

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

Facultad de Química

DETERMINACION DE MASAS MOLECULARES DE POLIMEROS POR MEDIO DE PROPIEDADES COLIGATIVAS

8622

EXAMENES PROFESIONALES

TRABAJO MONOGRAFICO

Que para obtener el Título de INGENIERO QUIMICO

Presenta GUILLERMO PEREZ SALICRUP

México, D. F.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

Página

1

57

1. INTRODUCCION Y OBJETIVOS.

2.	GENERALIDADES ACERCA DE LA DETERMINACION DE
	LA MASA MOLECULAR DE POLIMEROS.
2.1	Los polímeros como sistemas polidispersos 3
2.2	Dependencia de las propiedades físicas de
	los polímeros con la masa molecular 3
2.3	Distribución de las masas moleculares 6
2.4	Tipos de masa molecular promedio 8
3.	METODOS PARA DETERMINAR LA MASA MOLECULAR
	PROMEDIO DE POLIMEROS.
3.1	Tipos de métodos 14
3.2	Métodos que proporcionan la masa molecular
	número promedio 17
3.3	Las propiedades coligativas
Ň	
4.	FISICOQUIMICA DE LAS SOLUCIONES DE POLIMEROS. 20
	그는 회사에 가지 않는 것 같아요. 이렇게 가지 않는 것 같아요. 같이 많이
5.	CRIOSCOPIA.
5.1	Fundamentos Teóricos 28
5.2	Procedimiento experimental 33
5.3	Precauciones que requiere el método 36
5.4	Ejemplo
6.	EBULLOMETRIA.
6.1	Fundamentos Teóricos 43
6.2	Procedimiento experimental 48
6.3	Ejemplo 51

- 7. OSMOMETRIA DE MEMBRANA.
- 7.1 Fundamentos Teóricos

7.2	Procedimiento experimen	ital	68			
7.3	Precauciones que requiere el método					
7.4	Ejemplo	•	76			
		с. С				
8.	OSMOMETRIA EN FASE VAPO	DR.				
8.1	Fundamentos Teóricos		80			
8.2	Procedimiento experimen	ntal	94			
8.3	Bjemplo		97			
9.	COMENTARIOS Y CONCLUSIO	DNES.	100			
<i>t</i>						
APEND	ICE I					
	Simbología		103			
4 900110	• • • •					
APEND			105			

111

BIBLIOGRAFIA.

1. INTRODUCCION Y OBJETIVOS.

La determinación de la masa molecular promedio es uno de los medios empleados en la caracterización de pol<u>í</u> meros, y es una herramienta muy útil tanto para el estudio de reacciones de polimerización, como para el desarrollo de nuevos materiales, ya que las propiedades físicas de los polímeros dependen en gran parte de su masa molecular.

1

Dentro de los diferentes métodos que existen para la determinación de masas moleculares, los basados en las propiedades coligativas son una alternativa muy importante, pues con ellos tenemos la opción de realizar mediciones rápidas para determinaciones rutinarias que no requi<u>e</u> ren de alta precisión en aparatos sencillos, como en el caso de la crioscopía y la ebullometría, o bien, se pueden realizar mediciones de gran precisión, pero que requi<u>e</u> ren de un mayor tiempo o de un equipo más sofisticado, c<u>o</u> mo el caso de la osmometría en fase vapor o la osmometría de membrana.

Sin embargo, todos estos métodos se basan en el mis mo principio, es decir, en la disminución de la actividad de un solvente al agregar un soluto, en una cantidad que depende sólo del número de moléculas de soluto agregadas y en la naturaleza del solvente.

Además, con excepción de la osmometría en fase vapor, todos los métodos por propiedades coligativas son ab solutos, es decir, no requieren de calibración previa por algún otro método, lo cual permite que la determinación se realice en forma directa, o bien, que se utilicen estas técnicas para la calibración de algún método relativo.

Al revisar la bibliografía existente sobre el tema se encontró que muy pocos libros presentan todas las técnicas de determinación de masas moleculares por propiedades coligativás aplicadas a polímeros, sino que se concen tran únicamente en uno o dos métodos, especialmente es os mometría de membrana y en fase vapor. Además por lo gen<u>e</u> ral, los libros y artículos especializados en estos temas presentan ecuaciones de tipo virial sin explicar a partir de donde se desarrollaron, mientras que los libros de Fisicoquímica generales se limitan a presentar la ecuación de Van't Hoff, sin mencionar qué ocurre cuando se presentan desviaciones de la idealidad.

Una de las metas que se persiguen en este trabajo es la presentación del material bibliográfico en forma di dáctica para que sea accesible como material de consulta para alumnos que cursan la asignatura de polímeros a nivel licenciatura o postgrado.

En resumen los objetivos del presente estudio son: 1.1 Recopilar la información que existe acerca de las cua tro técnicas de determinación de masa molecular núme ro promedio de polímeros, a partir de propiedades coligativas, es decir: crioscopía, ebullometría, osmome tría de membrana y en fase vapor.

- 1.2 Deducir matemáticamente, aplicando los principios fisi coquímicos adecuados, las ecuaciones de tipo virial que se utilizan para la determinación de masas moleculares de polímeros, por medio de las propiedades coliga tivas de sus soluciones.
- 1.3 Describir las técnicas de laboratorio que se utilizan en la determinación experimental de la masa molecular número promedio, haciendo énfasis en las dificultades que pueden presentarse en dichas técnicas.
- 1.4 Seleccionar de la literatura ejemplos de determinacio nes experimentales mostrándolos en forma de problemas resueltos para esquematizar el empleo práctico de las técnicas.
- 1.5 Seleccionar de la literatura equipos y técnicas de fa cil desarrollo y aplicación que puedan utilizarse en el laboratorio de prácticas de polímeros.

2. GENERALIDADES ACERCA DE LA DETERMINACION DE LA MASA MOLECULAR DE POLIMEROS.

2.1 Los Polímeros como sistemas polidispersos.

Una muestra de un polímero contiene generalmente una gran cantidad de cadenas individuales de moléculas de diferentes grados de polimerización, como resultado de procesos aleatorios durante la síntesis. Como consecuencia, estas cadenas pueden tener muy diferentes masas moleculares unas de otras. Por esta razón, se dice que un políme ro forma un sistema heterogéneo o polidisperso, pues está formado por una mezcla de moléculas de diferentes tamaños. (1, 2, 3).

Los sistemas polidispersos pueden ser caracterizados determinando su distribución de masas moleculares, es decir, determinando la cantidad de moléculas que poseen cada valor de masa molecular en una muestra, (fig. 2-1) lo cuál nos da la proporción de todas las especies presen tes en el polímero. Una forma más sencilla de caracterización resulta de obtener el peso molecular promedio de la muestra. (1, 2, 3)

2.2 Dependencia de las propiedades físicas de los polímeros con la masa molecular.

En sistemas polidispersos el conocimiento del peso molecular y su distribución es de gran ayuda para explicar las variaciones en las propiedades físicas, cuando las preporciones de componentes de diferentes longitudes varían, (1, 2, 4) ya que muchas propiedades de polímeros, especialmente aquéllas que se relacionan con la movilidad de las macromoléculas y/o sus segmentos, son una función de la masa molecular promedio y de la distribución de ma-

FIGURA 2-1

Curva típica de distribución de masas moleculares de un polímero sintético. sas moleculares (5). Además, las propiedades de resiste<u>n</u> cia, dureza y baja sensibilidad al ataque químico, las cuales son características de los polímeros como una clase de materiales, no están bien desarrolladas sino hasta que se alcanza una masa molecular de alrededor de 10,000 u.m.a. (3).

A baja masa molecular, los polímeros no poseen ten dencia a formar películas, mientras que su resistencia, medida como resistencia a la tensión, elongación hasta la ruptura y otras propiedades, aumentan mucho para algunos polímeros con masa molecular en el intervalo de 50,000 a 200,000 u.m.a. (1)

De la misma forma, características tales como propiedades de flujo del material fundido o en solución, envejecimiento e intemperización, adhesión, floculación, so lubilidad, elasticidad y otras, dependen de la masa molecular del polímero. (4, 6)

De hecho se han logrado obtener correlaciones del valor de algunas propiedades termodinámicas con la masa molecular, como en el caso de la temperatura de transición vítrea (T_g) , la cual se ha encontrado que es inversamente proporcional a la masa molecular número promedio (M_n) , de acuerdo con la expresión de Fox-Flory.

 $T_g = T_{g\infty} - K / M_n$

donde $T_{g\infty}$ es el valor límite de T_g a masa molecular infinita, que se obtiene de la intesección de la gráfica de T_g en función de $1/M_n$, y K es una constante característica para cada polímero. (2, 5)

Se ha encontrado también que las propiedades mecánicas en general, tales como resistencia a la ruptura y resistencia a la tensión, varían en forma similar con la masa molecular, por lo que en general, esta dependencia se puede expresar como:

 $P = P_m - K^{\dagger} / M$

donde P indica el valor de la propiedad, K' es una constan te y M es una medida de la masa molecular promedio. (2, 5)

El hecho de que algunas propiedades físicas deseables, como la resistencia a la tensión o la tendencia a formar películas, mejoren al aumentar la masa molecular, se contrapone con el aumento de otras propiedades no desea bles, como el incremento en la viscosidad del'material fun dido, lo cual hace que la extrusión y otros métodos de pro cesado se dificulten.

Debido a lo anterior, el conocimiento de la distr<u>i</u> bución de la masa molecular y de la masa molecular promedio pueden ayudar a obtener las propiedades físicas óptimas, a través de un mejor control en las condiciones de p<u>o</u> limerización. (1)

2.3 Distribución de las masas moleculares.

Las propiedades físicas de los polímeros no dependen sólo de la masa molecular promedio, sino también de la distribución de masas moleculares, por lo que es necesario conocer, o por lo menos, tener una idea de como es ésta. (5)

La información sobre la distribución de masas mole culares se presenta generalmente como una gráfica, (fig. 2-1) en la cual el número relativo de moléculas, o la masa de las moléculas, dentro de un intervalo pequeño de ma sas moleculares se representa contra la masa molecular, graficando de esta forma todas las especies presentes en la muestra. (l, 2) Para obtener esta información es nece sario separar las especies moleculares de una muestra por algún tipo de proceso de fraccionamiento o separación. (3)

Existen tres métodos alternativos para la obtención de estas curvas de distribución de masas moleculares, los cuales son:

- a) Método directo: Por medio de la sedimentación al equi librio. (1)
- b) Fraccionación: La muestra puede ser separada en sus componentes, cada uno de los cuales corresponde a un intervalo pequeño de masas moleculares, y cuyo valor medio puede ser determinado por algún método de deter minación de masa molecular promedio.

Este es el método empleado con más frecuencia, pues el fraccionamiento más o menos eficiente de los pol<u>í</u> meros no es difícil de lograr. Esta separación se l<u>o</u> gra a partir de la dependencia de la solubilidad con la masa molecular, como es el caso del fraccionamien to clásico, o bien, a partir del tamaño molecular c<u>o</u> mo se hace en la cromatografía en gel. (3) Sin embar go siempre existe cierto error, pues se sabe que nin gún método de fraccionamiento da componentes con masas moleculares únicamente dentro del intervalo desea do. A pesar de todo, en general éste es el mejor mé todo que se posee a la fecha, por su facilidad de em pleo y rapidez en aplicación (1).

c) Cálculo a partir de valores promedio: Se ha hecho ca da vez más útil el uso de la razón M_w/M_n , donde M_w es la masa molecular peso promedio y M_n la masa mole cular número promedio, como una medida de la distribución de pesos moleculares de polímeros.

Si M_w/M_n =1, significa que el polímero posee una dis tribución de masas moleculares perfectamente simétri ca y estrecha alrededor de su valor medio (podría con siderarse monodispersa), lo cual es posible teóricamente, pero es muy difícil de encontrar en la práctica. Debido a que M_w siempre es mayor que M_n , entre mayor sea el valor de M_w/M_n de uno, mayor será la diferencia que exista entre las masas moleculares de las moléculas que forman al polímero. A la razón M_w/M_n se le conoce como coeficiente de polidispersi-

dad. En la tabla 2-1 se muestra cómo la cantidad M_w/M_n está relacionada a las condiciones de la síntesis de polímeros. (3)

Por otro lado, si los valores de M_n y M_w son conocidos, se puede asumir una curva de distribución teó rica a partir del conocimiento que se tenga del méto do de polimerización, insertando en esta distribución los valores reales de M_n y M_w . (1, 2, 3, 4, 5, 7)

TABLA 2-1

INTERVALOS TIPICOS PARA EL VALOR DE $\overline{M}_{W}/\overline{M}_{R}$ EN POLIMEROS SINTETICOS. (3)

Polímero

Polímero monodisperso hipotético	1.000
Polímero monodisperso natural	1.01 - 1.05
Polímero de adición, con termina-	
ción por recombinación	1.5
Polímero de adición, con termina	
ción por desproporción, ó políme	
ro de condensación	2.0
Polímeros de vinilo de alta conversión	2 - 5
Polímeros elaborados con auto-acelera	
ción	5 - 10
Polímeros de coordinación	8 - 30
Polímeros ramificados	20 - 50

2.4 Tipos de masa molecular promedio

La determinación de un valor promedio para la masa molecular de un sistema polidisperso es el más sencillo y el más empleado de los métodos de caracterización. (1) Sin embargo, es muy importante que el método de de

terminación de la masa molecular sea escogido adecuadamen te, de forma que los resultados se relacionen lo mejor po sible con la propiedad que estemos estudiando, ya que estas propiedades también son valores promedio. (1)

En un sistema polidisperso se pueden determinar di ferentes tipos de masas moleculares promedio, dependiendo de la base que se tome para calcular dicho promedio. Lo anterior se ve más claramente en el siguiente ejemplo:

Si alguien deseara dejar caer en tu mano desde una altura de 30cm, una serie de bolas de acero con un diámetro promedio de 6cm., lo más probable es que tú estuvieras de acuerdo, pues una bola de acero de ese diámetro p<u>e</u> sa un poco menos de 1Kg. Sin embargo, si te dijeran que el diámetro promedio es 60cm. serías mucho menos accesible.

Ambos números se podrían referir al mismo conjunto de bolas, y podemos obtener uno u otro dependiendo de la manera en que calculemos el "promedio". Si el conjunto de bolas está formado como se muestra en la tabla 2-2, podemos calcular el diámetro de diferentes formas.

TABLA 2-2

DISTRIBUCION HIPOTETICA DE LAS BOLAS. (4)

No.	de bolas	Diametro	Longitud	Area (x 1/)	Volumen (x	6/)
	N _i	(cm.)	N _i D _i (cm.)	$\frac{N_i D_i^2}{(cm.)^2}$	$\frac{N_{i}D_{i_{3}}}{(cm.)}$	
	900	2.54	2286	5806.44	14748.36	e e
	50	12.7	635	8064.5	102419.15	
	50	63.5	3175	201612.5	12802393.75	1
Σ	1000		6096	215483.44	12919561.26	

El diámetro promedio, D_L , basado en la longitud (una dimensión) es:

$$\overline{D}_{L} = \underline{\Sigma \text{ NiDi}}_{\overline{\Sigma \text{ N}_{i}}} = \underline{6 \text{ 096}}_{1000} = 6.096 \text{ cm}$$

El diámetro promedio, \overline{D}_A , basado en el área (dos dimensiones) es:

$$\overline{D}_{A} = \Sigma \frac{N_{i} D_{i}^{2}}{\Sigma \frac{1}{N_{i}^{1} D_{i}}} = \frac{215,483.44}{6,096} = 35.5 \text{ cm}.$$

. El diámetro promedio, \overline{D}_V , basado en el volumen (tres dimensiones) es:

$$\overline{D}_{V} = \frac{\Sigma N_{i} D_{i}^{3}}{\Sigma N_{i} D_{i}^{2}} = \frac{12.919,561.26}{215,483.44} = 59.95 \text{ cm}.$$

A pesar de que \overline{D}_L refleja que existe un mayor núme ro de bolas pequeñas, las bolas de 2.54 cm. de diámetro representan sólo cerca del 0.1% del volumen total, lo cual es reflejado por \overline{D}_V , el cual muestra la importancia que tiene un pequeño número de bolas grandes, las cuales repre sentan 99% del volumen, y peso, del conjunto de bolas. Por cierto, cada bola de 63.5 cm. de diámetro pesa cerca de una tonelada. (4)

Volviendo al caso de los polímeros, en la determin<u>a</u> ción de la masa molecular promedio, existen métodos que se basan en contar el número de moles por unidad de masa de muestra. Este número es la sumatoria sobre todas las especies moleculares del número de moles, N_i, de cada una de las especies presentes:

La masa total de la muestra, w, es en forma similar, la sumatoria de las masas de cada especie molecular:

 $w = \sum_{i=1}^{\infty} w_i = \sum_{i=1}^{\infty} N_i M_i$

 ΣN_i

Por lo que la masa molecular promedio que obtenemos a partir de estos métodos se conoce como masa molecular n<u>ú</u>

mero promedio, M_n . Por esta definición de masa molecular, dado como masa de la muestra por mol, tenemos que: (8)

Debido a que esta masa molecular promedio toma como base el número de moléculas presentes en el sistema, \overline{M}_n es muy sensible a la concentración de especies moleculares de baja masa molecular. (1, 3, 4, 8)

Si ahora tomamos como base para el cálculo de la ma sa molecular promedio la masa de cada molécula, tendremos la masa molecular masa promedio, M_w , el cual se obtiene multiplicando la masa de cada una de las especies moleculares por su correspondiente masa molecular, de lo que se obtiene:

$$W_{w} = \frac{i \overset{\infty}{\underline{k}}_{1} (N_{i}M_{i})M_{i}}{i \overset{\infty}{\underline{k}}_{1} N_{i}M_{i}} = \frac{i \overset{\infty}{\underline{k}}_{1} w_{i} M_{i}}{i \overset{\widetilde{w}}{\underline{k}}_{1} w_{i}}$$

Debido a que ahora cada molécula es evaluada de acuerdo con su masa, aquellas moléculas con un mayor grado de polimerización contribuirán en mayor forma que aquéllas con baja masa molecular, por lo que M_w es más sensible a las moléculas de alta masa molecular. (1, 3, 4, 6)

En la tabla 2-3 se ilustra la dependencia de M_n y M_w a la adición de pequeñas cantidades de especies de alto y bajo peso molecular. (3) EFECTO DE PEQUEÑAS PROPORCIONES DE POLIMERO DE ALTA Y BAJA MASA MOLECULAR EN LOS VALORES DE \widetilde{M}_{n} Y \widetilde{M}_{W} CALCULADOS. (3) Los nuevos valores resultan de la adición de los componentes indicados a una muestra monodispersa con M=100,000.

COMPONEN	re anadido	VALORES RESULTANTE:			
CANTIDAD	PESO MOLECULAR	M _n M _w N	i ∕ M _n		
en an du entre de la composition de la Reference de la composition de la compos			•		
20% en número	10,000	85,000 98,000	1.15		
20% en masa	10,000	40,000 85,000	2.1		
20% en número	1'000,000	250,000 700,000	2.8		
20% en masa	1*000,000	118,000 250,000	2.1		
20% en número	de cada M	216,000 695,000	3.2		
20% en masa	de cada M	46,000 216,000	4.7		

Al correlacionar ciertas propiedades de los políme ros tales como viscosidad o resistencia, a menudo M_w es un parámetro más útil que M_n . (4)

Finalmente, otra masa molecular promedio utilizada muy a menudo es la masa molecular viscosidad promedio, N...

Esta masa molecular promedio no se obtiene en forma directa, sino que se hace a partir de mediciones del núme ro viscosidad límite, [n] (Índice de Staudinger), el cual es función de la masa molecular, de acuerdo con la ecuación:

$[n] = KM^a$

en donde K y a son características para cada sistema polí mero-disolvente, y el exponente "a" tiene un valor entre 0.5 y 1.0 para polímeros. Cuando se utiliza esta expresión para calcular la masa molecular a partir de la medi-

ción del número de viscosidad, el resultado es M_v , el cual está dado por:

$$\mathbf{M}_{v} = \left[\underbrace{\frac{\mathbf{i}^{\mathbf{w}}}{\mathbf{i}^{\mathbf{w}}}}_{\mathbf{i}^{\mathbf{w}}} \cdot \underbrace{\mathbf{w}_{i}^{\mathbf{M}_{i}^{\mathbf{a}}}}_{\mathbf{i}^{\mathbf{w}}} \right]^{1/a}$$

Este valor promedio es igual a la masa molecular masa promedio cuando a=1, pero cae entre la masa molecular peso promedio y el número promedio cuando es menor a 1. (1)

Por lo general, la medición de dos masas moleculares promedio, ya sean M_n , M_w 6 M_v , para un conjunto de muestras de polímeros, dan suficiente información para ex plicar el por qué de las diferencias en sus propiedades físicas. (1) METODOS PARA DETERMINAR LA MASA MOLECULAR PROMEDIO DE POLIMEROS.

3.1 Tipos de Métodos.

3.

La masa molecular de los polímeros se determina prin cipalmente por medio de métodos físicos, como medición de propiedades coligativas, difracción de luz, ultracentrifugación o medición de la viscosidad de soluciones diluidas. De éstas, sólo las dos primeras son, en teoría, técnicas absolutas, es decir, la masa molecular se puede calcular sin necesidad de recurrir a la calibración previa. Decimos "en teoría" pues aún los llamados "metodos absolutos" requieren por lo general de extrapolaciones que no son com pletamente objetivas, o de calibraciones con algún compues to de masa molecular conocida. (4, 6, 8)

En general, cualquier propiedad que dependa de la masa molecular, como solubilidad, elasticidad, adsorción en sólidos y resistencia a la tensión, se puede correlacionar con la masa molecular, y una vez logrado esto, la propiedad puede ser utilizada como una medida de la masa molecular. (4)

Estos métodos, que requieren de calibración, son llamados relativos, y en la práctica, los más usados son la viscosidad del polímero fundido y la de soluciones diluidas de éste, y la cromatografía de permeación de gel. (4)

Por otra parte, existe únicamente un método químico para la determinación de la masa molecular, el del aná lisis de grupos funcionales, el cual es un método absoluto que no requiere de ningún tipo de calibración o extrapolación. (6)

En la tabla 3-l se muestran los métodos de determi nación que son más comunmente usados, con sus límites su-

14

- 67

							,		
	TABLA	3.1	METODOS	PARA	LA DETEN	RMINACION	DE LA NASA N	DLECULAR PROMEDIO.	n in Second
NETOD Q	TIPO DE MASA N CLECULAR PROMEDIO	BASE DE Operacion	INTERVA OPTINO Aplicac (U.N	LO DE I LON	TIEMPO I Medicion	REQUERIDO CALCULOS	HEDICIONES Adicionales	LIMITACIONES	
Crioscopfa	Rn.	Propiedad coligativa Disminución en el punto de fusión	Hasta	3×10 ⁴	Corto	Corto	Calibración con estánd <u>a</u> res	La sensibilidad dis <u>-</u> minuye al aumentar M _n	
Ebullome- tría	Nn Nn	Propiedad coligativa Elevación en el punto de ebulli- ción	Hasta	3x10 ⁴	Corto	Corto	Calibración con estánd <u>a</u> res	La sensibilidad dis <u>-</u> minuye al aumentar M _n	
Osmometria en fase va por	ĨĬ'n	Medición del decre- mento de la presión de vapor por una técnica de evapora- ción dinémi ca. Propie- dad coliga- tiva	Hasta	4x10 ⁴	Corto	Corto	Calibración con estánd <u>a</u> res	La sensibilidad dis- minuye al aumentar M. El costo del e- quipo es alto.	
Osmometría de membrana		Propiedad coligativa El potencial termodinámi- co de mescla do se mide separando al solvente y la solución por una mem- brana semi- permeable	2×10 ⁴ 5×10	5.4	Hasta 10 hrs	Corto		Porosidad de la membrana U	

Difracción de luz		La lus difraclo ⁴ a 10 ⁵ tada por una solución de- pende de la masa molecu- lar del sol <u>u</u> to	l hr. Corto	Determina- ción del i <u>n</u> cremento en refractivi- dad	Sólo se puede usar un solvente
Sedimenta- ción al e- quilibrio		Los políme- De 500 en ros se sedi- adelante mentan bajo la acción de la gravedad	días a 8 hrs semanas	Determina- ción del vo lumen par- cial espec <u>í</u> fico. Dete <u>r</u> minación de la densidad	Requiere de un sol- vente que se acerque mucho a la idealidad
Viscosidad de la sol <u>u</u> ción		La forma en 10 ³ a 10 ⁷ que un pol <u>f</u> mero incre- mentará la viscosidad de una sol <u>u</u> ción depen- de de su m <u>a</u> sa molecular	Corto Corto	Calibración con estánd <u>a</u> res	
Análisis de grupos funciona- les	H n	Análisis Hasta 2x10 químico de grupos fun- cionales	⁴ Corto Corto		
Cromato- grafía en gel	H _n , N _w , R _u	La permea- ción de un polímero en una estruc- tura porosa depende de su masa mo- lecular	Corto Corto	Calibración con estánd <u>a</u> res	8

periores aproximados, así como el tipo de masa molecular promedio que proporcionan. (6)

En el momento de seleccionar un método para la determinación de masas moleculares promedio es importante recordar que ninguno es a prueba de errores, y que es necesario determinar desde un principio cuál es el tipo de masa molecular promedio que nos interesa conocer. (1, 4)

3.2 Métodos que proporcionan la masa molecular número promedio.

La determinación de la concentración de grupos funcionales cuando se conoce el número exacto de éstos por mo lécula es una forma de "contar" el número de moléculas pre sentes en una muestra. (4)

En estos casos, el valor de M_n se obtiene de la ecuación:

$$\overline{M}_n = \overline{x}_n M_o$$

donde \overline{x}_n es el grado de polimerización número promedio, d<u>a</u> do por:

x_n = <u>número de moléculas de monómero cargadas al reactor</u> número de moléculas en el sistema

y M_0 es la masa molecular de la unidad que se repite en el polímero. (4)

Por otro lado, la magnitud del decremento en el pun to de fusión y en la presión de vapor, la presión osmótica y el incremento en el punto de ebullición de un solvente al agregar un soluto no ionizado, dependen del decremento en la actividad de dicho solvente, y por lo tanto, de

17

la variación en el potencial químico al comparar el solven te puro y la solución, lo cual es proporcional al número de moléculas de soluto presentes, sin importar su natural<u>e</u> za. (1, 4, 9)

Debido a lo anterior, las propiedades coligativas son utilizadas para determinar la masa molecular número promedio del soluto, cuando su concentración en peso en la solución es conocida. (1. 4, 9)

3.3 Las Propiedades Coligativas.

La relación entre las propiedades coligativas y la masa molecular para soluciones a dilución infinita se basa en el hecho de que la actividad del soluto en una solución es igual a su fracción mol, cuando su concentración es lo suficientemente baja. Esta relación se obtiene gracias a las leyes que describen el comportamiento de las soluciones diluidas, desarrolladas por van't Hoff. (1, 8)

Se puede demostrar que la actividad del solvente d<u>e</u> be ser igual a su fracción mol en estas condiciones, por lo que el decremento en la actividad del solvente al agregar un soluto es igual a la fracción mol de éste último. (8)

Este decremento en la actividad del solvente hace que disminuya su presión de vapor, y por lo tanto provoca un aumento en el punto de ebullición, siempre y cuando el soluto no sea volátil. El decremento en el punto de fusión es también consecuencia directa de la disminución en la presión de vapor. La presión osmótica se desarrolla cuando el solvente se difunde a través de una membrana semi-permea ble para diluir la solución y producir actividades iguales. Es en estos fenómenos en los que se basan las mediciones de masas moleculares por medio de propiedades coligativas. (1, 8) La utilidad relativa de estos métodos aplicados a soluciones de polímeros se muestra en la tabla 3-2.

En ésta es claro que la medición directa del decremento en la presión de vapor provocada por un polímero en solución es muy difícil de realizar en la práctica, pues ésta tiene un valor muy bajo. Es posible, sin embar go, utilizar el decremento en la presión de vapor en forma indirecta, por medio de la osmometría en fase vapor, en la que se mide una diferencia en temperaturas relacionada a dicho decremento, ^a través de la ecuación de Clapey ron. Esta diferencia en temperaturas es del mismo orden de magnitud que las observadas en crioscopía y ebullometría (8). En esta tabla también se observa que el fenómeno que se puede medir con más facilidad, debido a su magnitud es el de la presión osmótica, lo que hace que la osmometría de membrana sea el más comunmente usado de estos métodos. (1, 8)

TABLA 3 - 2

PROPIEDADES COLIGATIVAS PARA UNA SOLUCION DE UN POLIMERO CON M=20,000 A UNA CONCEN-TRACION DE 0.01g/ml. (8)

PROPIEDAD

VALOR

Disminución en la presión de vapor	4x10 ⁻³ mm Hg.	
Elevación en el punto de ebullición	1.3x10 ⁻³ •C	1
Disminución en el punto de fusión	2.5x10 ⁻³ •C	i.
Presión osmótica	15cm. de solven	t

FISICOQUIMICA DE LAS SOLUCIONES DE POLIMEROS. (8, 10, 11)

4:

El concepto de solución ideal, como se describe en la ley de Raoult, provee las bases para el tratamiento de soluciones de moléculas sencillas. A pesar de que estas soluciones rara vez se comportan en forma ideal en un intervalo amplio de concentraciones, la correlación existen te por lo general es suficiente para justificar la adopción de la definición clásica de solución ideal como un estándar de comparación.

Las soluciones en las que el soluto es un polímero de alta masa molecular presentan una gran desviación de la idealidad. Sólo en las diluciones extremas, donde esta ley se debe tomar como un límite asintótico, las soluciones de polímeros se comportan en forma aproximada a la idealidad. Aún a bajas concentraciones, las desviaciones de la idealidad por lo general son tan grandes que la ley ideal es de poco valor como base para correlacionar las propiedades termodinámicas de las soluciones de polímeros, por lo que se hace necesario otro tipo de relación.

De acuerdo con la ley de Raoult, la actividad, a_1 , de un solvente en solución debe ser igual a su fracción mol, N_1 . En una solución binaria consistente de un solven te y un polímero con una masa molecular mil veces, o aún mayor que aquélla del solvente, sólo un pequeño porcentaje en peso del solvente es suficiente para hacer que su frac ción mol, N_1 , sea cercana a la unidad. Entonces, de acuer do a la ley de Raoult (con $a_1=P_1/P_1^{\circ}$) la presión parcial del solvente en la solución, P_1 , deberá ser casi igual a la del solvente puro, P_1° , en una gran parte del intervalo de composiciones. Sin embargo, los experimentos no confi<u>r</u> man esta predicción. La curva que representa las actividades observadas del benceno en mezclas con hule, como una función de la fracción en volumen del solvente se muestran

en la figura 4-1. La curva superior representa la ley de Racult, y la inferior el reemplazo de la ley de Racult por la igualdad arbitraria $a_1 = v_1$. La curva experimental se encuentra entre estas dos últimas, y es asintótica a la curva de la ley de Racult en los límites de dilución inf<u>i</u> nita, como ya se ha mencionado. Sin embargo, la actividad, de acuerdo a cualquiera de estas curvas, es tan cercana a la unidad a altas diluciones, que la diferencia 1- a_1 es imperceptible en la figura 4-1.

A concentraciones más altas, la actividad se corre laciona mejor con la fracción volumen que con la fracción mol, a pesar de que no son numéricamente iguales.

La razón por la cual no se cumplen las predicciones dadas por la ley de la solución ideal en las soluciones de polímeros, estriba en el uso de la fracción mol co mo la variable de composición. En consecuencia, propone que el efecto de una molécula de un soluto polimérico gran de en la actividad del solvente será igual a la de una mo lécula de soluto ordinaria, la cual puede ser no mayor que una unidad en la cadena del polímero.

Para que se tenga comportamiento ideal en soluciones sobre un intervalo amplio tanto de composición como de temperatura, se requiere que se cumplan las siguientes condiciones:

a) La entropía de mezcla debe estar dada por:

donde n_1 y n_2 son el número de moléculas de sol vente y soluto respectivamente, y N_1 y N_2 sus fracciones mol.

 $\Delta S = -k (n_1 \ln N_1 + n_2 \ln N_2)$

(4-1)

 b) El calor de mezcla, ΔH_m debe ser igual a cero.
 Desviaciones de la idealidad pueden ocurrir por el no cumplimiento de cualquiera de estas condiciones.

Se ha encontrado que las desviaciones de la ideali dad de las soluciones de polímeros no son dependientes de la temperatura, por lo que se concluye que la primera con

FIGURA 4-1

Actividad del benceno en soluciones con hule, graficada contra la fracción volumen del hule. La curva solida representa los resultados obtenidos en forma experimental, la línea superior discontinua representa la curva calculada para una solución ideal con un soluto masa molecular de 280,000 u.m.a. disuelto en benceno. La línea diagonal representa la relación $a_1 = v_1$. (10) dición, al menos, no se cumple. Por lo que se ha deriva do una expresión de entropía de mezclado para polímeros y solventes que reemplace la ecuación (4-1).

La entropía de mezclado de un polímero desorientado y un solvente se pueden obtener a partir de un modelo de "rejilla", (figuras 4-2 y 4-3) y está dada por:

$$\Delta S^* = -k (n_1 \ln v_1 + n_2 \ln v_2) \qquad (4-2)$$

donde $v_1 y v_2$ son las fracciones en volumen del soluto y solvente, es decir:

$$v_1 = n_1/(n_1+n_2)$$

 $v_2 = xn_2/(n_1+n_2)$

donde x es la razón de volúmenes molares de soluto y solvente.

El asterisco que aparece en el símbolo ΔS_m^* es para recordarnos que ésta representa sólo la entropía de conf<u>i</u> guración, calculada a partir del arreglo externo de las mo léculas y sus segmentos, sin considerar su situación inte<u>r</u> na.

La comparación de las ecuaciones (4-1) y (4-2) mues tra una analogía interesante, las fracciones mol que aparecen en la expresión ideal son reemplazadas por la fracción volumen en la ecuación de mezclado de moléculas de tamaño desigual. La ley ideal se puede derivar sólo para el caso en que el solvente y el soluto sean de volúmenes iguales. Pero la fracción volumen y la fracción mol son idénticas cuando esto sucede, y las ecuaciones (4-1) y (4-2) son iguales, por lo que la ecuación para el mezclado ideal aparece como un caso especial de la expresión más general de mezclado dada por la ecuación (4-2).

Ahora vamos a considerar la segunda condición, es

FIGURA 4-2

Moléculas de un soluto monomerico distribuidas en un modelo "de rejilla" utilizado para describir a las soluciones binarias (10)

FIGURA 4-3

Segmentos de una cadena de un polímero colocadas en un modelo "de rejilla" (10) decir, la que se refiere al calor de mezclado.

Debido a que el solvente puro y el polímero líquido puro son los estados de referencia en el estudio de soluciones, nos interesa conocer sólo la diferencia entre la energía de interacción en la solución, comparada con la de los componentes puros en estado líquido. En particular es necesario expresar la dependencia de esta diferencia, o calor de mezclado, AH_m, con la concentración. Debido a que las fuerzas de atracción entre moléculas sin carga decrece muy rápidamente con la distancia que las se para, es suficiente restringir las consideraciones a las energías desarrolladas por las moléculas advacentes unas a otras en la solución. El calor de mezclado, por lo tan to, se puede considerar que se origina al reemplazar algu nos contactos entre especies iguales en los líquidos puros por contactos entre especies diferentes en la solución. Estas consideraciones permiten hacer uso nuevamente del mo delo de "rejilla", con lo cual se obtiene la ecuación:

 $\Delta H_m = \epsilon \Delta \omega_{12} n_1 v_2 \qquad (4-3)$

donde z es el número de coordinación de la rejilla y $\Delta \omega_{12}$ es el cambio de energía de formación de un contacto entre moléculas diferentes, es decir, de formación de un conta<u>c</u> to soluto-solvente.

La ecuación anterior es la ecuación de van Laar, la cual es aplicable a cualquier sistema bicomponente, por lo tanto, el carácter polimérico del soluto no altera la fo<u>r</u> ma de la ecuación del calor de mezclado.

Para generalizar un poco, supongamos que la molécu la de solvente contenga x_1 segmentos en lugar de uno, con lo que la ecuación (4-3) pasa a ser:

 $\Delta H_m = z \quad \Delta \omega_{12} x_1 n_1 v_2$

(4 - 4)

Esta última ecuación es útil expresarla como:

 $\Delta H_{m} = kT \chi_{1} n_{1} v_{2} , \qquad (4-5)$

donde:

$$x_1 = \frac{2 \Delta \omega_{12} x_1}{kT}$$
(4-6)

la cual es una cantidad adimensional conocida como el fac tor de Flory, que caracteriza la energía de interacción por molécula de solvente dividida entre kT (k = constante de Boltzman). La cantidad kTX, representa sólo la diferencia en energía de una molécula de solvente inmersa en el polímero puro (v_2 =1), comparada con la de una rodeada por moléculas de su misma especie, es decir, en solvente puro.

Si se asume que la entropía configuracional, ΔS_m^* , representa el cambio total de entropía de mezclado, ΔS_m^* , la energía libre de mezclado se obtiene simplemente de combinar las ecuaciones (4-2)y(4-5), es decir:

> $\Delta G_{\mathbf{m}} = \Delta H_{\mathbf{m}} - T\Delta S = \Delta H_{\mathbf{m}} - T\Delta S^{\dagger}$ = kT [n₁ ln v₁+n₂ ln v₂+x₁n₁v₂] (4-7)

El potencial químico, μ_1 , del solvente en solución relativo a su potencial químico, μ_1° , en el líquido puro, se obtiene diferenciando la energía libre de mezclado, ΔG_m , con respecto al número de moléculas de solvente, n_1 . La diferenciación de la ecuación (4-7) para ΔG_m con respecto a n_1 , teniendo en cuenta que v_1 y v_2 son funciones de n_1 , y multiplicando el resultado por el número de Avogadro pa ra obtener el potencial químico por mol nos da:

 $\mu_1 - \mu_1^* = RT[1n (1-\nu_2)+(1-1/x)v_2+x_1v_2^2]$ (4-8)

A partir del potencial químico podemos escribir una ecuación para la actividad del solvente, a₁, haciendo uso

de la relación estándar de la termodinámica:

æ

 $\ln a_1 = \frac{\mu_1 - \mu_1}{RT} = \ln (1 - v_2) + (1 - 1/x)v_2 + \chi_1 v_2^2 (4 - 9)$

5. CRIOSCOPIA.

5.1 Fundamentos Teóricos.

La crioscopía es un método que ofrece la posibilidad de determinar masas moleculares en forma rápida en ap<u>a</u> ratos relativamente sencillos. (1)

Este método se basa en que, bajo condiciones ideales, el punto de fusión de un solvente puro disminuye al adicionar un soluto, en una cantidad que depende de la com centración del soluto y del calor de fusión del solvente. Esto sucede ya que es necesaria una disminución de tempera tura para hacer que la actividad del solvente en solución iguale a la del solvente puro en su punto de fusión.(1,12)

Lo anterior se describe por la situación de equilibrio que se alcanza entre el solvente en solución y el so<u>l</u> vente puro en estado sólido. (10, 11, 13)

 $\mu(T,P,a_1) = \mu_{solido}(T,P)$ (5-1)

0

28

donde μ es el potencial químico del solvente en solución en su punto de fusión y $\mu_{sólido}$ es el potencial químico del solvente puro en su punto de fusión.

En la ecuación anterior T es la temperatura de equilibrio, es decir, la de congelación de la solución.

El potencial químico del solvente en la solución es tará dado por:

$$\mu(T,P,a_1) = \mu^{\bullet}(T,P) + RT \ln a_1$$
 (5-2)

(5-3)

Por lo que, substituyendo (5-2) en (5-1) tenemos:

$$\mu^{\bullet}(T,P) + RT \ln a_1 = \mu_{solido} (T,P)$$

$$\ln a_1 = \frac{\mu^*(T,P) - \mu_{solido}(T,P)}{RT}$$

como µ° es el potencial químico del líquido puro: (10,11,13)

$$\mu^{\circ}(T,P) = \mu_{solido}(T,P) = \Delta G_{fus}$$

donde ΔG_{fus} , es la energía libre molar de fusión del solvente puro, a la temperatura T, con lo que la ecuación (5-3) se transforma en:

$$\ln a_1 = -\frac{\Delta G_{fus}}{RT}$$

Diferenciando con respecto a a₁ tenemos:

$$\frac{1}{a_1} = -\frac{1}{R} \left[\frac{\delta(\Delta G_{fus}/T)}{\delta T} \right]_p \left[\frac{\delta T}{\delta a} \right]_p (5-4)$$

Por lo que es posible aplicar la ecuación de Gibbs-Helmholtz:

$$\left[\frac{\delta(G/T)}{\delta T} \right]_{p} = -\frac{H}{T^{2}}$$

para obtener:

$$\int_{1}^{\Delta H} \frac{\Delta H_{fus}}{RT^2} \left[\frac{\delta T}{\delta a_1} \right]_{p}$$
(5-5)

donde ΔH_{fus} es el calor de fusión del solvente puro, a la temperatura T. Escribiendo esta ecuación en forma diferen cial e integrando tenemos:

$$\int_{1}^{a_{1}} \frac{da_{1}}{a_{1}} = \int_{T_{o}}^{T} \frac{\Delta H_{fus}}{RT^{2}} dT \qquad (5-6)$$

El límite inferior, $a_1=1$, corresponde al solvente puro, con una temperatura de congelación T.. El límite su perior a, corresponde a una solución a una temperatura de congelación T. Si trabajamos a bajas concentraciones del soluto, el valor de T será cercano al de T., por lo que es

posible suponer que ΔH_{fus} es constante en este intervalo de temperatura, con lo que se pueden valuar las integrales directamente, y obtener:

$$\ln a_{1} = \frac{\Delta H_{fus}}{R} \left(\frac{1}{T} + \frac{1}{T} \right)$$

$$= \frac{\Delta H_{fus}}{R} \left(\frac{T}{T} - T_{o} \right)$$

$$= \frac{\Delta H_{fus}}{R} \left(\frac{T}{T_{o}T} - T_{o} \right)$$

$$\ln a_{1} = \frac{\Delta H_{fus} (T - T_{o})}{T_{o}T}$$

$$T - T_{o} = \frac{T_{o}T}{\Delta H_{fus}} \ln a_{1} \quad (5-7)$$

Dado que $T \cong T_o$, podemos suponer que $TT_o = T_o^2$, por lo que la ecuación (5-7) se puede expresar como:

$$T - T_{\circ} = \frac{RT_{\circ}^{2}}{\Delta H_{fus}} \ln a_{1}$$
 (5-8)

De la ecuación (4-9) tenemos que:

$$\ln a_1 = \ln (1 - v_2) + (1 - 1/x)v_2 + X_1v_2^2$$

expandiendo el logaritmo y manteniendo sólo las potencias bajas en v₂ tenemos:

$$\ln a_1 = -\left[\frac{v_2}{v} + \left(\frac{1}{2} - x_1\right) v_2^2 + \frac{v_2^3}{v_2} + \dots \right] \quad (5-9)$$

substituyendo (5-9) en (5-8) tenemos:

$$T-T_{\circ} = -\frac{RT_{\circ}^{2}}{\Delta H_{fus}} \left[\frac{v_{2}}{x} + (\frac{1}{2} - x_{1}) v_{2}^{2} + \frac{v_{2}^{3}}{3} + \dots \right]$$

$$T_{o}-T = \frac{RT_{o}^{2}}{\Delta H_{fus}} \frac{v_{2}}{x} + \frac{(1-x_{1})}{3} \frac{v_{2}^{2}}{x} + \frac{v_{2}^{3}}{3} + \dots$$

$$(5-10)$$

$$T_{o}-T = \frac{RT_{o}^{2}}{\Delta H_{fus}} \frac{v_{2}}{x} + \frac{RT_{o}^{2}}{\Delta H_{fus}} \frac{v_{2}^{2}(1-x_{1})}{\Delta H_{fus}} + \frac{RT_{o}^{2}}{3} \frac{v_{2}^{3}}{3} + \dots$$

Es más conveniente utilizar la concentración, c, en g/ml, ahora bien $v_2=c\bar{v}$, donde \bar{v} es el volumen específico (parcial) del polímero, y ya que x es la razón de los volúmenes molares de polímero y solvente, tenemos:

$$\frac{v_2}{x\bar{v}_1} = \frac{c\bar{v}}{x\bar{v}_1} = \frac{c}{Mn}$$

substituyendo en (5-10) tenemos:

$$T_{o}-T = \frac{RT_{o}^{2}}{\Delta H_{fus}} \frac{c\bar{v}}{x} + \frac{RT_{o}^{2}}{\Delta H_{fus}} c^{2}\bar{v}^{2} (1-\chi_{1}) + \frac{RT_{o}^{2}}{\Delta H_{fus}} \frac{c^{3} \bar{v}^{3}}{3}$$

dado que:

$$V_1 = \frac{1}{\rho_0}$$

 $\frac{c\tilde{v}}{x\tilde{v}_1} \frac{c}{Mn}$

$$T_{o}-T = \frac{RT_{o}^{2}}{\Delta H_{fus}} \frac{c\bar{v}}{x\rho_{o}\bar{v}_{1}} + \frac{RT_{o}^{2}}{\Delta H_{fus}} c^{2}\bar{v}^{2} (1-\chi_{1}) + \frac{RT_{o}^{2}}{\Delta H_{fus}} c^{3} \frac{\bar{v}^{3}}{3} + \frac{\Delta H_{fus}}{3}$$

substituyendo

$$\Gamma_{o}-T = (\underline{RT_{o}^{2}}) \underbrace{c}_{\Delta H_{fus} \rho_{o}} + \underline{RT_{o}^{2}}_{\Delta H_{fus}} c^{2} \overline{v}^{2} (1-\chi_{1}) + \underline{RT_{o}^{2}}_{\Delta H_{fus}} c^{3} \frac{\overline{v}^{3}}{3} + \frac{1}{\Delta H_{fus}} dH_{fus}$$

(T.-T) es la diferencia entre el punto de fusión del solvente puro y del solvente en solución, por lo que la deno minamos ΔT .

$$\Delta T = (\underline{RT_{o}^{2}}) \underbrace{c}_{AH_{fus}\rho_{o}} + \underline{RT_{o}^{2}}_{Mn \ \Delta H_{fus}} c^{2} v^{2} (\underline{1}_{X_{1}}) + \underline{RT_{o}^{2}}_{C} c^{3} v^{3} + \dots$$

$$\Delta H_{fus}\rho_{o} + \underline{RT_{o}^{2}}_{AH_{fus}} c^{2} v^{2} (\underline{1}_{X_{1}}) + \underline{RT_{o}^{2}}_{C} c^{2} v^{3} + \dots (5-11)$$

$$\Delta H_{fus}\rho_{o} + \underline{Mn \ \Delta H_{fus}} + \underline{RT_{o}^{2}}_{AH_{fus}} c^{2} v^{3} + \dots (5-11)$$

El primer término del lado derecho de la ecuación es el término ideal. A dilución infinita $\Delta T/c$ debe necesa riamente aproximarse a este límite. Los siguientes térmi nos representan las desviaciones de la idealidad predichas a partir de la teoría expuesta en la sección de Fisicoquí mica de Soluciones de Polímeros. Estas desviaciones se vuelven más importantes en el caso de macromoléculas lineales en buenos solventes, es decir en aquéllos en los que las moléculas se expanden. (2, 6, 10)

Comúnmente la ecuación (5-11) se expresa simplemente como:

 $\frac{\Delta T}{c} = (\frac{RT_0^2}{\Delta H_{fus}\rho_0}) \frac{1}{Mn} + A_2 c + A_3 c^2 + \dots$ (5-12)

Por lo general, en la determinación de masas molecu lares por crioscopía, debido a que se trabaja con polímeros de baja masa molecular y con soluciones muy diluídas de éstos, el comportamiento se acerca mucho al límite asin tótico que marca la ley ideal, por lo que se trabaja única mente con el primer término de la ecuación (5-12)

$$\Delta T = \frac{c \left(\frac{\Delta H_{fus}\rho}{h}\right)}{Hn}$$
(5-13)

Debido a que para un solvente determinado:

 $\left(\frac{RT_{o}^{2}}{\Delta H_{fuc}\rho_{o}}\right)$ constante K_{f}
la ecuación (5-13) se convierte en:

$$\Delta T = \frac{cK_{f}}{Mn}$$

(5-14)

donde K_f es la constante crioscópica, la cual es característica de cada solvente. (1,6) El valor de K_f se corr<u>o</u> bora realizando mediciones de la disminución del punto de fusión con substancias patrones de masa molecular conocida. (6, 8, 14)

5.2 Procedimiento experimental.

En la figura 5-1 se muestra un aparato para criosco pía. El contenedor exterior contiene una mezcla que mantiene la temperatura unos grados más abajo que el punto de fusión del solvente utilizado. El tubo interior está separado del medio de enfriamiento por una camisa de aire, para evitar un enfriamiento demasiado rápido. Adentro del tubo interior se coloca un termómetro y un mezclador de <u>a</u> lambre. A través del brazo lateral es posible agregar mue<u>s</u> tras sucesivas de soluto. (1)

Existen aparatos más sofisticados que utilizan termistores, los cuales son semiconductores con altos coeficientes de resistividad por temperatura, que permiten lograr sensibilidades de hasta 10^{-4} °C. (1, 15) El termistor es utilizado como un brazo de un puente de Wheatstone, y su resistencia se puede medir manualmente por medio del método de punto nulo, en función del tiempo duram te el proceso de enfriamiento. (15)

La operación de los aparatos de crioscopía convencionales como los antes descritos presenta tres problemas:

- a) Se requiere la atención del operador durante todo el proceso de enfriamiento.
- b) Es difícil leer la temperatura con precisión en un momento determinado, pues ésta cambia en función del tiempo.

FIGURA 5-1

Diagrama esquemático de un aparato de crioscopía (15): 1)Matraz Dewar; 2)Camisa de aire; 3)Celda de punto de fusión; 4)Agitador de cuarzo; 5)Motor para el agitador; 6)Reostato para el motor del agitador; 7)Pozo para termómetro; 8)Entrada para corriente de nitrógeno seco (a temperatura ambien te); 9)Entrada para corriente de nitrógeno frío. c) Se requiere graficar manualmente la curva de tem peratura contra tiempo.

Estos problemas son eliminados mediante la automatización de dichos aparatos, lo cual se logra relacionando la resistencia del termistor con el desequilibrio en el voltaje del puente, y substituyendo el galvanómetro por un registrador, de esta manera se pueden obtener curvas de enfriamiento continuas en términos de voltaje en función del tiempo. (15)

Uno de los métodos experimentales más empleados es el de la temperatura de estado estacionario, la cual se define como la máxima temperatura que se alcanza después de que el solvente o solución sobre-enfriada comienza a cristalizar. (14) Esta cristalización se induce por medio del sembrado de cristales, para lograr así una cristaliza ción controlada, la cual puede lograrse introduciendo cris tales del solvente al sistema, o bien, promoviendo su for mación por medio de un enfriamiento rápido en una pequeña porción del líquido. En el segundo caso, lo que se hace en la práctica, es comenzar a inyectar un medio de enfria miento, como nitrógeno líquido, en la camisa de aire del aparato, cuando la temperatura del solvente o la solución es de más o menos 0.4°C por debajo del punto de fusión del solvente puro. Esto produce una cristalización rápida, y, conforme la temperatura aumenta hacia la de fusión del 11 quido, la corriente de enfriamiento se cierra. (8, 15)

La temperatura de estado estacionario es principal mente función de la actividad molal del soluto, pero también es afectada, aunque en menor grado, por la velocidad de enfriamiento y el grado de sobre-enfriamiento. por lo que se debe tener un buen control de estos factores.(8,14)

En ocasiones en las mediciones por crioscopía se encuentra que el valor aparente de la masa molecular de un polímero varía dependiendo de la concentración usada en la solución, cuando se utiliza la ecuación (5-14) para el

cálculo de M_n . En estos casos se recomienda graficar los diferentes valores de $\Delta T/c$ contra la concentración, y extrapolar a cero, por medio de alguna técnica de linearización, para obtener el valor de M_n a dilución infinita, el cual corresponde al valor real. (ver fig. 5-2) (1, 4, 16)

Sin embargo, una de las principales ventajas de este método, es que al utilizar aparatos de alta sensibilidad, como los termistores, termopares o termómetros de cris tal de cuarzo, se pueden utilizar concentraciones de soluto mucho menores a las que se recomiendan generalmente, ya que una diferencia en el punto de fusión (AT) de 0.1 a 0.2°C es una respuesta significativa. Con una concentración de solu to que produzca una AT de esta magnitud, las condiciones a las que se realizan las mediciones se encuentran muy cercanas a la idealidad, por lo que, el alejamiento del comportamiento ideal, como una función de la concentración causado por las interacciones normales entre moléculas, es minimizado. (14) Además, el uso de estos aparatos permite una estan darización del procedimiento de medición, obteniendo condiciones fácilmente reproducibles, por lo que es posible realizar determinaciones mediante una sola medición, obteniendo valores de M_n comparables a los obtenidos en determinacio nes a varias concentraciones con extrapolación a dilución in finita, y sin tener que recurrir a cálculos complicados. (14)

5.3 Precauciones que requiere el método.

Las posibles fuentes de error en crioscopía son:

- La interferencia del soluto en la velocidad de formación de cristales, lo que causa determinaciones erráticas del punto de fusión. (14)
- Asociación o disociación del soluto, lo que produce discrepancias en los valores de M_n calculados con diferentes solventes. (1, 6, 14)
- 3) Falsa apreciación de la disolución del soluto (14)

CONCENTRACION g soluto/100g solvente

FIGURA 5-2

Gráficas del decremento en punto de fusión contra concentración para varios polietilenos comerciales (16) Para evitar estos problemas, por lo general se utili zan solventes que tengan una buena acción de solvatación en una gran variedad de polímeros, y por lo general se hacen pruebas con más de un solvente, especialmente en el caso de los solutos polares que contienen grupos hidroxílicos, carboxílicos y aminos, con los cuales el riesgo de asociación en el punto de fusión es mayor. (1) La tabla 5-1 mues tra los puntos de fusión y las constantes crioscópicas para los solventes más usuales. (1, 34)

TABLA 5-1

CONSTANTES CRIOSCOPICAS DE LOS SOLVENTES MAS COMUNES (1,34)

SOLVENTE

PUNTO DE FUSION (°C) CONSTANTE CRIOSCOPICA K.

	and the second second	,1000	g solvente,
		,	mol°C '
Acido Acético	16.7		3.9
Acido Estearico	69.0		4.5
Acido Fórmico	8.6		2.77
Acido Sulfúrico	10.5		6.81
Agua	0.0		1.86
Alcanfor	178.4		37.7
Benceno	5.5		5.12
Benzofenona	48.5		9.8
Ciclohexano	6.5		20.0
Difenilamina	52.9		8.6
m-Dinitrobenceno	89.8		10.6
1,4,Dioxano	10.5		4.9
Fenantreno	99.3		12.0
Fenol	42.0		7.27
Naftaleno	80.2		6.9
8-Naftol	122.5		11.25
Nitrobenceno	5.7		8.1
Tribromofenol	96.0		20.4
p-Xileno	13.2		4.3

Debido a que la diferencia en el punto de fusión en tre un solvente puro y una solución, con una concentración baja de soluto, es por lo general pequeña, y que esta diferencia disminuye conforme aumenta la masa molecular del soluto, la crioscopía se utilizó inicialmente en la deter minación de masas moleculares de compuestos de baja masa molecular, es decir de hasta 1,000 u.m.a. Sin embargo. su uso se ha extendido a los polímeros con baja masa mole cular promedio. Aunque su uso está limitado a valores de M_n debajo de 30,000 u.m.a., debido a las razones anteriores, este método es de gran ayuda, ya que es justo en esta región de masas moleculares promedio en donde los otros métodos no dan resultados satisfactorios, como se observa en la tabla 5-2, en la que se comparan los valores de $M_{\rm m}$ calculados por osmometría de membrana y por crioscopía pa ra diversas fracciones de polietileno. Los resultados ob tenidos por osmometría son mayores que los de crioscopía, y esto se debe a la difusión de especies de bajo peso molecular a través de la membrana. (1, 4, 6, 8, 16)

C10

TABLA 5 - 2

MASA MOLECULAR NUMERO PROMEDIO DE MUESTRAS DE POLIETILENO (23)

Muestra

32

31

 \overline{M}_n (Osmometría) \overline{M}_n (Crioscopía)

50,000	45,000
37,000	31,000
31,000	25,000
28,000	21,000
en e statet en en	

5.4 Ejemplo.

Para comprobar la exactitud de los resultados obtenidos en crioscopía, John S. Fok, et al (24) obtuvieron por este método los pesos moleculares de tres muestras de poliestireno, consideradas como estándares, para los cuales ya se tenía la siguiente información:

Muestra	M _n (de las espec <u>i</u> ficaciones del fabricante)	n (calculado por ebu- lloscopía)	M _n (calculado por osmometría de fase vapor)
A	1050 <u>+</u> 105	1260	1120
B	2050±170	1876	1615
С	3690+365	4160	3465

Las determinaciones por crioscopía se llevaron a c<u>a</u> bo haciendo una sola adición de soluto en cada una de ellas, y la temperatura de fusión se determinó por el método de la temperatura de estado estacionario.

El solvente utilizado fué benceno, para el cual se determinó una K_f de 5.42 <u>°C g solvente</u> utilizando bencil como estándar.

Los resultados obtenidos fueron:

Muestra

Concentración

∆T(°C)

g solvente)	
· 김 김 씨는 아이는 것이 있는 것이다.	ta basa a A
17.9	0.094
17.7	0.092
16.4	0.058
25.4	0.089
32.7	0.124
49.1	0.174
24.6	0.049
32.7	0.067

49.1	0.106
73.7	0.162

En base a los resultados obtenidos ¿Se puede consid<u>e</u> rar la crioscopía como un método exacto en el cual sólo es necesario realizar una sola determinación para obtener el valor de M_n , o es necesario llevar a cabo una extrapolación como en los otros métodos?

Si utilizamos la ecuación:

$$\overline{M}_n = \frac{K_f c}{\Delta T}$$

suponiendo que el sistema está muy cerca de las condiciones ideales, por lo que no es necesario obtener el valor de \overline{M}_n a $(\frac{\Delta T}{c})$ + o, obtenemos los siguientes resultados:

Muestra	C	۵T	(M _n)app	(M _n)prom.
A	17.9	0.094	1032	
1	17.7	0.092	1043	1037
B	16.4	0.058	1532	
	25.4	0.089	1547	1500
	32.7	0.124	1429	1203
	49.1	0.174	1529	
C	24.6	0.049	2721	
	32.7	0.067	2645	
	49.1	0.106	2510	
	73.7	0.162	2467	지는 것이 있는 것을 가장할 관람들이 있는 것이 없다. 것이 있는 것이 있는 것이 없는 것

Como se puede observar, los resultados obtenidos pa ra la muestra A y B muestran que no existe una correlación entre la concentración y el valor de M_n obtenido, por lo que en estos casos se podría utilizar la crioscopía como un método de caracterización rápido en el que una sola de terminación nos dará un valor confiable de M_n . Sin embar go para la muestra C si existe una dependencia del valor de (M_n) app con el peso molecular, por lo que sería necesa rio graficar $(\frac{\Delta T}{C})$ contra c y extrapolar a cero para obtener el valor real de M_n .

EBULLOMETRIA.

6.

6.1 Fundamentos Teóricos.

La ebullometría está basada en el aumento en el pun to de ebullición, de la solución (con respecto al solvente puro), que ocurre al diluir un soluto en un solvente. Di cho aumento es ocasionado por la disminución en la activi dad del solvente al agregar el soluto, y es proporcional al número de moléculas de soluto añadidas por unidad de vo lumen. (1, 9, 12)

43

Debido a que el incremento en el punto de ebullición de soluciones de macromoléculas es pequeño, en ocasiones de sólo 0.001°C, este método se utiliza, al igual que la crio<u>s</u> copía, para la caracterización de polímeros con bajo⁹ grado de polimerización, con masas moleculares número promedio de hasta 30,000 u.m.a. (1, 8, 12)

Comparada con la crioscopía, la ebullometría tiene la desventaja de que requiere de aparatos más sofisticados. Sin embargo, por otra parte tiene la ventaja de que presen ta menos riesgo de error provocado por la posible asociación de moléculas de soluto, ya que el solvente trabaja me jor a las condiciones de medición requeridas por la ebullo metría. (1)

En la mayor parte de las ocasiones, el punto de ebullición de la solución y del solvente puro se miden simultáneamente, para evitar los errores que podrían causar las fluctuaciones de presión atmosférica, las cuales pueden ocurrir lo suficientemente rápido como para afectar las mediciones sucesivas de puntos de ebullición. (1)

Para lograr lo anterior se utilizan dos métodos al ternativos. En el primero, dos aparatos de ebulloscopía similares, uno conteniendo solvente puro y el otro solución, se utilizan en forma paralela. (1)

El segundo método consiste en contar con un apara to que permita observar el punto de ebullición de la solución y el punto de condensación del vapor (solvente pu ro) en forma simultánea. (1, 8, 12) (figura 6-1)

El diseño de este tipo de aparatos debe ser muy cuidadoso, pues se debe evitar el efecto de presión hidrostática en el punto de ebullición. (1)

Como se ha mencionado, la ebullometría se basa en el incremento en el punto de ebullición de un solvente que es necesario para que el potencial químico de dicho solven te iguale al del solvente puro en ebullición. Es decir, nos encontramos en una situación de equilibrio entre el solvente en solución y el solvente puro, el cual se puede definir como: (10, 11, 13)

$$\mu$$
 (T,P,a₁) = μ _{vap} (T_o,P) (6-1)

44

donde μ es el potencial químico del solvente con una actividad a_l en la solución en su punto de ebullición T a la presión P, y μ_{vap} es el del vapor puro en su punto de ebullición T, a la misma presión P.

El potencial químico del solvente estará dado por:

$$\mu$$
 (T,P,a₁) = μ° (T,P) + RT ln a₁ (6-2)

y la energía libre de vaporización esta definida como:

$$\Delta G_{van} = \mu_{van} (T_o, P) - \mu^o (T, P)$$
 (6-3)

Por lo que siguiendo un procedimiento similar al u sado en la sección anterior, llegamos a la ecuación

$$= \frac{1}{R} \left[\frac{\delta^{[\Delta G_{vap}/T]}}{\delta^{T}} \right]_{p} \left[\frac{\delta^{T}}{\delta^{a}} \right]_{p} (6-4)$$

Y aplicando nuevamente la ecuación de Gibbs-Helmholtz, obtenemos:

45

FIGURA 6-1

Diagramas esquemáticos de aparatos para determinaciones de masa molecular por ebullometría (9)

A) Ebullómetro: 1)Resistencia de platino, 2)Evaporador,
 3)Bomba Cottrell, 4)Termopar de referencia, 5)Condensador, 6)Gotero, 7)Termopar de medición, 8)Nivel del solvente.

 B) Ehullómetro rotatorio: 1)Termopar de referencia, 2)
 Notor rotatorio, 3)Regulador de presión, 4)Termopar de medición, 5)Ventilador, 6)Resistencia para calentamiento.

Escribiendo la ecuación en forma diferencial e int<u>e</u> grando llegamos finalmente a la ecuación

625

$$T_{o}-T = \frac{T_{o}TR}{\Delta H_{vap}} \ln a_{1}$$
 (6-6)

Nuevamente $T=T_{\circ}$, por lo que podemos suponer que $TT_{\circ}=T_{\circ}^{2}$, y tenemos:

$$T_{\circ}-T = \frac{T_{\circ}^{2}R}{\Delta H_{vap}} \ln a_{1}$$
 (6-7)

Substituyendo la ecuación (4-9) y siguiendo un procedimiento análogo al usado en crioscopía, obtenemos la ecuación:

$$T-T_{\circ} = \frac{RT_{\circ}^{2}}{\Delta H_{vap}^{\circ}} \frac{c}{M_{n}} + \frac{RT_{\circ}^{2}}{\Delta H_{vap}} c^{2} \tilde{v}^{2} (1-x_{1}) + \frac{RT_{\circ}^{2}}{\Delta H_{vap}} c^{3} \frac{\tilde{v}^{3}}{3}$$

 $(T-T_o)$ es la diferencia entre el punto de ebullición de la solución y el solvente puro, por lo que la denominamos ΔT

$$\frac{\Delta T}{c} = \frac{RT_{o}^{2}}{\Delta H_{vap}^{\rho_{o}}} \frac{c}{M_{n}} + \frac{RT_{o}^{2}}{\Delta H_{vap}^{2}} \frac{c^{2}}{v^{2}} \frac{\bar{v}^{2}}{(1-x_{1})} + \frac{RT_{o}^{2}}{\Delta H_{vap}^{2}} \frac{c^{3}}{\frac{\bar{v}^{3}}{3}} + \cdots$$

$$\frac{\Delta T}{c} = \left(\frac{RT_{o}^{2}}{\Delta H_{vap}^{\rho_{o}}}\right) \frac{1}{M_{n}} + \frac{RT_{o}^{2}}{\Delta H_{vap}^{2}} \frac{c\bar{v}^{2}}{(1-x_{1})} + \frac{RT_{o}^{2}}{\Delta H_{vap}^{2}} \frac{c^{2}}{\frac{\bar{v}^{3}}{3}} + \cdots$$

$$(6-8)$$

Al igual que en el caso de crioscopía, la ecuación anterior generalmente se expresa como:

$$\frac{\Delta T}{c} = \left(\frac{RT_o^2}{\Delta H_{vap}}\right) \frac{1}{M_n} + \frac{A_2c}{2} + \frac{A_3c^2}{4} + \dots \quad (6-9)$$

En la práctica por lo general se trabaja con el primer término del lado derecho, es decir, el término ideal, y al cual tiende el valor de $\Delta T/c$ conforme c se aproxima a cero. Por lo que, para la determinación de masas moleculares se emplea la ecuación simplificada:

$$\Delta T = c \frac{\left(\frac{RT_0^2}{\Delta H_{vap}\rho_0}\right)}{M_n}$$
(6-10)

El término $RT_o^2/\Delta H_{vap}^{\rho_o}$ sólo depende de la naturaleza del solvente, y es constante para un solvente determinado, por lo que se define la constante ebulloscópica, K_b , como:

$$K_{\rm b} = \frac{{\rm RT_o}^2}{\Delta H_{\rm vap} \rho_o}$$

la cual es una constante característica de cada solvente. Así, finalmente llegamos a la ecuación utilizada para calcular la masa molecular de un soluto, la cual es:

$$\frac{MT}{C} = \frac{K_b}{M_n}$$

(6-11)

El valor de K_b generalmente se corrobora calibrando los aparatos de ebulloscopía con substancias de masa molecular conocida, como octacosano (M=396) o triestearina (M=92) (8)

Debido a que en la ecuación (6-11) no se consideran los términos de la ecuación (6-9) que representan las de<u>s</u> viaciones de la idealidad, y en ocasiones las soluciones de macromoléculas se apartan en forma significativa de la idealidad, con frecuencia se observa que el valor aparente de la masa molecular promedio obtenido es función de la concentración de la solución usada en la determinación. En estos casos se recurre al cálculo del valor de M_n correspondiente al valor límite de ($\Delta T/c$) cuando c tiende a cero, graficando los valores obtenidos de $\Delta T/c$ contra c y extrapolando a cero. (1)

Sin embargo en la ebullometría, como la crioscopía, las condiciones experimentales se acercan mucho a las idea les, por lo que generalmente es posible obtener valores confiables de \overline{M}_n en una sola determinación, haciendo que este método sea muy utilizado como uno de referencia cuan do es necesario hacer determinaciones de \overline{M}_n en forma rápi da o muy frecuente.

6.2 Procedimiento experimental.

La selección de los solventes utilizados en ebullometría se basa en su estabilidad, pureza y tendencia a ab sorber la humedad del aire, así como su capacidad para di solver una gran variedad de polímeros (1)

Por lo general se escogen solventes que tengan una polaridad similar a la de la muestra a estudiar, para evi tar la asociación de moléculas de soluto, y acercarse lo más posible al comportamiento ideal. (1) En la tabla (6-1) se muestran las constantes ebulloscópicas de los sol ventes más comunes.

La corrección por presión dKe/dP de dicha tabla se tiene que sumar a Ke por cada milímetro de mercurio en la presión atmosférica arriba de 760 mm Hg que se tenga durante la medición. (9, 34)

48

TABLA 6 - 1

CONSTANTES EBULLOSCOPICAS DE LOS SOLVENTES MAS COMUNES (9,34)

Acido acético 118.0 3.07 0.8 Acetato de etilo 77.1 2.77 0.7 Acetato de metilo 57.1 2.15 0.5 Acetona 56.2 1.71 0.4 Alcanfor 208.2 5.95 1.5 Anilina 184.3 3.52 0.9 Agua 100.0 0.51 0.1 Benceno 80.1 2.54 0.7 Bromobenceno 156.1 6.12 1.6 Clorobenceno 132.0 4.15 1.1 Cloroformo 61.2 3.64 0.9 Ciclohexano 80.4 2.79 0.7
Acetato de etilo 77.1 2.77 0.7 Acetato de metilo 57.1 2.15 0.5 Acetona 56.2 1.71 0.4 Alcanfor 208.2 5.95 1.5 Anilina 184.3 3.52 0.9 Agua 100.0 0.51 0.1 Benceno 80.1 2.54 0.7 Bromobenceno 156.1 6.12 1.6 Clorobenceno 132.0 4.15 1.1 Cloroformo 61.2 3.64 0.9 Ciclohexano 80.4 2.79 0.7
Acetato de metilo 57.1 2.15 0.5 Acetona 56.2 1.71 0.4 Alcanfor 208.2 5.95 1.5 Anilina 184.3 3.52 0.9 Agua 100.0 0.51 0.1 Benceno 80.1 2.54 0.7 Bromobenceno 156.1 6.12 1.6 Clorobenceno 132.0 4.15 1.1 Cloroformo 61.2 3.64 0.9 Ciclohexano 80.4 2.79 0.7
Acetona 56.2 1.71 0.4 Alcanfor 208.2 5.95 1.5 Anilina 184.3 3.52 0.9 Agua 100.0 0.51 0.1 Benceno 80.1 2.54 0.7 Bromobenceno 156.1 6.12 1.6 Clorobenceno 132.0 4.15 1.1 Cloroformo 61.2 3.64 0.9 Ciclohexano 80.4 2.79 0.7
Alcanfor 208.2 5.95 1.5 Anilina 184.3 3.52 0.9 Agua 100.0 0.51 0.1 Benceno 80.1 2.54 0.7 Bromobenceno 156.1 6.12 1.6 Clorobenceno 132.0 4.15 1.1 Cloroformo 61.2 3.64 0.9 Ciclohexano 80.4 2.79 0.7
Anilina 184.3 3.52 0.9 Agua 100.0 0.51 0.1 Benceno 80.1 2.54 0.7 Bromobenceno 156.1 6.12 1.6 Clorobenceno 132.0 4.15 1.1 Cloroformo 61.2 3.64 0.9 Ciclohexano 80.4 2.79 0.7
Agua100.00.510.1Benceno80.12.540.7Bromobenceno156.16.121.6Clorobenceno132.04.151.1Cloroformo61.23.640.9Ciclohexano80.42.790.7
Benceno 80.1 2.54 0.7 Bromobenceno 156.1 6.12 1.6 Clorobenceno 132.0 4.15 1.1 Cloroformo 61.2 3.64 0.9 Ciclohexano 80.4 2.79 0.7
Bromobenceno 156.1 6.12 1.6 Clorobenceno 132.0 4.15 1.1 Cloroformo 61.2 3.64 0.9 Ciclohexano 80.4 2.79 0.7
Clorobenceno 132.0 4.15 1.1 Cloroformo 61.2 3.64 0.9 Ciclohexano 80.4 2.79 0.7
Cloroformo 61.2 3.64 0.9 Ciclohexano 80.4 2.79 0.7 Disulfato do com 3.64 3.64 3.64
Ciclohexano 80.4 2.79 0.7
Digui Baha da gan
Disultato de Cal
bono 46.1 2.34 0.6
Etanol 78.3 1.19 0.3
Eter etilico 34.6 2.10 0.5
Fenol 181.8 3.56 0.9
n-Heptano 98.4 3.43 0.8
n-Hexano 68.7
Metanol 64.7 0.84 0.2
Metil-etil cetona 79.6 2.28 0.4
Naftaleno 218.0 5.65 1.4
Nitrobenceno 210.8 5.24 1.3
n-Octano 125.6 4.25 1.0
n-Pentano 36.0 2.04 0.5
Tetracloruro de
Yodobenceno 188.4 8.87 2.1

Para evitar errores en las mediciones por ebullometría se debe tener cuidado de que tanto la muestra, como el solvente, se encuentren perfectamente secos, pues aún pequeñas cantidades de agua o solvente residual en el polímero pueden afectar la masa molecular aparente (1)

Además, el polímero deberá tener una presión de vapor despreciable en el punto de ebullición del solvente.

Para asegurar la condición es suficiente que exista una diferencia de 100°C entre el punto de ebullición de la muestra y el solvente. (1)

La gran limitación que posee este método es que las soluciones de polímeros tienen una tendencia a formar espuma durante la ebullición. Esto no sólo provoca una op<u>e</u> ración inestable, sino también ocasiona que el polímero pueda llegar a concentrarse más en la espuma, debido a su gran superficie, lo que provoca que exista incertidumbre acerca de la verdadera concentración de la solución (8).

6.3 Ejemplo.

H. Smith (33) realizó la determinación de la masa mo lecular de dos fracciones de polietileno por medio de ebullometría. Durante sus experimentos, midió la diferencia de potencial que se desarrolló entre los termopares, como una forma de medir su diferencia de temperatura. Además, el volumen de la solución empleado se mantuvo constante en 15 ml., por lo que la ecuación:

$$\frac{\Delta \mathbf{V}}{c} = \frac{K_{b}}{M_{n}}$$

se transforma en:

$$\frac{\Delta V}{\frac{W}{V}} = \frac{K_{b}}{M_{n}}$$

$$\frac{\Delta V}{W} = \frac{K_{b}}{VM_{n}} = \frac{Q}{M_{n}}$$

donde V es el volumen de solución usado (15m1), w es el p<u>e</u> so de la muestra de polímero y Q es constante, siempre y cuando V se mantenga constante. Los valores de Q para el tetracloruro de carbono y el Tolueno que se obtuvieron por medio de calibración con estándares de masa molecular con<u>o</u> cida fueron 1.59x10⁶ y 1.91x10⁶ respectivamente.

Los datos experimentales que se obtuvieron se resumen en las siguientes tablas.

FRACCION 47A/6/6

EN TOL	UENO	an an Arresta an Arresta Arresta	EN TETRACLORURO DE CARBON	0
w(g)	Δ٧		w(g)	•
0.02	5.6		0.025 3.7	5
0.045	10.35		0.05 7.5	i j
0.085	18.91		0.0875 14.2	22
0.13	27.67		0.13 22.7	15
0.175	40.25		0.1825 34.2	22
0.225	54.0		0.235 49.9	33
0.275	70.12		0.29 67.0	20
0.13 0.175 0.225 0.275	27.67 40.25 54.0 70.12		0.13 22.7 0.1825 34.2 0.235 49.9 0.29 67.0	2

FRACCION 47A/6/7

EN	TOLUENO	EN TETRACLORURO DE CARBONO
w(g)	۵۷	w(g)
0.02	4.2	0.0225
0.04	6.6	0.045 4.22
0.65	9.75	0.0775 7.75
0.105	15.48	0.1125 12.65
0.14	20.65	0.15 18.75
0.175	27.56	0.18 24.75
0.21	34.65	0.22 33.00

A partir de esta información calcular la masa molecu lar de ambas fracciones.

Solución:

En las siguientes tablas se muestran los valores de $\Delta V/w$ correspondientes a cada valor de w, necesarios para la obtención de las gráficas de $\Delta V/w$ contra w.

FRACCION 47A/6/6

EN TOLUE	NO	EN TE	TRACLORUR	O DE CARBONO
w(g) AV	AV/W	w(g)	ΔV	∆V/w
0.02 5.6	280.0	0.025	3.75	150.0
0.045 10.35	230.0	0.05	7.5	150.0
0.085 18.91	222.47	0.0875	14.22	162.51
0.13 27.62	212.46	0.13	22.75	175.0
0.175 40.25	230.0	0.1825	34.22	187.5
0.225 54.0	240.0	0.235	49,93	212.47
0.275 70.12	254.98	0.29	67.00	231.0
			and the second	 Experimental and the second sec

FRACCION 47A/6/7

B	TOLUE	NO	EN TE	TRACLORURO	DE CARBONO
w(g)	۵v	Δ V/v .	w(g)	Δ٧	ΔV/w
0.02	4.2	210	0.0225	1.83	81.33
0.04	6.6	165	0.045	4.22	93.77
0.065	9.75	150	0.0775	7.75	100.0
0.105	15.48	147.43	0.1125	12.65	112.44
0.14	20.65	147.5	0.15	18.75	125.0
0.175	27.56	157.48	0.18	24.75	137.5
0.21	34.65	165.0	0.22	33.0	150.0

Con las soluciones en tetracloruro de carbono se ob serva un comportamiento lineal con ambas fracciones, por lo que es posible sin problemas, hacer una extrapolación para obtener el valor de $(\Delta V/w)_{\circ}$, y calcular ssí el valor de \overline{M}_n a partir de la ecuación:

 $\begin{pmatrix} \underline{\Delta V} \\ w \end{pmatrix}_{n} = \underbrace{Q}_{\overline{M}_{n}} \\ \overline{M}_{n} = \underbrace{Q}_{(\overline{\Delta V}/w)_{n}}$

СК ...

FIGURA 6-2

Gráficas de AV/w contra w de los valores obtenidos por chullometría para fracciones de polietileno en Tolueno y Tetracloruro de Carbono (33) Por medio de un ajuste por mínimos cuadrados, se obtienen los siguientes valores de $(\Delta V/c)_{o}$;

Fracción 47A/6/6	$(\Delta V/w)_{o}$	=	136.09
Fracción 47A/6/7	$(\Delta V/w)$ o	#	75.06

Por 10 que, para 1a fracción 47A/6/6 tenemos:

 $M_{n} = Q_{-} = \frac{1.59 \times 10^{6}}{136.09} = 11700 \text{ u.m.a.}$

y para la fracción 47A/6/7 :

 $M_n = \frac{Q}{(\Delta V/W)} = \frac{1.59 \times 10^6}{75.06} = 21200 \text{ u.m.a.}$

Para el caso de las soluciones en Tolueno, a concentraciones mayores a 0.1 g/15m1., la relación entre $\Delta V/w$ y w es lineal, pero a concentraciones menores el valor de $\Delta V/w$ disminuye, en lugar de aumentar. Este compo<u>r</u> tamiento anormal se debe a que al acercarse al punto de ebullición, las soluciones forman espuma, en la cual se concentra el polímero debido a la gran area superficial de ésta.

Sin embargo, si tomamos únicamente los valores que se comportan en forma ideal, y por medio de mínimos cuadrados extrapolamos para obtener el valor de $(\Delta V/w)_{\bullet}$, obtenemos valores de M_n cercanos a los obtenidos con las so luciones en tetracloruro de carbono:

Para la fracción 47A/6/6: ($\Delta V/w$) = 177.42

 $\mathbf{M}_{n} = \frac{0}{(\Delta V/W)} = \frac{1.91 \times 10^{6}}{177.42} = 10\ 800\ u.m.a.$

y para la fracción 47Α/6/7: (ΔV/w)_o = 112.91

 $M_n = \frac{Q}{(\Delta V/W)} = \frac{1.91 \times 10^6}{112.91} = 16\ 900\ u.m.a.$

OSMOMETRIA DE MEMBRANA.

7.1 Fundamentos Teóricos.

7.

Entre los métodos para estudiar a los polímeros en solución, la osmometría de membrana es importante, pues <u>o</u> frece la posibilidad de determinar la masa molecular núm<u>e</u> ro promedio, M_n , en forma directa, así como los parámetros de interacción entre los componentes de la solución y aún la polidispersidad del polímero, siendo uno de los métodos absolutos más precisos con que se cuenta actualmente. (1, 2, 6, 17)

El principio de la osmometría de membrana se muestra en la figura 7-1. Los dos compartimientos de un osmó metro se encuentran separados por una membrana semipermea ble, a través de la cual sólo pueden pasar las moléculas de solvente. (8) En uno de estos compartimientos se colo ca solvente puro, y en el otro una solución diluida del polímero en el mismo solvente (2, 4, 12). La diferencia de potencial químico que existe entre la solución y el sol vente puro produce que este último pase a través de la mem brana, por lo que el nivel del líquido en el lado de la so lución sube. La presión hidrostática producida aumenta la actividad del solvente en el lado de la solución hasta que, cuando la presión aplicada iguala la presión osmótica, se alcabza el equilibrio. (1, 2, 8, 9, 12)

Este equilibrio es independiente de la forma en la que actúa la membrana, siempre y cuando ésta sea permeable sólo al solvente. La condición para el equilibrio es que: (10, 11, 13)

ET:

58

FIGURA 7-1

Diagrama de un osmómetro de membrana. La solución de polímero, A, se encuentra separada del solvente puro, B, por una membrana semipermeable, C. La presión osmótica producida es m.

$$\mu^{\circ}(T,P) = \mu(T,P+\pi,a_1)$$
 (7-1)

donde $\mu(T, P+\pi, a_1)$ es el potencial químico del solvente en la solución, la cual está sujeta a la presión P+ π , y $\mu^{\circ}(T, P)$ es el del solvente puro, sujeto únicamente a la presión P. Para una solución que no está sujeta a ninguna pre sión adicional tenemos que:

$$\mu(T,P,a_1) = \mu^{\circ}(T,P) + RT \ln a_1$$
 (7-2)

y el efecto de la presión es el incrementar μ por la int<u>e</u> gral de \bar{v}_1 dP, donde \bar{v}_1 es el volumen molar del solvente puro. Por lo que tenemos que:

$$\mu (T, P+\pi, a_1) = \mu^{\circ}(T, P) + RT \ln a_1 + \int_{D}^{P+\pi} \bar{v}_1 dP \quad (7-3)$$

Substituyendo la ecuación (7-3) en (7-1) tenemos que: $P^{+\pi}$

$$\mu^{\circ}(\mathbf{T},\mathbf{P}) = \mu^{\circ}(\mathbf{T},\mathbf{P}) + \mathbf{RT} \ln \mathbf{a}_{1} + \int_{\mathbf{p}} \bar{\mathbf{v}}_{1} d\mathbf{P}$$

б

-RT ln $a_1 = \int_{p}^{p+\pi} v_1 dp$ (7-4)

Substituyendo la ecuación (4-9) tenemos que:

-RT (ln 1-v₂) + (1 - 1/x)v₂ + X₁v₂²) =
$$\int_{-\infty}^{P+\pi} v_1 dP$$

expandiendo el logaritmo, y manteniendo sólo las potencias bajas en v_2 tenemos:

RT [
$$\frac{v_2}{x}$$
 + ($\frac{1}{2}$ - $\frac{x_1}{2}$) $\frac{v_2^2}{2}$ + $\frac{v_3^3}{3}$ + ...] = $\int_{p}^{m} \tilde{v}_1 dP$ (7-5)

El volumen molar del solvente puro es independiente de la presión en el rango de las presiones osmóticas, por lo que se puede evaluar la diferencial en forma directa y obtener:

$$\begin{array}{rcl} \operatorname{RT} & [v_{2} + (\frac{1}{2} - X_{1})v_{2}^{2} + v_{2}^{3} + \ldots] = \pi \bar{v}_{1} \\ \\ \pi & = \frac{\operatorname{RT}}{\bar{v}_{1}} & [v_{2} + (\frac{1}{2} - X_{1})v_{2}^{2} + v_{2}^{3} + \ldots] \end{array}$$

Ya que:

$$\frac{\mathbf{v}_2}{\mathbf{x}\bar{\mathbf{v}}_1} = \frac{\mathbf{c}\bar{\mathbf{v}}}{\mathbf{x}\bar{\mathbf{v}}_1} = \frac{\mathbf{c}}{\mathbf{M}_n}$$

entonces:

$$\frac{\pi}{c} = \frac{RT}{M_n} + \frac{RT}{\tilde{v}_1} (\frac{\tilde{v}^2}{1 - X_1})c + \frac{RT}{3\tilde{v}_1} (\frac{\tilde{v}^3}{3\tilde{v}_1})c^2 + \cdots$$
(7-7)

Nuevamente, el primer término del lado derecho de la ecuación es el término ideal o de van't Hoff. A dilución infinita "/c debe necesariamente aproximarse a este límite, y los siguientes términos representan desviaciones de la idealidad predichas a partir de la teoría expuesta en la sección 4.

Por lo general la ecuación (7-7) se expresa simpl<u>e</u> mente como:

$$\frac{\mathbf{z}}{\mathbf{x}} = \frac{\mathbf{RT}}{\mathbf{M}_{a}} + \frac{\mathbf{A}_{2}\mathbf{c}}{\mathbf{x}} + \frac{\mathbf{A}_{3}\mathbf{c}^{2}}{\mathbf{x}} + \cdots$$
(7-8)

y con frecuencia se hace una aproximación y se considera A₃ igual a $(A_2/2)^2$, por lo que la ecuación anterior se con vierte en: (4,8)

(7-6)

$$\left[\frac{\pi}{c}\right]^{\frac{1}{2}} = \left[\frac{RT}{M_n}\right]^{\frac{1}{2}} \left(1 + \frac{A_2c}{2}\right)$$
(7-9)

Para determinar la masa molecular promedio y el va lor de los coeficientes viriales, se debe encontrar el va lor límite de la presión osmótica reducida a dilución infinita, $(\frac{\pi}{c})_{\circ}$. La forma más común de lograr esto es midien do π a diferentes concentraciones (ej 2.0, 4.0, 6.0 y 8.0 g/l) y graficando π/c contra c. Los puntos medidos permi ten la extrapolación a concentración cero, es decir $(\frac{\pi}{c})_{\circ}$, y este valor se puede utilizar en la ecuación de van't Hoff, la cual puede expresarse como:

$$\left(\frac{\pi}{c}\right)_{\circ} = \frac{RT}{M_{n}}$$

(7 - 10)

para obtener M_n. (6, 8, 9, 18) (Fig. 7-2)

FIGURA 7 - 2

Gráfica de la presión osmótica reducida (π/c) contra la concentración (c).

TABLA 7-1

VALORES DE LOS COEFICIENTES VIRIALES DE LA ECUACION (7-8) PARA EL CALCULO DE LA MASA MOLECULAR PROMEDIO POR OSMOMETRIA DE MEMBRANA DEL POLIMETIL METACRILA-TO (\widetilde{M}_n =128 000) EN VARIOS SOLVENTES. (6)

Solvente	$\frac{\text{RT}}{\text{M}} \times 10^4$	A ₁ ×10 ⁵	A ₂ × 10 ⁷	M	Mn
	(atm.1 g ⁻¹)	$(atm.1^2g^{-2})$	(atm.1 ³ g ⁻¹	³)	
Cloroformo	2.03	1.39	4.32	122 000	1919 - Maria II.)
Dioxano	1.93	1.36	-	128 000).
Tetrahidrofurano	1.88	0.89	0.99	131 000) '' - (''
Benceno	1.86	1.40	-	132 500	128 000
Tolueno	1.91	0.81	-	129 000	+ 5 000
Dietilcetona	1.93	0.24	1.47	128 000). ²⁵
Acetona	1.91	0.56		129 000)
m-Xileno	1.99	-0.02	19 7 - 201	124 000	j .
			1		

Ccn frecuencia, debido a que se trabaja en los lími tes de concentración diluida, el coeficiente A_3 de la ecua ción (7-8) es despreciablé; por lo que se obtiene una línea recta en la extrapolación, siendo la pendiente de esta recta el valor de A_2 . (Para ver el valor de significan cia de A_2 en la caracterización de la eficiencia de un sol vente para disolver una substancia determinada vea la tabla 7-1). (2, 3, 6, 8, 9)

Si el solvente es bueno, es decir A_3 no es despreciable, o la concentración es lo suficientemente alta como para que el término que contiene c² sea significante, los puntos pueden desviarse de la recta. En estos casos es útil graficar $(\frac{\pi}{C})^{\frac{1}{2}}$ contra c. como lo sugiere la ecuación 7-9 (ver figura 7-3). y obtener el segundo coeficiente vi-

FIGURA 7-3

Presiones osmóticas del polimetilmetacrilato en Tolueno (a), acetona (a) y acetonitrilo (a) graficadas de acuerdo a la ecuación (7-9)(4) rial dividiendo la pendiente entre el intercepto y entre dos. (4, 8)

El paralelismo que se observa en las líneas de la figura 7-4, que representan muestras de diferentes masas moleculares en el mismo solvente, muestra el resultado muy común de que las interacciones polímero-solvente son una función que varía muy poco con la masa molecular. (8)

La figura 7-5 muestra los resultados obtenidos en las mediciones de presión osmótica de polimetilmetacrilato con un M_n de 128,000 u.m.a. en varios solventes. (6) Los valores graficados dan, para las soluciones en diferentes solventes, casi el mismo valor en la extrapolación para $(\frac{\pi}{C})_{\circ}$, y, por lo tanto, con la ecuación (7-10) la misma ma sa molecular. Lo anterior muestra la independencia de $(\frac{\pi}{C})_{\circ} = RT/M_m$ con el tipo de solvente, siempre y cuando éste disuelva la substancia molecularmente. La presencia de agregaciones que ocurren en los malos solventes, producen partículas con masæ mayores, por lo que se obtienen valores menores de $(\frac{\pi}{C})_{\circ}$. (6, 8)

De las mediciones obtenidas en osmometría, se pueden calcular los valores de los términos individuales de la ecuación (7-8), es decir, M_n , A_2 y A_3 , los cuales pueden ser utilizados como base para cálculos termodinámicos del sistema soluto-solvente. Estos valores relacionados a las mismas substancias que las de la figura 7-5 están dados en la tabla 7-1. (6)

El segundo coeficiente virial. A_2 , es una herramienta útil para predecir la eficiencia, termodinámicamente hablando, de un solvente para un polímero dado. Cuando A_2 es grande. el impulso termodinámico para que la dilución ocurra también es alto. Conforme A_2 disminuye, el solvente es cada vez más "malo", hasta que, cuando $A_2=0$, los polímeros de masas moleculares infinitamente altos simplemente se precipitan de la solución. Como se mencionó anterior

Gráficas de π/RTc contra la concentración de soluciones de fracciones de acetato de celulosa en acetona. (8)

CONCENTRACION (g/1)

FIGURA 7-5

Presión osmotica reducida a diferentes concentraciones de poli-metil-metacrilato con masa molecular número promedio de 128,000 en diferentes solventes. (6)

Cloroformo ····Tolueno -- Benceno ···· Acetona ···· Dioxano Dietilectona -- Tetrahidrofurano milieno mente, las interacciones polímero-solvente son una función que varía muy poco con la masa molecular, por lo que el valor de A_2 disminuye muy lentamente al aumentar la masa molecular del polímero (3)

7.2 Procedimiento Experimental

La utilidad de los resultados de las mediciones h<u>e</u> chas por osmometría de membrana dependen de la disponibilidad de una membrana a través de la cual los solventes pasen libremente, pero por la que las moléculas de soluto no puedan pasar. Las membranas que existen sólo aproximan la semipermeabilidad ideal, por lo que la principal limit<u>a</u> ción de este método es la difusión de especies de baja m<u>a</u> sa molecular a través de la membrana hacia el solvente p<u>u</u> ro. (2, 8)

Las membranas utilizadas se dividen en dos tipos:

- a) Compuestos inorgánicos no hinchables, como vidrio poroso y metal.
- b) Compuestos orgánicos hinchables, como celulosa y hule.

Los materiales más comúnmente empleados para la fabricación de membranas orgánicas son: coloidón, celulosa regenerada fabricada por denitración de coloidón, gel de celofán que no se ha dejado secar desde su fabricación, ce lulosa bacteriana sintetizada por la acción de ciertas ce pas de bacterias, hule, alcohol polivinílico, poliuretanos, polivinilbutiral, policlorotrifluroetileno y acetilcelulo sa. De éstos, el gel de celofán es el más empleado. (3, 6, 8)

Todas estas membranas, por lo general, se reciben mojadas con agua, y deben ser acondicionadas si es que han de ser utilizadas con un solvente orgánico. En este proc<u>e</u> so, el agua es reemplazada por el solvente deseado. Si e<u>s</u> te último no es miscible con el agua, el acondicionamiento se debe realizar en dos pasos, usando un solvente interme
dio que sea miscible tanto con el agua como con el solven te final. Por lo general estos solventes intermedios son alcoholes de baja masa molecular, como etanol o isopropanol, o algún otro solvente como acetona. (3)

En la selección de la membrana su estabilidad es un factor determinante, pues ésta debe ser absolutamente estable frente al solvente a la temperatura de medición. O tro factor importante es su grado de permeabilidad, pues éste es crítico para los valores que se obtendrán durante la medición. (6)

Para la determinación de la presión osmótica se han desarrollado tanto osmómetros convencionales muy sencillos como equipos automáticos de ajuste rápido. (6, 8)

Entre los osmómetros convencionales se utilizan prin cipalmente dos tipos. Uno, el osmómetro de bloque, es un aparato de metal relativamente grande y estorboso. El área de la membrana es grande y el volumen de solución pequeño. lo que representa una ventaja para que se alcance el equi librio rápidamente. Los osmómetros más populares son los basados en el diseño de Zimm-Myerson, los cuales son peque ños y simples. En éstos, dos membranas son colocadas con tra una celda de vidrio, en la que se coloca la solución, por medio de dos platos perforados, como se muestra en la figura 7-6. El aparato ensamblado se suspende en un tubo largo parcialmente lleno con solvente. Las ventajas de es tos osmómetros son su pequeño tamaño y bajo costo, lo que hace posible realizar múltiples instalaciones, la posibilidad de inmersión en baños de temperatura controlada, fa cilidad de llenado y ajuste de la altura osmótica. (6, 8)

Existen básicamente dos procedimientos para la medición de la presión osmótica en estos tipos de osmómetros. En el método dinámico, o método de punto nulo, una presión externa, medible y variable, se aplica por medio de un gas al capilar, y de esta forma se determina la presión de gas necesaria para evitar cualquier movimiento del menisco en

В

FIGURA 7-6 (9)

Osmómetros verticules tipo Helfritz (A) ý Schultz (B).

1) Celda de la solución; 2) Brida interior;

3) Membrana; 4) Brida exterior; 5) Nivel del

solvente; 6)Capilares.

el capilar, por lo que la presión del gas es igual a la presión osmótica. El método estático consiste en esperar a que se alcance el equilibrio y lecr la altura desarrollada. (6)

El tiempo de ajuste depende del sistema soluto-solvente en cuestión, en el aparato utilizado, y en particular en la relación de volumen a área de la membrana que se tenga. Por lo general el equilibrio es lento y tarda algunas horas en alcanzarse. (6)

Los osmómetros automáticos (figura 7-7) trabajan bajo el principio del método dinámico, pero en éstos la presión osmótica se compensa con una presión hidráulica. En estos aparatos el compartimento del solvente se encuen tra totalmente cerrado, y tienen adaptado un aparato sensible a la presión en lugar de un capilar. Un servo meca nismo rápidamente ajusta el nivel del líquido en el compartimento del solvente puro, para balancear la presión osmótica, antes de que una cantidad apreciable de solvente haya pasado a través de la membrana. Como resultado de esta acción rápida, el osmómetro alcanza el quilibrio en un lapso de 1 a 5 minutos, en lugar de las 10 a 20 horas que requieren los instrumentos convencionales, por lo que el tan frecuente problema de difusión del polímero que se tiene en el equilibrio lento, tiene poca significancia, con lo que ya no es necesario considerar esta fuente de error. Esto a su vez permite que surja la posibilidad de determinar el valor de M_n de compuestos con masas moleculares menores a los que se pueden medir en los osmómetros convencionales. (figura 7-8) (3, 4, 6, 8, 17, 19)

Además, si la curva de presión osmótica se registra con un osmómetro automático por un período largo. se puede obtener información sobre si ha sido el polímero mismo el que se ha difundido a través de la membrana, o si sólo han sido impurezas de bajo peso molecular. En el

71

FIGURA 7-7 (19)

Osmómetro automático.

1)Joringa del solvente; 2)Membrana; 3) Alimen tación de la muestra; 4)Cadena; 5)Nivel de pre sión cero; 6)Diafragma; 7)Electrodo; 8)Tubomanómetro del solvente; 9)Catarina; 10)Servomotor; 11)Contador; 12)Registrador; 13)Servoamplificador; 14)Dispositivo de medición de presión.

π, cm.

TIEMPO, HORAS

FIGURA 7-8

Variación de la presión osmótica con el tiempo para polimetilestireno de baja masa molecular (19) A. Muestra PAMS 1, utilizando una solución con una concentración de 0.0913 g/100ml. ($M_n=2870$) B. Muestra PAMS 2, utilizando una solución con una concentración de 0.104 g/100ml. (M_n =4300)

segundo caso, se debe alcanzar una presión osmótica límite en un lapso relativamente corto, debido a la alta velo cidad de difusión de las moléculas pequeñas. (figura 7-9) (19).

7.3 Precauciones que requiere el método.

Sin importar cual sea el tipo de osmómetro utilizado, los siguientes aspectos deben considerarse al realizar mediciones por osmometría:

- a) Cuando una membrana nueva sea colocada en un osmómetro, se requieren de 50 a 60 horas para que la membrana se "relaje".
- b) Las mediciones hechas con polímeros polidispersos, especialmente aquéllos con baja masa molecu lar promedio, con membranas de diferentes porosi dades, darán como resultado diferentes valores de M_n y A_2 . Se debe tomar en cuenta, además, que la porosidad de una membrana varía con diferentes solventes. (17)

El principal problema de este método es el hecho de que ninguna membrana es completamente semipermeable, por lo que las fracciones de baja masa molecular pasarán con facilidad a través de ella, lo que produce alturas menores en el capilar y por lo tanto valores más altos de \overline{M}_n . (2, 3, 6, 9) Por esta razón, este método se debe emplear sólo en la caracterización de polímeros con un \overline{M}_n estimado mayor a 20 000 u.m.a. (2)

Por otro lado, debido a que, a una misma concentración, el efecto observado, w, decrece conforme M_n aumenta, el límite superior para el valor de M_n que puede ser deter minado por osmometría depende sólo de la precisión con la que se puedan medir pequeñas diferencias de alturas osmót<u>i</u> cas, y es de cerca de 1 000 000 u.m.a. (3, 4, 8, 9)

FIGURA 7-9

Variación de la presión osmótica con el tiempo para el Dow Styron 666. (M_n = 98,600 u.m.a.)(19)

A. Polímero no precipitado

 B. Polímero precipitado una vez de tolueno con exceso de metanol.

C. Polímero precipitado dos veces.

Concentración: 1.18 g/100m1.

7.4 Ejemplo (3)

Los resultados de las determinaciones por osmometría de membrana son reportados frecuentemente en cm. de solvente, para una serie de concentraciones de polímero, como se muestra en la siguiente tabla:

> Resultados de Mediciones de Presión Osmótica para Polietileno Lineal en Xileno a 105°C

oncentración	(g/1)	π	(cm.	de Xileno)
1.81			• 	2.00
2.53				2.88
3.00				3.49
4.42				5.54
5.64	an a			7.60
6.26				8.33
7.00	an tha sh		1	0.15

A partir de estos datos, calcular la masa molecular número promedio del polietileno utilizado y el valor del segundo coeficiente virial.

Solución:

Para poder obtener el valor de M_n , la forma más sen cilla es hacer la gráfica de π/c contra c. De esta forma, podemos extrapolar y obtener el valor de $(\pi/c)_o$, con el cual podemos calcular M_n a partir de la ecuación (7-10):

Si la curva que se obtenga de la gráfica de w/c contra c es una recta, podremos usar la ecuación 7-8, utili-

-76

zando únicamente el segundo coeficiente virial, A₂, cuyo valor será igual a la pendiente de la recta.

$$\frac{\pi}{C} = \frac{RT}{M_n} + \frac{A_2C}{M_n}$$

De acuerdo a lo anterior, el primer paso es obtener los valores de «/c correspondientes a cada c y graficarlos

c (g/1)	w(cm. de X	ileno)	T/C
1.81	2.00		1.10
2.53	2.88 5 40		1.14
4.42	5.54		1.25
5.64	7.60		1.34
6.26	8.33		1.33
7.00	10.15	 A second sec second second sec	1.45

Como se observa en la figura 7-10, π/c varía en for ma lineal con c, por lo que haciendo un ajuste por mínimos cuadrados se obtiene que el valor del intercepto, $(\pi/c)_{\bullet}$, es: 0.9780, por lo que podemos ahora calcular M_n , conocien do que:

> R = 0.082 <u>1 atm</u> mol*K

1 atm = 1033 cm H₂0

densidad del Xileno = 0.785

De la ecuación (7-10) tenemos que

$$n = \frac{RT}{(\pi/c)}$$

С

8

FIGURA 7-10

Gráfica de m/c contra c para policiileno lineal en Xileno (3) y substituyendo:

$$\mathbf{M}_{n} = \frac{\left(0.082 \frac{1}{\text{mol}^{\circ}\text{K}} \times \frac{1033}{0.785} \frac{\text{cm}}{\text{atm}}\right) (105+273)^{\circ}\text{K}}{0.9780 \frac{\text{cm}}{\text{g/l}}}$$

$$\mathbf{M}_{n} = 41\ 700\ \underline{g}_{mol}$$

Del mismo análisis por mínimos cuadrados se obtiene que el valor de la pendiente es:

$$A_2 = 0.06275 \frac{\text{atm } 1^2}{g^2}$$

8. OSMOMETRIA EN FASE VAPOR.

8.1 Fundamentos Teóricos.

Como ya se ha visto, al agregar un soluto no volátil a un solvente se disminuye la presión de vapor de este úl timo, en forma proporcional a la cantidad de soluto añadi do. La observación directa de esta disminución se ha logrado, pero por lo general es demasiado complicada. Por esta razón, se han buscado técnicas indirectas que estén basadas en esta dependencia de la presión de vapor de un solvente en solución con la molalidad de la solución para la determinación del M_n del soluto. (1, 8, 20)

La técnica más empleada es la llamada osmometría en fase vapor, VPO, en la cual la propiedad medida es la pequeña diferencia en temperaturas que existe entre una gota de solución y una de solvente puro, cuando ambas se en cuentran en una atmósfera saturada del solvente. (figura 8-1) (1, 8, 20, 21) Esta diferencia de temperaturas surge de la siguiente manera:

La gota de solvente alcanza el equilibrio con los alrededores cuando la velocidad de evaporación de la gota se iguala con la de condensación del vapor sobre la gota. En este momento, la temperatura de dicha gota es la misma que la de los alrededores. Ahora bien, la presión de vapor de la solución es menor que la del solvente puro, por lo que hay una tendencia del vapor a condensar sobre la gota de solución. Esta condensación continuará hasta que la presión de vapor de la gota de solución sea la misma que la de los alrededores. En ausencia de cualquier otro efecto esto sucedería cuando la gota se encontrara infini tamente diluida, en la práctica el equilibrio se alcanza antes de que haya ocurrido mucha dilución.

Al condensar el vapor sobre la solución, el calor de vaporización del solvente es cedido a la gota, lo que aumenta su temperatura, este aumento a su vez provoca que

80

Diagrama esquemático de un osmómetro de vapor

Tv=Temperatura de la câmara

P°=Presión de vapor del solvente puro a la temperatura Tv

P=Presión de vapor de la solución

Ts=Temperatura de la solución

se incremente la presión de vapor de la solución. Por lo tanto, la condensación estará limitada a la cantidad requ<u>e</u> rida para calentar la gota hasta el punto en que su presión de vapor iguale la de los alrededores. (22)

Para las mediciones por osmometría en fase vapor se utiliza un osmómetro de fase vapor, (figura 8-2) el cual consiste de una cámara perfectamente hermética y aislada térmicamente, dentro de la que se encuentran dos termistores, sobre los cuales se colocan las gotas de solución y solvente, y un sistema de inyección para la colocación de las muestras sobre los termistores. Cada uno de dichos termistores forma un brazo de un puente de Wheatstone por lo que la diferencia de temperaturas entre ellos es proporcional a la diferencia en la resistencia eléctrica, ΔR , o bien a la diferencia de tensión, ΔV , entre éstos, con lo que es posible determinar ΔT , ΔV o ΔR , dependiendo del diseño del aparato. (3, 20, 21, 23, 30) (figura 8-3)

A partir de la ley de Raoult, la cual indica que en una solución ideal, la presión de vapor de cada componente es proporcional a su fracción mol, $P_1 = xP_1^{\circ}$, se puede calcular el decremento en la presión de vapor: (3, 11)

> $P_1^{\circ} - P_1 = P_1^{\circ} - x_1 P_1^{\circ}$ $P_1^{\circ} - P_1 = (1 - x_1) P_1^{\circ}$ $P_1^{\circ} - P_1 = x_2 P_1^{\circ}$

(8-1)

(8-2)

Ahora bien: $x_2 = \frac{n_2}{n_1 + n_2}$

y si trabajamos a concentraciones muy diluidas tenemos que:

$$r_2 = \frac{n_2}{n_1 + n_2} = \frac{n_2}{n_1}$$

FIGURA 8-2

Diagrama de un Osmómetro de fase vapor. 1) Espuma aislante, 2) Bloque de aluminio 3) Cámara, 4) Guía para la jeringa, 5) Son da para los termistores, 6) Jeringa en la posición de descarga, 7) Copa para el solvente.

FIGURA 8-3

Diagrama del circuito de puente de Mheatstone en un osmômetro de vapor.

B₁)Batería; S₁)Interruptor; R₁ y R₂)Resistencias fijas; R₃ y R₄)Resistencias variables; R₅)Micropotenciómetro; TN₁ y TN₂)Termistores, ; N₁)Micro amperímetro; M₂)Detector de punto nulo Por otro lado $C = \frac{n_2}{v}$

donde v es el volumen molar de la solución y c es la concentración en moles/litro, ahora bien, si deseamos expresar c en g/litro, entonces:

$$c = \frac{M_n n_2}{v}$$
$$n_2 = \frac{vc}{M_n}$$

Además v esta dado por:

$$v = n_1 v_1 + n_2 v_2$$

pero dado que trabajamos con soluciones diluidas se puede aproximar a:

$$= n_1 \tilde{v}_1$$
 (8-4)

Substituyendo (8-4) en (8-3)

$$n_2 = \frac{n_1 \hat{v}_1 c}{M_n}$$

a su vez, substituyendo (8-5) en (8-2):

$$x_2 = \frac{n_1 \bar{v}_1 c}{M_n n_1} = \frac{\bar{v}_1 c}{M_n}$$
 (8-6)

Finalmente, substituyendo (8-6) en (8-1) obtenemos:

$$P_1^{\bullet} - P_1 = \frac{P_1^{\bullet} c \bar{v}_1}{P_n}$$
(8-7)

(8-3)

(8-5)

La termodinámica relaciona el decremento en la presión de vapor con la diferencia de temperaturas observada en este método por medio de la ecuación de Clapeyron. (3, 21, 23)

Si se alcanzaran las condiciones ideales en un osmómetro y si todo el calor de evaporación del solvente que condensa en la gota de la solución se utilizara para produ cir la diferencia de temperatura observada, estas relaciones permitirían el establecimiento de una ecuación límite análoga a la ecuación de van't Hoff utilizada en la osmome tría de membrana. Sin embargo, se ha visto que dicha idea lidad no se alcanza, debido a que las condiciones dentro de la gota de solución están supeditadas a los procesos di fusionales y a las pérdidas de calor, debidas a la radiación de calor de la gota de solución al vapor de la cámara y a la conducción al exterior a través de los termistores lo que afecta la magnitud de AT. (1, 3, 24) Estas pérdidas son una fracción del total, y varían dependiendo del apara-Por lo general se alcanza de un 70 al 80% de la difeto. rencia de temperatura teórica. (13) Además el coeficiente de resistencia por temperatura de los termistores a la temperatura de experimentación no siempre se conoce con precisión. (3)

Debido a lo anterior, en la práctica lo que se acos tumbra hacer es combinar todas las constantes y factores de proporcionalidad, determinados explícitamente o no, en una sola constante de calibración, K, y expresar una ecuación límite, que relaciona directamente la ΔR , ΔV o ΔT , según el caso, con la masa molecular: (nota: Para evitar duplicidad de las ecuaciones, de ahora en adelante trabajaremos sólo con ΔR).

 $\left(\frac{\Delta R}{C}\right)_{\bullet} = K \left(\frac{1}{M_{\bullet}}\right)$

(8-8)

86

donde M_{n} se incluye directamente en base a las razones que se aplican a todos los métodos que utilizan propiedades coligativas, ΔR es el cambio de resistencia en el puente, para la concentración de la muestra, c, y ($\Delta R/c$)_o es el valor de $\Delta R/c$ extrapolado a c=o, a partir de la medición de por lo menos cuatro concentraciones distintas (3, 25) (figura 8-4).

Para determinar el valor de K se debe determinar el valor de $(\Delta R/c)$, para una substancia de masa molecular conocida y se substituye el valor obtenido en la ecuación

donde M es la masa molecular de la substancia estándard. (3)

 $K = \left(\frac{\Delta R}{C}\right)^{M}$

Por lo anterior, la osmometría en fase vapor no se puede utilizar como un método absoluto para el cálculo de masas moleculares de polímeros, sino que tenemos que recurrir a la calibración por medio de substancias con masa molecular conocida. Estos estándares de calibración son absolutamente necesarios en las mediciones con osmómetros de fase vapor. Por lo general se usan compuestos puros con masa molecular entre 200 y 600 u.m.a., esto debido en parte a que existe una falta de compuestos no poliméricos con masas moleculares mayores, cuya pureza pueda garantizar un valor exacto. (20, 25)

El valor de K, será específico para cada solvente a cada temperatura, dependerá en cierta medida de las características y de la masa molecular del soluto, y, además, será válida únicamente para el aparato en el cual se llevó a cabo la calibración.

Se ha encontrado que K varía principalmente con la concentración del soluto y su masa molecular, por lo que

87

(8-9)

÷.,

∆V/c

2

1

20

CONCENTRACION g/1

FIGURA 8-4

Gráfica obtenida de los valores de AV/c contra la concentración en mediciones por osmometría de vapor para un polipro pileno comercial (26) se han buscado métodos con los que sea posible minimizar o evaluar estas dependencias.

En primer lugar, K varía en forma lineal con la concentración, por lo que para su evaluación se hacen mediciones con estándares de masa molecular conocida a diferentes concentraciones, y se extrapola para obtener el valor de K a concentración cero. Sin embargo, debido a la no idealidad, esta relación lineal se pierde cuando se aumenta demasiado la concentración, por lo que en esta técnica se trabaja siempre a concentraciones lo más bajas posibles, siempre y cuando se asegure una diferencia de voltaje o resistencia medible en el osmómetro. (8, 20, 21, 26)

En el caso de la masa molecular del soluto, se ha encontrado que K aumenta muy rápidamente al aumentar ésta. (figura 8-5) Al parecer, lo anterior ocurre debido a que al aumentar la masa molecular del soluto se ocasiona un aumento en la temperatura de la gota de solución, lo que provoca una lectura de ΔT ó ΔR mayor a la que correspondería a la molalidad de la solución. Por esto se han buscado diferentes alternativas para eliminar o evaluar esta tendencia. (20, 25)

En primer lugar se han desarrollado modelos teóricos con los que es posible explicar la dependencia de K con la masa molecular (27), a partir de los cuales se han propuesto nuevas formas de calibración (28), que toman en cuenta esta dependencia por lo que permiten un cálculo de R_n más exacto.

Por otra parte, se ha encontrado que al graficar log K contra log \mathbb{N}_n , para un mismo solvente a las mismas condiciones de operación, se obtiene una línea recta, (figura 8-6) lo que permite obtener ecuaciones que relacionan el valor de K con la masa molecular. (20, 24) Estas ecuaciones son del tipo:

89

FIGURA 8-5

Dependencia de la constante de calibración, K, con la masa molecular de la muestra en osmometría en fase vapor. (20) • Cloroformo a 37°C • Benceno a 45°C

FIGURA 8-6

Dependencia de la constante de calibración, K, con la masa molecular promedio de la muestra en osmometría en fase vapor. (25)

- Cloroformo a 25°C
- Cloroformo a 37°C
- Benceno a 25°C
- O-Dicloro benceno a 130°C

$$\overline{M}_n = a + b \log \left(\frac{\Delta R}{c}\right)_o$$
 (8-10)

También, en analogía a lo realizado en la osmometría de membrana, se ha propuesto convertir la ecuación (8-8) en una de coeficientes viriales del tipo:

$$\left(\frac{\Delta R}{C}\right)_{\circ} = K\left(\frac{1}{M_{p}}\right) + A_{2}C + \dots$$
 (8-11)

en donde el número de coeficientes viriales que se calculen dependerá del grado de exactitud que se desee obtener.

Sin embargo, la forma más sencilla de eliminar este problema es haciendo que las condiciones de operación y calibración sean tales que se elimine por completo la dependencia de X con la masa molecular.

Una forma de lograr lo anterior es utilizando duran te la calibración, compuestos con masas moleculares cercanos al que se espera obtener de la muestra problema. (25)

Otra forma es haciendo que las condiciones en la go ta de solución se acerquen lo más posible a la idealidad. Para esto se han diseñado nuevos osmómetros de fase vapor, como el caso del VPO Corona/Wescan, (figura 8-7) en los cuales se usa una malla de platino sobre cada termistor, lo cual, entre otras ventajas, permite que exista una razón de superficie a volumen mucho mayor que una gota esférica, lo que permite que las condiciones en la gota depen dan menos de los procesos difusionales, además de que la malla metálica ayuda a que se alcance el equilibrio térmi co más rápidamente. Todo esto hace que las condiciones en la gota se acerquen más a la idealidad, por lo que se reduce la dependencia de K con el peso molecular del soluto. (26)

Por razones aún no explicadas, los valores de AR/c

FIGURA 8-7 (26)

Diagrama esquemático del osmómetro en fase vapor Corona-Wescan. 1) tubos de inyección; 2) gotas de so lución y solvente puro; 3) termistores; 4) mallas de platino. pueden producir una curva, al graficar estos valores contra c, en lugar de formar una recta. A pesar de que la teoría no explica este hecho, la experiencia muestra que se debe a efectos del solvente, y sugiere que la gráfica de ΔR contra c puede llegar a producir una recta que no pasa por el origen. Si esto sucede, el intercepto de esta línea a c=o se puede usar como un factor de corrección para los valores de ΔR . Por lo general se encuentra que con esta corrección, los valores de $\Delta R/c$ siguen la ecuación:

$$\frac{\Delta R}{C}_{0} = \frac{K}{M_{n}} + A_{2}C \qquad (8-12)$$

en forma más satisfactoria, y los valores de M_n obtenidos para muestras de compuestos estándar son correctos. (3)

8.2 Procedimiento Experimental.

El desarrollo experimental en la osmometría en fase vapor consiste de los siguientes pasos:

- Se coloca solvente puro en los espacios en el fondo de la cámara, y se coloca ésta en un baño a la temperatura de operación deseada. Se espera a que se alcance el equilibrio térmico y a que se sature la cámara con el vapor del solvente. (1)
- 2) Se colocan dos gotas de solvente puro sobre cada uno de los termistores, y se espera a que alcancen el equilibrio termodinámico para establecer la lectura de cero. (1)
- 3) Una vez establecida la lectura cero, se agrega una gota de solución del polímero problema a una concentración de 10^{-3} a $3x10^{-2}$ g/ml., dependiendo de la masa molecular esperada, a uno de los termistores, y se registra la diferencia de

temperatura estable que se desarrolle. (1) Ya que este método no mide la disminución de la presión de vapor en el equilibrio, sino que depende de un fenómero cuasi-estable, se debe tener cuidado de estandar<u>i</u> zar todas las variables de operación como el tiempo de <u>me</u> dición, el tamaño de las gotas y la temperatura de operación, tanto durante la calibración como en la medición con el problema. (8)

Como se mencionó anteriormente, este procedimiento debe realizarse con el compuesto de calibración y la mue<u>s</u> tra problema, utilizando por lo menos cuatro concentraci<u>o</u> nes diferentes de cada uno, de forma que sea posible llevar a cabo las extrapolaciones a concentración cero.

La osmometría en fase vapor es especialmente útil para el cálculo de valores de M_n menores a 40,000 u.m.a., teniendo como límite inferior aquél en el que el soluto es ya demasiado volátil a las condiciones de operación, y se utiliza principalmente en aquellos casos en los que M_n es demasiado bajo como para medirse por osmometría de membr<u>a</u> na, debido a la permeabilidad de la membrana a las especies de baja masa molecular. Sin embargó, durante su empleo se debe tener cuidado de eliminar de la muestra problema los contaminantes como aditivos o solventes residua les, ya que debido a que este método es muy sensible a com puestos de baja masa molecular, dichos contaminantes provocan errores grandes en el valor del M_n calculado. (8, 26)

Las ventajas de este método son que es muy rápido, requiere pequeñas cantidades del polímero y solvente, tie ne gran sensitividad, ya que los termistores modernos permiten registrar diferencias de temperatura de entre 0.001 y 0.0001°C, se puede automatizar la operación y per mite trabajar a temperaturas moderadas, con lo que se evi tan problemas de asociación o descomposición del polímero, (1, 8, 26, 31) aunque a menudo no es posible tomar ventaja de este último punto, pues para muchos polímeros, como el polietileno, no se conocen solventes a temperatura ambien te. (29)

Una de las principales desventajas es que se requi<u>e</u> re de equipo sofisticado, aunque ya se han reportado dis<u>e</u> ños de equipos de fácil fabricación, con los que se han obtenido buenos resultados experimentales. (1, 22)

8.3 Ejemplo.

F.W. Billmeyer y V. Kokle (32) obtuvieron los siguien tes resultados durante la caracterización por osmometría en fase vapor, de dos muestras de polietileno lineal hecho en una síntesis a baja presión:

MUESTRA AMUESTRA BConcentraciónΔR/c(g/100g solvente)(α/g/100g solv.)(g/100g solv)(α/g/100g solv)

1	0.200	0.875	0.95
2.281	0.206	1.625	0.11
3.406	0.207	2.344	0.129
4.687	0.217	3.531	0.147

El solvente utilizado fué o-diclorobenceno a 130°C empleando octacosano (M=395) y triestearina (M=891.5) como estándares de calibración, obteniendo para cada uno de ellos un valor de $\left(\frac{\Delta R}{C}\right)$. de 1.753 $\Omega/g/100g$ solv. y 0.772 $\Omega/g/100g$ solv. respectivamente. Encontrar el valor de \overline{M}_n de cada una de las muestras de polietileno.

Solución:

El primer paso es encontrar el valor de K. Para es to utilizamos los datos de \underline{AR} para los solutos de masa mo lecular conocida:

Para el octacosano

Para la triestearina.

 $K = M (\frac{\Delta R}{C})_o$ $K = M (\frac{\Delta R}{C})_o$ $K = 395 \times 1.753$ $K = 891.5 \times 0.772$ K = 692.435K = 688.238

Los valores de K varían un poco, debido al error experimental, por lo que tomamos el valor medio

$$K = \frac{692,435 + 688.238}{2} = 690.336$$

El siguiente paso es obtener los valores de $(\frac{\Delta R}{c})$ o para cada una de las muestras de polietileno lo cual se obtiene graficando los valores de $\frac{\Delta R}{c}$ contra c y extrapolando a cero como se muestra en la figura 8-8.

De esta gráfica obtenemos que para la muestra A, $(\frac{\Delta R}{C})_{\circ} = 0.1975$ y para la muestra B, $(\frac{\Delta R}{C})_{\circ} = 0.08$ por lo que, empleando la ecuación $(\frac{\Delta R}{C})_{\circ} = K$ obtenemos: \overline{M}_{n}

Para la muestra A:

Para 1a muestra B:

 $\overline{M}_n = \frac{690.336}{0.08} = 8\ 629.2$

 $n = \frac{690.336}{0.1975} = 3 495.37$

c(g/100g solv.)

 $\frac{\Delta R}{C}$

Gráfica de AR/c contra c para las muestras A (•) y B (•) de polietileno lineal. (32)

ı,

9. COMENTARIOS Y CONCLUSIONES.

Se ha realizado mucho trabajo en el desarrollo de los cuatro métodos por propiedades coligativas para la d<u>e</u> terminación de la masa molecular número promedio de polímeros.

Cada uno de estos métodos posee ventajas y desventajas al compararlo con los otros, y cada uno tiene un i<u>n</u> tervalo de masas moleculares en el que su aplicación se optimiza, como se ha visto en cada uno de los capítulos. (Tabla 1) Sin embargo, en la bibliografía se ha encontr<u>a</u> do que, debido a la facilidad en la medición y a la mayor sensibilidad de la osmometría de membrana y de la osmometría en fase vapor, estas dos técnicas se han convertido en las más empleadas, y, por lo tanto, en las más report<u>a</u> das en la bibliografía, relegando un poco a la crioscopía y a la ebullometría a un papel secundario.

Como se mencionó en la introducción se ha intentado dar a el presente trabajo un enfoque didáctico, y por ello se han incluído las deducciones de las ecuaciones viriales en cada capítulo, sin embargo es importante hacer notar que se ha considerado que el alumno tendrá un buen conoc<u>i</u> miento previo de fisicoquímica de soluciones ideales para poder seguir estas deducciones sin dificultad.

También se han descrito en cada capítulo las técnicas de laboratorio de forma que sea posible para el lector darse cuenta de los pasos generales que se deben seguir en una determinación, y la forma en que, en general, funciona cada uno de los aparatos empleados en estas técnicas. Sin embargo, se debe recordar que existen diferentes diseños de osmómetros de membrana y de vapor, así como diferentes tipos de aparatos de crioscopía y ebullometría, y que para cada uno puede variar su operación de acuerdo con el diseño, por lo que es necesario familiarizarse con el equipo

TABLA 9 - 1

COMPARACION ENTRE LOS METOROS PARA DETERMINACION DE MASAS MOLECULARES POR

PROPIEDADES COLIGATIVAS.

METODO INTERVALO DE M OPTINO DE APLI CACION

VENTAJAS

DESVENTAJAS

Crioscopfa

Hasta 30,000 u.m.a.

El equipo utilizado es sencillo Permite el cálculo de valores de M_ confiables a partir de una sola determinación. Puede usarse como un método absoluto.

Ebullometría Hasta 30,000 u.m.a.

Presenta poco riesgo de asociación del polímero.

Permite el cálculo de valores de M confiables a partir de una sola medición.

Puede usarse como un método absoluto.

El equipo es relativamente sencillo.

El equipo utilizado es económico (osmómetros convencionales) Es un método absoluto. No presenta riesgo de asociación del polímero.

Posible interferencia del polí mero en la velocidad de crista lización del solvente.

Es difícil leer la temperatura con presición en un momento de terminado, pues cambia en función del tiempo.

Requiere de aparatos con un muy buen diseño, para evitar efectos de presión hidrostática en el punto de fusión. No se puede usar en el caso de soluciones de polímeros que formen espuma al calentarse. Muy sensibles a pequeños cambios de presión atmosférica durante la medición.

El tiempo de medición es muy largo (osmómetros convencionales) Posible difusión del polímero

Osmomotrfa

de 20.000 a 1.000.000

INTERVALO DE M Optimo de Apl<u>i</u>n Cacion

NETODO

VENTAJAS

DESVENTAJAS

a través de la membrana. Es necesario realizar varias determinaciones para obtener el <u>va</u> lor de $(\pi/c)_{o}$.

No es un método absoluto, requ<u>i</u>e re de calibración.

Es necesario realizar varias mediciones para obtener el valor de $(\Delta R/c)_{o}$.

Requiere una buena estandarización de todas las variables de operación.

El equipo utilizado es sofisticado y costoso.

102

Osmometría de Hasta 40,000 u.m.a. Membrana (V.P.O.)

muy corto. Requiere de pequeñas cant<u>i</u>

El tiempo de medición es

dades de soluto y solvente Es un método muy sensitivo pues puede registrar ΔT de hasta 0.0001°C

Permite fácil automatización.

No se tienen problemas de asociación o descomposición del polímero. a utilizar antes de intentar realizar una determinación de masas moleculares por cualquiera de estas técnicas.

Las dificultades experimentales y las fuentes de error dependerán también en gran medida del equipo utiliza do. Nuevamente en este trabajo se han mencionado las dificultades y la forma de evitar las fuentes de error más comúnmente encontradas, pero en la práctica se debe hacer un análisis del equipo a utilizar para poder locali zar las probables fuentes de error para poder así evitarlas, y se deben realizar determinaciones a forma de práctica para poder darse cuenta de las dificultades que pueden presentarse durante las determinaciones y la forma de solucionarlas o evitarlas.

La forma en que se manejan los datos experimentales para la obtención de la masa molecular número promedio es similar en las cuatro técnicas, y en general se puede sin tetizar en la siguiente forma:

- 1) Obtención del parámetro cuantificado, presión os mótica, ΔT , ΔV , ΔR o el que se determine según el equipo empleado, a por lo menos cuatro concen traciones distintas.
- 2) Obtener los valores reducidos de dicho parámetro,
 P/c, y graficarlos contra la concentración.
- 3) Extrapolación de la curva obtenida para encontrar el valor del parámetro a concentración cero.
- 4) Obtención de M, por medio de la ecuación general:

$$(P/c)_{\circ} = \frac{K}{M_n}$$

Debido a lo anterior se ha incluido únicamente un <u>e</u> jemplo al final del capítulo descriptivo de cada técnica. Finalmente, se encontró en la literatura la descrip ción de un equipo de fácil construcción para la determina ción de masas moleculares por osmometría en fase vapor, y ya que se observó en la literatura que esta técnica es c<u>a</u> da vez más empleada, se consideró que sería de interés i<u>n</u> cluirlo en el presente trabajo en forma de un anexo.
APENDICE I

NOMENCLATURA.

A ₁ , A ₂ , A ₃	Coeficientes viriales.
a	Actividad.
c ·	Concentración
D _A	Diámetro promedio basado en el área.
D _L	Diámetro promedio basado en la longitud.
đ	Diámetro promedio basado en el volumen.
G _{fus}	Energía libre de fusión
Gm	Energía libre de mezclado.
G _{van}	Energía libre de vaporización.
Hfus	Entalpía de fusión.
H	Entalpía de mezclado.
Hvap	Entalpía de vaporización.
K	Constante.
к _b	Constante ebulloscópica.
Kf	Constante crioscópica.
k	Constante de Boltzman.
M	Masa molecular promedio.
Mn	Masa molecular número promedio.
M	Masa molecular masa promedio.
M	Masa molecular viscosidad promedio.
n	Número de moléculas, número de moles.
P	Presión, propiedad, parámetro.
P ₁	Presión parcial del solvente.
P2	Presión parcial del soluto.
bo	Presión de vapor.

R	Constante general de los gases, resistencia.
S	Entropía.
S*	Entropía de configuración.
V	Voltaje.
VPO	Osmometría en fase vapor.
ν	Fracción volumen.
V 1	Volumen molar del solvente.
v	Volumen específico parcial del polímero.
. ₩	Masa total de la muestra.
x	Razón de volúmenes molares de soluto y solvente.
x _n	Grado de polimerización número promedio.
2	Número de coordinación de la rejilla.
η	Indice de Staudinger.
µ the second second	Potencial químico.
	Presión osmótica.
ρ	Densidad.
X	Factor de Flory
Δω	Cambio de energía de formación de contactos

APENDICE II. DISEÑO DE UN OSMOMETRO DE FASE VAPOR (13)

Las características esenciales con que debe contar un osmómetro de fase vapor son:

- 1) Una cámara que se encuentre saturada con el vapor del solvente puro.
- 2) Un termostato para mantener la presión de vapor del solvente constante.
- Algo con lo que sea posible medir diferencias de temperaturas pequeñas.

De estas características la más díficil de obtener es la tercera.

La diferencia de temperaturas observadas depende de un número de factores, principalmente:

- a) la temperatura de la cámara.
- b) el calor de vaporización del solvente.
- c) la concentración de la solución.

d) la masa molecular del soluto.

Por lo general se han utilizado termopares con gal vanómetros muy sensitivos para detectar las pequeñas fue<u>r</u> zas electromotrices térmicas que resultan de la diferencia de temperaturas entre el solvente y la solución.

Una desventaja de los instrumentos con termopares es que sólo una pequeña fracción del incremento de temperatura calculado teóricamente es detectable. Esta disminu ción en el efecto térmico es resultado de las pérdidas de calor por radiación y conducción de la gota de solución. Una de las principales causas de esta pérdida es la conducción a través de los cables de los termopares. En el modelo aquí presentado, se ha intentado reducir estas pér didas usando alambres muy delgados (44 SNG) lo cual permi te también la construcción de pequeñas uniones térmicas. Este osmómetro esta compuesto de los siguientes el<u>e</u> mentos: 1) Celda.

Un diagrama del aparato se muestra en la figura A-1. La celda está hecha con un matraz de 100ml de tapa esmerilada. Un brazo lateral de tubo capilar de 1mm. de diámetro interno está soldado a la pared del matraz, y sirve como soporte y guía para una aguja de una jeringa hipodérmica. El extremo externo de este tubo tiene soldado un socket para la colocación de la jeringa. En el interior del matraz la aguja está colocada de forma que deje un espaciamiento de 1mm. entre ésta y el ojal del termopar. Se utiliza un pequeño volumen de mercurio para proveer lastre a la celda.

2) Termopar.

Tres uniones de cobre Eureka son construidas con alambre calibre 44 SWG. La figura A-2 muestra las dimensiones y construcción de estas uniones. Se forman ojales de 1mm. de diámetro con alambre Eureka sin recubrimiento. Tres tramos de alambre de cobre esmaltado del mismo calibre de 1m. de largo son desesmaltados en 1cm. en cada extremo, y uno de éstos es enredado en cada uno de los ojales, después se cepillan las uniones con solución flux (cinc metálico disuelto en ácido clorhídrico) y se sueldan con 1a menor cantidad posible de soldadura de estaño. Todo el termopar es entonces montado en 1a sonda. La solución utilizada para desesmaltar el alambre de cobre con siste de 60 partes de acetil acetona, 20 partes de ácido fórmico, 15 partes de acetona y 5 partes de agua.

3) Sonda.

La sonda del termopar se muestra también en la figura A-1. Esta está construida de un cono extendido de vidrio, con junta esmerilada, al cual se le ha formado una reducción como se muestra en la figura A-1. Los alambres de cobre van sellados en el tubo con polietileno, para es

FIGURAS A-1 Y A-2

Celda del osmómetro y detalle de los Termopares. 1)Solvente; 2)Aguja; 3)Nivel de agua; 4)Socket para jeringa; 5)Capucha; 6)Sonda; 7)Sello de polictileno; 8)Termopares; 9)Lastre de Mercurio; 10)44SWG Cobre; 11)Enamel; 12)44SWG Eureka. to, a una pelotita de polietileno se le hacen tres perforaciones para pasar los alambres, se calienta la sonda en un mechero bunsen y se empuja la pelota de polietileno en posición hasta que se funda, una vez que se enfría queda formado el sello.

A la parte superior de la sonda se le coloca una c<u>a</u> pucha de hule, la cual tiene una perforación a través de la cual pasan los alambres. Esta capucha provee de un s<u>o</u> porte flexible que previene que se fracturen los alambres evitando que se doblen.

4) Conexiones eléctricas

Las dos puntas de los dos ojales de los extremos del termopar van soldados a un switch que tiene contactos de latón grandes para evitar la resistencia de dichos con tactos, la cual interferiría con las mediciones (fig. A-3)

La punta del ojal central del termopar va soldada al galvanómetro, como se muestra en la figura A-3.

Los pasos para la operación de este osmómetro son los siguientes:

- Se carga el solvente sobre el lastre de mercurio, hasta que la superficie de éste se encuentre a no menos de 1cm. por debajo de los ojales del termo par. Cuando el aparato se usa en forma continua se debe cambiar el solvente cada semana, para evitar contaminación.
- El switch S se coloca en posición abierta para proteger el galvanómetro, se saca entonces la son da de la cámara y se colocan gotas del solvente en los ojales ST y R con una jeringa hipodérmica. Después de volver a colocar la sonda en su lugar, el tercer ojal, SN, está listo para cargarlo con solución, lo cual se hace por medio de otra jerin ga que contenga la solución y que va colocada en el soporte para jeringa de la celda. Se rota la

FIGURA A-3

Circuito eléctrico del osmómetro de vapor. 1)Ojal del solvente (ST); 2)Ojal de referen cia (R); 3)Ojal de la solución (SN); 4)Switch (S); 5)Galvanómetro (C). sonda hasta que el ojal SN y la punta de la aguja estén juntos, y una gota de solución se coloca en el ojal.

3. El switch S se coloca de forma que conecte los o jales R y ST al galvanómetro, y se registra cualquier deflexión que pueda haber (i), entonces se cambia el switch para conectar R y SN al galvanómetro y se registra nuevamente la deflexión que exista (ii). La deflexión para una solución dada será entonces (ii-i). En la práctica se ha cen cinco lecturas de deflexión para cada una de cuatro gotas de cada solución usada, y se calcula el promedio.

Para calibrar el aparato se hace uso de una subs tancia de peso molecular conocido, y se obtiene una gráfica de la deflexión del galvanómetro con tra la concentración de la solución en moles por litro.

BIBLIOGRAFIA.

- 1. Bikales, N.M, Encyclopedia Reprints, CHARACTERIZATION OF POLYMERS, Wiley Interscience, 1971.
- Fried, J. R., POLYMER TECHNOLOGY-PART 3. MOLECULAR WEIGHT AND ITS RELATION TO PROPERTIES, Plastics Enginee ring, August, 1972.
- 3. Bares, J., Billmeyer, F.W., EXPERIMENTS IN POLYMER SCIENCE, Wiley Interscience Publication, 1976.
- 4. Rodriguez, F., PRINCIPLES OF POLYMER SYSTEMS, McGraw Hill Book Co, 1971.
- 5. Dobkowski, Z., GENERAL APPROACH TO POLYMER PROPERTIES DEPENDENT ON MOLECULAR CHARACTERISTICS, Eur. Polym.J., 17,1131-1144, 1981.
- 6. Batzer, H., Lohse, F., INTRODUCTION TO MACROMOLECULAR CHEMISTRY, 2nd. Edition, John Wiley and Sons Inc. 1979
- 7. Pyun, C.W., RATIOS OF AVERAGE MOLECULAR WEIGHTS AND MOLECULAR WEIGHT DISTRIBUTIONS IN POLYMERS, J. Polym. Sci, Polym. Phys. Ed, 17(2), 2111-2115, 1979.
- Billmeyer, F.W., TEXTBOOK OF POLYMER SCIENCE, 2nd. Edition, John Wiley and Sons Inc, 1971.
- 9. Rabek, J.K., EXPERIMENTAL METHODS IN POLYMER CHEMISTRY, John Wiley and Sons Inc., 1980.
- Flory, P.J., PRINCIPLES OF POLYMER CHEMISTRY, Cornell University Press, 1953.
- 11. Castellan, G.W., FISICOQUIMICA, 2a. Edición, Fondo Educativo Interamericano, 1974.
- 12. Battista, O.A., FUNDAMENTALS OF HIGH POLYMERS, Reinhold Publishing Corp., 1958.
- Adamson, W.A., A TEXTBOOK OF PHYSICAL CHEMISTRY, Academic Press, 1973.
- 14. Fok, J.S., et al, CRYOSCOPIC DETERMINATION OF NUMBER AVERAGE MOLECULAR WEIGHT BY QUARTZ CRYSTAL THERMOMETRY, Anal, Chem., 43(1), 38-43, 1971.

- Simons, E.L., AUTOMATIC CRYOSCOPIC DETERMINATION OF MOLECULAR WEIGHTS, Anal Chem, 30(5), 979-982, 1958.
- Ashby, J.S., et al, THE MOLECULAR STRUCTURE OF POLYETHY LENE. VIII. NUMBER AVERAGE MOLECULAR WEIGHT BY CRYOSCOPY J. Am. Chem. Soc., 79, 5086-5088, 1957.
- Aelenei, N., CERTAIN ASPECTS OF THE EXPERIMENTAL DETER-MINATION OF OSMOTIC PRESSURE, Eur. Polym, J, 17, 533-536, 1981.
- Krigbaum, W.R., Flory, P.J., STATISTICAL MECHANICS OF DILUTE POLYMER SOLUTIONS. IV. VARIATIONS OF THE OSMOTIC SECOND COEFFICIENT WITH MOLECULAR WEIGHT., J. Am. Chem. Soc., 75(8), 1775-1784, 1953.
- 19. Rolfson, F.B., Coll, H., AUTOMATIC OSMOMETER FOR DETER MINATION OF NUMBER AVERAGE MOLECULAR WEIGHTS OF POLYMERS Anal Chem, 36(4), 888-894, 1964.
- 20. Kucharikova, I., SOME ASPECTS OF THE ESTIMATION OF M_n BY VAPOR PRESSURE OSMOMETRY, J. Appl. Polym. Sci., 23 (10), 3041-3049, 1979.
- 21. Chung, K.E., et al, NEW PROCEDURE FOR MOLECULAR WEIGHT DETERMINATION BY VAPOUR PHASE OSMOMETRY, Fuel, 58 (12) 847-52, 1979.
- 22. Millane, J.J., et al, A SIMPLE APPARATUS FOR DETERMINING THE MOLECULAR WEIGHT OF RESINS., Plastics and Polymers, Oct., 427-431, 1968.
- 23. Burge, D.E., OSMOTIC COEFFICIENTS IN AQUEOUS SOLUTIONS STUDIES WITH THE VAPOUR PRESSURE OSMOMETER, J. Phys Chem 67, 2590-2593, 1963.
- 24. Kamide, K, et al, THEORY OF VAPOR PRESSURE OSMOMETRY WHEN AMBIENT SOLVENT VAPOR IS UNSATURATED, Die Makromo lekulare Chemie, 133, 101-109, 1970.
- 25. Brzezinski, J. et al, NOTE ON THE MOLECULAR WEIGHT DEPENDENCE OF THE CALIBRATION CONSTANT IN VAPOUR PRESSURE OSMOMETRY., Eur., Polym. J., 9, 1251-1253, 1973.
- 26. Mirabella, F.M., MEASUREMENT OF NUMBER AVERAGE MOLECULAR

WEIGHT AND SECOND VIRAL COEFFICIENTS OF POLYOLEFINS USING AN IMPROVED VAPOR PRESSURE OSMOMETER, J. Appl. Polym. Sci., 25(8), 1775-1780, 1980.

27. Bersted, B.H., VAPOR PRESSURE OSMOMETRY: A MODEL ACCOUNTING FOR THE SOLUTE DEPENDENCE OF THE CALIBRATION CONSTANT, J. Appl, Polym. Sci, 18, 2399-2406, 1974.

- Bersted, B.H., A PROPOSED EXPERIMENTAL PROCEDURE FOR THE VAPOR PRESSURE OSMOMETER TO MINIMIZE THE SOLUTE DEPENDENCE OF THE CALIBRATION CONSTANT; J. Appl. Polym. Sci., 23(2), 633-634, 1979.
- 29. Bersted, B.H., MOLECULAR WEIGHT DETERMINATION OF HIGH POLYMERS BY MEANS OF VAPOR PRESSURE OSMOMETRY AND THE SOLUTE DEPENDENCE OF THE CONSTANT OF CALIBRATION, J. Appl. Polym. Sci., 17, 1415-1430, 1973.
- 30. Neumayer, J.J., THE DETERMINATION OF MOLECULAR WEIGHT USING THERMISTORS, Anal. Chim. Acta., 20, 519-523, 1959.
- 31. Myers, M.E., et al, AUTOMATED VAPOUR PRESSURE OSMOMETER FOR DETERMINING THE MOLECULAR WEIGHT OF POLYMERS, Anal Chem., 51(11), 1883-1885, 1979.
- 32. Billmeyer, F.W., Kokle, V., THE MOLECULAR STRUCTURE OF POLYETHYLENE. XVI. COMPARISON OF NUMBER EVERAGE MOLECULAR WEIGHT BY VARIOUS METHODS., J. Am. Chem. Soc. 86, 3544-3546, 1964.
- 33. Smith, H., MEASUREMENT OF THE MOLECULAR WEIGHT OF POLYTHELE BY EBULLIOMETRY, Trans. Faraday Soc., 52, 402-409, 1956.
- 34. Dean, J.A., LANGE'S HANDBOOK OF CHEMISTRY, 11th EDITION, Mc.GRAW HILL BOOK COMPANY, 1973.

INDICE.

		pag.
Resumen.		vii
I. Objetivos.		1
II. Introducción.		2
III. Bases Teóric	as.	
	III.l. Fermentadores.	6
•	III.2. Demanda de Oxígeno.	15
	III.3. Transferencia de Oxígeno.	20
	III.4. Transferencia de Calor.	30
	III.5. Mezclado.	44
IV. Antecedentes.	•	60
	IV.1. Descripción del Fermen-	
	tador Piloto.	60
	IV.2. Equipo de Medición y	
	Lectura.	6 <i>8</i>
V. Técnica Experim	nental.	
	V.1. Determinación del Coefi-	
	ciente de Transferencia	70
		70
	ciente Global de Transfe	
	rencia de Calor.	76
	V.3. Determinación del Tiempo	
	de Mezclado.	81