc., <u>15</u>, 93 (1953a).
- 21 Prigogine, I., N. Trappeniers and V. Mathot, J. Chem. Phys., <u>21</u> 359 (1953b).
- 22 Prigogine, I., <u>The Molecular Theory of Solutions</u>, p 328 et seq., Interscience Publishers, N.Y., 1957.
- 23 Smith, J.M. and H.S. VanNess, <u>Introducción a la termodinánica en</u> ingeniería química, Mc. Graw Hill, México 1980.
- 24 Timmermans, <u>Physicochemical Constants of Pure Organic Compounds</u>, Elsevier, N.Y. 1950.
- 25 Gilson, G.M. and C.H. Deal, 1. 8 2C, Fundamentals 1 (1), 20 (1962).