UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

# FACULTAD DE QUIMICA

## TESIS

# ESTUDIO DEL TRATAMIENTO DE LAS AGUAS DE DESECHO DE LA INDUSTRIA DEL NIXTAMAL EN UN SISTEMA CONTINUO DE REACTORES EN CASCADA TOTALMENTE MEZCLADOS

Nombre del sustentante: SERGIO IGNACIO INCLAN RODRIGUEZ

Carrera: INGENIERO QUIMICO



# UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

# DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

# INDICE

.

|     |                        |                        | Pāg. |
|-----|------------------------|------------------------|------|
|     |                        |                        |      |
| 1.  | INTRODUCCION           |                        | 1    |
| 1.1 | Problemática           |                        | 1    |
| 1.2 | Objetivos              |                        | 3    |
| 2.  | NIXTAMALIZACION        |                        | 5    |
| 2.1 | Descripción del proce  | so de nixtamalización  | 5    |
| 2.2 | Balance de materia pa  | ra el proceso de nix-  |      |
|     | tamalización           |                        | 6    |
| 2.3 | Caracterización del n  | ejayote                | 8    |
| 2.4 | Conclusiones de la ca  | racterización del ne-  |      |
|     | jayote                 |                        | 13   |
| _   |                        |                        |      |
| 3.  | PROCESOS BIOLOGICOS P. | ARA EL TRATAMIENTO DE  |      |
|     | AGUAS DE DESECHO. GE   | NERALIDADES            | 15   |
| 3.1 | Tratamiento de aguas   | de desecho             | 15   |
|     | 3.1.1 Pretratamiento   | y tratamiento primario | 17   |
|     | 3.1.2 Tratamiento se   | cundario               | 18   |
|     | 3.1.3 Tratamiento te   | rciar <b>io</b>        | 18   |
|     | 3.1.4 Tratamiento de   | lodos                  | 19   |
| 3.2 | Elementos básicos de   | microbiología          | 20   |
|     | 3.2.1 Conceptos gene   | rales                  | 20   |
|     | 3.2.2 Procesos metab   | <b>ólicos</b>          | 22   |
| 3.3 | Cinética microbiana    |                        | 26   |

|     | 3.3.1  | Etapas de un cultivo discontínuo                                           | 26  |
|-----|--------|----------------------------------------------------------------------------|-----|
|     | 3.3.2  | Desarrollo de un modelo cinético<br>para el consumo de sustrato            | 33  |
|     | 3.3.3  | Relación entre el consumo de sus<br>trato y el crecimiento microbia-<br>no | 37  |
| 3.4 | Reacto | res biológicos                                                             | 39  |
|     | 3.4.1  | Reactor intermitente o "batch"                                             | 44  |
|     | 3.4.2  | Reactor totalmente mezclado                                                | 47  |
|     | 3.4.3  | Reactor tubular (flujo pistón)                                             | 50  |
|     | 3.4.4  | Cascada de reactores totalmente<br>mezclados                               | 53  |
|     | 3.4.5  | Reactores de película sumergida                                            | 55  |
|     |        |                                                                            |     |
| 4.  | METODO | LOGIA                                                                      | 60  |
| 4.1 | Descri | pción del reactor                                                          | 61  |
| 4.2 | Régime | n hidráulico de la cascada de                                              |     |
|     | reacto | res                                                                        | 62  |
| 4.3 | Arranq | ue del reactor y forma de muestreo                                         | 63  |
|     |        |                                                                            |     |
| 5.  | RESULT | ADOS Y DISCUSION                                                           | 66. |
| 5.1 | Régime | n hidráulico                                                               | 66  |
| 5.2 | Сотрог | tamiento general de la cascada de                                          |     |
|     | reacto | res                                                                        | 67  |
|     | 5.2.1  | Parámetros de control                                                      | 67  |
|     | 5.2.2  | Parámetros de diseño                                                       | 69  |
|     | 5.2.3  | Eficiencia de remoción de<br>contaminantes                                 | 69  |

.

.

|     |        |                                                                                          | Pág. |
|-----|--------|------------------------------------------------------------------------------------------|------|
|     | 5.2.4  | Producción de biomasa                                                                    | 75   |
| 5.3 | Modelo | s matemáticos                                                                            | 76   |
|     | 5.3.1  | Modelo cinético de Monod para un<br>reactor tubular (flujo pistón)                       | 81   |
|     | 5.3.2  | Modelo cinético de Monod para un<br>reactor totalmente mezclado con<br>película adherida | 83   |
|     | 5.3.3  | Reacción de primer orden para un<br>reactor tubular                                      | 86   |
| 6.  | CONCLU | JSIONES                                                                                  | 91   |
| 7.  | BIBLIC | OGRAFIA                                                                                  | 94   |

ANEXO

# INDICE DE FIGURAS

.

.

| Núm. | Nombre                                                                                     | Pág. |
|------|--------------------------------------------------------------------------------------------|------|
| 1.   | Clasificación de los diferentes tipos de tra-<br>tamiento de aguas de desecho              | 16   |
| 2.   | Organismos que forman el Reino Protista                                                    | 20   |
| 3.   | Pasos principales del metabolismo aerobio                                                  | 25   |
| 4.   | Pasos principales de los procesos metabólicos<br>involucrados en la digestión anaerobia    | 27   |
| 5.   | Etapas de un cultivo discontinuo o "batch"                                                 | 28   |
| 6.   | Comportamiento de la rapidez específica de<br>crecimiento con respecto al sustrato         | 36   |
| 7.   | Diagrama esquemático de un reactor                                                         | 41   |
| 8.   | Diagrama esquemático de un reactor batch                                                   | 45   |
| 9.   | Comportamiento del crecimiento microbiano y<br>del consumo de sustrato en un reactor batch | 45   |
| 10.  | Diagrama esquemático de un reactor totalmen-<br>te mezclado                                | 48   |
| 11.  | Diagrama esquemático de un reactor tubular                                                 | 50   |
| 12.  | Diagrama esquemático de una cascada de reac-<br>tores totalmente mezclados                 | 54   |

.

Pág.

| 13. | Diagrama esquemático del proceso de crecimien-<br>to de la película | 55 |
|-----|---------------------------------------------------------------------|----|
| 14. | Diagrama esquemático de la cascada de reacto-<br>res                | 62 |
| 15. | Cascada de reactores                                                | 62 |
| 16. | Estudio del régimen hidráulico en la cascada<br>de reactores        | 68 |
| 17. | Curvas experimentales de DTR en la cascada de<br>reactores          | 68 |
| 18. | Resultados experimentales. Primera carga org <u>á</u><br>nica       | 70 |
| 19. | Resultados experimentales. Segunda carça org <u>á</u><br>nica       | 70 |
| 20. | Resultados experimentales. Tercera carga org <u>á</u><br>nica       | 71 |
| 21. | Comportamiento de la DQO (muestreos 1-4)                            | 73 |
| 22. | Comportamiento de la DQO (muestreos 5-10)                           | 73 |
| 23. | Comportamiento de la DQO (muestreos 11 y 12)                        | 74 |
| 24. | Comportamiento de la DQO (muestreo 13)                              | 74 |
| 25. | Concentraciones de microorganismos adheridos y                      |    |

|     | suspendidos                                 | 76 |
|-----|---------------------------------------------|----|
| 26. | Curva teórica de la ecuación de Walker      | 84 |
| 27. | Curva experimental de la ecuación de Walker | 84 |

Pág.

# INDICE DE TABLAS

| Núm | . Nombre                                                                                                                            | Pág.           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1.  | Caracterización del nejayote                                                                                                        | 12             |
| 2.  | Clasificación según sus características de lo<br>diferentes procesos biológicos para tratamien<br>to de aguas de desecho (Ejemplos) | -<br>18        |
| 3.  | Expresiones cinéticas para describir el compo<br>tamiento microbiano                                                                | <u>r</u><br>40 |
| 4.  | Programa del muestreo semanal en la cascada d<br>reactores                                                                          | e<br>65        |
| 5.  | Resultados de las mediciones realizadas duran<br>te la 1a. carga orgánica                                                           | - 77           |
| 6.  | Resultados de las mediciones realizadas duran<br>te la 2a. carga orgánica                                                           | - 78           |
| 7.  | Resultados de las mediciones realizadas duran-<br>te la 3a. carga orgánica                                                          | - 79           |
| 8.  | Resultados de las mediciones de la DQO en el<br>transcurso de la experimentación                                                    | 80             |
| 9.  | Resumen de los parámetros cinéticos obtenidos<br>con la ecuación de Walker                                                          | . 82           |
| 10. | Parámetros cinéticos obtenidos con el modelo<br>de Kornegay                                                                         | 85             |

| 11. | Constantes de reacción de 1er. orden para las<br>diferentes corridas                                         | 87  |
|-----|--------------------------------------------------------------------------------------------------------------|-----|
| A.1 | Resultados del comportamiento hidráulico de la<br>cascada de reactores por el método de la fun-<br>ción paso | 101 |
| A.2 | Resultados experimentales obtenidos durante las<br>diferentes corridas                                       | 102 |
| A.3 | Valores cinéticos para obtener los parámetros<br>cinéticos por medio de la ecuación de Walker                | 107 |
| A.4 | Valores utilizados para obtener los parámetros<br>cinéticos en el modelo de Kornegay                         | 109 |
| A.5 | Valores utilizados en la ecuación de reacción<br>de primer orden.                                            | 111 |

Pág.

#### SIMBOLOGIA

- X concentración de microorganismos, mg SST/1 6 mg N/1
- X concentración inicial de microorganismos, mg SST/1 6 mg N/1
- X<sub>a</sub> concentración de microorganismos promedio, mgSST/l ó
  mg N/l
- $X_d$  concentración de microorganismos muertos, mg SST/1 6 mg N/1
- X<sub>S</sub> concentración de microorganismos al terminarse el sustra to,mg SST/l 6 mg N/l
- C', X'concentración de microorganismos en la película, mg SST/cm<sup>2</sup> 6 mg N/cm<sup>2</sup>
- S concentración de sustrato, mg DQ0/1
- S<sub>o</sub> concentración inicial de sustrato, mg DQO/1
- E concentración de enzima, mg/l
- P concentración de productos, mg/l
- 1 concentración de inhibidor, mg/l
- µ,k rapidez específica de crecimiento de microorganismos, tiempo<sup>-1</sup>
- µ<sub>max</sub>, k rapidez máxima específica de crecimiento de microorga nismos, tiempo<sup>-1</sup>
- V rapidez de reacción para el sustrato, masa/volumen/tiempo
- V<sub>max</sub> rapidez máxima de reacción para el sustrato, masa/volumen/ tiempo
- V\* rapidez máxima específica de reacción para el sustrato, masa sustrato/masa de microorganismos/tiempo

- n, rapidez de consumo de sustrato, masa/volumen/tiempo
- n<sub>\chi</sub> rapidez de producción de microorganismos, masa/volumen/ tiempo
- $\mu_a$  rapidez específica de crecimiento de los microorganismos de la película, tiempo
- µ<sub>s</sub> rapidez específica de crecimiento de los microorganismos suspendidos, tiempo
- (dS/dt) Va rapidez de consumo del sustrato debido a la pelfcula adherida,masa/volumen/tiempo
- (dS/dt)<sub>V&</sub> rapidez de consumo de sustrato debido a la biomasa suspendida, masa/volumen/tiempo
- v coeficiente de dilución, tiempo<sup>-1</sup>
- $k_d$  coeficiente de decaimiento endógeno, tiempo<sup>-1</sup>
- y coeficiente de rendimiento, masa microorganismos producidos/masa sustrato consumido
- $V_a$  coeficiente de rendimiento de la película
- Y coeficiente de rendimiento de los microorganismos suspen didos
- d espesor de la película adherida, longitud

A, area cubierta por la película, área

- $V_a$  volumen de la película, volumen
- $V_{\star}$  volumen de líquido, volumen

 $t_{lag}$  tiempo de duración de la etapa "lag", de retardo, tiempo

- $t_d$  tiempo de duplicación de los microorganismos, tiempo
- $k_{+1}, k_{-1}, k_{+2}, k_{-2}$  constantes de reacción en el modelo de Michaelis-Menten, tiempo<sup>-1</sup>
- $k_{\lambda}$ , K', K constantes de reacción de primer orden, tiempo<sup>-1</sup>
- K constante de saturación de Michaelis y Menten, masa/volumen

# 1. INTRODUCCION

# 1.1 Problemática

Desde hace algunos años el país sufre por la escasez de agua, sobre todo donde el aprovisionamiento de agua es difícil por su localización geográfica y aún más durante la época de estiaje.

Debido a que el agua es una sustancia básica para el desarrollo del sector industrial, la iniciativa privada y el Gobierno se han visto obligados a buscar fuentes alternativas de agua para no ver frenado su crecimiento por falta del líquido.

La industria de la nixtamalización es de gran importancia de<u>n</u> tro del contexto alimentario del país ya que procesa maíz para consumo humano directo. El producto de esta industria es la principal fuente de alimento de la población mexicana. Es ta industria requiere de grandes cantidades de agua para el procesamiento del maíz, saliendo de él una parte considerable como aguas de desecho (nejayote).

Para disminuir el consumo de agua en sus plantas de producción de harina o de maíz nixtamalizado, la industria paraesta tal ha contemplado el tratamiento de sus efluentes para recir cular el agua dentro del proceso. Debido a las altas concentraciones de contaminantes y a ser un agua de desecho producto de un proceso, el nejayote se considera como agua de desecho de tipo industrial.

Por cada tonelada de maíz nixtamalizado se producen aproximadamente 1.5 toneladas de nejayote. Si en México se consumen aproximadamente 12 millones de toneladas de maíz, previa nixtamalización, la cantidad de nejayote producido es de 18 millones de toneladas anualmente.

Esta cantidad de aguas residuales coloca a la industria del maíz para consumo humano dentro de los cinco principales contaminantes líquidos que se producen en el país (SRH, 1974).

El alto contenido de carbohidratos en el nejayote (Illescas, 1943, Trejo-González et al., 1979; Trejo-González et al. 1982) y la reciente información acerca de la degradación bio-

lógica de esta materia orgánica (Durán de Bazúa et al., 1980; Durán de Bazúa et al., 1982) han llevado a considerar la pos<u>i</u> bilidad de utilizar procesos biológicos para el tratamiento del nejayote. Dentro de estos sistemas se encuentran los aerobios (Brown and Van Meer, 1978; Hartmann y Durán de Bazúa, 1981a; Durán de Bazúa, 1983) y los anaerobios (Eckenfelder, 1966; Civit et al., 1984).

3

En este trabajo se buscará alcanzar los objetivos que se desglosan en el siguiente inciso.

1.2 Objetivos

Este estudio forma parte de un proyecto global de investigación realizado en el Instituto de Ingeniería sobre el tratamiento biológico del nejayote con el propósito de seleccionar entre las diferentes alternativas, el sistema biológico más adecuado para este tipo de aguas de desecho.

Sus principales objetivos son:

- Conocer las características contaminantes de los desechos líquidos del proceso de nixtamalización
- Conocer la capacidad de degradación del nejayote en un sistema biológico aerobio de película sumergida

3) Con base en los resultados de la experimentación y en los modelos de los reactores, proponer una expresión matemática que permita el diseño de reactores para el tratamiento del nejayote.

## 2. NIXTAMALIZACION

La técnica de nixtamalización es un proceso en el cual el gra no de maíz sufre una lixiviación o hidrólisis alcalina. Del proceso se obtienen principalmente dos productos, el nixtamal que es el maíz cocido y el nejayote que son las aguas de des<u>e</u> cho originadas durante el cocimiento y lavado del nixtamal (del náhuatl "nextli", cenizas de cal, "áyotl", caldo y "tamalli", maíz cocido) (Hartmann y Durán de Bazúa, 1981b).

# 2.1 Descripción del proceso de nixtamalización

El proceso de "nixtamalización" es un proceso discontinuo o "batch" a nivel semi-industrial y casero principalmente.

A nivel industrial, se coloca una determinada cantidad de agua y se agrega cal apagada  $(Ca(OH)_{\eta})$  en los tanques de cocimiento.

Con vapor de agua sobrecalentado se calienta la mezcla hasta 90-94°C y luego se agrega el maíz seco. Se vuelve a aplicar vapor de agua sobrecalentado para mantener la mezcla en una temperatura cercana a la de ebullición durante algunos minutos (10 a 15). Después se deja reposar el contenido del tanque durante aproximadamente una hora y se permite la salida del agua de cocimiento. Se agrega nuevamente agua y se burb<u>u</u> jea aire comprimido para mezclar el contenido del tanque. Se permite la salida del agua de lavado y el maíz cocido o nixt<u>a</u> mal se pasa a molienda en húmedo. A la mezcla de las aguas de cocimiento y de lavado se le conoce como "nejayote".

# 2.2 Balance de materia para el proceso de nixtamalización

El balance de materia se realizó con los datos de una planta de harina de maíz nixtamalizado adquirida por CONASUPO en Cd. Guadalupe, N.L., la cual procesa 600 toneladas de maíz al día.

Datos de la planta productiva

Volumen del tanque de cocimiento 7.1 m<sup>3</sup> Volumen de agua de cocimiento 4.0 m<sup>3</sup> Volumen de agua de lavado 2.5 m<sup>3</sup> Temperatura de salida del agua de cocimiento 70-80 °C Temperatura de salida del agua de lavado 61-64 °C Temperatura de la mezcla del agua de lavado y cocimiento 70-72°C Carga de maíz alimentado al tanque 3 toneladas

Peso de Ca(OH)<sub>2</sub> con 96% de pureza 25 Kg Temperatura de cocimiento 93-95°C Tiempo de burbujeo del aire comprimido 3 mintuos Tiempo de reposo en el tanque 60 minutos Porciento de agua (en peso) en el maíz antes del proceso 12.5% Porciento de agua (en peso) en el maíz después del proceso 43.6% Densidad aparente del maíz 0.73 Kg/1 Volumen libre 35%

7

(3)

La ecuación general de balance del proceso de nixtamalización es:

En el cocimiento

 $4 \ ton + 3 \ ton = Y + Z$  (2)

y = agua de cocimiento

Z = nixtamal

Balance para el agua

$$4 \rho_{H_20} + 3 X_0 = y + Z X$$

fracción peso del agua en el maíz

X<sub>o</sub>

X fracción peso del agua en el nixtamal  $\rho_{H_20}$  densidad del agua = 1 ton/m<sup>3</sup>

Balance para el maíz

$$3(1 - X_0) = Z(1 - X)$$
 (4)

$$\frac{3(1 - X_0)}{(1 - X)} = Z$$
 (5)

Sustituyendo (5) en (2)

 $4 + 3(1 - \frac{1 - X_o}{1 - X}) = Z = 2.40$  ton de agua de cocimiento dese chada

En el caso del agua de lavado, la fracción de agua se mantiene constante. Por consiguiente la cantidad de agua potable de lavado es igual al agua desechada. Como resultado de esto, el efluente del proceso de nixtamalización es de 4.9 m<sup>3</sup> por cada 3 toneladas de maíz. La relación existente es de 1.63 m<sup>3</sup> nej<u>a</u> yote/ton maíz y se consumen 2.16 m<sup>3</sup> agua potable/ton maíz.

# 2.3 Caracterización del nejayote

La importancia de caracterizar un agua de desecho es la de conocer con qué tipo de agua de desecho se está trabajando. De<u>n</u> tro de las características físicas o químicas se encuentran: concentraciones de amonio y de calcio, el color, la conductividad, la demanda bioquímica de oxígeno, la demanda química de oxígeno, las concentraciones de fósforo, nitratos, nitritos, de nitrógeno Kjedahl, el oxígeno disuelto, el pH, las cantidades de sólidos totales, suspendidos y solubles, la con centración de sulfatos y la turbiedad. Las muestras analizadas fueron de tres distintas procedencias: grande, mediana y pequeña industrias, tomadas al azar. Los resultados se muestran en la Tabla 1.

A continuación se presenta una breve descripción de las cara<u>c</u> terísticas antes mencionadas.

<u>Alcalinidad</u>. Es una medida de la capacidad para neutralizar ácidos, grandemente influenciada por las especies carbonatadas  $(CO_{q}, HCO_{3}, y CO_{3})$ , además del ion hidroxilo  $(OH_{1})$ .

Amonio. Su existencia en solución acuosa es de dos formas, como amonio y como amoniaco. La forma predominante depende del equilibrio  $NH_4^{\dagger} \iff NH_3 + H^{\dagger}$ .

<u>Calcio</u>. Es la cantidad de calcio contenida en una muestra, sin importar la especie aniónica unida a él.

<u>Color</u>. Es el resultado del contacto del material colorante con el agua de desecho. Alguno de los materiales son los re-

siduos orgánicos y extractos vegetales, tales como, los taninos, ácido húmico y humatos. Existen dos clases de color en la superficie del agua: color aparente (debido al material suspendido) y el color real (debido a residuos orgánicos y e<u>x</u> tractos vegetales).

<u>Conductividad</u>. Es una medida de la capacidad de una solución para permitir el paso de la corriente eléctrica a través de ella. Varía con el tipo y número de iones que contiene.

Demanda bioquímica de oxígeno. Es usualmente definida como la cantidad de oxígeno requerido por los microorganismos para estabilizar y descomponer la materia orgánica bajo condiciones aerobias a 20°C, en la obscuridad, durante un período determinado.

<u>Demanda química de oxígeno</u>. Es la cantidad de oxígeno molecular requerida para oxidar el material orgánico a  $CO_{g}$  y  $H_{g}O$ .

<u>Fósforo</u>. Es la cantidad de fósforo contenida en una muestra. En las aguas de desecho generalmente se encuentra como fósforo orgánico y ortofosfatos.

<u>Nitratos y Nitritos</u>. Es la cantidad de iones  $NO_3^-$  y  $NO_2^-$  cont<u>e</u> nida en el agua de desecho.

<u>Nitrógeno Kjedhal</u>. Es la determinación de la cantidad total de nitrógeno orgánico contenida en una muestra, en cualquiera de sus formas.

<u>Oxígeno disuelto</u>. Es la concentración de oxígeno molecular d<u>i</u> suelto en agua.

pH. Es un término usado universalmente para expresar la condi ción ácida o alcalina de una solución. Es una forma de expresar la actividad del ion hidrógeno.

<u>Sólidos totales</u>. Es usualmente definido como la materia que permanece como residuo después de una evaporación y secado a una temperatura de 105°C, e incluye ambas formas de sólidos suspendidos y disueltos.

<u>Sulfatos</u>. Es la cantidad de iones sulfato contenida en una muestra. Son indirectamente responsables de dos serios probl<u>e</u> mas asociados con el tratamiento de aguas de desecho: olor y corrosión.

<u>Turbiedad</u>. Término usado para soluciones acuosas que contienen material suspendido que interfiere con el paso de un haz luminoso a través de ellas.

Una descripción más amplia de estos métodos y términos se en-

|            |            | 1              | pH / | Conducti                       | Alcalinidad               | Color | Turbiedad | U505                   | DOO                    | Nitrógeno           | Amonio  | Nitratos | Fósforo         | so,    | Sólidos             | Ca     |
|------------|------------|----------------|------|--------------------------------|---------------------------|-------|-----------|------------------------|------------------------|---------------------|---------|----------|-----------------|--------|---------------------|--------|
|            |            |                |      | vidad<br>(( <sup>mtios</sup> ) | (mg CaCO <sub>3</sub> /l) | (۲)   | (נידט)    | (ing0 <sub>2</sub> /10 | (m.j0 <sub>2</sub> /t) | Kjeldahl<br>(mgN/C) | (mgN/C) | (mg/t)   | Total<br>(mg/l) | (mg/t) | ( <sup>mg/C</sup> ) | (mg/l) |
|            | ento       | Total          | 11.6 | 5100                           | 3260                      | 570   | 380       | 6190                   | 13,650                 | 119                 | -       | -        | 27              | -      | 13,310              | 305    |
|            | ie Cocini  | <u>soluble</u> | 11.6 | 5000                           | 2600                      | 572   | 42        | 6000                   | 10,020                 | 98                  | 4.0     | 22       | 24              | 2401   | 11,295              | 295    |
| histria    | Licor      | Susp.          | -    | <b>-</b> .                     | 660                       | -     | -         | 190                    | 3,630                  | 20                  | -       | -        | 3               | -      | 2,015               | 10     |
| n rc       | <br>9      | Total          | 11.6 | 2100                           | 900                       | 560   | 240       | 940                    | 3,960                  | 42                  | -       | -        | 7               | -      | 3,010               | 298    |
| 0          | de Lava    | Soluble        | 11.6 | 2100                           | 700                       | 570   | 30        | 750                    | 2,290                  | 35                  | 2.0     | 21       | 2               | 1886   | 2,540               | 240    |
|            | Lícor      | Susp.          | -    | -                              | 200                       | -     | -         | 190                    | 1,670                  | 7                   | -       | -        | 5               | -      | 470                 | 58     |
|            | nto        | Total          | 11.7 | 5100                           | 6520                      | 575   | 235       | 5625                   | 20,075                 | 140                 | -       | -        | 26              | -      | 14,910              | 348    |
|            | le Occimie | Soluble        | 11.7 | 5200                           | 2480                      | 578   | 190       | 3750                   | 15,400                 | 98                  | 4.0     | 22       | 19              | 1084   | 9,620               | 350    |
| histria    | Licor      | Susp.          | -    | -                              | 4040                      | -     | -         | 1875                   | 4,675                  | 42                  | -       | -        | 7               | -      | 5,290               | -      |
| lana Inc   | g          | Total          | 11.1 | 2450                           | 2000                      | 571   | 350       | 3560                   | 7,100                  | 30                  | -       | -        | 21              | 0      | 8,810               | 471    |
| ibəM       | de Lavad   | Soluble        | 11.2 | 2500                           | 1140                      | 570   | . 118     | 3190                   | 5,660                  | 59                  | 2.0     | 13       | 13              | 454    | 6,980               | 353    |
|            | Licor      | Susp.          | -    | -                              | . 860                     | -     | -         | 370                    | 1,440                  | · 21                | -       | -        | 8               | -      | 1,830               | 118    |
| ria        | unto       | Tctal          | 11.6 | 4000                           | 2720                      | 569   | 260       | 7875                   | 21,280                 | 291                 | -       | -        | 178             |        | 19,490              | 320    |
| cřa Inčust | de Oscimik | soluble        | 11.6 | 4000                           | 2540                      | 573   | 84        | 6750                   | 18,560                 | 274                 | 5.0     | -        | 65              | 1199   | 17,680              | 300    |
| Poqu       | Licor      | •ດ້รກຽ         | -    | -                              | 180                       | -     | -         | 1125                   | 2,720                  | 17                  | -       | -        | 113             | -      | 1,810               | 20     |

۰.

12

•

. .

•

cuentran en Standard Methods (1980) y Sawyer et al (1978).

2.4 Conclusiones de la caracterización del nejayote

De acuerdo al análisis realizado en el nejayote puede conclui<u>r</u> se:

- El nejayote contiene una gran cantidad de sales disueltas comparada con la de aguas de desecho de tipo doméstico
- La alta alcalinidad se debe principalmente al alto contenido de bicarbonatos y carbonatos
- 3) La turbiedad es originada por material suspendido, el cual puede ser eliminado por sedimentación, coagulación o filtración
- La mayor parte de los contaminantes, tanto orgánicos como inorgânicos se encuentran en forma soluble. Para verificar ésto basta comparar los valores de la Tabla 1 para DBO<sub>5</sub>, DQO y sólidos
- 5) La concentración de contaminantes de las aguas de desecho es mayor para la industria pequeña, siguiendo la mediana y por último la gran industria. Esto se debe a que en los molinos de nixtamal se sigue el proceso tradicional

de cocción que implica tiempos de reposo después de la cocción de más de 8 horas

- 6) El valor de pH es muy alto para considerar al nejayote como susceptible de ser tratado en sistemas biológicos sin un ajuste previo
- 7) Si se considera a la relación de DBO<sub>5</sub> a nitrógeno a fósforo como la relación ideal de nutrientes para microorga nismos, la relación debe ser de 100:10:1 (DBO<sub>5</sub>:N:P). La mezcla de aguas de cocimiento y lavado tienen una relación de sustancias solubles de 165:4:1, lo cual significa que el nejayote, como alimento para los microorganismos es deficiente en nitrógeno y fósforo
- 8) Los valores de sólidos en base seca, demanda bioquímica de oxígeno y demanda química de oxígeno son aproximadamente 20 veces mayores que los valores típicos para aguas residuales de tipo doméstico.

Observando las características contaminantes del nejayote, en el siguiente capítulo se analizan las características de los sistemas biológicos que podrían ser utilizados para el tratamiento de estas aguas de desecho.

# PROCESOS BIOLOGICOS PARA EL TRATAMIENTO DE AGUAS DE DESE CHO. GENERALIDADES

La necesidad de eliminar los contaminantes solubles y suspendidos de las aguas de desecho ha obligado a recurrir a diversos procesos de tratamiento de aguas de desecho, algunos de los cuales se mencionan a continuación.

3.1 Tratamiento de aguas de desecho

Existen cuatro tipos principales de tratamiento de aguas de d<u>e</u> secho (Figura 1) (Sundstrom et al., 1979):

- 1) Pretratamiento y tratamiento primario
- 2) Tratamiento secundario
- 3) Tratamiento terciario
- 4) Tratamiento de lodos

| Pretratamiento Primario<br>Químico - Físico | Tratamiento<br>Secundario | Tratamiento<br>Terciario | Desinfección |  |
|---------------------------------------------|---------------------------|--------------------------|--------------|--|
|---------------------------------------------|---------------------------|--------------------------|--------------|--|





| Condicionamiento<br>del<br>agua de desecho | Ajusta de pH<br>Remoción de Metales<br>y Nutrientes | Remoción de Sólidos<br>suspendidos | Remoción de materia<br>orgánica soluble<br>bio-degradable | Remoción de materia<br>no biodegradable,<br>iones, color, olor | Remoción de celulas<br>vivas |    |
|--------------------------------------------|-----------------------------------------------------|------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|------------------------------|----|
| Figura 1                                   | . Clasificaci                                       | ón de los dife                     | erentes tipos de                                          | tratamiento de aç                                              | juas                         | 16 |

de desecho (Sundstrom, 1979).

3.1.1 Pretratamiento y tratamiento primario

Las aguas de desecho llevan consigo piedras, arena y basura en general que pueden obstruir bombas, válvulas y tuberías. En este pretratamiento se trata de eliminar dichos cuerpos me diante diversas operaciones tales como el cribado, la sedimen tación, el filtrado, etc.

El tratamiento primario tiene como objetivo eliminar sólidos suspendidos y coloidales que han pasado por el pretratamiento. Se puede dividir en dos grandes grupos:

 a) Tratamiento físico. Se basa en la sedimentación de los sólidos de mayor densidad que la del agua y en la flotación de los sólidos con menor densidad que la del agua. El uso del proceso adecuado estará de acuerdo al tipo de sólidos por eliminar

b) Tratamiento químico. Este tratamiento tiene como objet<u>i</u> vo eliminar algunos iones tales como  $Ca^{2+}$ ,  $Mg^{2+}$  y materia en estado coloidal, basándose en la neutralización, coagulación y floculación mediante la adición de reactivos tales como  $Ca(OH)_2$ ,  $Na_2CO_3$ ,  $Fe_2(SO_4)_3$ ,  $A\ell_2(SO_4)_3$ , etc.

#### 3.1.2 Tratamiento secundario

También llamado tratamiento biológico. El propósito de éste es remover el material orgánico disuelto en el agua de desecho. Esto se expresa como eliminación de carbón orgánico to tal, demanda bioquímica de oxígeno y demanda química de oxígeno, los cuales son parámetros de control y diseño de los procesos biológicos. En este tipo de operaciones unitarias se aprovecha el hecho de que los microorganismos, principalmente bacterias, consumen el material orgánico disuelto util<u>i</u> zándolo como sustrato. Algunos ejemplos de este tipo de tratamiento se presentan en la Tabla 2.

TABLA 2. CLASIFICACION SEGUN SUS CARACTERISTICAS DE LOS DI-FERENTES PROCESOS BIOLOGICOS PARA TRATAMIENTO DE AGUAS DE DESECHO (EJEMPLOS)

| Metabolismo aerobio        | Metabolismo anaerobio                                          |
|----------------------------|----------------------------------------------------------------|
| Biodiscos                  | Reactor de filtro empacado                                     |
| Sistema de lodos activados | Digestor anaerobio                                             |
|                            | Metabolismo aerobio<br>Biodiscos<br>Sistema de lodos activados |

#### 3.1.3 Tratamiento terciario

Ciertos tipos de aguas de desecho requieren de un tratamiento más específico para remover algunos contaminantes tales como sales de fósforo, compuestos orgánicos no biodegradables, com puestos coloidales, sustancias que produzcan color, etc. Algunas de las operaciones unitarias utilizadas para lograr la remoción son: torres de intercambio iónico, ósmosis inversa, electrodiálisis, torres de adsorción en carbón activado, torres de agotamiento, etc.

# 3.1.4 Tratamiento de lodos

La mayoría de los procesos de tratamiento de aguas de desecho, tanto primarios como secundarios, generan una gran cantidad de desechos en forma de sólidos. Ejemplo de ellos son la biomasa generada en los procesos biológicos y los precipitados generados por los reactivos químicos añadidos. El uso de los diferentes tipos de tratamiento depende de la naturaleza de los l<u>o</u> dos. Ejemplos de estos tratamientos son (Metcalf and Eddy, 1972; Sundstrom et al., 1979):

- 1) Digestión anaerobia y aerobia
- 2) Filtración en vacío
- 3) Lechos de secado
- 4) Combustión húmeda
- 5) Secado e incineración
- 6) Vertido al mar
- 7) Relleno de terrenos (composteo)

# 3.2 Elementos básicos de microbiología

#### 3.2.1 Conceptos generales

En los procesos de tratamiento biológico se utilizan los orga nismos del reino protista que consumen parte del material orgánico disuelto, transformándolo principalmente en material celular. Estos organismos son todos aquellos organismos que no son clasificados dentro del reino animal o del vegetal. Son células sencillas que presentan algunas características de ambos reinos sin llegar a pertenecer a ninguno de ellos. Los protistas se pueden clasificar en dos grandes grupos (Figura 2): los procariotes son unicelulares o pluricelulares pero con un solo tipo de células; en ellos no existe diferenciación celular y además no presentan un núcleo verdadero. Los eucariotes son pluricelulares, existiendo la diferenciación celular y que tienen núcleo verdadero (Bailey et al., 1977).

| Reino Protista | Procariotes | Algas verdiazules<br>Bacterias          |
|----------------|-------------|-----------------------------------------|
|                | Eucariotes  | Algas<br>Protozoos                      |
|                |             | Hongos Levaduras<br>Hongos (verdaderos) |

Figura 2. Grupo de organismos que forman el Reino Protista

Las bacterias son microorganismos importantes en el tratamien to de aguas de desecho ya que son los principales responsables de la transformación metabólica del material orgánico so luble. Las bacterias son células procariotes que presentan una pared rígida, no tienen núcleo verdadero y tienen un modo usual de reproducción asexual (división celular). De forma general, las bacterias están constituidas por 80% de agua y 20% de materia seca, del cual un 90% es materia orgánica y 10% materia inorgánica. El pH óptimo para su crecimiento oscila entre 6.5 y 7.5. Con base en las temperaturas óptimas bajo las cuales las bacterias llevan a cabo sus funciones metabólicas se pueden clasificar como (Metcalf and Eddy, 1972):

|                     | Rango (°C) | Optimo (°C) |
|---------------------|------------|-------------|
| Criof <b>í</b> lico | - 20 a 30  | 12 a 18     |
| Mesof <b>í</b> lico | 20 a 45    | 25 a 40     |
| Termofílico         | 45 a 75    | 55 a 65     |

Las bacterias se pueden clasificar por su forma y modo de agr<u>u</u> parse:

 a) Esféricas. Llamadas cocos, tienen un diámetro promedio de 0.5 a 1.0 micrómetros y por su forma de agruparse en monococos, diplococos, estreptococos, estafilococos y sarcina

- b) Curvas o helicoidales. Se presentan en forma de espirales y pueden clasificarse como vibrium y espirillum. Tienen un espesor promedio entre 0.5 a 5 micrómetros y una longitud promedio de 6 a 15 micrómetros
- c) Rectas. Conocidas como bacilos de forma cilíndrica con un espesor promedio de 0.5 a 1.0 micrómetros y una longitud de 1.5 a 3 micrómetros.

#### 3.2.2 Procesos metabólicos

Se llama metabolismo al conjunto de reacciones que se llevan a cabo en la célula y que tienen funciones específicas de: 1) obtención de energía, 2) utilización de nutrientes 3) formación de componentes celulares y 4) formación y degradación de biomoléculas que se requieran en la célula. El metabolismo puede dividirse principalmente en catabolismo y anabolismo.

El catabolismo es un proceso metabólico durante el cual se lle van a cabo reacciones de óxido-reducción. Las grandes moléculas de nutrientes, como pueden ser carbohidratos, lípidos y proteínas, son degradadas para dar moléculas sencillas y liberar energía en forma de adenosintrifosfato (ATP).

El anabolismo es un proceso metabólico en el cual moléculas

simples forman moléculas grandes, tales como ácidos nucleicos, proteínas, lípidos, polisacáridos, enzimas, etc., utilizando la energía disponible en forma de ATP, la cual proviene del catabolismo.

Los microorganismos pueden clasificarse como sigue:

- 1) Por su fuente de aceptor de electrones:
  - Aerobios. Utilizan el oxígeno molecular como último aceptor de electrones
  - b) Anaerobios. Utilizan cualquier otra molécula diferen te al oxígeno molecular como su último aceptor de electrones
- 2) Por su fuente de carbono:
  - a) Autotróficos. Utilizan  $CO_2$  y  $HCO_3$ , como su sola fuente de carbono para la síntesis de biomoléculas
  - b) Heterotróficos. Requieren de carbón en forma de compuestos orgánicos reducidos, tales como la glucosa
- 3) Por su fuente de energía
  - a) Fototróficos. Utilizan la luz radiante como fuente
de energía

- b) Quimiotróficos. Emplean reacciones de oxido-reducción para obtener energía. Estos a su vez se clasifican, de acuerdo con el tipo de compuesto oxidado, en
  - Quimioorganotróficos. Utilizan moléculas orgánicas como fuente de energía
  - Quimioautotróficos. Utilizan moléculas inorgánicas simples tales como  $H_{g}S$ ,  $NH_{3}$ ,  $NO_{g}$ , etc.

En los procesos de tratamiento biológico de aguas de desecho el grupo más importante de microorganismos son los heterotróficos aeróbicos. Este tipo de microorganismos tienen un met<u>a</u> bolismo eficiente en la utilización de sustratos orgánicos c<u>o</u> mo fuente de alimento.

En el metabolismo aerobio llevado a cabo por microorganismos quimioorganotróficos la degradación de moléculas de proteínas polisacáridos y lípidos da como resultado del catabolismo energía y moléculas sencillas ( $NH_3$ ,  $H_2O$ ,  $CO_2$ ) y del anabolismo nuevo material microbiano (Figura 3).





El metabolismo anaerobio es llevado acabo por diferentes micro organismos que pueden ser clasificados principalmente en hidro líticos, acidogénicos y metanogénicos.

En una primera etapa los microorganismos hidrolíticos rompen las grandes moléculas transformandolas en moléculas más sencillas. Dichas moléculas son transformadas por bacterias acidogénicas en ácidos volátiles grasos, los cuales son utilizados por las bacterias metanogénicas como sustrato. Los productos principales del metabolismo de las bacterias metanogénicas son  $CH_A \ y \ CO_2$  (Figura 4).

3.3 Cinética microbiana

3.3.1 Etapas de un cultivo discontinuo

En un cultivo discontinuo de microorganismos se observan diferentes etapas en el crecimiento microbiano y en el consumo de sustrato. Estas etapas se muestran en la Figura 5 (Bailey et al., 1975).

A continuación se describen las etapas mostradas en la Figura 5.

 Etapa de retardo o "Lag". Representa el tiempo en el cual los microorganismos se adaptan al medio de cultivo



Figura 4. Pasos principales de los procesos metabólicos involucrados

en la digestión anaerobia.



Figura 5 . Etapas de un cultivo discontinuo o "batch". Dean y Heanshelwood (1966) propusieron un modelo para ca<u>l</u> cular el tiempo de duración de esta fase, t<sub>netardo</sub>

$$t_{retardo} = \frac{c'/a' - aV/a'}{n_o + a''/a}$$
(1)

donde

- c' concentración de la sustancia limitante al terminar la etapa
- a concentración de la sustancia limitante/volumen del inóculo

 $n_o$  número de células (por volumen de reacción)

- a' incremento promedio de células por unidad de sustrato limitante
- a" decremento del sustrato limitante debido a la produ<u>c</u> ción de células

El modelo considera una reacción de primer orden para el crecimiento de los microorganismos, llegando a una expresión para el cálculo de la concentración de los microorganismos en un tiempo  $t > t_{netando}$ 

$$X = X_d + X_o e^{-k} d^t + e^{\mu(t-t_retardo)}$$
(2)

donde

- X concentración de microorganismos al tiempo  $t > t_{retardo}$ X<sub>d</sub> concentración de microorganismos muertos X<sub>o</sub> concentración inicial de microorganismos cuando t = 0
- k coeficiente de decaimiento considerando una reacción
  de primer orden
- μ rapidez específica de crecimiento
- Etapa exponencial. Los microorganismos adaptados se reproducen rápidamente. Se plantea una rapidez de crecimiento similar a una ecuación de reacción de primer orden

$$\frac{dX}{dt} = \mu X \tag{3}$$

)

 $Con \quad X = X_o \qquad cuando \quad t = t_{retardo}$ 

integrando la ecuación (3)

$$X = X_o e^{\mu(t-t_{retardo})}$$
(4)

Existe un tiempo de duplicación celular  $t_d$  en el cual el número de microorganismos se duplica

$$t_d = \frac{\ell n \, 2}{\mu} \tag{5}$$

3) Etapa estacionaria. En esta se encuentra la máxima pobla ción celular. La baja concentración de sustrato hace que se equilibren la rapidez de crecimiento y la rapidez de mortandad: el crecimiento neto es cero y la rapidez de consumo del sustrato es:

$$\frac{dS}{dt} = -k_{s} X \tag{6}$$

Con:

$$X = X_{o} \ell^{\mu t}$$

los límites de la integración de la ecuación (6) son:  $X_o$ ,  $S_o$  cuando  $t = t_o$ , inicio fase estacionaria  $X_{\delta}$ , o cuando t = t, donde  $X_{\delta}$  es la concentración má xima de microorganismos

$$S_{o} = \frac{k_{s}}{\mu} (X_{s} - X_{o})$$
 (7)

Despejando  $X_{\lambda}$  de la ecuación (7)

$$X_{s} = X_{o} + \frac{\mu}{k_{s}} S_{o}$$
 (8)

4) Etapa endógena. La muerte de microorganismos excede a la producción de nuevas células. La rapidez de muerte se plantea en función de la población viva y de las características del medio. Se ha propuesto un comportamiento de una reacción de primer orden

$$X = X_{s} e^{-k_{d}t}$$
(9)

donde

$$k_d$$
 coeficiente de rapidez de decaimiento endógeno  
(tiempo<sup>-1</sup>)

Es importante notar que en el tratamiento biológico de aguas de desecho el sistema biológico es una población mixta y compleja de microorganismos y cada uno de ellos en particular ti<u>e</u> nen su propia curva de crecimiento. La posición y duración de cada etapa está en función de los sustratos, nutrientes disponibles y de factores ambientales tales como temperatura, pH y condiciones de aereación (Sundstrom et al., 1979).

Basándose en una serie de resultados experimentales, Monod ll<u>e</u> gó a la conclusión de que la rapidez de crecimiento de cultivos microbianos es dependiente de la concentración de substrato. Al graficar la rapidez de crecimiento contra la concentr<u>a</u> ción de substrato pudo observar que el comportamiento de las curvas siempre seguían el mismo patrón. Pudo darse cuenta que el comportamiento de las curvas obtenidas era idéntico al del modelo de Langmuir para adsorción. De aquí concluyó que la ecuación que pudiera describir el comportamiento del crecimie<u>n</u> to de microorganismos deberá tener la forma de una parábola (Gaudy et al., 1981).

Como resultado de sus experiencias obtuvo la siguiente ecuación, la cual se deriva de un planteamiento empírico:

$$\mu = \mu_{max} \frac{S}{K_m + S}$$
(10)

#### donde

 $\mu \qquad \text{rapidez específica de crecimiento} \\ \mu_{max} \qquad \text{rapidez máxima de crecimiento} \\ K_m \qquad \text{constante de Monod} \\ S \qquad \text{concentración del sustrato} \\ \end{cases}$ 

En la etapa exponencial del crecimiento microbiano se consid<u>e</u> ra que el aumento de la concentración de microorganismos con respecto al tiempo es dependiente de su misma concentración e independiente de la concentración del sustrato, siempre y cuando este último se encuentre en exceso.

Sustituyendo la ecuación (10) en (3) queda:

$$\frac{dX}{dt} = \mu_{max} X \frac{S}{S + K_{m}}$$
(11)

Esta ecuación describe el cambio de la concentración de los mi croorganismos con respecto al tiempo basándose en las concentraciones de microorganismos y del sustrato en el sistema.

# 3.3.2 Desarrollo de un modelo cinético para el consumo de sus trato

El modelo que a continuación se presenta es el modelo de cinética enzimática desarrollado por Michaelis y Menten (Sundstrom et al., 1979).

El modelo cinético de Michaelis y Menten hace las siguientes consideraciones:

- El sustrato S se combina con la enzima E en una reacción reversible para formar el complejo ES
- El complejo ES se descompone de forma irreversible en el producto P y la enzima E

La reacción enzimática es la siguiente:

$$E + S \stackrel{k_{+1}}{\longleftarrow} ES \stackrel{k_{+2}}{\longrightarrow} E + P \qquad (12)$$

El cambio neto de la concentración del complejo ES con respec to al tiempo es

$$\frac{d \ ES}{dt} = k_{+1} \ S \ E \ - k_{-1} \ ES \ - k_{+2} \ ES \qquad (13)$$
formación descompo descompo sición sición

La concentración total de enzima  $E_t$  en el sistema reaccionante es la suma de la enzima libre más la enzima contenida en el complejo ES, entonces

$$E = E_{t} - ES \tag{14}$$

Sustituyendo la ecuación (14) en la ecuación (13)

$$\frac{d ES}{dt} = k_{+1} (E_t - ES) S - k_{-1} ES - k_{+2} ES$$
(15)

En el régimen permanente la concentración del complejo ES es constante

$$\frac{d ES}{dt} = 0 \tag{16}$$

Por lo tanto la ecuación (15) se transforma en

$$ES = \frac{E_{t}S}{S + (k_{-1} + k_{+2})/k_{+1}}$$
(17)

Donde  $(k_{-1} + k_{+2})/k_{+1}$  se conoce como la constante de Michaelis y Menten,  $K_{\lambda}$ .

Si V es la rapidez neta de consumo de sustrato, se tiene que

$$-\frac{dS}{dt} = V = k_{+2} ES \qquad (18)$$

La rapidez neta de reacción depende exclusivamente de la rapidez de descomposición del complejo ES en producto y enzima libre. Considerando que toda la enzima del sistema se encuentra en forma del complejo ES, la rapidez neta de reacción alcanzaría un valor máximo, denominada rapidez máxima ( $V_{max}$ ), al estar actuando tota la enzima en la descomposición del complejo ES para dar producto y enzima libre

$$V_{max} = k_{+2} E_t \tag{19}$$

Despejando ES y  $E_{t}$  de las ecuaciones (18) y (19)

$$ES = \frac{V}{k_{+2}}$$

$$E_{\pm} = \frac{V_{max}}{k_{+2}}$$
(20)
(21)

Sustituyendo (20) y (21) en (17) queda

$$-\frac{dS}{dt} = V = V_{max} \frac{S}{S + K_{s}}$$
(22)

Esta expresión se conoce como la relación de Michaelis y Menten.



Figura 6 . Comportamiento de la rapidez específica de crecimiento con respecto al sustrato.

Los corolarios de la ecuación de Michaelis y Menten son (Figura 6):

1) Si S >>  $K_{s}$  la reacción tiende a una reacción de orden cero

V = V<sub>max</sub>

2) Si  $S = K_{\delta}$  la rapidez de reacción tiene el valor de la mitad del valor máximo

$$V = \frac{V_{max}}{2}$$

3) Si S << K la reacción tiende a una reacción de primer orden

$$V = \frac{V_{max}}{K_s} S$$

Para fines prácticos se define una rapidez máxima específica de consumo de sustrato por unidad de microorganismos que lo consumen,  $V_{max}^* = V_{max}/X$ , donde X es la concentración de micro organismos. La ecuación de Michaelis y Menten se transforma en:

$$-\frac{dS}{dt} = V_{max}^* X \frac{S}{K_* + S}$$
(23)

## 3.3.3 Relación entre el consumo de sustrato y el crecimiento microbiano

De forma experimental se ha podido comprobar que solamente una parte del sustrato consumido por los microorganismos es transformado en nuevas células (Sundstrom, 1979; Gaudy et al., 1981; Metcalf and Eddy, 1979). Esto se debe a que otra parte del sustrato consumido es utilizado como fuente de energía da<u>n</u> do productos finales del catabolismo  $CO_{2}$ ,  $H_{2}O$ ,  $NH_{3}$ , etc. También pudo observarse que para un determinado sistema sustr<u>a</u> to-microorganismo la relación entre el sustrato utilizado para funciones catabólicas y el sustrato utilizado para la formación de nuevas células es constante. A la relación de cantidad de nuevas células producidas por cantidad de sustrato consumido se le denomina coeficiente de rendimiento, V, el cual siempre es menor o igual a la unidad.

Expresada en términos de rapideces de producción de nuevas células y de consumo de sustrato:

$$\frac{dx}{dt} = y = \frac{dX}{-dS}$$
(24)  
$$-\frac{dS}{dt} - -dS$$

Sustituyendo las ecuaciones (11) y (23) en la ecuación (24)

$$\frac{\mu_{max} X \frac{S}{K_{m} + S}}{V_{max}^{*} X \frac{S}{K_{k} + S}} = y \qquad (25)$$

Si se considera que los valores de  $K_m$  y  $K_{s}$  tienen el mismo valor no se incurre en un error significativo (Wilderer, 1976), entonces

$$y = \frac{\mu_{max}}{v_{max}^*}$$
(26)

1

La curva del comportamiento del crecimiento microbiano y de

Consumo de sustrato (Figura 5) pueden ser descritas por medio de las ecuaciones (11) y (23), las cuales quedan de la siguiente forma

$$r_{X} = \frac{dX}{dt} = \frac{k_{o} \times S}{K_{A} + S} - k_{d} \times$$
(27)

donde

 $k_o = \mu_{max}$ , (tiempo<sup>-1</sup>)  $k_d$  coeficiente de decaimiento endógeno, (tiempo<sup>-1</sup>)  $n_\chi$  rapidez neta de producción de microorganismos

y además

$$r_{s} = -\frac{dS}{dt} = -\frac{k_{o} X S}{Y(K_{s} + S)}$$
(28)

donde

 $y = k_0 / v_{max}^*$ , coeficiente de rendimiento  $n_s$  rapidez de consumo de sustrato

Existen muchas modificaciones a este modelo. En la Tabla 3 se presentan algunas de ellas (Sundstrom, 1979).

3.4 Reactores biológicos

En el diseño de reactores biológicos es necesario el estableci miento de modelos matemáticos para predecir el comportamiento

#### TABLA 3. EXPRESIONES CINETICAS PARA DESCRIBIR EL COMPORTA-MIENTO MICROBIANO (Bailey,1977).

Forma

 $k = k_0/1 + K_{\lambda}/S$ 

 $k = k_0 \left(1 - \ell^{-S/K} t\right)$ 

 $k = k_0 / 1 + (K_c X / S)$ 

 $k = k_0 / 1 + (K_s S^m)$ 

 $k = k_0 / (1 + K_s / S + K_s / K_i)$ 

 $k = k_0 / (1 + K_s / S) (1 + 1/K_i)$ 

 $k = k_0 / (1 + K_s / S + S / K_s)$ 

 $k = \frac{K_1 S}{K_2 + S} + \frac{K_2 S}{K_2 + S}$ 

 $k = k_0 S^2 / (K_1 + S) (K_2 + S)$ 

Nombre

Monod

Teissier

Contois

Moser

Inhibición Competitiva

Inhibición no Competitiva

Inhibición por Sustrato

Doble Saturación, Jost

Dif. Procesos Difusionales, Shehata-Mon.

 $k = k_0 \frac{(K_{\delta} + L + S)}{2L} \left[ \sqrt{1 - \frac{4LS}{(K_{\delta} + L + S)^2}} \right]$  Resistencias Difusionales

$$k = \frac{k_o S}{K_s + S} \quad (C + S/V C')$$

Crecimiento de película, (Topiwala-Hamer,1971) de los diferentes tipos de reactores, los cuales se basan en balances de materia y energía.

Dichos balances se realizan en el elemento de volumen V, (Figura 7), teniendo un gasto volumétrico Q a la entrada del reactor.  $Q_{j}$  es el gasto volumétrico a la salida del reactor,  $S_{0}$  y S las concentraciones del sustrato limitante a la entrada al reactor y al tiempo t, respectivamente, y la rapidez de reacción es h.



Figura 7 . Diagrama esquemático de un reactor.

Para el desarrollo del modelo se hacen las siguientes consideraciones (Sundstrom, 1979):

1. La cinética es descrita por el modelo de Monod

 El substrato es la substancia limitante y todos los demás nutrientes están presentes en exceso

- Las constantes cinéticas son independientes de la concen tración del sustrato limitante
- El coeficiente de rendimiento (formación de biomasa/consumo de substrato) es constante para condiciones de pH,
   T, P, etc. dadas
- 5. La concentración de sólidos biológicos activos es propor cional a la concentración de sólidos volátiles o nitróge no Kjeldahl
- La rapidez global de reacción es controlada por la cinética enzimática
- 7. El reactor trabaja bajo condiciones isotérmicas
- Las propiedades físicas del fluido son constantes (densidad, viscosidad, etc.)
- 9. No hay resistencias a la transferencia de oxígeno

El balance de materia generalizado es

Sustrato que Sustrato que Sustrato que Sustrato acumulaentre al ele = sale del ele + reacciona + do en el elemento mento de vo- mento de vo- de volumen V lumen V lumen V

42

(29)

En términos matemáticos

$$QS_0 = Q_sS + Vr_s + \frac{d}{dt}(SV)$$
(30)

En la ecuación (30), la acumulación es una función del tiempo expresada como:

$$\frac{d}{dt} (SV) = V \frac{dS}{dt} + S \frac{dV}{dt}$$
(31)

Sustituyendo (31) en (30)

$$S \frac{dV}{dt} + V \frac{dS}{dt} = Q S_0 - Q_s S - V r_s \qquad (32)$$

Donde

 $\frac{dS}{dt}$  variación de la concentración en el volumen cons<u>i</u> derado, no es la rapidez de reacción

$$\frac{dV}{dt} = Q - Q_{s} \tag{33}$$

Sustituyendo (33) en (32)

$$S(Q - Q_s) + V \frac{dS}{dt} = Q S_0 - Q_s S - V r_s$$
 (34)

Dividiendo entre el elemento de volumen V

$$\frac{dS}{dt} = \frac{Q}{V} (S_0 - S) - r_s$$
(35)

Definiendo el tiempo de retención hidráulico  $\theta_h$  como

$$\theta_h = \frac{v}{Q} \tag{36}$$

La ecuación (35) se transforma en

$$\frac{dS}{dt} = \frac{S_o - S}{\theta_h} - r_s \qquad (37)$$

la cual es la ecuación general del balance de materia para un reactor.

3.4.1 Reactor intermitente o "batch"

El reactor intermitente o batch consiste en un recipiente, en el cual las sustancias reaccionantes interactúan durante un tiempo t. No existe intercambio de materia con los alrededores (Figuras 8 y 9).

Al no existir gasto volumétrico Q, la ecuación general del b<u>a</u> lance de materia se transforma en

$$\frac{dS}{dt} = -n_{s} \tag{38}$$

Del mismo modo para el crecimiento de microorganismos







Figura 9 . Comportamiento de las concentraciones de sustrato y microorganismos en un reactor.

$$\frac{dX}{dt} = r_{\chi}$$
(39)

Considerando que las rapideces de consumo de sustrato y de producción de microorganismos se comportan según el modelo de Monod, ecuaciones (28) y (27) respectivamente, integrando las ecuaciones (38) y (39) y considerando la respiración endógena despreciable, las soluciones analíticas son:

$$\ln S = \ln S_{o} + Y(S_{o}-S)\frac{S_{o}}{X_{o}} + (\frac{X+YX_{o}}{YK_{s}})\ln \frac{X_{o}+Y(S_{o}-S)}{X_{o}} - \frac{k_{o}t(X_{o}+YS_{o})}{YK_{s}}$$
(40)  
$$\ln X = k_{o}t + \ln X_{o} - (\frac{YK_{s}}{X_{o}+YS_{o}})\ln (\frac{X}{X_{o}})(\frac{YS_{o}}{YS_{o}+X_{o}-X})$$
(41)

donde

 $S_o$  concentración de sustrato al inicio de la reacción S concentración de sustrato al tiempo t  $X_o$  concentración de microorganismos al inicio de la reacción X concentración de microorganismos al tiempo t Y coeficiente de rendimiento  $K_b$  y  $k_o$  constantes de Monod

Estas ecuaciones se resuelven por métodos iterativos.

Cuando en el modelo de Monod se tiene la condición de  $K_{\Delta} >> S$ , la ecuación (28) se transforma en una ecuación de reacción de primer orden

$$r_{s} = \frac{k_{o} X}{Y K_{s}} S$$
(42)

Donde el término  $\frac{k_o}{V} \frac{X}{K_s}$  puede agruparse como una sola constante.

Considerando que el incremento de la concentración de microorganismos con respecto al tiempo es pequeño, se puede considerar despreciable, por consiguiente:

$$\frac{dS}{dt} = -KS \qquad (43)$$

Donde  $K = \frac{k_o X_a}{y_{K_s}}$  con  $X_a$  = concentración promedio de micro organismos

Integrando la ecuación (43) con las condiciones  $S_0$  para t = 0y para t = t

$$ln\frac{S}{S_0} = -Kt \quad \delta \quad S = S_0 e^{-Kt} \quad (44)$$

La ecuación (44) permite conocer la concentración del sustrato para cualquier tiempo en un reactor batch para una reacción de primer orden.

### 3.4.2 Reactor totalmente mezclado

El reactor totalmente mezclado consiste en un tanque con un volumen útil V, con agitación en el cual se permite a los reacti-

47

)

vos entrar en contacto durante un tiempo t. La entrada y salida de materia del reactor es contínua. En el caso real, to das las partículas tienen el mismo tiempo de residencia y la concentración del sustrato en el interior del reactor es la misma que la concentración en la salida (Figura 10).



Figura 10. Diagrama esquemático de un reactor totalmente mezclado.

La ecuación general de balance de materia es la ecuación (37), adaptada para este reactor y considerando que el régimen de operación es permanente. La concentración a la salida del reactor es constante con respecto al tiempo, es

$$\left(\frac{dS}{dt}\right)_{total} = 0 = \frac{S_o - S}{\theta_H} - r_s \qquad (45)$$

De la misma forma que para el sustrato, es para los microorganismos

$$\left(\frac{dX}{dt}\right) total = \frac{X - X_o}{\theta_H} - r_X = 0$$
 (46)

Sustituyendo  $n_{\delta}$  y  $n_{\chi}$  ecuaciones (28) y (27) en las ecuaciones (45) y (46) respectivamente

$$\frac{S_o - S}{\theta_H} = \frac{k_o X S}{Y (K_s + S)}$$
(47)

$$\frac{X - X_o}{\theta_H} = \frac{k_o X S}{K_A + S} - k_d X \qquad (48)$$

Estas ecuaciones describen los comportamientos del consumo de sustrato y producción de microorganismos según el modelo de Monod para un reactor totalmente mezclado.

Ahora bien, haciendo la consideración de que el comportamiento cinético del sustrato y de los microorganismos es de una reacción de primer orden, las ecuaciones (47) y (48) pueden expresarse como

$$\frac{S_o - S}{\theta_H} = K S \qquad (49)$$

$$\frac{X - X_o}{\theta_H} = K' S \qquad (50)$$

Donde K y K' son constantes cinéticas

Las ecuaciones (49) y (50) se pueden deducir de las ecuaciones

(47) y (48) haciendo la suposición de que  $K_{\lambda} >> S$ , entonces

$$K = \frac{k_o X}{Y K_s}$$
(51)

$$K' = \frac{k_o X}{K_s}$$
(52)

3.4.3 Reactor tubular (flujo pistón)

Un reactor tubular tiene una forma cilíndrica (tubo) en el cual se alimenta el sustrato con una velocidad constante respecto a su sección transversal. En este reactor no existe mezclado, la composición varía con la longitud del reactor (Figura 11).



Figura 11 . Diagrama esquemático de un reactor tubular.

La ecuación general de balance de materia (37) aplicada a este reactor, en forma diferencial, al variar la concentración con respecto a la longitud del reactor se hace en un segmento dado y en el régimen permanente, entonces

$$Q d S - r_{g} d V = 0$$
 (53)

De forma similar para la producción de los microorganismos

$$Q d X - r_{\chi} d V = 0$$
 (54)

Sustituyendo las ecuaciones (28) y (27) en las ecuaciones (53) y (54), respectivamente

$$Q d S + \frac{k_o X S}{Y(K_s + S)} d V = 0$$
 (55)

$$Q d X - \left(\frac{k_o X S}{K_s + S} - k_d X\right) d V = 0$$
 (56)

Las ecuaciones anteriores son los balances de materia para el consumo de sustrato y producción de microorganismos en un rea<u>c</u> tor tubular considerando el comportamiento cinético según el modelo de Monod. La diferencial de volumen dV se expresa como (Figura 11).

$$dV = A d Z$$
 (57)

Sustituyendo la ecuación (57) en las ecuaciones (55) y (56)

$$Q d S + \frac{k_o X S}{Y (K_A + S)} A d Z = 0$$
 (58)

$$Q d X - \frac{k_o X S}{K_s + S} A \cdot d Z = 0$$
 (59)

Las condiciones de frontera de estas ecuaciones diferenciales son:

 $S = S_0$  cuando Z = 0 y S = S cuando Z = Z $X = X_0$  cuando Z = 0 y X = X cuando Z = Z

Las soluciones de las ecuaciones (58) y (59) se realizan por métodos numéricos, sin embargo para casos particulares se pueden resolver, como por ejemplo, si la variación de la concentración de microorganismos es pequeña puede usarse un valor promedio  $X_a$ . Usando esta premisa las soluciones quedan de la siguiente manera:

$$S_{0} - S + K_{s} \ln \frac{S_{0}}{S} = \frac{k_{0} X_{a} A Z}{y Q}$$
 (60)

El pequeño cambio de la concentración de microorganismos es aproximadamente

$$X - X_0 = Y (S_0 - S) - \frac{k_d A Z}{0} X_a$$
 (61)

Si en las ecuaciones (53) y (54) se supone que las expresiones cinéticas del consumo de sustrato y producción de microorgani<u>s</u> mos son ecuaciones de reacción de primer orden, entonces quedan:

$$Q d S + K S d V = 0 \qquad (62)$$

$$Q d X - K' S d V = 0 \tag{63}$$

Resolviendo estas ecuaciones con los límites

$$S = S_{o} \quad \text{para} \qquad Z = 0$$

$$X = X_{o} \quad \text{para} \qquad Z = 0$$

$$Z \frac{A}{Q} = -\frac{1}{L} \ln \frac{S}{S_{o}} \qquad (64)$$

$$Z \frac{A}{Q} = \frac{X - X_{o}}{K'(S_{o} - \frac{X_{o}}{y})} + \frac{y}{K'} \ln \frac{X}{X_{o}} \qquad (65)$$

Donde K y K' pueden deducirse de la ecuación de Monod cuando  $K_{s} >> S$ , por lo tanto

$$K = \frac{k_o X_a}{y K_b}$$
(66)  
$$K' = \frac{k_o X_a}{K_b}$$
(67)

3.4.4 Cascada de reactores totalmente mezclados

La cascada de reactores totalmente mezclados consiste de una secuencia de reactores totalmente mezclados, en el cual la salida de un reactor es la alimentación del siguiente (Figura 12).



Figura 12 . Diagrama esquemático de una cascada de reactores totalmente mezclados.

La ecuación general de balance de materia (37) aplicada a este sistema de reactores, considerando que son aplicables las expresiones cinéticas del modelo de Monod (28) y (27) para el consumo de sustrato y producción de microorganismos es

$$V_{n} \frac{dS_{n}}{dt} = Q S_{n-1} - Q S_{n} - \frac{k_{o} S_{n} X_{n}}{Y(K_{s} + S_{n})} V_{n}$$
(68)

y la producción de microorganismos

$$V_{n} \frac{dX_{n}}{dt} = Q X_{n-1} - Q X_{n} + \left(\frac{k_{o} S_{n} X_{n}}{K_{s} + S_{n}} - k_{d} X_{n}\right) V_{n}$$
(69)

En el régimen permanente y asumiendo que todos los volúmenes de los reactores son iguales, que las rapideces de reacción son pequeñas, entonces

$$\frac{S_n}{S_o} = \left| \frac{1}{1 + \frac{k_o X_a \theta}{Y(K_a + S_n)}} \right|^n$$
(70)

$$\frac{X_o}{X_n} = \left| \frac{k_o S_n \theta}{K_s + S_n} - (k_d \theta + 1) \right|^n$$
(71)

En ambas ecuaciones, si  $n \rightarrow \infty$  se obtiene una expresión similar a la del reactor tubular.

#### 3.4.5 Reactores de película sumergida

Los reactores de película fija, sumergida, consisten de una película compuesta de microorganismos adheridos a una superficie sólida (empaque o área superficial del reactor), la cual está sumergida en el agua de desecho. El sustrato, los nutrientes y oxígeno se difunden del seno del líquido hacia la película (Figura 13). Casos específicos de estos reactores son los biodiscos, reactores empacados, filtros percoladores y los reactores con película en su superficie.



Figura 13 . Diagrama esquemático del proceso de crecimiento de la película.

Se han realizado modificaciones al modelo de Monod para los reactores con crecimiento en la superficie (Topiwala et al., 1971). Suponiendo que no hay resistencias difusionales, el balance para la producción de microorganismos se expresa como

$$\frac{dX}{dt} = X D + \frac{k_o S}{K_{\star} + S} (X + S/V X')$$
(72)

Donde  $\mathcal{D} = 1/\theta_{\mu}$ 

Para el sustrato

$$\frac{dS}{dt} = D(S_0 - S) - \frac{1}{y} \frac{k_0 S}{(K_A + S)} (X + S/V X')$$
(73)

La integración de la ecuación (73) es

$$0 = Y(D-k_0)S^2 + S[k_0(S/V X' + YS_0) - DY(S_0-K_s)] - DYK_sS_0$$
(74)

donde

- X' concentración de los microorganismos, asumida constante de la película
- S/V relación área-superficie húmeda/volumen útil de reacción

La solución de la ecuación (74) da la concentración final de un reactor totalmente mezclado que cumple con la cinética de Monod. Otro modelo aplicable al sistema de película adherida consid<u>e</u> ra que los microorganismos se encuentran en el reactor tanto en forma adherida como en forma suspendida (Kornegay, 1975). Si no existen resistencias difusionales, el balance de materia, considerando un reactor totalmente mezclado, es

$$\left(\frac{dS}{dt}\right) V = QS_{o} - \left|\left(\frac{dS}{dt}\right)_{u_{a}} V_{a} + \left(\frac{dS}{dt}\right)_{u_{s}} V_{s}\right| - QS \qquad (75)$$

donde

$$\left(\frac{dS}{dt}\right)$$
 variación del sustrato en el reactor  
 $\left(\frac{dS}{dt}\right)_{u_{a}}$  rapidez de utilización de sustrato por los microorga-  
nismos adheridos  
 $\left(\frac{dS}{dt}\right)_{u_{b}}$  rapidez de utilización de sustrato por los microorga-

nismos suspendidos 
$$V_a$$
 y  $V_b$  volumen de los microorganismos activos adheridos y vo

lumen del líquido en el tanque, respectivamente

Definiendo los coeficientes de rendimiento por los microorganismos adheridos y suspendidos como

$$y_{a} = \frac{(dX/dt)g_{a}}{(dS/dt)u_{a}}$$
(76)  
$$y_{s} = \frac{(dX/dt)g_{s}}{(dS/dt)u_{s}}$$
(77)

La rapidez específica de crecimiento para los microorganismos adheridos y suspendidos son

$$\mu_{a} = \frac{\left(\frac{dx}{dt}\right)g_{a}}{X_{6}}$$

$$\mu_{b} = \frac{\left(\frac{dx}{dt}\right)g_{b}}{X_{b}}$$
(78)
(79)

donde

 $X_{ij}$  concentración activa de los microorganismos adheridos  $X_{ij}^{-1}$  concentración activa de los microorganismos suspendidos

Suponiendo que el volumen de la película  $(V_a)$  es dA, donde des el espesor de la película y A el área superficial de la película y el sistema está en el régimen permanente, el consumo de sustrato, siguiendo el modelo de Monod, es

$$0 = Q(S_0 - S) - \frac{(\mu_{max})_a X_b dA}{Y_a} \frac{S}{K_s + S} - \frac{(\mu_{max})_s X_s V_s}{Y_s} \frac{S}{K_s + S}$$
(80)

Para reactores con tiempo de retención hidráulica pequeño y con concentración de microorganismos suspendidos mucho menor que la concentración de microorganismos adheridos, el último término de la ecuación (80) puede despreciarse, esto es:

$$Q(S_0 - S) = (\mu_{max}) \frac{X_0 dA}{y_a} \frac{S}{K_s + S}$$
 (81)

Para una cascada de reactores iguales, la ecuación (81) se transforma en:

$$Q(S_{o} - S_{e_{n}}) = \frac{2(\mu_{max})a X_{b} dA}{Y_{a}} \sum_{i=1}^{n} \frac{S_{i}}{K_{s} + S_{i}}$$
(82)

donde

 $S_{\dot{\iota}}$  es la concentración del sustrato en el efluente de cualquier unidad de la cascada

Ambas ecuaciones (81) y (82) describen el consumo de sustrato en uno o en una serie de reactores totalmente mezclados con película sumergida, la cual es la principal causa del consumo de sustrato y se comporta según el modelo de Monod.

Las ecuaciones de diseño y la breve explicación de cada uno de los reactores biológicos descritos en este capítulo servirán para situar al reactor biológico usado en este estudio y el tratamiento matemático de los resultados obtenidos.
#### 4. METODOLOGIA

En este capítulo se describe la cascada de reactores totalmente mezclados de película sumergida en la cual se llevó a cabo el estudio. El sistema se creó para simular la degradación que ocurre en un río al arrojar a él efluentes contaminantes.

Presenta la gran ventaja a nivel laboratorio de que no se requiere recirculación de lodos ya que la biomasa se encuentra dentro del reactor y solamente el exceso sale con el efluente, la conexión en serie de las pequeñas etapas permite que al v<u>a</u> riar la composición de los desechos en cada etapa cambie también la composición de la biopelícula, logrando una eficiencia mayor al tener microorganismos especializados en cada etapa (Engelmann 1978; Hirose, 1983). También se describe somer<u>a</u> mente la forma de muestreo, control y mantenimiento del siste-

#### 4.1 Descripción del reactor

El sistema consiste en 70 reactores conectados en serie, de tal manera que el efluente de uno sea el influente del siguiente (Figuras 14 y 15). Fabricados con acrílico transparente de un espesor de 6 mm, cada reactor tiene un volumen real de 130 ml, y un volumen útil de 127 ml debido al desplazamiento del líquido por las búrbujas de aire y los tubos de aeración. El volumen útil total es de 8,900 ml; el área superficial de cada reactor es de 189 cm<sup>2</sup>, teniéndose un área superficial húmeda total de 1.32 m<sup>2</sup>. La forma de un reactor es similar a un prisma rectangular con medidas de 3.2 cm de ancho, 3.5 cm de largo y 11.9 cm de altura. La cascada de reactores tiene una inclinación de 15° sobre la horizontal y una longitud de 291 cm. El aire es suministrado por un tubo de vidrio en cada reactor. El aire, además de proporcionar oxígeno, origina un mezclado suave. La alimentación al reactor se lleva a cabo mediante una bomba dosificadora de membra Reactores con características similares ya han sido rena. portados en la literatura (Wilderer, 1976, Engelmann, 1978; Wolff, 1979; Wilderer, 1981).

#### 4.2 Régimen hidráulico de la cascada de reactores

Previo al arranque se realizó una serie de experimentos para estudiar el régimen hidráulico de la cascada. El procedimie<u>n</u> to fue el siguiente: una vez llena la cascada de reactores



Figura 14 . Diagrama esquemático de la cascada de reactores.



Figura 15 . Cascada de reactores.

con agua se alimenta una solución salina que tiene una condu<u>c</u> tividad eléctrica conocida. Midiendo la conductividad a la salida del reactor a diferentes tiempos se obtienen diagramas de dilución que son características para cada reactor y su fo<u>r</u> ma depende del régimen de mezclado, forma del reactor y del gasto volumétrico (Smith, 1970).

4.3 Arranque del reactor y forma de muestreo

Se denomina arranque al periodo durante el cual se forma la película biológica y al mismo tiempo el sistema alcanza cond<u>i</u> ciones de estabilidad. Para acelerar dicho proceso se procede a inocular con lodos activados de alguna planta de tratamiento.

Variando la carga orgánica volumétrica es posible obtener información suficiente para evaluar la eficiencia del sistema bajo diferentes condiciones de operación.

La carga orgánica volumétrica se define como

$$co = \frac{Q S_o}{V}$$
(83)

donde:

Q gasto volumétrico (m<sup>3</sup>/d)

 $S_o$  concentración de contaminante en el influente (Kg  $DQO/m^3$ )

## V volumen del reactor, m<sup>3</sup>

El contenido de  $\theta_2$  disuelto es controlado por medio un electrodo de  $\theta_2$  y la cantidad de aire es controlada de forma manual para garantizar una concentración mínima de 2 mg  $\theta_2/1$ .

Con objeto de planear el muestreo del sistema de reactores fueron numerados del 1 al 70 para su identificación. El reac tor número 1 es el que recibe la descarga de la bomba y se en cuentra en los límites izquierdo superior de la Figura 15.

El muestreo semanal se describe por medio de la Tabla 4. Con la información proporcionada por los resultados del muestreo fue posible detectar las condiciones de estabilidad del sist<u>e</u> ma, para así, proceder a efectuar las determinaciones de DBO<sub>5</sub>, fosfatos, alcalinidad, calcio, cantidad de biomasa y la producción de biomasa por unidad de **s**ustrato consumido. Esta última determinación se lleva a cabo con base en los sólidos suspendidos o adheridos y el nitrógeno Kjeldahl.

El nejayote fue alimentado con temperatura ambiente y valores de pH entre 6 y 7. Pudo observarse que al almacenar el nejayote en un cuarto refrigerado por períodos de aproximadamente 24 horas, el valor del pH bajaba hasta 6 o 7; de esta forma no fue necesaria la adición de reactivos para ajustar el pH.

| Número de<br>Reactor | Temperatura | pH                                    | Conductividad | Ox <b>í</b> geno<br>Disuelto | DQO       |
|----------------------|-------------|---------------------------------------|---------------|------------------------------|-----------|
| Influente            | _           | -                                     | -             | -                            | х         |
| 1                    | X           | X                                     | x             | x                            | -         |
| 3                    | -           | · · · · · · · · · · · · · · · · · · · | _             | _                            | x         |
| 6                    | -           | -                                     |               | -                            | x         |
| 7                    | X           | x                                     | х             | x                            |           |
| 10                   | -           | -                                     | -             | -                            | x         |
| 14                   | x           | x                                     | x             | x                            | —         |
| 15                   |             | · _                                   | -<br>-        |                              | x         |
| 20                   | . <b>-</b>  | -                                     | -             | -                            | х         |
| 21                   | X           | X                                     | . <b>X</b>    | x                            | <b></b> / |
| 25                   | -           | -                                     | -             | <b>_</b> `                   | х         |
| 30                   | x           | x                                     | x             | x                            | х         |
| 35                   | -           | -                                     | -             |                              | x         |
| 40                   | X           | x                                     | x             | x                            | х         |
| 45                   | -           | <b>-</b> ·                            | -             | -                            | x         |
| 50                   | X           | x                                     | x             | x                            | x         |
| 55                   | -           | -                                     | -             | -                            | х         |
| 60                   | х           | x                                     | X             | х                            | х         |
| 70                   | X           | · <b>X</b>                            | x             | х                            | х         |

.

### TABLA 4. PROGRAMA DEL MUESTREO SEMANAL EN LA CASCADA DE REAC TORES

#### 5. RESULTADOS Y DISCUSION

### 5.1 Régimen hidráulico

La determinación del régimen hidráulico es de gran utilidad pa ra el escalamiento de reactores. Al diseñar un reactor a nivel industrial basándose en datos obtenidos en planta piloto se pueden presentar deficiencias en el rendimiento del sistema ocasionado por la falta de información sobre el régimen de mez clado. Conociendo la cinética del proceso y el régimen de mez clado de la planta piloto es posible predecir la eficiencia de la planta industrial.

De las curvas de distribución de tiempos de residencia, conoc<u>i</u> dos como DTR, y de los modelos matemáticos reportados en la l<u>i</u> teratura (Smith, 1970; Levenspiel, 1972) es posible conocer el tipo de régimen de mezclado y establecer la ecuación de diseño correcta.

Con los datos experimentales reportados en la Tabla A.1 del an<u>e</u> xo se construyeron las curvas de DTR reportados en la Figura 17. Como puede observarse de estas curvas de distribución, el sistema se aleja del comportamiento ideal de un reactor tubular con flujo pistón al aumentar el tiempo de residencia hidráulico.

5.2 Comportamiento general de la cascada de reactores

El comportamiento de la cascada de reactores fue estudiado con base en parámetros de control (temperura, pH, oxígeno disuelto y  $\mathcal{DQO}$ ), en parámetros de diseño ( $\mathcal{DQO}$ ), en la eficiencia de la remoción de contamirantes y en la producción de biomasa.

5.2.1 Parámetros de control

<u>Temperatura</u>. Este parámetro se mantuvo durante cada muestreo con una variación de <u>+</u> 2.5°C. Entre la entrada y la salida del reactor se observó una diferencia de aproximadamente 1.5 °C, debida a la evaporación de agua. Como puede observarse en la Tabla A.2 del anexo el intervalo de temperatura durante toda la experimentación varió entre 16.0 y 21.5°C.

pH. De forma general se observó que el valor del pH aumentaba



Figura 16 . Estudio del régimen hidráulico en la cascada de reactores.



ligeramente a lo largo del reactor. Los valores a la entrada fueron ligeramente ácidos (5.7 y 7.0) y a la salida ligerame<u>n</u> te alcalinos (hasta valores de 9). Esto puede explicarse debido a que la alcalinidad del sustrato no era constante y al poder regulador del metabolismo microbiano.

<u>000</u>. Se puede observar que la 000 siempre disminuyó a lo la<u>r</u> go del reactor y fue utilizado como parámetro de control para determinar las condiciones de estabilidad del sistema al variar las cargas orgánicas (Figuras 18, 19 y 20).

5.2.2 Parámetros de diseño

Como parámetro de diseño y para la evaluación de la eficiencia del sistema se utilizó la concentración de materia orgánica ó substrato limitante medida como demanda química de oxígeno (DQO). En el Capítulo 5.3 se plantean los modelos matemáticos con los cuales se efectuó la evaluación de la eficiencia del sistema.

5.2.3 Eficiencia de remoción de contaminantes

El parámetro utilizado para evaluar la eficiencia de remoción de contaminantes fue la DQO. En el Capítulo 5.3 se plantean los modelos matemáticos para evaluar la remoción de contamina<u>n</u> tes. En la Tabla 8 se presentan los resultados de las medicio



Figura 19 . Resultados experimentales. Segunda carga orgánica (<sup>4.96</sup>gDQO). 1D1a



gura 2C . Resultados experimentales. Tercera carga orgánica (<sup>5.76gDQO</sup>). 1DÍa

nes de la DQO en el transcurso de la experimentación. En dicha tabla se observa que al aumentar la carga orgánica la ef<u>i</u> ciencia del sistema disminuye. Analizando las Figuras 21, 22, 23 y 24 se observa que para cada muestreo en particular hay zonas del reactor que pueden ser caracterizadas como sigue:

Una zona a la entrada del reactor donde se observa un rápido consumo de contaminantes, probablemente debido a que los micro organismos en esta etapa tienen la posibilidad de elegir los contaminantes más fácilmente biodegradables y a la disponibil<u>i</u> dad de nutrientes tales como N y P. Posteriormente se observa una segunda zona, en la cual la rapidez de consumo de sustrato decrece. Esto se puede interpretar como una escasez de sustra to fácilmente biodegradable, quedando moléculas complejas como fuente de alimento. Al final del reactor se distingue una te<u>r</u> cera zona en la cual la rapidez de consumo de contaminantes aumenta con respecto a la zona intermedia.

Se concluye basándose en los datos obtenidos con nejayote sintético (Durán, 1983) y de molinos de nixtamal (Pedroza y Durán, 1984), que la degradación de contaminantes se lleva a cabo en forma secuencial al encontrarse a lo largo del reactor aquí e<u>s</u> tudiado, microorganismos especializados en la degradación de moléculas específicas.

De los resultados obtenidos en el Capítulo 5.3.3, Tabla 11, se



Número de reactor





Figura 22 . Comportamiento de la DQO (muestreos 5-10) .







Figura 24 . Comportamiento de la DQO (muestreo 13).

observa que la eficiencia del sistema será dependiente del área superficial expuesta y del gasto volumétrico, así como de la concentración del influente.

#### 5.2.4 Producción de biomasa

Al establecerse las condiciones de equilibrio se procedió a realizar mediciones de sólidos suspendidos y sólidos adheridos así como sus valores correspondientes de nitrógeno orgánico (Kjeldahl). Dichos valores se reportan como producción de biomasa y de coeficiente de rendimiento en las Tablas 5, 6 En la Figura 25 se presentan las concentraciones de miv 7. croorganismos adheridos y suspendidos en forma de nitrógeno orgánico a lo largo de la cascada de reactores. En esta figu ra se puede observar que la concentración de microorganismos adheridos era mucho mayor que la concentración de microorganismos suspendidos, corroborando las suposiciones de la literatura de que la biomasa de la película es realmente la que realiza la depuración de las aguas residuales (Grieves, 1972; Paolini et al., 1979). Además, las concentraciones de microorganismos adheridos fueron mayores a la entrada e iban dismi nuyendo a lo largo de la cascada siguiendo justamente una relación paralela a la composición de la materia orgánica remanente en los efluentes de cada cámara.

#### 5.3 Modelos matemáticos

La evaluación de la eficiencia y la descripción matemática del modelo se basan en la determinación de la demanda química de oxígeno. Dichos valores experimentales fueron utilizados para el análisis de los modelos de Walker (Capítulo 5.3.1), de Kornegay (Capítulo 5.3.2) y exponencial (Capítulo 5.3.3).



Los resultados de la DQO se muestran en la Tabla 8 y sus grá-

| Reactor | Temperatura<br>(°C) | рн   | Conductividad<br>(Ω <sup>-1</sup> ) | Oxigeno<br>soluble<br>(mgO <sub>2</sub> /1) | DQO<br>(mgO <sub>2</sub> /1) | DBO5<br>(mgO <sub>2</sub> /1) |
|---------|---------------------|------|-------------------------------------|---------------------------------------------|------------------------------|-------------------------------|
| Ò       |                     | -    | _                                   | _                                           | 485                          | 301                           |
| 1       | 19.2                | 7.02 | 5800                                | 3.2                                         | -                            |                               |
| 3       | -                   |      | -                                   | -                                           | 425                          | 264                           |
| 6       |                     |      | -                                   | -                                           | 416                          | 264                           |
| 7       | 18.8                | 7.74 | 5800                                | 3.5                                         | -                            | -                             |
| 10      | -                   |      | -                                   | -                                           | 0.96                         | 249                           |
| 14      | 18.6                | 8.10 | 5400                                | 5.6                                         | -                            |                               |
| 15      | -                   | -    | -                                   | -                                           | 376                          | 241                           |
| 20      | -                   |      | -                                   | -                                           | 368                          | 22 <b>0</b>                   |
| 21      | 18.4                | 8.18 | 5500                                | 5.3                                         |                              | -                             |
| 25      | -                   |      | -                                   | -                                           | 340                          | 211                           |
| 30      | 18,1                | 8.43 | 2500                                | 4.3                                         | 232                          | 19 <b>0</b>                   |
| 35      | -                   |      |                                     | -                                           | 320                          | 184                           |
| 40      | 18.0                | 8.46 | 5000                                | 3.6                                         | 304                          | 168                           |
| 45      | -                   | -    | -                                   | -                                           | 30 <b>0</b>                  | 17 <b>7</b>                   |
| 50      | 18.0                | 8.60 | 5100                                | 5.0                                         | 304                          | -                             |
| 55      | -                   |      | -                                   | -                                           | 300                          | 152                           |
| 60      | 17.0                | 8.74 | 5200                                | 5.3                                         | 296                          | 148                           |
| 70      | 18.0                | 8.72 | 5000                                | 5.3                                         | 272                          | 146                           |

# TABLA5.RESULTADOS DE LAS MEDICIONES REALIZADAS DURANTE LA<br/>1a. CARGA ORGANICA, 1.56 gDQ0/1/día

Fecha: 23 - V - 83

Eficiencia: 69.73%

Tiempo de residencia hidráulico: 5.7 hr Producción microorganismos, sólidos: 1.88 gSST/día Producción microorganismos, nitrógeno:0.256 gN/día Coeficiente de rendimiento, sólidos: 0.23 gSST/gDQO Coeficiente de rendimiento, nitrógeno:0.032 gN/gDQO Relación nitrógeno/sólidos: 0.139 gN/gSST Consumo de DQO en gDQO/día: 7.58 gDQO/día

| Reactor | Temperatura<br>(°C) | PH         | Conductividad<br>( $\Omega^{-1}$ ) | Oxígeno<br>soluble<br>(mgO <sub>2</sub> /1) | DQO<br>(mgO <sub>2</sub> /1) | DBO5<br>(mgO <sub>2</sub> /1) |
|---------|---------------------|------------|------------------------------------|---------------------------------------------|------------------------------|-------------------------------|
| 0       | -                   | -          | -                                  | -                                           | 2430                         | 1050                          |
| 1       | 19                  | 5.7        | 15000                              | 2.0                                         | · •                          | -                             |
| 3       |                     |            | -                                  | -                                           | 2400                         | 966                           |
| 6       |                     | <b>—</b> ' | <b>-</b> '                         | -                                           | 2360                         | ·930                          |
| 7       | 19                  | 6.1        | 16300                              | 2.1                                         | -                            | <del>,</del> .                |
| 10      |                     | -          |                                    | -                                           | 2330                         | 904                           |
| 14      | 18                  | 7.0        | 16500                              | . 3.9                                       | -                            | -                             |
| 15      | -                   |            | ~                                  |                                             | 2290                         | 879                           |
| 20      | -                   | -          | -                                  | -                                           | 2240                         | 864                           |
| 21      | 18                  | 7.2        | 1600                               | 3.9                                         | -                            |                               |
| 25      |                     | -          |                                    | -                                           | 2175                         | 833                           |
| 30      | 18                  | 6.7        | 15900                              | 3.7                                         | 2147                         | 750                           |
| 35      |                     | -          | -                                  | -                                           | 2120                         | 714                           |
| 40      | 18.5                | 6.6        | 1700                               | 3.2                                         | 2040                         | 660                           |
| 45      | -                   |            | -                                  | -                                           | 2027                         | 600                           |
| 50      | 19.0                | 7.2        | 17800                              | 3.1                                         | 1947                         | 576                           |
| 55      | -                   | -          | -                                  | -                                           | 1827                         | 551                           |
| 60      | 19.0                | 7.3        | 17300                              | 3.5                                         | 1667                         | 546                           |
| 70      | 19.0                | 7.4        | 16300                              | 4.3                                         | 1573                         | 525                           |
|         |                     |            |                                    |                                             |                              |                               |

# TABLA 6. RESULTADOS DE LAS MEDICIONES REALIZADAS DURANTE LA2a. CARGA ORGANICA, 4.96 gDQO/1/día

Fecha: 14 - IX - 83

Eficiencia: 36.57%

Tiempo de residencia: 12 hr

Producción microorganismos, sólidos: 2.045 gSST/día Producción microorganismos, nitrógeno: 0.2832 gN/día Coeficiente de rendimiento, sólidos: 0.1291 gSST/gDQO Coeficiente de rendimiento, nitrógeno orgánico: 0.0178 gN/gDQO Relación nitrógeno orgánico/sólidos: 0.138 gN/gSST Consumo de DQO gDQO/día: 16.15 gDQO/día % Evaporación: 2.20%

| Reactor | рH   | Temperatura | DQO                   | DBO5                  |
|---------|------|-------------|-----------------------|-----------------------|
|         |      | (°C)        | (mg0 <sub>2</sub> /1) | (mg0 <sub>2</sub> /1) |
| 0       | 4.40 | 15          | 11520                 | 4350                  |
| 1       | -    | -           | -                     | -                     |
| 3,      | 4.05 | 15          | -                     | 4200                  |
| 6       | 4.00 | 15          | -                     | 4200                  |
| 7       | · _  | -           | -                     | -                     |
| 10      | 4.05 | .15         | 10440                 | 4200                  |
| 14      | -    | -           |                       |                       |
| 15      | 4.05 | 15          | 10230                 | 4200                  |
| 20      | 4.15 | 15          | -                     | -                     |
| 21      | -    | -           | -                     | -                     |
| 25      | 4.05 | 15          | 10120                 | 4050                  |
| 30      | 4.25 | 15          |                       | 3600                  |
| 35      | 4.65 | 15          | 9880                  | 3300                  |
| 40      | 4.95 | 15          | 9600                  |                       |
| 45      | 5.70 | 15          | 9560                  | -                     |
| 50      | 6.10 | 15          | 9280                  | -                     |
| 55      | 6.50 | 15          | 9240                  | -                     |
| 60      | 6.60 | 15          | 9080                  | 3300                  |
| 70      | 6.70 | 15          | 8520                  | 3150                  |

Fecha: 12-XII-83 Eficiencia: 26.04% Tiempo de retención hidráulico: 48 (h) Gasto volumétrico: 0.1854 (1/h) Producción de microorganismos sólidos: 2.0134 (gSST/día) Producción de microorganismos, nitrógeno kjeldahl: 0.4944 (gN/día) Consumo de DQO: 13.35 (g DQO/día) Coeficiente de rendimiento, sólidos: 0.1508 (gSST/gDQO) Coeficiente de rendimiento, nitrógeno: 0.0370 (gN/gDQO) Relación nitrógeno a sólidos: 0.2456 (g N/g SST) TABLA 8. SECUENCIA DE LA DOO EN EL TRANSCURSO DE LA EXPERIMENTACION

| HESTRED<br>FECIA<br>CO (gDQO/1/d)<br>0 <sub>H</sub> (horas)<br>1 (%) | 1<br>10-V-83<br>1.507<br>5.7<br>47.85 | 2<br>16-V-83<br>1.491<br>5.7<br>75.87 | 3<br>23-V-83<br>1.560<br>5.7<br>69.73 | 4<br>6-VII-83<br>1.940<br>6.0<br>43.92 | 5<br>10-VIII-83<br>.6.060<br>9.5<br>34.46 | 6<br>23-VIII-83<br>6.134<br>12<br>28.69 | 7<br>29-VIII-83<br>4.105<br>12.0<br>34.65 | 8<br>5-IX-83<br>4.864<br>12.4<br>22.36 | 9<br>14-IX-83<br>4.960<br>12.0<br>36.57 | 10<br>21-IX-83<br>5.986<br>12.0<br>28.73 | 11<br>17-XI-83<br>2.82<br>48<br>56.06 | 12<br>26-XI-83<br>2.29<br>48<br>68.93 | 12-VI<br>5,5<br>48<br>26,0- |
|----------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------------|----------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|---------------------------------------|-----------------------------|
| REACIOR                                                              |                                       |                                       |                                       |                                        |                                           |                                         |                                           | ·                                      | o 400                                   | 2 002                                    | F 62F                                 | A 576                                 | 13 500                      |
| ٥                                                                    | 358                                   | 354                                   | 370                                   | 485                                    | 2 400                                     | 3 067                                   | 2 053                                     | 2 513                                  | 2 480                                   | 5 223                                    | CLO C                                 | n 5/0                                 | <b>.</b>                    |
| 1                                                                    | 326                                   | 294                                   | 332                                   |                                        | -                                         | -                                       | -                                         | -                                      | -                                       |                                          | -                                     |                                       | . 1                         |
| 3                                                                    | -                                     | -                                     | -                                     | 425                                    | 2 173                                     | 2 973                                   | 1,960                                     | 2 400                                  | 2 400                                   | 2 880                                    | 4 889                                 | 4 180                                 | ••                          |
| 6                                                                    | -                                     | -                                     | -                                     | 416                                    | 1 973                                     | 2 907                                   | 1 827                                     | . –                                    | 2 360                                   | 2 867                                    | 4 365                                 | 3 608                                 | <b>.</b>                    |
| 7                                                                    | 290                                   | 246                                   | 312                                   | -                                      | -                                         | -                                       | -                                         |                                        | . –                                     | -                                        | -                                     | -                                     | يون<br>الحديث جرم           |
| 10                                                                   | -                                     | -                                     | -                                     | 396                                    | -                                         | 2 827                                   | 1 800                                     | -                                      | 2 330                                   | 2 813                                    | -                                     | 3 432                                 | 10 AM                       |
| 14                                                                   | 270                                   | 210                                   | 300                                   | -                                      | -                                         | -                                       | <del>.</del> .                            |                                        | -                                       | -                                        | -                                     | -                                     | يو<br>الأطريق من            |
| 15                                                                   | -                                     | -                                     | -                                     | 376                                    | <b>1 933</b>                              | 2 760                                   | 1 773                                     | 2 385                                  | 2 290                                   | 2 787                                    | 4 104                                 | 3 102                                 | 10 244                      |
| 20                                                                   | -                                     | -                                     | -                                     | 368                                    | 1 960                                     | 2 773                                   | 1 587                                     | 2 359                                  | 2 240                                   | 2 760                                    | · <del>_</del>                        | 2 882                                 | ***                         |
| 21                                                                   | 238                                   | 170                                   | 252                                   | -                                      |                                           | -                                       | -                                         | -                                      | -                                       | -                                        | -                                     | -                                     | an<br>                      |
| 25                                                                   |                                       |                                       | -                                     | 340                                    | —                                         |                                         | 1 560                                     | 2 308                                  | 2 173                                   | 2 546                                    | 3 942                                 | 2 640                                 | 10 121                      |
| 30                                                                   | 214                                   | 130                                   | 200                                   | 332                                    | 1 867                                     | 2 693                                   | 1 553                                     | 2 256 .                                | 2 147                                   | 2 506                                    | 3 713                                 | 2 244                                 |                             |
|                                                                      |                                       |                                       |                                       | 320                                    | 1 787                                     | 2 600                                   | 1 440                                     | 2 154                                  | 2 120                                   | 2 493                                    | 3 290                                 | 2 068                                 | 9 1181                      |
| دد<br>۵۵                                                             | 195                                   | 118                                   | 144                                   | 304                                    | 1 760                                     | 2 627                                   | 1 413                                     | 2 205                                  | 2 040                                   | 2 427                                    | 3 192                                 | 1 936                                 | 9 66                        |
| 40                                                                   | T00                                   |                                       |                                       | 300                                    | 1 747                                     | 2 587                                   | 1 347                                     | 2 154                                  | 2 027                                   | 2 400                                    | 3 062                                 | -                                     | 9 56                        |
| 40                                                                   | -                                     | -                                     | - 110                                 | 304                                    | 1 693                                     | 2 480                                   | 1 360                                     | 2 102                                  | 1 947                                   | 2 373                                    | 2 932                                 | 1 892                                 | 9-28-                       |
| 0C                                                                   | 170                                   | TTΩ                                   | 114                                   | 30%                                    | 1 722                                     | 2 112                                   | 1 222                                     | 2 051                                  | 1 827                                   | 2 360                                    | 2 801                                 | 1 804                                 | 9 24                        |
| 55                                                                   | -                                     | -                                     | -                                     | 300                                    | 55/ T                                     | · 6 413                                 | 1 720<br>CCC T                            | 2 000                                  | 1 667                                   | 2 320                                    | 2 736                                 | 1 716                                 | ý (1H                       |
| 60                                                                   | 170                                   | 110                                   | 112                                   | 296                                    | 1 600                                     | 2 347                                   | 1 207                                     | 1 0/0                                  | 1 572                                   | 2 153                                    | 2 476                                 | 1 440                                 | 8 52                        |
| 70                                                                   | 170                                   | 86                                    | 112                                   | 272                                    | 1 573                                     | 2 187                                   | T 301                                     | 1 949                                  | T 313                                   |                                          |                                       |                                       |                             |

08

.

ficas respectivas en las Figuras 21, 22, 23 y 24.

# 5.3.1 Modelo cinético de Monod para un reactor tubular (Flujo pistón)

La aplicación del modelo de Monod en un reactor tubular en el cual permanece casi constante la concentración de microorganismos, ecuación (60)

$$S_{0} - S + K_{s} \ln \frac{S_{0}}{S} = \frac{k_{0} X_{0}}{y} t$$
 (60)

se realiza mediante la siguiente modificación a la ecuación (60), la cual es una forma de linearizarla y se le conoce como la ecuación de Walker

$$\frac{S_o - S}{t} = -K_s \cdot \frac{1}{t} \ln \frac{S_o}{S} + \frac{k_o X_o}{Y}$$
(84)

En la Tabla A.3 se presentan los valores obtenidos mediante la ecuación (84) y un resumen de estos se encuentra en la Tabla 9.

Como puede observarse, las pendientes de todas las rectas obtenidas con el modelo tienen signo positivo, lo cual no corre<u>s</u> ponde con el modelo. Esto significa que el valor de  $K_{j}$  es negativo.

| Muestreo | S <sub>O</sub><br>(mgDQO/1) | Tiempo<br>(h) | Correlación | Pendiente<br>(mgDQO/1) | Ordenada al Origen<br>(mgDQO/l h) |
|----------|-----------------------------|---------------|-------------|------------------------|-----------------------------------|
| 1        | 358                         | 5.6           | 0.9997      | 355.51                 | - 15.106                          |
| 2        | 354                         | 5.6           | 0.9995      | 339.20                 | - 35.796                          |
| 3        | 370                         | 5.6           | 0.9948      | 368.33                 | - 25.177                          |
| 4        | 485                         | 6.0           | 0.9997      | 476.1                  | - 10.0030                         |
| 5        | 2400                        | 9.5           | 0.9994      | 2284.2                 | - 12.278                          |
| б        | 3067                        | 12.0          | 0.9981      | 3167.0                 | - 9.875                           |
| 7        | 2053                        | 12.0          | 0.9957      | 2161.0                 | - 21.728                          |
| 8        | 2513                        | 12.0          | 0.9994      | 2488.2                 | - 3.160                           |
| 9        | 2480                        | 12.0          | 0.9811      | 2509.5                 | - 7.866                           |
| 10       | 2993                        | 12.0          | 0.9973      | 3068.9                 | - 9.486                           |
| 11       | 5635                        | 48.0          | 0.9987      | 2512.7                 | - 24.345                          |
| 12       | 4576                        | 48.0          | 0.9856      | 5260.3                 | - 58.894                          |
| 13       | 11520                       | 48.0          | 0.9991      | 11361.2                | - 5.759                           |

| TABLA | 9. | RESUMEN  | DE | LOS   | PARAMETROS | CINETICOS | OBTENIDOS | CON | LA |
|-------|----|----------|----|-------|------------|-----------|-----------|-----|----|
|       |    | ECUACION | DE | E WAI | LKER       |           |           |     |    |

Por otro lado según el modelo, las ordenadas al origen debieran ser positivas y son en todos los casos negativas. Esto tampoco corresponde con el modelo.

Por lo anteriormente observado este modelo no es susceptible de ser utilizado para el diseño del sistema.

Según la discusión del modelo de Walker hecha por Wilderer (1976) (Figura 26) los resultados aquí presentados no se apegan a ninguno de los casos por él discutidos. En la Figura 27 se muestra una recta obtenida con la ecuación (84) util<u>i</u> zando los datos de la corrida número 4, Tabla A.3 del anexo.

5.3.2 Modelo cinético de Monod para un reactor totalmente mezclado con película adherida

En la sección 3.4.5 se discutió este tipo de reactores. La expresión adecuada a la cascada de reactores es la ecuación (85), sin embargo no existe la forma de linearizarla. Hacien do la consideración de que una serie de cinco reactores se comportan como uno solo totalmente mezclado puede utilizarse la ecuación (81)

$$Q(S_0 - S_e) = \frac{\mu_{max} X_0 dA}{Y_a} \frac{S_e}{K_s + S_e}$$
 (81)

Rearreglándola de la siguiente forma

$$\frac{Q(S_{o} - S_{e})}{A} = \frac{\mu_{max} X_{b} d}{Y_{a}} \frac{S_{e}}{K_{s} + S_{e}}$$
(85)

El término  $\frac{\mu_{max} X_{b} d}{y_{a}}$  puede agruparse en una sola constante, de tal forma

$$\frac{Q(S_0 - S_e)}{A} = P \frac{S_e}{K_s + S_e}$$
(86)







Figura 27 . Curva experimental de la ecuación de Walker.

donde 
$$P = \frac{2\mu_{max} X_{b} d}{y_{a}}$$

Linearizando la ecuación (86) se obtiene

$$\frac{A}{Q(S_{0} - S_{0})} = \frac{K_{\delta}}{P} \cdot \frac{1}{S_{0}} + \frac{1}{P}$$
(87)

En la Tabla A.4 del anexo se reportan los valores de cuatro corridas con los cuales se ensayó este modelo y en la Tabla 10 se presenta un resumen de los parámetros cinéticos obtenidos.

Los resultados muestran claramente que el modelo de Kornegay no es aplicable al sistema en el cual se realizó este estudio.

# TABLA 10. PARAMETROS CINETICOS OBTENIDOS CON EL MODELO DE KORNEGAY

| Reactor | Correlación | Ks        | P             |
|---------|-------------|-----------|---------------|
|         |             | (mgDQO/1) | (mgDQO/m~dfa) |
| 0-5     | 0.6983      | 260.7     | 3.37306       |
| 5-10    | 0.9991      | 1117.9    | 1.4648        |
| 10-15   | 0.8358      | 143.5     | 0.5821        |
| 15-20   | -0.4934     | -221.2    | 0.3745        |
| 20-25   | -0.3914     | -169.5    | 0.4976        |
| 25-30   | -0.2932     | -124.25   | 0.2974        |
| 30-35   | -0.2583     | - 93.66   | 0.5628        |
| 35-40   | -0.4837     | - 60.85   | 0.3909        |
| 40-45   | -0.3365     | - 84.74   | 0.2616        |

5.3.3 Reacción de primer orden para un reactor tubular

Modificando la ecuación (62) y considerando que la concentración de sustrato varía con respecto al área superficial expue<u>s</u> ta se obtiene:

$$-\frac{dS}{dA_{s}} = \frac{k_{1}S}{Q}$$
(88)

Las condiciones a la frontera de esta ecuación son

$$S = S_0$$
 cuando  $A_s = 0$  y  
 $S = S$  cuando  $A_t = A_t$ 

Integrando la ecuación (88) se obtiene

$$\ln S = \ln S_0 - \frac{k_1 A_s}{Q} \tag{89}$$

Graficando ln S contra  $A_{\delta}/Q$  se obtiene una recta cuya pendie<u>n</u> te es igual a  $k_1$  y su ordenada al origen es ln S<sub>0</sub>. En la Tabla A.5 del anexo se presentan los resultados de la aplicación de la ecuación (89) para cada corrida.

Graficando los valores de  $ln k_1$  contra  $ln S_0$  se obtiene una recta con pendiente m y ordenada al origen b. La ecuación co rrespondiente es:

$$\ln k_1 = b + m \ln S_0 \tag{90}$$

87

para la obtención de los parámetros b y m se utilizan los valores de la Tabla 11. De tal forma se puede generalizar para obtener el valor de la constante  $k_1$  según la siguiente ecuación:

$$k_1 = e^b S_o^m$$
 (91)

Donde b y m son coeficientes cuyo valor es característico para un sistema reactor-sustrato determinado.

| TABLA | 11. | CONSTANTES DE REACCION DE 1er. ORDEN PARA LAS DI | <b>[FE</b> |
|-------|-----|--------------------------------------------------|------------|
|       |     | RENTES CORRIDAS                                  | _          |

| Corrida  | · s                   | -k                    | Correlación |
|----------|-----------------------|-----------------------|-------------|
|          | (mg0 <sub>2</sub> /1) | (1/m <sup>2</sup> /h) |             |
| 1        | 358                   | 0.8981                | 0.9574      |
| 2        | 354                   | 1.4927                | 0.9550      |
| 3        | 370                   | 1.5827                | 0.9744      |
| 4        | 485                   | 0.9635                | 0.9542      |
| 5        | 2400                  | 0.2481                | 0.9434      |
| <b>6</b> | 3067                  | 0.1597                | 0.9794      |
| 7        | 2053                  | 0.2618                | 0.9588      |
| 8        | 2513                  | 0.1329                | 0.9833      |
| 9        | 2480                  | 0.2256                | 0.9697      |
| 10       | 2993                  | 0.1702                | 0.9821      |
| 11       | 5019                  | 0.1037                | 0.9810      |
| 12       | 4576                  | 0.1536                | 0.9759      |
| 13       | 11520                 | 0.0350                | 0.9745      |

Para el tratamiento del nejayote como sustrato en el reactor utilizado en este estudio dichos coeficientes tienen los val<u>o</u> res

Sustituyendo la ecuación (91) en la (89) y despejando el área superficial  $A_{\chi}$  se obtiene

$$A_{s} = \frac{Q S_{o}^{-m}}{e^{b}} \ln \frac{S_{o}}{S}$$
(92)

Esta ecuación es la ecuación general de diseño para un sistema con características similares al utilizado en este estudio.

Basándose en un análisis dimensional, se tiene que el término  $e^{b}$  adopta las características de un factor de eficiencia con unidades de mg DQO consumidos/h/m<sup>2</sup>. Considerando que la ecuación es de primer orden, la ecuación cinética de Monod adopta la forma de la ecuación (42).

$$r_{s} = \frac{-k_{o} X_{a}^{\prime} S}{Y K_{s}}$$
(93)

Donde  $X'_a$  es la concentración promedio de microorganismos por unidad superficial expuesta.

Sustituyendo la ecuación (93) en un balance de materia para un reactor tubular con película biológica, se obtiene

$$QS - Q\{S + dS\} = \frac{-k_o X'_a}{Y K_s} dA_s = 0$$
 (94)

La integración de la ecuación (94) considerando las condiciones de frontera  $S = S_0$  para  $A_{\delta} = 0$  y S = S para  $A_{\delta} = A_{\delta}$  es

$$A_{s} = \frac{Q \ Y \ K_{s}}{k_{o} \ X_{a}'} \ \ell n \ \frac{S_{o}}{S}$$
(95)

Comparando las ecuaciones (92) y (95) se tiene que

$$\frac{Y K_s}{k_o X_a'} = \frac{S_o^{-m}}{e^b}$$

Efectuando nuevamente un análisis dimensional, para la cinét<u>i</u> ca de Monod, el término  $\frac{y}{k_o} X'_a$  tiene características de un factor de eficiencia, al igual que el término  $e^b$ , con las un<u>i</u> dades de mg DQO consumidos/h/m<sup>2</sup>.

Por consiguiente la constante  $K_s$  deberá tener un valor igual al término  $S_o^{-m}$  con unidades de mg DQO/1.

De los datos experimentales mostrados en las Tablas 5, 6 y 7 se obtiene el valor de  $\overline{V} = 0.17$  mg SST producidos/mg DQO consumidos; el valor promedio de X'<sub>a</sub> es 2.897 mg/cm<sup>2</sup> (Tabla A.2 del an<u>e</u> xo, corrida 12) y el valor de e<sup>b</sup> es 412 mg DQO/m<sup>2</sup>/h. De la identidad se tiene el valor de  $k_0 = 0.00242 \ h^{-1} = 0.058 \ dia^{-1}$ .

#### 6. CONCLUSIONES

Las conclusiones más relevantes que se desprenden del estudio aquí presentado son:

- La mayor parte de los contaminantes, tanto orgánicos como inorgánicos, se encuentran en forma soluble
- Tanto la temperatura como el pH deben ser ajustados antes del tratamiento biológico (comparar Capítulo 4.3)
- 3. Si se considera a la relación de DBO<sub>5</sub> a nitrógeno a fósforo como la relación ideal de nutrientes para microorga nismos, la relación debe ser 100:10:1 (DBO<sub>5</sub>:N:P). La mezcla de las aguas de cocimiento y de lavado tienen una relación de sustancias solubles de 165:4:1, lo cual significa que el nejayote, como alimento para microorganis-

mos es deficiente en nitrógeno y fósforo, pero sin emba<u>r</u> go es biodegradable

- 4. Los valores de sólidos en base seca, demanda bioquímica de oxígeno y demanda química de oxígeno del nejayote son aproximadamente 28 veces mayores que los valores típicos para aguas de desecho de tipo doméstico reportados por Metcalf and Eddy, 1972
- 5. El comportamiento hidráulico de la cascada de reactores es similar al de un reactor tubular con flujo pistón. Conforme aumenta el tiempo de retención hidráulico el sis tema se aleja del comportamiento ideal
- 6. La película biológica es resistente a cambios bruscos, tanto de concentración como de gasto del influente. Apro ximadamente una semana después de haberse modificado la carga orgánica la remoción de DQO podría considerarse estable
- Los modelos matemáticos propuestos por Walker (Wilderer, 1976) y Kornegay (1975) no son susceptibles de ser utilizados para la descripción del comportamiento del sistema
- La ecuación de diseño (92) desarrollada, describe de forma confiable el comportamiento del sistema estudiado y

muestra que la eficiencia depende del área superficial ex puesta y no del volumen del reactor. Por lo tanto la car ga orgánica superficial es la que controla el proceso; pa ra mejorar la eficiencia es necesario aumentar el área su perficial expuesta. Ecuación 92:

$$ln \frac{S_0}{S} = \frac{e^b A_s}{Q S_0^{-m}}$$

- 9. La eficiencia del sistema estudiado es dependiente tanto de la concentración de contaminantes como del gasto del influente así como del área superficial expuesta
- 10. El nejayote sí es susceptible de ser tratado para su puri ficación en sistemas de tratamiento de aguas de desecho con película biológica aerobia
- 11. La cascada de reactores mostró una eficiencia de remoción de materia orgánica de aproximadamente 75% medida como DQO, a cargas volumétricas bajas, descendiendo la eficien cia al llegar a cargas volumétricas altas
- 12. Desde el punto de vista de la contaminación ambiental, es te trabajo demuestra que efluentes como el nejayote no pueden ser degradados por los sistemas existentes en la naturaleza y crean desequilibrios ecológicos graves.

### 7. BIBLIOGRAFIA

- American Public Health Association. (1981)
   "Standard Methods for Examination of Water and Wastewater"
   15th Edition. American Public Health Association,
   Washington, D.C.
- 2. Bailey, J. & Ollis, D. (1977) "Biochemical Engineering Fundamentals" Mc Graw-Hill Book Company, U.S.A.
- 3. Brown, D.R. and Van Meer, G.L. (1978) "Biological Treatment of Wastes from the Corn Wet Milling Industry" EPA-Report No. 600/2-78-105
- 4. Civit, E.; Durán de Bazúa, C.; Engelmann, G.; González,
  S.; and Hartmann, L. (1984).
  "Anaerobic Treatment of Maize Processing Wastewater (Ne-jayote) in a Packed Bed Reactor Cascada"
  Env. Technol. Letters, 5:89-95.
  - 5. Dean, A.C.R. and Hinshelwood, C.N. (1966) "Growt, Function and Regulation in Bacterial Cells", Oxford University Press. London, G.B.

muestra que la eficiencia depende del área superficial ex puesta y no del volumen del reactor. Por lo tanto la car ga orgánica superficial es la que controla el proceso; pa ra mejorar la eficiencia es necesario aumentar el área su perficial expuesta. Ecuación 92:

$$ln \frac{S_o}{S} = \frac{e^b A_s}{Q S_o^{-m}}$$

- 9. La eficiencia del sistema estudiado es dependiente tanto de la concentración de contaminantes como del gasto del influente así como del área superficial expuesta
- 10. El nejayote sí es susceptible de ser tratado para su puri ficación en sistemas de tratamiento de aguas de desecho con película biológica aerobia
- 11. La cascada de reactores mostró una eficiencia de remoción de materia orgánica de aproximadamente 75% medida como DQO, a cargas volumétricas bajas, descendiendo la eficien cia al llegar a cargas volumétricas altas
- 12. Desde el punto de vista de la contaminación ambiental, es te trabajo demuestra que efluentes como el nejayote no pueden ser degradados por los sistemas existentes en la naturaleza y crean desequilibrios ecológicos graves.
## 7. BIBLIOGRAFIA

- American Public Health Association. (1981)
   "Standard Methods for Examination of Water and Wastewater"
   15th Edition. American Public Health Association,
   Washington, D.C.
- Bailey, J. & Ollis, D. (1977)
   "Biochemical Engineering Fundamentals"
   Mc Graw-Hill Book Company, U.S.A.
- 3. Brown, D.R. and Van Meer, G.L. (1978) "Biological Treatment of Wastes from the Corn Wet Milling Industry" EPA-Report No. 600/2-78-105
- 4. Civit, E.; Durán de Bazúa, C.; Engelmann, G.; González,
  S.; and Hartmann, L. (1984).
  "Anaerobic Treatment of Maize Processing Wastewater (Ne-jayote) in a Packed Bed Reactor Cascada"
  Env. Technol. Letters, 5:89-95.
  - 5. Dean, A.C.R. and Hinshelwood, C.N. (1966) "Growt, Function and Regulation in Bacterial Cells", Oxford University Press. London, G.B.

- 6. Durán de Bazúa, C. and Hartmann, L. (1980) "Produktion und Verwertbarkeit von Biomasse aus Prozessabwasser der Nixtamalization" Internationales Seminar fuer Forschung und Lehre in Chemieingenieurwesen Technischer und Physikalischer Chemie. Wiss. Ber. pp. 214-232. Universitaet Karlsruhe, Repúbli ca Federal de Alemania.
- 7. Durán de Bazúa, C., Engelmann, G. y Hartmann, L. (1982) "Aprovechamiento de los residuos de la nixtamalización en la producción de biomasa por métodos biológicos." En "Ecotecnología para el desarrollo de México". Instituto de Ecología, A.C. pp. 119-123. México, D.F.
- 8. Durán de Bazúa, C. (1983)
  "Tratamiento de los Efluentes de la Industria del Maíz en México".
  Departamento de Alimentos, División de Estudios de Posgra do, Fac. de Química, UNAM (Versión en español de la diser tación doctoral "Biologische Reinigung von Prozessabwaesser der Maisverarbeitung". Universitaet Karlsruhe).
- 9. Eckenfelder, W.W. Jr. (1966) "Industrial Water Pollution Control" Mc Graw-Hill Book Company, New York.
- Engelmann, G. (1978).
   "Untersuchungen zur Wirkung von Schwermetallsalzen auf Gewässerbiocoenosen" Karlsruher Ber. Ingenicurbiologie, Heft 11, Universitaet Karlsruhe, RFA.
- 11. Gaudy, A.F. and Gaudy, E.B.T. (1981) "Microbiology for Environmental Scientists and Engineers" Mc Graw-Hill, México.

- 12. González Martínez, S. (1983) "Estudio de la Tratabilidad de los Desechos Líquidos del Proceso de Nixtamalización" Informe final del proyecto 3303 elaborado para Industrias CONASUPO, S.A. de C.V.
- 13. Grieves, C.G. (1972) "Dynamic and Steady State Models for the Rotating Biologi cal Disc Reactor" Ph.D. Thesis. Clemson University, U.S.A.
- Hartmann, L. and Durán de Bazúa, C. (1981a)
   "Produktion von Biomasse aus hochkonzentrierten Abwaessern der Lebensmittel-industrie".
   Wiss. und Umwett, 3:141-145.
- 15. Hartmann, L. and Durán de Bazúa, C. (1981b) "Biological Treatment of Maize Processing Effluents (Nej<u>a</u> yote) in Batch and Continuous Laboratory Tests" Second World Congress of Chemical Engineering and IX Inter American Congress of Chemical Engineering. Montreal, Canada, October 4-9.
- 16. Hirose, M. (1983) "Ein neues System einer Kombination des Belebungsverfahrens mit sessilen Organismen auf Aufwuchsflaechen" Gwf-Wasser/Abwasser, 124 pp 239-242.
- 17. Kornegay, B.H. (1975) "Modelling and Simulation of Fixed Film Biological Reactors", in Mathematical Modeling of Water Pollution Control Processes, T.M. Kernath, Editor. Ann Arbor Science, Ann Arbor, Michigan.

- 18. Lehninger, A.L. (1975) "Biochemistry" Worth Publishers, Inc. New York
- Levenspiel, O. (1972)
   "Chemical Reaction Engineering"
   2a Edith., John Wiley & Sons.
- 20. Metcalf, L. & Eddy, P. (1972) "Wastewater Engineering, Collection, Treatment, Disposal". Mc Graw-Hill Book Company, USA.
- 21. Paolini, A.E.; Sebastiani, E., and Variali, G. (1979) Water Res., 13:751-761
- 22. Pedroza de Brenes, R. y Durán de Bazúa, C. (1984). "RBC Characteristics for Nejayote Aerobic Treatment". Comunicación personal
- 23. Sawyer, C.N. and McCarty, P.L. (1978) "Chemistry for Environmental Engineers" Mc Graw-Hill Kogakusha, Ltd., Tokyo, Jap.
- 24. Smith, J.M. (1970)"Chemical Engineering Kinetics"2a Edith, Mc Graw-Hill Book, Tokyo, Jap.
- 25. Sundstrom, D.W. and Klei, H.E. (1979) "Wastewater Treatment" Prentice-Hall. New Jersey

- 26. Trejo-González, A. and Faria-Morales, A. (1979) "Acondicionamiento, reutilización y obtención de subproductos de las aguas de desecho de la nixtamalización del maíz" Departamento de Investigaciones en Alimentos. Facultad de Ingeniería Mecánica; Eléctrica y Electrónica de la Un<u>i</u> versidad de Guanajuato, Salamanca, México.
- 27. Trejo-González, A.; Faria-Morales, A.; Wild-Altaminaro, C. (1982)
  "The Role of Lime in the Alkaline Treatment of Corn for Tortilla Preparation"
  in Advances in Chemistry Series, No. 198. Modification of Proteins. Robert E. Fiency and John R. Whitaker, Editors.
- 28. Topiwala, H.H. and G. Hamer. (1971) "Effect of Wall Growth in Steady State Continuous Cultures" Biotech. Bioeng., 13, (795-813).
- 29. Wilderer, P. (1976) "Reaktionskinetik in der Biologischen Abwasseranalyse" Karlsruher Ber. Ingenieurbiologie, Heft 11, Universitaet Karlsruhe, RFA.
- 30. Wilderer, P. (1981) "A Model-River tests Describe the Various Impacts of Chemical Substances on Microbial Biocomunities" AICHE.

# 31. Wolff, E. (1979)

"Der Einfluss der Temperatur auf die Selbstreiningung und deren Indikatororganismen in einem Modellfliessgewasser".

Tesis de Doctorado, Karlsruher Ber. Ingenieurbiologie, Heft 11, Universitaet Karlsruhe, RFA. ANEXO

TABLA A.1. RESULTADOS DEL COMPORTAMIENTO HIDRAULICO DE LA CASCADA DE REACTORES POR EL METODO DE LA FUN-CION PASO

| Tiempo de retención     |      |       |      |
|-------------------------|------|-------|------|
| hidráulica (h)          | 2.36 | 6.37  | 11   |
| Gasto volumétrico (1/h) | 3.78 | 1.396 | 0.81 |
| Volumen útil (1)        | 8.91 | 8.89  | 8.85 |

|         | <i>c./c</i> | m ( .:. ) | - 1-   |            | - /   |
|---------|-------------|-----------|--------|------------|-------|
| T (min) | 0           | (תבת) יד  | c/c    | T (min)    | C/C   |
|         |             |           | ÷      | 457        | 0.009 |
| 0       | 0           | 0         | 0      | 402        | 0.013 |
| 60      | Ō           | 265       | õ      | 472        | 0.016 |
| 90      | 0           | 270       | 0.002  | 477        | 0.018 |
| 110     | 0.03        | 275       | 0.005  | 482        | 0.020 |
| 115     | 0.05        | 280       | 0.007  | 487        | 0.022 |
| 120     | 0.10        | 285       | 0.01   | 492        | 0.024 |
| 125     | 0.17        | 290       | 0.017  | 497        | 0.034 |
| 130     | 0.26        | 295       | 0.03   | 502        | 0.037 |
| 135     | 0.36        | 300       | 0.04   | 507        | 0.04  |
| 140     | 0.47        | 305       | 0.06   | 512        | 0.045 |
| 145     | 0.56        | 310       | 0.07   | 517        | 0.053 |
| 150     | 0.69        | 315       | 0.10   | 522        | 0.059 |
| 155     | 0.78        | 320       | 0.13   | 527        | 0.068 |
| 158     | 0.83        | 325       | 0.16   | 532        | 0.08  |
| 162     | 0.80        | 330       | 0.20   | 537        | 0.09  |
| 165     | 0.90        | 340       | 0.24   | 542        | 0.10  |
| 168     | 0.92        | 340       | 0.29   | 557<br>557 | 0.13  |
| 170     | 0.95        | 350       | 0.32   | 557        | 0.14  |
| 173     | 0.96        | 355       | 0.30   | 562        | 0.10  |
| 175     | 0.97        | 360       | 0.46   | 572        | 0.20  |
| 180     | 0.98        | 365       | 0.52   | 582        | 0.26  |
| 185     | 0.99        | 370       | 0.58   | 592        | 0.30  |
| 190     | 1.00        | 375       | 0.62   | 602        | 0.35  |
|         |             | 380       | 0.68   | 612        | 0.40  |
|         |             | 385       | 0.70   | 622        | 0.46  |
|         |             | 390       | 0.74   | 632        | 0.52  |
|         |             | 400       | 0.79   | 642        | 0.57  |
|         |             | 405       | 0.83   | 652        | 0.60  |
|         |             | 410       | 0.87   | 662        | 0.64  |
|         |             | 415       | 0.89   | 672        | 0.68  |
|         |             | 420       | 0.92   | 682        | 0.73  |
|         |             | 425       | 0.94   | 692        | 0.77  |
|         |             | 430       | 0.95   | 702        | 0.84  |
|         |             | 435       | 0.97   | 722        | 0.8/  |
|         |             | 440       | 0.98   | 722        | 0.89  |
|         |             | 450       | 0.99   | 732        | 0.91  |
|         |             |           | 1,000  | 752        | 0.95  |
|         |             | [         | T. 000 | 762        | 0.95  |
|         |             | 1         |        | 772        | 0.96  |
|         |             |           |        | 782        | 0.975 |
|         |             | 1         |        | 792        | 0.98  |
|         |             | 1         |        |            |       |

# TABLA A.2 RESULTADOS EXPERIMENTALES OBTENIDOS DURANTE LAS DIFERENTES CORRIDAS

| Muestreo:<br>Fecha:<br>θ <sub>H</sub> (horas)<br>N (%) |               | 1<br>10-V<br>5.7<br>47.8 | -83<br>5                     |               | 2<br>16-V<br>5.7<br>75.7 | -83 <sub>.</sub><br>D        |               |      |                               | 3<br>23-V<br>5.7<br>69.7     | -83<br>3              |                            |                      |                    |
|--------------------------------------------------------|---------------|--------------------------|------------------------------|---------------|--------------------------|------------------------------|---------------|------|-------------------------------|------------------------------|-----------------------|----------------------------|----------------------|--------------------|
| Parámetro<br>Reactor                                   | Temp.<br>(°C) | pH                       | DQO<br>(mgO <sub>2</sub> /1) | Temp.<br>(°C) | pH                       | DQO<br>(mgO <sub>2</sub> /1) | Temp.<br>(°C) | рH   | DB05<br>(mg0 <sub>2</sub> /1) | DQO<br>(mgO <sub>2</sub> /1) | Nitrógeno<br>(mg N/l) | Fosfatos $(mgPO_4^{3-}/1)$ | Sólidos<br>(mgSST/1) | Calcio<br>(mgCa/l) |
| 0                                                      | 19.6          | 7.77                     | 358                          | 21.7          | 6.75                     | 354                          | 21.6          | 6.76 | 200                           | 370                          | 0                     | 121                        | 0                    |                    |
| 1                                                      | 20.5          | 8.11                     | 326                          | 23.4          | 7.15                     | 294                          | 21.7          | 7.14 | 190                           | 332                          | 18.2                  | 73                         | 200                  | 36.03              |
| 7                                                      | 19.9          | 8.66                     | 290                          | 22.4          | 7.80                     | 246                          | 21.2          | 7.94 | 193                           | 312                          | 28.7                  | 20                         | 150                  | 24.04              |
| 14                                                     | 19.2          | 8.65                     | 270                          | 21.8          | 7.90                     | 210                          | 20.7          | 7.95 | 156                           | 300                          | 28.7                  | 30                         | 193                  | 28.85              |
| 21                                                     | 19.0          | 8.75                     | 238                          | 21.5          | 7.70                     | 170                          | 20.2          | 8.15 | 135                           | 252                          | 44.6                  | 23                         | 185                  | 19.23              |
| 30                                                     | 18.4          | 8.84                     | 214                          | 21.0          | 8.10                     | 130                          | 19.8          | 8.25 | 45                            | 200                          | 27.3                  | 23                         | 208                  | 19.23              |
| 40                                                     | 17.8          | 8.94                     | 186                          | 20.4          | 8.05                     | 118                          | 19.4          | 8.46 | 27                            | 144                          | 13.0                  | б                          | 115                  | 24.04              |
| 50                                                     | 17.7          | 8.92                     | 170                          | 20.3          | 8.25                     | 118                          | 19.2          | 8.75 | 21                            | 112                          | 8.10                  | 30                         | 118                  | 28.85              |
| 60                                                     | 17.7          | 5.00                     | 170                          | 20.3          | 8.20                     | 110                          | 19.2          | 8.79 | 21                            | 112                          | 7.40                  | 40                         | 103                  | 25.65              |
| 70                                                     | 17.8          | 9.02                     | 170                          | 20.3          | 8.30                     | 86                           | 19.2          | 8.85 | 21                            | 112                          | 6.30                  | 23                         | 135                  | 16.03              |

|                          |               |      | TABLA A.                            | 2 CO                                              | NTINUAC          | ION                          |               |     |                                             |                              |               |      |                                                   |                             |
|--------------------------|---------------|------|-------------------------------------|---------------------------------------------------|------------------|------------------------------|---------------|-----|---------------------------------------------|------------------------------|---------------|------|---------------------------------------------------|-----------------------------|
| Muestreo:                |               |      | 4                                   |                                                   |                  |                              |               |     | 5                                           |                              |               | • 6  | 5                                                 |                             |
| Fecha:                   |               |      | 6-7-83                              |                                                   |                  |                              |               | 1   | 0-8-83                                      |                              |               | 23-8 | 3-83                                              |                             |
| $\theta_{\rm H}$ (horas) | )             |      | 6.0                                 |                                                   |                  |                              |               |     | 9.5                                         |                              |               | 12   | 2.0                                               |                             |
| N (%)                    |               |      | 43.9                                |                                                   |                  |                              |               |     | 34.5                                        |                              |               | 28   | 3.7                                               |                             |
| Parámetro<br>Reactor     | Temp.<br>(°C) | рН   | Conductividad<br>( <sub>Ω</sub> -1) | Oxigeno<br>disuel-<br>to<br>(mgO <sub>2</sub> /1) | DBO5<br>(mgO2/1) | DQO<br>(mgO <sub>2</sub> /1) | Temp.<br>(°C) | pH  | Oxigeno<br>soluble<br>(mgO <sub>2</sub> /1) | DQO<br>(mgO <sub>2</sub> /1) | Temp.<br>(°C) | ЪН   | Oxigeno<br>disuel-<br>to<br>(mgO <sub>2</sub> /1) | DQO<br>( mgO <sub>2</sub> / |
| 0                        | -             | -    | -                                   | -                                                 | 301              | 485                          | -             | -   |                                             | 2400                         | -             | -    | -                                                 | 3067                        |
| 1                        | 19.2          | 7.02 | 5800                                | 3.2                                               | -                |                              | 19.0          | 7.4 | 1.3                                         | ****                         | 18.5          | 5.5  | 4.6                                               |                             |
| 3                        | -             |      | -                                   | -                                                 | 264              | 425                          | -             | -   | -                                           | 2173                         | -             | -    | -                                                 | 2973                        |
| 6                        | -             | -    | -                                   | -                                                 | 264              | 416                          | -             | -   | -                                           | 1973                         | -             | -    | -                                                 | 2907                        |
| 7                        | 18.8          | 7.74 | 5800                                | 3.5                                               | -                |                              | 18.0          | 6.2 | 1.3                                         |                              | 17.5          | 6.1  | 4.2                                               |                             |
| 10                       | -             | -    | -                                   | -                                                 | 249              | 396                          | -             | -   | -                                           |                              | -             |      |                                                   | 2827                        |
| 14                       | 18.6          | 8.1  | 5400                                | 5.6                                               | . =              |                              | 18.0          | 6.4 | 1.4                                         | -                            | 17.0          | 6.4  | 6.6                                               |                             |
| 15                       | -             | -    | -                                   | -                                                 | 241              | 376 .                        | -             | -   | -                                           | 1933                         | -             |      |                                                   | 2760                        |
| 20                       | -             | -    | -                                   |                                                   | 220              | 368                          | -             | -   |                                             | 1960                         | -             | -    | -                                                 | 2773                        |
| 21                       | 18.4          | 8.18 | 5500                                | 5.3                                               | -                | -                            | 18.0          | 6.9 | 1.4                                         | -                            | 17.0          | 6.5  | 4.0                                               |                             |
| 25                       | -             | -    | -                                   |                                                   | 211              | 340                          | -             | -   |                                             | -                            | -             |      | -                                                 |                             |
| 30                       | 18.1          | 8.43 | 5500                                | 4.3                                               | 190              | 332                          | 18.0          | 6.8 | 0.5                                         | 1867                         | 17.0          | 6.5  | 4.7                                               | 2693                        |
| 35                       | -             |      | -                                   |                                                   | 184              | 320                          | -             |     | -                                           | 1787                         | -             | · •• |                                                   | 2600                        |
| 10                       | 18.0          | 8.46 | 5000                                | 3.6                                               | 168              | 304                          | 18.0          | 7.0 | 1.0                                         | 1760                         | 17.0          | 6.4  | 5.7                                               | 2627                        |
| 5                        | -             | -    | -                                   | -                                                 | 177              | 300                          | -             | -   | -                                           | 1747.                        | -             | -    | -                                                 | 2587                        |
| )                        | 18.0          | 8.60 | 5100                                | 5.0                                               | -                | 304                          | 18.0          | 6.6 | 0.8                                         | 1693                         | 17.0          | 6.0  | 4.6                                               | 2480                        |
|                          | -             |      |                                     | -                                                 | 152              | 300                          | -             | -   | -                                           | 1733                         | -             | -    |                                                   | 2413                        |
|                          | 18.0          | 8.74 | 5200                                | 5.3                                               | 148              | 296                          | 18.5          | 6.9 | 0.7                                         | 1600                         | 17.0          | 6.4  | 5.9                                               | 2347                        |
|                          | 18.0          | 8.72 | 5000                                | 5.3                                               | 146              | 272                          | 19.0          | 6.8 | 2.2                                         | 1573                         | 17.0          | 5.6  | 5.6                                               | 2187                        |

|                          |               | 11  | DUR A.Z                                      | CONTIN                       | UTOT O        | ``   |                                              |                              |               |     | _                               | •                             |                              |    |
|--------------------------|---------------|-----|----------------------------------------------|------------------------------|---------------|------|----------------------------------------------|------------------------------|---------------|-----|---------------------------------|-------------------------------|------------------------------|----|
| Muestreo:                |               |     | 7                                            |                              |               |      | 8                                            |                              |               |     | 9                               |                               |                              | 1  |
| Fecha:                   |               | 2   | 9 <b>-</b> VIII-83                           |                              |               | 5-   | ·IX-83                                       |                              |               | 14  | -IX-83                          |                               |                              |    |
| $\theta_{\rm H}$ (horas) |               |     | 12.0                                         |                              |               | 12.4 |                                              |                              |               |     | 12.0                            |                               |                              |    |
| N (%)                    |               |     | 34.65                                        |                              |               |      | 22.36                                        |                              |               |     | 36.57                           |                               |                              |    |
| Parámetro<br>Reactor     | Temp.<br>(°C) | рH  | Oxigeno<br>disuelto<br>(mgO <sub>2</sub> /1) | DQO<br>(mgO <sub>2</sub> /1) | Temp.<br>(°C) | рH   | Oxigeno<br>disuelto<br>(mg0 <sub>2</sub> /1) | DQO<br>(mgO <sub>2</sub> /1) | Temp.<br>(°C) | рH  | Oxigeno<br>disuelto<br>(mgO2/l) | DBO5<br>(mgO <sub>2</sub> /1) | DQO<br>(mgO <sub>2</sub> /1) |    |
| 0                        | -             | -   | -                                            | 2053                         | -             | -    | -                                            | 2513                         | -             | -   |                                 | 1050                          | 2480                         |    |
| 1                        | 19            | 5.7 | 1.6                                          | ~                            | 19.0          | 5.7  | 0.1                                          |                              | 20.0          | 6.0 | 2.0                             | -                             |                              |    |
| 3                        | -             | -   | -                                            | 1960                         | -             | -    | -                                            | 2400                         | -             | -   | -                               | 966                           | 2400                         |    |
| 6                        | -             | -   | -                                            | 1827                         | -             | -    |                                              | -                            | -             |     | -                               | 930                           | 2360                         |    |
| 7                        | 19            | 6.1 | 2.4                                          | -                            | 18.0          | 6.3  | 1.4                                          |                              | 19.0          | 6.1 | 2.1                             | -                             |                              |    |
| 10                       | -             | -   | -                                            | 1800                         | -             | -    | -                                            | -                            | -             | -   | -                               | 904                           | 2330                         |    |
| 14                       | 18            | 7.0 | 6.5                                          | -                            | 17.0          | 7.0  | 3.5                                          | -                            | 18.5          | 6.3 | 3.9                             | -                             | -                            |    |
| 15                       | -             | *** |                                              | 1773                         | -             |      | -                                            | 2385                         | -             | -   |                                 | 879                           | 2290                         |    |
| 20                       | -             | -   |                                              | 1587                         | -             |      | -                                            | 2359                         | -             | -   | -                               | 864                           | 2240                         |    |
| 21                       | 18            | 7.2 | 4.5                                          | -                            | 17.0          | 7.0  | 3.5                                          | -                            | 19.0          | 6.7 | 3.9                             | -                             | -                            |    |
| 25                       | -             | -   | -                                            | 1560                         | -             | -    | -                                            | 2308                         | -             | -   | -                               | 833                           | 2173                         |    |
| 30                       | 18            | 6.7 | 4.7                                          | 1553                         | 17.0          | 7.8  | 4.9                                          | 2296                         | 19.0          | 6.6 | 3.7                             | 750                           | 2147                         |    |
| 35                       | -             | -   | -                                            | 1440                         | -             | -    | -                                            | 2154                         |               | -   | -                               | 714                           | 2120                         |    |
| 40                       | 18.5          | 6.6 | 5.3                                          | 1413                         | 17.0          | 7.6  | 4.8                                          | 2205                         | 19.0          | 6.6 | 3.2                             | 660                           | 2040                         |    |
| 45                       | -             | -   | -                                            | 1347                         | -             | -    | -                                            | 2154                         | -             |     | -                               | 600                           | 2027                         |    |
| 50                       | 19.0          | 7.2 | 6.5                                          | 1360                         | 17.0          | 7.7  | 4.5                                          | 2102                         | 19.0          | 6.8 | 3.1                             | 576                           | 1947                         |    |
| 55                       | -             | -   | -                                            | 1333                         | -             | ***  | -                                            | 2051                         | -             | -   | -                               | 551                           | 1827                         |    |
| 60                       | 19.0          | 7.3 | 6.5                                          | 1320                         | 16.8          | 7.4  | 5.2                                          | 2000                         | 19.0          | 6.9 | 3.5                             | 546                           | 1667                         | 10 |
| 70                       | 19.0          | 7.4 | 6.5                                          | 1307                         | 16.8          | 7.1  | 4.9                                          | 1949                         | 19.0          | 7.3 | 4.3                             | 525                           | 1573                         |    |

. •

|                         |                |     |                                                       |                             |                |     |                                              |                              | <del></del>   | ······ |                                             |                              |                                  | 1                                                |
|-------------------------|----------------|-----|-------------------------------------------------------|-----------------------------|----------------|-----|----------------------------------------------|------------------------------|---------------|--------|---------------------------------------------|------------------------------|----------------------------------|--------------------------------------------------|
| Muestreo:               |                |     | 10                                                    |                             | 1              |     | 11                                           |                              |               |        |                                             | 12                           | ,                                |                                                  |
| Fecha:                  |                |     | 21-IX-83                                              |                             |                |     | 17-XI-83                                     |                              |               |        | 2                                           | 6-XI-83                      |                                  |                                                  |
| $\theta_{\rm H}$ (horas | )              |     | 12                                                    |                             |                |     | 48                                           |                              |               |        |                                             | 48                           |                                  |                                                  |
| N (%)                   |                |     | 28.73                                                 |                             |                |     | 56.06                                        |                              |               |        |                                             | 68.93                        |                                  |                                                  |
| Parámetro<br>Reactor    | Temp.<br>(°C ( | рH  | Ox <b>i</b> geno<br>disuelto<br>(mgO <sub>2</sub> /1) | DQO<br>(mgO <sub>2</sub> /1 | Temp.<br>)(°C) | рH  | Oxigeno<br>disuelto<br>(mgO <sub>2</sub> /1) | DQO<br>(mgO <sub>2</sub> /1) | Temp.<br>(°C) | рH     | Oxigeno<br>Soluble<br>(mgO <sub>2</sub> /1) | DQO<br>(mgO <sub>2</sub> /1) | Sólidos<br>Adheridos<br>(mg/cm²) | Nitrogeno<br>Adheridos<br>(mgN/cm <sup>2</sup> ) |
| 0                       | -              | -   | -                                                     | 2993                        | -              | -   | -                                            | 5635                         | _             | -      | -                                           | 4576                         | -                                | -                                                |
| 1                       | 19.0           | 6.7 | 3.5                                                   | -                           | 18             | 8.5 | 3.4                                          | -                            | 17.0          | 5.1    | 0.5                                         | -                            | -                                | - ·                                              |
| 3                       | -              |     | -                                                     | 2880                        | -              | -   | -                                            | 4889                         | -             | -      | -                                           | 4180                         | 4.506                            | 0.492                                            |
| 6                       | -              | -   | -                                                     | 2867                        | -              | -   | -                                            | 4365                         | -             |        | -                                           | 3608                         | 3.782                            | 0.347                                            |
| 7                       | 19.0           | 6.5 | 4.3                                                   | -                           | 18.0           | 6.2 | 4.1                                          | -                            | 16.0          | 6.4    | 4.2                                         | -                            | -                                | -                                                |
| 10                      | -              | -   | -                                                     | 2813                        | -              |     | -                                            | -                            | -             | -      | -                                           | 3432                         | 3.468                            | 0.202                                            |
| 14                      | 18.5           | 6.2 | 2.6                                                   | -                           | 17.0           | 6.5 | 3.1                                          | -                            | 16.0          | 6.6    | 4.1                                         |                              | -                                | -                                                |
| 15                      | -              | -   | -                                                     | 2787                        | -              | -   | -                                            | 4104                         | -             | -      | -                                           | 3102                         | 3.373                            | 0.177                                            |
| 20                      | -              | -   | -                                                     | 2760                        | -              | -   | -                                            | -                            | -             | -      | -                                           | 2882                         | 1.817                            | 0.133                                            |
| 21                      | 18.5           | 6.7 | 3.3                                                   | -                           | 17             | 6.5 | 5.4                                          | -                            | 16.0          | 6.6    | 4.1                                         | -                            | -                                | -                                                |
| 25                      | -              | -   | -                                                     | 2546                        | -              | -   | -                                            | 3941                         | -             | -      | -                                           | 2640                         | 2.088                            | 0.114                                            |
| 30                      | 18.0           | 6.5 | 2.8                                                   | 2506                        | 16             | 6.0 | 4.0                                          | 3713                         | 16.0          | 6.7    | 3.1                                         | 2244                         | 5.356                            | 0.096                                            |
| 35                      | -              | -   | -                                                     | 2493                        | -              | -   | -                                            | 3290                         | -             | -      | -                                           | 2068                         | 1.956                            | 0.125                                            |
| 40                      | 18.0           | 7.3 | 5.3                                                   | 2427                        | 16             | 6.0 | 3.4                                          | 3192                         | 16.0          | 6.6    | 3.3                                         | 1936                         | 2.918                            | 0.086                                            |
| 45                      | -              | -   | -                                                     | 2400                        | -              | -   | -                                            | 3062                         | -             | -      | -                                           |                              | 4.727                            | 0.098                                            |
| 50                      | 18.0           | 6.6 | 2.7                                                   | 2373                        | 16             | 6.5 | 5.4                                          | 2932                         | 16.0          | 6.8    | 3.9                                         | 1892                         | 3.273                            | 0.096                                            |
| 55 <sup>,</sup>         | -              |     | -                                                     | 2360                        | -              | -   |                                              | 2801                         | -             | -      | -                                           | 1804                         | 1.363                            | 0.147                                            |
| 60                      | 18.0           | 7.1 | 5.1                                                   | 2320                        | 16             | 7.0 | 4.8                                          | 2736                         | 16.0          | 6.9    | 4.0                                         | 1716                         | 0.983                            | 0.071                                            |
| 70                      | 18.0           | 7.1 | 5.7                                                   | 2153                        | 16             | 7.0 | 3.9                                          | 2476                         | 16.0          | 7.1    | 4.3                                         | 1440                         | 0.799                            | 0.056                                            |

| MUESTREO | 13, FECHA 12-XII-83, | θ <sub>H</sub> = | 48 hor                | as, ŋ% | 26.04 |
|----------|----------------------|------------------|-----------------------|--------|-------|
| Reactor  | рН                   | DQ<br>( mgO      | 0<br>2 <sup>/1)</sup> |        |       |
| 0        | 4.40                 | 11               | 520                   |        |       |
| 1        | -                    |                  | _                     |        |       |
| 3        | 4.05                 |                  | -                     |        |       |
| 6        | 4.00                 |                  | '                     |        |       |
| 7        | -                    |                  | -                     |        |       |
| 10       | 4.05                 | 10               | 440                   |        |       |
| 14       | -                    |                  | -                     |        |       |
| 15       | 4.05                 | 10               | 280                   |        |       |
| 20       | 4.15                 |                  | -                     |        |       |
| 21       | -                    |                  | -                     |        |       |
| 25       | 4.05                 | 10               | 120                   |        |       |
| 30       | 4.25                 |                  | -                     |        |       |
| 35       | 4.65                 | 9                | 880                   |        | :     |
| 40       | 4.95                 | 9                | 600                   |        |       |
| 45       | 5.7                  | 9                | 560                   |        |       |
| 50       | 6.1                  | 9                | 280                   |        |       |
| 55       | 6.5                  | 9                | 240                   |        |       |
| 60       | 6.6                  | 9                | 080                   |        |       |
| 70       | 6.7                  | 8                | 520                   |        |       |

|                                                                                     |                                                                                                                                 |                                                                                                                     | ORRIDA 1                                                                                                                           |                                                                                                                                               |                                                                                                                               | CORIDA                                                                                                                 | 2                                            |                                                                                                                |                                                                                | · 00                                                                                                                              | RRIDA 3                                                                              |                                                                                                                 | 7                                                                                                                                        |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Reactor<br>No.                                                                      | Tienpo<br>(h)                                                                                                                   | DQO<br>(mgO <sub>2</sub> /1)                                                                                        | S <sub>0</sub> -S/t<br>(mg0 <sub>2</sub> /1)                                                                                       | $\frac{1}{t \ln s} \frac{s}{h^{-1}}$                                                                                                          | 5 DQO<br>• (mgO <sub>2</sub> /.                                                                                               | S <sub>0</sub> -S,<br>1) (mgO <sub>2</sub> ,                                                                           | /t 1/t<br>/1)                                | $\ln S_{o}/S$<br>(h <sup>-1</sup> )                                                                            | DQ<br>(mg                                                                      | 0<br>0 <sub>2</sub> /1) (                                                                                                         | S <sub>o</sub> −S/t<br>mgO <sub>2</sub> /l)                                          | 1/t ln S_/S<br>(h <sup>-1</sup> )                                                                               |                                                                                                                                          |
| 0<br>1<br>7<br>14<br>21<br>30<br>40<br>50<br>60<br>70                               | 0<br>0.0814<br>0.57<br>1.14<br>1.71<br>2.443<br>3.257<br>4.071<br>4.886<br>5.7                                                  | 358<br>326<br>290<br>270<br>238<br>214<br>186<br>170<br>170<br>170                                                  | 393.1<br>393.1<br>119.3<br>77.2<br>58.9<br>52.8<br>46.2<br>38.5<br>33.0                                                            | 1.1503<br>1.1503<br>0.3695<br>0.2475<br>0.2387<br>0.2106<br>0.2010<br>0.1829<br>0.1524<br>0.1307                                              | 354<br>294<br>246<br>210<br>170<br>130<br>118<br>118<br>118<br>110<br>86                                                      | 0<br>737.<br>189.<br>126.<br>107.<br>91.<br>72.<br>57.<br>49.<br>47.                                                   |                                              | 0<br>2,2815<br>3,6385<br>3,4581<br>3,4581<br>3,4289<br>3,4101<br>3,373<br>3,2699<br>3,2392<br>3,2392<br>3,2482 | 37<br>33<br>31<br>300<br>255<br>200<br>144<br>111<br>111                       | 0<br>2<br>2<br>2<br>2<br>2<br>0<br>4<br>2<br>2<br>2                                                                               | 0<br>466.83<br>101.75<br>61.40<br>69.00<br>69.59<br>69.39<br>63.32<br>52.80<br>45.86 | 0<br>1.3315<br>0.2990<br>0.1840<br>0.2246<br>0.2518<br>0.2897<br>0.2935<br>0.2496<br>0.2096                     |                                                                                                                                          |
| Coef. cor<br>Pendiente<br>Ordenada                                                  | r.<br>origen                                                                                                                    |                                                                                                                     | 0.9997<br>355.51<br>-15.106                                                                                                        | •                                                                                                                                             |                                                                                                                               | 0.999<br>339.2<br>-35.796                                                                                              | 5                                            |                                                                                                                |                                                                                | 36<br>-2                                                                                                                          | ),9948<br>8,33<br>5,177                                                              |                                                                                                                 |                                                                                                                                          |
|                                                                                     |                                                                                                                                 |                                                                                                                     | CORRIDA 4                                                                                                                          | • •                                                                                                                                           |                                                                                                                               | CORRI                                                                                                                  | DA 5                                         |                                                                                                                |                                                                                |                                                                                                                                   | , α                                                                                  | ORRIDA 6 '                                                                                                      |                                                                                                                                          |
| Reactor<br>No.                                                                      | Tiempo<br>(h)                                                                                                                   | DQO<br>(mgO <sub>2</sub> /1)                                                                                        | S <sub>0</sub> -S/t<br>(mgO <sub>2</sub> /1)                                                                                       | 1/t ln S/S<br>(h <sup>-1</sup> )                                                                                                              | Tiempó<br>(h)                                                                                                                 | DQO<br>(mgO <sub>2</sub> /1)                                                                                           | S <sub>0</sub> -S/t<br>(mgO <sub>2</sub> /1) | 1/t ln<br>(h                                                                                                   | 5 <sub>0</sub> /5<br>1)                                                        | Tiempo<br>(h)                                                                                                                     | DQO .<br>(mgO <sub>2</sub> /1)                                                       | SS/t<br>(mgO <sub>2</sub> /1)                                                                                   | $1/t \ln s/s$<br>(h <sup>-1</sup> )                                                                                                      |
| 0<br>3<br>6<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>70 | 0<br>0.257<br>0.514<br>0.857<br>1.286<br>1.714<br>2.143<br>2.571<br>3.000<br>3.429<br>3.857<br>4.286<br>4.714<br>5.143<br>6.000 | 485<br>425<br>416<br>396<br>376<br>368<br>340<br>332<br>320<br>304<br>300<br>304<br>300<br>304<br>300<br>296<br>272 | 0<br>233.46<br>134.84<br>103.05<br>84.76<br>60.26<br>67.66<br>59.51<br>55.00<br>52.79<br>47.96<br>42.03<br>39.29<br>36.75<br>35.50 | 0<br>0.5139<br>0.2986<br>0.2366<br>0.1979<br>0.1611<br>0.1658<br>0.1474<br>0.1386<br>0.1362<br>0.1245<br>0.1090<br>0.1019<br>0.0960<br>0.0964 | 0<br>0.407<br>0.814<br>1.357<br>2.036<br>2.714<br>3.393<br>4.070<br>4.75<br>5.429<br>6.107<br>6.706<br>7.464<br>8.143<br>9.50 | 2400<br>2173<br>1973<br>-<br>1933<br>1960<br>-<br>1867<br>1787<br>1760<br>1760<br>1747<br>1693<br>1733<br>1600<br>1573 | 557.7<br>524.6<br>                           |                                                                                                                | 441<br>407<br>063<br>746<br>617<br>621<br>571<br>52<br>514<br>36<br>498<br>445 | 0<br>0.514<br>1.029<br>1.714<br>2.571<br>3.429<br>4.286<br>5.143<br>6.000<br>6.857<br>7.714<br>8.571<br>9.429<br>10.286<br>12.000 | 3067<br>2973<br>2907<br>2827<br>2760<br>2773<br>                                     | 182.9<br>155.5<br>140.0<br>119.4<br>85.7<br>-<br>72.7<br>77.8<br>64.2<br>62.2<br>68.5<br>69.4<br>70.00<br>73.33 | 0.0606<br>0.0521<br>0.0475<br>0.0410<br>0.0253<br>0.0275<br>0.0225<br>0.0221<br>0.0248<br>0.0254<br>0.0254<br>0.0254<br>0.0261<br>0.0282 |
| Coef. corr<br>Pendiente<br>Ordenada d                                               | r.<br>origen                                                                                                                    | ,                                                                                                                   | 0.9997<br>476.1<br>-10.03                                                                                                          |                                                                                                                                               |                                                                                                                               | 22                                                                                                                     | 0.9994<br>84.15<br>12.2776                   |                                                                                                                |                                                                                |                                                                                                                                   |                                                                                      | 0.9981<br>3167.0<br>-9.875                                                                                      | ·                                                                                                                                        |

#### TABLA A.3. VALORES UTILIZADOS PARA OBTENER LOS PARAMETROS CINETICOS POR MEDIO DE LA ECUACION DE WALKER

.

### TABLA A.3 CONTINUACION.

|                                                                               |                                                                                                                                                                                                                                                                                  |                                                                                                                                                 | CORRIDA                                                                                                                                    | 7                                                                                                                                                       |                                                                                                                                             | RIDA 8                                                                                         | • • •                                                                                                                                |                                                                                                                              | CORRIDA                                                                                                              | 9                                                                                                                                                       | T                                                                                                                            | CORREDA, 1                                                                                                         | 10                                                                                                                                  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| React                                                                         | or Tienno                                                                                                                                                                                                                                                                        | DOO                                                                                                                                             | 55/t                                                                                                                                       | 1/t ln 8_/8                                                                                                                                             | 000                                                                                                                                         | 85/t                                                                                           | 1/t ln 8_/5                                                                                                                          | 000                                                                                                                          | 85/t                                                                                                                 | 1/t.ln 8_/8                                                                                                                                             | 000                                                                                                                          | 55/t                                                                                                               | 1/t ln 8_/8                                                                                                                         |
| No.                                                                           | (h)                                                                                                                                                                                                                                                                              | (mg02/1)                                                                                                                                        | (mgO <sub>2</sub> /1)                                                                                                                      | (h <sup>-1</sup> )                                                                                                                                      | (mgO <sub>2</sub> /1) (                                                                                                                     | mg0 <sub>2</sub> /1)                                                                           | (h <sup>-1</sup> )                                                                                                                   | (mg02/1)                                                                                                                     | (mg0 <sub>2</sub> /1                                                                                                 | ) $(h^{-1})^{0}$                                                                                                                                        | (mg02/1)                                                                                                                     | (mgO <sub>2</sub> /1)                                                                                              | (h <sup>-1</sup> )                                                                                                                  |
| 0<br>3<br>6<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>55<br>60<br>70 | 0<br>0.514<br>1.029<br>1.714<br>2.571<br>3.429<br>4.186<br>5.143<br>6.000<br>6.857<br>7.714<br>8.571<br>9.429<br>10.286<br>12.000                                                                                                                                                | 2053<br>1960<br>1327<br>1800<br>1773<br>1587<br>1560<br>1552<br>1440<br>1413<br>1347<br>1360<br>1333<br>1320<br>1307                            | 180.9<br>219.6<br>147.6<br>108.9<br>135.9<br>115.0<br>97.2<br>102.2<br>93.3<br>91.5<br>80.9<br>76.4<br>71.3<br>62.2                        | -<br>0.0902<br>0.1133<br>0.0767<br>0.0570<br>0.0751<br>0.0641<br>0.0543<br>0.0545<br>0.0545<br>0.0546<br>0.0480<br>0.0480<br>0.0458<br>0.0429<br>0.0376 | 2513<br>2400<br>-<br>-<br>2385<br>2359<br>2308<br>2256<br>2154<br>2205<br>2154<br>2102<br>2051<br>2000<br>1949                              | 219.8<br>49.8<br>44.9<br>47.8<br>49.97<br>59.8<br>44.9<br>46.5<br>48.0<br>49.0<br>49.0<br>49.0 | -<br>0.0895<br>-<br>-<br>0.0235<br>0.0184<br>0.0199<br>0.0208<br>0.02569<br>0.01907<br>0.0200<br>0.0208<br>0.0216<br>0.0212          | 2480<br>2400<br>2360<br>2390<br>2290<br>2240<br>2173<br>2147<br>2120<br>2040<br>2027<br>1947<br>1827<br>1827<br>1666<br>1573 | -<br>155.6<br>116.6<br>87.5<br>73.9<br>70.0<br>71.6<br>64.7<br>64.7<br>64.2<br>58.7<br>62.2<br>69.3<br>79.1<br>75.60 | -<br>0.0638<br>0.0482<br>0.0364<br>0.0310<br>0.0297<br>0.0308<br>0.0280<br>0.0261<br>0.0285<br>0.0261<br>0.0282<br>0.0324<br>0.0324<br>0.0387<br>0.0379 | 2993<br>2880<br>2867<br>2813<br>2787<br>2546<br>2506<br>2493<br>2427<br>2400<br>2373<br>2360<br>2373<br>2360<br>2320<br>2153 | 219.8<br>122.4<br>105.0<br>80.1<br>67.9<br>104.3<br>94.7<br>33.3<br>82.5<br>76.9<br>72.3<br>67.1<br>65.4<br>70.0   | -<br>0.0749<br>0.0418<br>0.0362<br>0.0277<br>0.0236<br>0.0377<br>0.0345<br>0.0306<br>0.0286<br>0.0271<br>0.0252<br>0.0248<br>0.0275 |
| Coef.<br>Pendie<br>Ordena                                                     | corr.<br>nte<br>da origen                                                                                                                                                                                                                                                        |                                                                                                                                                 | 0.9957<br>216.097<br>-21.728                                                                                                               |                                                                                                                                                         | 248                                                                                                                                         | 0.9994<br>8.19<br>3.1604                                                                       | •                                                                                                                                    | 2                                                                                                                            | 0.9811<br>509.5<br>-7.8655                                                                                           |                                                                                                                                                         | :                                                                                                                            | 0.9973<br>3068.9<br>~9.4863                                                                                        |                                                                                                                                     |
|                                                                               | Reactor                                                                                                                                                                                                                                                                          | Tiempo<br>(b)                                                                                                                                   | DQO<br>(maD_/1)                                                                                                                            | CORRIDA 11<br>S <sub>0</sub> -S/t<br>(mm0./1)                                                                                                           | 1/t ln 5/S<br>(b-1)                                                                                                                         | DQO                                                                                            | CORRIDA<br>SS/t                                                                                                                      | 12<br>: 1/t 1<br>) (b)                                                                                                       | n 5 /5<br>-1,                                                                                                        | CO)<br>DQD (<br>(mail /1) (1                                                                                                                            | RIDA 13<br>5-5/t 1                                                                                                           | $\sqrt{t \ln s}/s$                                                                                                 |                                                                                                                                     |
|                                                                               | 0         3           6         10           15         11           20         11           25         11           30         22           40         22           45         33           50         33           55         33           60         4           70         4 | (n)<br>0<br>2.057<br>4.114<br>6.857<br>10.286<br>13.714<br>17.143<br>10.571<br>14.000<br>17.429<br>10.857<br>14.286<br>17.74<br>11.143<br>18.00 | (IIGC <sub>2</sub> /1)<br>5635<br>4889<br>4365<br>-<br>-<br>-<br>-<br>3941<br>3713<br>3290<br>3192<br>3062<br>2932<br>2801<br>2736<br>2476 |                                                                                                                                                         | (n )<br>-<br>0.0690<br>0.0621<br>-<br>0.0308<br>-<br>0.0209<br>0.0203<br>0.0224<br>0.0207<br>0.0198<br>0.0191<br>0.0185<br>0.0176<br>0.0171 | 4576<br>4130<br>3600<br>3432<br>2640<br>2244<br>2068<br>1936<br>                               | 21) (11302/1<br>192.5<br>235.3<br>166.8<br>143.3<br>123.5<br>112.9<br>113.4<br>104.5<br>96.2<br>78.2<br>78.2<br>78.5<br>69.5<br>65.3 |                                                                                                                              | )<br>0440<br>0578<br>0420<br>0378<br>0321<br>0321<br>0347<br>0314<br>0258<br>0247<br>0230<br>0241                    | 11520<br>10440<br>10280<br>10170<br>9880<br>9660<br>9560<br>9280<br>9240<br>9080<br>3520                                                                |                                                                                                                              | (n )<br>-<br>-<br>-<br>0.0144<br>0.0111<br>0.0076<br>-<br>0.0064<br>0.0064<br>0.0063<br>0.0058<br>0.0058<br>0.0058 | 108                                                                                                                                 |
|                                                                               | bef. corr.<br>endiente<br>erdenada ori                                                                                                                                                                                                                                           | lgen                                                                                                                                            | · !                                                                                                                                        | 0.9987<br>5512.7<br>-24.3451                                                                                                                            |                                                                                                                                             |                                                                                                | 0.9856<br>5260.28<br>-58.8943                                                                                                        |                                                                                                                              |                                                                                                                      | 11,361<br>-5                                                                                                                                            | .9991<br>.2<br>.7585                                                                                                         |                                                                                                                    |                                                                                                                                     |

.

| Reactores                                                                    | 1 - 5                                                                                                                                                                                           | 5 - 10                                                                                                    | 10 - 15                                                                                                                                      | 15 - 20                                                                                                      |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Corrida Q<br>(1/día)                                                         | $\begin{array}{ccc} S_{O} & S_{O} & A/Q(S_{O}-S_{O}) \\ (\frac{mgDQQ}{1}) & \frac{mgDQQ}{1} & (m^{2}dIa/mgDQQ) \end{array}$                                                                     | $\begin{array}{ccc} S_{e} & A/Q(S_{o} - S_{e}) \\ (\frac{mgDQQ}{1}) & (m^{2} dia/mg DQO) \end{array}$     | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                         | $\begin{array}{ccc} S_{e} & A/Q & (S_{O} - S_{e}) \\ (\frac{mgDQQ}{l}) & (m^{2} dia/mg DQO) \end{array}$     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                        | 370         318         0.4816           2053         1856         0.2615           2993         2870         0.4317           5635         4480         0.1839           0.6983         3.7306 | 310 3.15<br>1800 1.0618<br>2813 0.9314<br>4250 0.9233<br>0.9991<br>1.4648                                 | 300         2.5200           1773         1.9663           2787         2.0410           4104         1.4545           0.8358         0.5821 | 260 0.6300<br>1587 0.2854<br>2760 1.9366<br>4060 4.8266<br>0.4934<br>0.3745                                  |
| $K_{g} \left(\frac{m_{g}}{1}\right)$                                         | 260.7                                                                                                                                                                                           | 1117.9                                                                                                    | 143.5                                                                                                                                        | -221.2                                                                                                       |
| Reactores                                                                    | 20 - 25                                                                                                                                                                                         | 25 - 30                                                                                                   | 30 - 35                                                                                                                                      | 35 - 40                                                                                                      |
| Corrida Q<br>(1/día)                                                         | $\begin{array}{ccc} S_{O} & S_{O} & \lambda/Q(S_{O}-S_{O}) \\ (\frac{\text{mgDQQ}}{1}) & \frac{\text{mgDQQ}}{1} & (\text{m}^{2}\text{dia/mgDQQ}) \end{array}$                                   | $\begin{array}{ccc} S_{e} & A/Q(S_{o} - S_{e}) \\ (\frac{mgDQQ}{l}) & (m^{2} dfa/mg DQQ) \end{array}$     | $\begin{array}{ccc} S_{e} & A/Q(S_{o} - S_{e}) \\ (\frac{\text{MgDQQ}}{1}) & (\text{m}^{2} \text{ dfa/mg DQO}) \end{array}$                  | $\begin{array}{ccc} S_{e} & A/Q & (S_{o} - S_{e}) \\ (\frac{mgDQO}{1}) & (m^{2} dfa/mg DQO) \end{array}$     |
| 3 37.5<br>7 17.8<br>10 17.8<br>11 4.45                                       | 260         226         0.741           1587         1560         1.960           2760         2546         0.240           4060         3941         1.780                                     | 200         0.969           1553         7.854           2506         1.372           3713         0.9314 | 170         0.8400           1440         0.4698           2493         4.0838           3290         0.5020                                 | 144         0.9692           1413         1.9663           2427         0.8044           3192         2.1669 |
| Coef. corr.<br>$p (\frac{mgDQO}{2})$<br>$m^{dia}$<br>$K_g (\frac{mgDQO}{1})$ | -0.3941<br>0.4976<br>169.5                                                                                                                                                                      | -0.8932<br>0.2974<br>124.25                                                                               | -0.2583<br>0.5628<br>-93.66                                                                                                                  | -0.4837<br>0.5909<br>-60.85                                                                                  |

•

.

.

| TABLA | A. 4 | VALORES | UTILIZADOS | PARA | OBTENER | LOS | PARAMETROS | CINETICOS | EN | EL | MODELO | DE | KORNEGAY |
|-------|------|---------|------------|------|---------|-----|------------|-----------|----|----|--------|----|----------|
|       |      |         |            |      |         | •   |            |           |    |    |        |    |          |
|       |      |         |            |      |         |     |            |           |    |    |        |    |          |

.

| Reactores                            |         | 40 -             | - 45        |                            |  |
|--------------------------------------|---------|------------------|-------------|----------------------------|--|
| Corrida                              | Q       | so               | Se          | A/Q(SS_)                   |  |
|                                      | (1/d1a) | ( <u>mgD20</u> ) | ingDQO<br>1 | (m <sup>2</sup> dia/mgDQO) |  |
| 3                                    | 37.4    | 144              | 125         | 1.3263                     |  |
| 7                                    | 17.8    | 1413             | 1347        | 0.8044                     |  |
| 10                                   | 17.8    | 2427             | 2400        | 8.4548                     |  |
| 11                                   | 4.45    | . 3192           | 3052        | 1.6335                     |  |
| Coef. corr.                          |         | -0.3365          |             |                            |  |
| P (mgDQO                             | -)      | 0.2616           |             |                            |  |
| m <sup>e</sup> dia                   | •       | ,                |             |                            |  |
| $K_{s} \left(\frac{mgDQO}{1}\right)$ | )       | -84.74           |             |                            |  |

TABLA A.S. VALORES UTILIZADOS EN LA ECUACION DE REACCION DE PRIMER ORDEN

|                                                                                                                 | CORRIDA 1                                                                                                              |                                                                                                                                                               | CORRIDA 2                                                                                                            |                                                                                                                                                               | CORRIDA 3                                                                                                                       |                                                                                                                                                       |                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reactor                                                                                                         | DQO                                                                                                                    | λs/Q                                                                                                                                                          | mo                                                                                                                   | As/Q                                                                                                                                                          | 200                                                                                                                             | λs/                                                                                                                                                   | 。                                                                                                                            |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |
| No.                                                                                                             | my02/1                                                                                                                 | m <sup>2</sup> h/1                                                                                                                                            | mp02/1                                                                                                               | m <sup>2</sup> h/1                                                                                                                                            | mgO2                                                                                                                            | /1 m <sup>2</sup> h                                                                                                                                   |                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |
| 0<br>1<br>7<br>14<br>21<br>30<br>40<br>50<br>60                                                                 | 358<br>326<br>290<br>270<br>238<br>214<br>186<br>170<br>170                                                            | 0<br>0.0121<br>0.0847<br>0.1695<br>0.2542<br>0.3631<br>0.4842<br>0.6052<br>0.7223                                                                             | 354<br>294<br>246<br>210<br>170<br>130<br>118<br>118<br>118                                                          | 0<br>0.0121<br>0.0847<br>0.1695<br>0.2542<br>0.3631<br>0.4842<br>0.6052<br>0.7223                                                                             | 370<br>332<br>300<br>252<br>200<br>144<br>112                                                                                   | 0<br>0.0<br>0.1<br>0.2<br>0.3<br>0.4<br>0.6<br>0.7                                                                                                    | 121<br>817<br>695<br>542<br>651<br>842<br>052<br>223                                                                         |                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                               |
| 70                                                                                                              | 170                                                                                                                    | 0.8473                                                                                                                                                        | 86                                                                                                                   | 0.8473                                                                                                                                                        | 112                                                                                                                             | 0.8                                                                                                                                                   | 473                                                                                                                          |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                             |
| Coef. corr0.9574<br>Pendiente -0.8981<br>Ordenada origen 5.7593                                                 |                                                                                                                        | -0.9550<br>-1.4927<br>5.6399                                                                                                                                  |                                                                                                                      | -0.9744<br>-1.5827<br>5.8732                                                                                                                                  |                                                                                                                                 |                                                                                                                                                       |                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |
|                                                                                                                 | CORRIDE 4                                                                                                              |                                                                                                                                                               | CORRIDA 5                                                                                                            |                                                                                                                                                               | CORRIDA 6                                                                                                                       |                                                                                                                                                       | CORRIDA 7                                                                                                                    |                                                                                                                                                                | CORRIDA 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                               |
| Reactor                                                                                                         | 1000                                                                                                                   | A5/Q                                                                                                                                                          | οχο                                                                                                                  | <b>λ</b> s∕Q                                                                                                                                                  | DQO                                                                                                                             | As/Q                                                                                                                                                  | τοo                                                                                                                          | As/Q                                                                                                                                                           | DQO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | As/Q                                                                                                                                                          |
| No.                                                                                                             | mgO <sub>2</sub> /1                                                                                                    | m <sup>-</sup> h/1                                                                                                                                            | mg0 <sub>2</sub> /1                                                                                                  | m <sup>2</sup> h/1                                                                                                                                            | πŋ0 <sub>2</sub> /1                                                                                                             | m <sup>2</sup> h∕ñ                                                                                                                                    | mg0 <sub>2</sub> /1                                                                                                          |                                                                                                                                                                | m30 <sub>2</sub> /1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m <sup>2</sup> h/1                                                                                                                                            |
| 0<br>3<br>6<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>70<br>Ccof. corr.<br>Pendiente | 485<br>425<br>416<br>396<br>376<br>368<br>340<br>332<br>320<br>304<br>300<br>304<br>300<br>296<br>272<br>-0.<br>-0.    | 0<br>0.0392<br>0.0764<br>0.1274<br>0.1911<br>0.2548<br>0.3185<br>0.3822<br>0.4460<br>0.5097<br>0.5738<br>0.6371<br>0.7008<br>0.7645<br>0.8919<br>9542<br>5635 | 2400<br>2173<br>1973<br>-<br>1983<br>1960<br>-<br>1787<br>1750<br>1747<br>1693<br>1733<br>1600<br>1573<br>-0.<br>-0. | 0<br>0.0605<br>0.1210<br>0.2017<br>0.3026<br>0.4035<br>0.5044<br>0.6520<br>0.7061<br>0.6370<br>0.9078<br>1.0090<br>1.1096<br>1.2104<br>1.4122<br>9434<br>2481 | 3067<br>2993<br>2907<br>2827<br>2760<br>2773<br>-<br>2693<br>2600<br>2627<br>2587<br>2480<br>2413<br>2347<br>2187<br>-0.<br>-0. | 0<br>0.0764<br>0.1529<br>0.2518<br>0.3822<br>0.3096<br>0.6371<br>0.7645<br>0.8919<br>1.0193<br>1.1467<br>1.2742<br>1.4016<br>1.5290<br>1.7838<br>9794 | 2053<br>1960<br>1827<br>1800<br>1773<br>1587<br>1560<br>1553<br>1400<br>1413<br>1347<br>1360<br>1333<br>1320<br>1307<br>-00. | 0<br>0.0764<br>0.1529<br>0.2548<br>0.3822<br>0.5096<br>0.6371<br>0.7645<br>0.8919<br>1.01913<br>1.1467<br>1.2742<br>1.4016<br>1.5290<br>1.7838<br>9588<br>2618 | 2513<br>2400<br>-<br>-<br>2385<br>2359<br>2308<br>2256<br>2154<br>2205<br>2154<br>2205<br>2154<br>2000<br>1949<br>0.<br>-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0.0790<br>0.1580<br>0.2683<br>0.3950<br>0.5267<br>0.6583<br>0.7900<br>0.9216<br>1.0533<br>1.1845<br>1.3166<br>1.4483<br>1.5800<br>1.8433<br>9833<br>1329 |
| Ordenada origen 6.0647                                                                                          |                                                                                                                        | 7.6920                                                                                                                                                        |                                                                                                                      | 8.010                                                                                                                                                         |                                                                                                                                 | 7.5575                                                                                                                                                |                                                                                                                              | 7.8222                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |
|                                                                                                                 | CORRIDA 9                                                                                                              |                                                                                                                                                               | CORRIDA 10                                                                                                           |                                                                                                                                                               | corrida 11                                                                                                                      |                                                                                                                                                       | CORRIDA 12                                                                                                                   |                                                                                                                                                                | CORRIDA 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |
| Reactor                                                                                                         | DQO                                                                                                                    | As/Q<br>2                                                                                                                                                     | 000                                                                                                                  | As/Q                                                                                                                                                          | DQO                                                                                                                             | As/Q                                                                                                                                                  | 200                                                                                                                          | As/Q ·                                                                                                                                                         | DCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | As/Q                                                                                                                                                          |
| No.                                                                                                             | mg02/1                                                                                                                 | m <sup>-</sup> h/l                                                                                                                                            | mj0 <sub>2</sub> /1                                                                                                  | m h/1                                                                                                                                                         | mg02/1                                                                                                                          | m h/l                                                                                                                                                 | mg0 <sub>2</sub> /1                                                                                                          | m <sup>-</sup> h/1                                                                                                                                             | mg02/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m⁻h/1                                                                                                                                                         |
| 0<br>3<br>6<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>70                             | 2480<br>2400<br>2360<br>2330<br>2290 -<br>2240<br>2173<br>2147<br>2120<br>2040<br>2027<br>1947<br>1827<br>1666<br>1573 | 0<br>0.0764<br>0.1590<br>0.2548<br>0.3822<br>0.5097<br>0.6371<br>0.7645<br>0.8919<br>1.0190<br>1.1467<br>1.2742<br>1.4016<br>1.5290<br>1.7838                 | 2993<br>2880<br>2867<br>2813<br>2787<br>2760<br>2546<br>2506<br>2493<br>2427<br>2400<br>2373<br>2360<br>2320<br>2153 | 0<br>0.0764<br>0.1590<br>0.2548<br>0.3822<br>0.5097<br>0.6371<br>0.7645<br>0.8919<br>1.0190<br>1.1467<br>1.2742<br>1.4016<br>1.5290<br>1.7838                 | 5635<br>4889<br>4365<br>-<br>-<br>3941<br>3713<br>3290<br>3192<br>2932<br>2932<br>2801<br>2736<br>2476                          | 0<br>0.3058<br>0.6116<br>1.0193<br>1.5290<br>2.0387<br>2.5483<br>3.0580<br>3.5676<br>4.0773<br>4.5870<br>5.0966<br>5.6063<br>6.1160<br>7.1353         | 4576<br>4180<br>3680<br>3432<br>2882<br>2640<br>2244<br>2068<br>1936<br>                                                     | 0<br>0.3058<br>0.6116<br>1.0193<br>1.5290<br>2.0387<br>2.5483<br>3.0586<br>3.5676<br>4.0773<br>4.5870<br>5.0966<br>5.6063<br>6.1160<br>7.1333                  | -<br>10440<br>10280<br>-<br>10120<br>-<br>9880<br>9660<br>9580<br>9280<br>9280<br>9280<br>9280<br>9280<br>9280<br>9280<br>9280<br>9280<br>9280<br>9280<br>9280<br>9280<br>9280<br>9280<br>9280<br>940<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9580<br>9 | 0<br>0.6116<br>1.0193<br>1.5290<br>2.0387<br>2.5483<br>3.0580<br>3.5676<br>4.0773<br>4.5870<br>5.0966<br>5.6063<br>6.1160<br>7.1353                           |
| Coer.corr0.9570<br>Pendiento -0.2256<br>Ordenada origen 7.8182                                                  |                                                                                                                        | -0.9821<br>-0.1702<br>7.9847                                                                                                                                  |                                                                                                                      | -0.9810<br>-0.1037<br>8.5196                                                                                                                                  |                                                                                                                                 | -0.9759<br>-0.1536<br>8.3050                                                                                                                          |                                                                                                                              | -0.9745<br>-0.0350<br>9.31648                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |