

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

ANALISIS DE UN SISTEMA DE TRATAMIENTO DE AGUA POR INTERCAMBIO IONICO PARA UNA PLANTA PRODUCTORA DE P. V. C.

TESIS
QUE PARA OBTENER EL TITULO DE
INGENIERO QUIMICO
PRESENTA
Armando Quintanilla Pérez Lete

México, D. F.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

I N D I C E

		PAGINAS			
OBJET	1				
CAPI	ruro i				
1.1	SECUENCIA DE OPERACION EL MANEJO DE DATOS SEGUIDO POR EL DEPARTAMENTO				
	DE INGENIERIA DE PROCESO.	3			
1.2	ELABORACION DE TABLA COMPARATIVA	Ļ			
1.3	ESPECIFICACIONES	5			
	4				
CAPITULO II					
2.1	GENERALIDADES ACERCA DEL PROCESO DE TRATAMIENTO DE AGUA PARA EL CASO ESPECIFICO DE UNA PLANTA PRODUCTORA				
	DE PVC	9			
2.2	DIAGRAMA DE FLUJO DEL AREA DE SERVICIOS	10			
	DIAGRAMA DE BLOQUES DEL SISTEMA DE	-			
	TRATAMIENTO DE AGUA	16			
CAPITULO III					
TABU	LACIONES:				
3.1	CLARIFICACION	40			
3.2	FILTRACION	56			
3.3	DESMINERALIZACION	65			

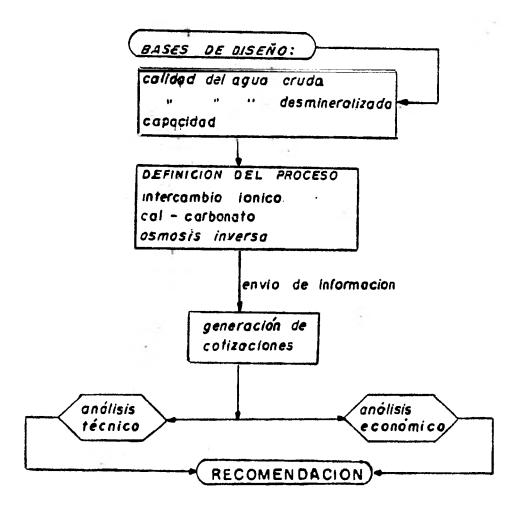
	PAGINAS				
CAPITULO IV					
4.1 DISEÑO DE UNIDADES DESMINERALIZADORAS	71				
4.2 DISEÑO DE UNIDADES DESCARBONATADORAS	118				
4.3 DISEÑO DE UNIDADES DESCARBONATADORAS (METODO CORTO)	147				
CAPITULO V					
5.1 TABULACION DE CARACTERISTICAS					
ECONOMICAS	153				
5.2 EVALUACION DE ALTERNATIVAS	166				
BIBLIOGRAFIA	174				

ş.

La inquietud de este trabajo es producida por la necesidad deque la mayoría de los egresados de las Escuelas Superiores del ramo de la ingeniería, carecen de información acerca de la forma en que se manejan los datos generados por una previa coti-zación de cualquier equipo. Más aún, teniendo en cuenta, queno sólo en los departamentos de Ingeniería de Proceso en México sino que a nivel de otros países altamente desarrollados, el manejo de información es similar a la presentada aquí.

El objetivo de este estudio es el de dar una visión real, de - la forma de evaluación técnico-económica, de tres alternativas propuestas por tres diferentes compañías especializadas en --- tratamiento de agua por intercambio iónico, para la adquisi--- ción de una planta desmineralizadora.

Y al mismo tiempo, mostrar la forma práctica de las operacio-nes unitarias que se llevan a cabo dentro del proceso de desmi
neralización de agua, es importante hacer notar que un buen -análisis sobre las proposiciones, llevará a una conclusión --acertada sobre cual de estas es la óptima.


Es decir la alternativa elegida en base a los juicios anteriores deberá cumplir con estas dos condiciones:

- 1). Técnicamente cubrirá con todos los aspectos y requerimientos de proceso.
- 2). La alternativa elegida deberá ser económicamente atractiva.

CAPITULO I

1.1. SECUENCIA DE OPERACION EN EL MANEJO DE DATOS SEGUIDO POR EL DEPARTAMENTO DE INGENIERIA DE PROCESO.

Para la adquisición del sistema de tratamiento de agua, y en general de cualquier equipo de proceso, es necesario-seguir una ruta ordenada, que conduzca al objetivo requerido. La descripción gráfica se presenta a continuación:

1.2. ELABORACION DE LA TABLA COMPARATIVA..

Existen algunas Compañías de Ingeniería en donde hay un --Departamento independiente del Departamento de Proceso ---llamado "COMPRAS TECNICAS", donde también el Ingeniero Químico juega un papel importante, ya que la intervención de éste en los asuntos técnicos ayudan a la definición del jui
cio.

En el siguiente caso el análisis se hará conjuntamente.

Debido a la experiencia en el Diseño de otras plantas similares, se invitó a tres concursantes los cuales se definirán como:

CONCURSANTE "A"

CONCURSANTE "B"

CONCURSANTE "C"

La finalidad de la Tabla comparativa, es la de identificaren una forma clara y rápida, las ventajas o desventajas entre uno y otro concursante. La Tabla Comparativa será divi
dida en varias secciones; Clarificación, Inyección de Agentes Químicos, Filtración, Desmineralización, etc., las que se
desglosarán posteriormente.

1.3. ESPECIFICACIONES.

Es importante señalar, que dentro del paquete de Ingeniería Básica adquirido están comprendidas una serie de especifica ciones de equipo las cuales son normas, hechas en base a -- estudios o experiencias de las Compañías que venden la tecnología.

A continuación se listan especificaciones para cada una delas etapas del tratamiento de agua:

a). CLARIFICACION DE AGUA CRUDA.

Se proporcionarán alimentadores químicos separados para clarificación y ajuste de PH. Los equipos alimentadores estarán constituidos por:

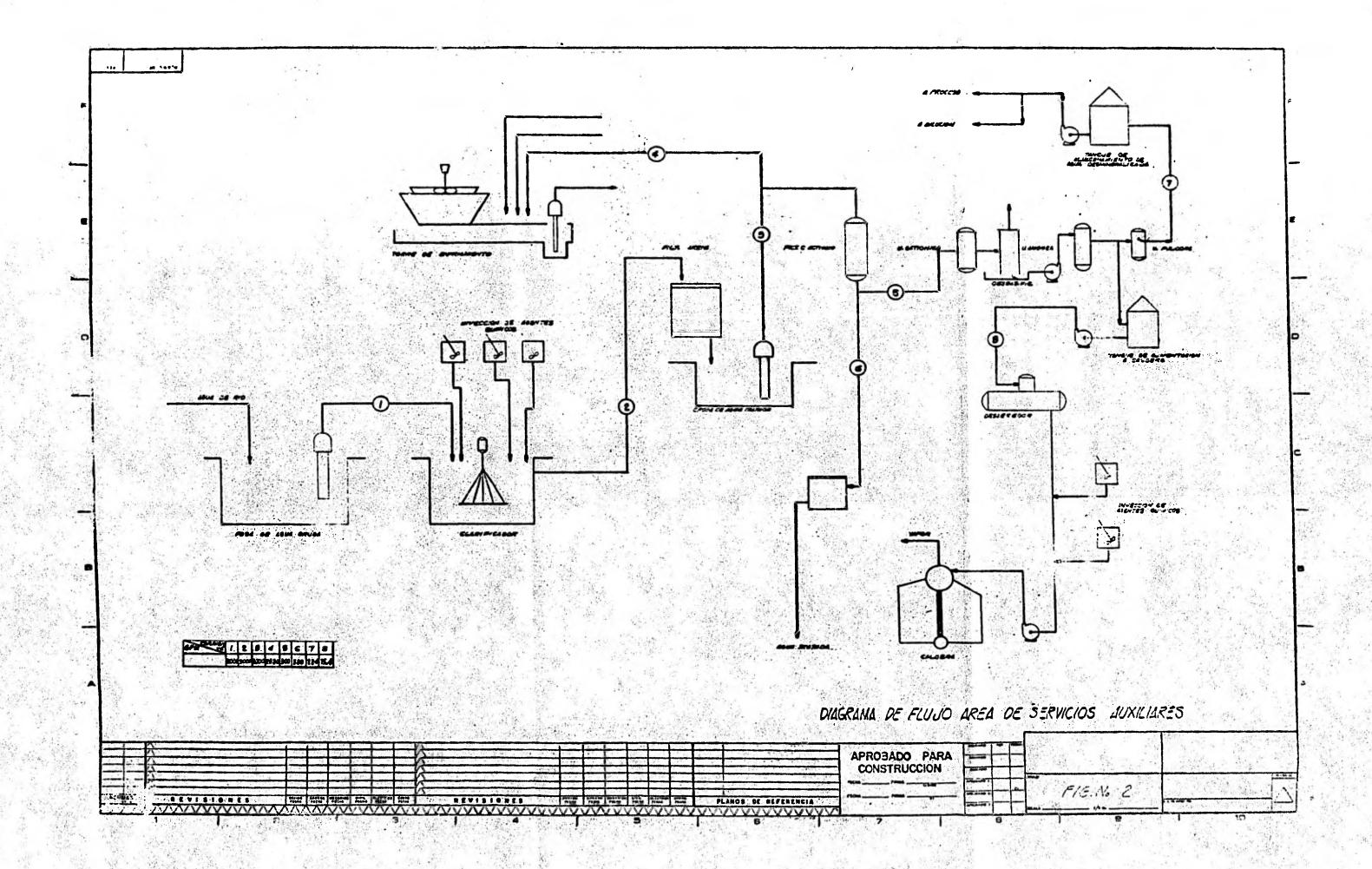
- 1). TANQUE.
- 2). AGITADOR.
- 3). BOMBA DOSIFICADORA.

De tal forma diseñados para proveer la operación de cla rificación durante 24 horas.

1.1.) El sistema será diseñado para dosificar de dos aveinte ppm. de cloro, siendo el control de dosificación automático y manual.

1.2.) Para el diseño del clarificador se recomienda, que la velocidad de elevación del agua esté próxima al GPM/Ft2.

Los requerimientos de flujo son mostrados en la figura No. 2 . El material del tanque del clarificador será de concreto.


b). FILTRACION POR GRAVEDAD.

Cuando menos dos filtros de arena, operados por gravedad, hechos de concreto y diseñados de tal forma que puedan al macenar el agua requerida para el retrolavado. La máxima velocidad de filtración será 3.27 GPM/ft2.

Equipados con toda la instrumentación necesaria para la - operación automática y manual.

c). FILTROS DE CARBON ACTIVADO.

Como mínimo dos filtros provistos con todas las salveda—des para ser regenerados con vapor de agua. El tiempo de contacto entre el agua y el carbón deberá ser de 7.5 minu tos. Los cuerpos de los filtros estarán recubiertos interiormente por material epóxico.

d). UNIDAD DESMINERALIZADORA.

La unidad desmineralizadora, será diseñada por el proveedor, así como el sistema de regeneración propuesto.

e). INSTRUMENTACION Y PANEL DE CONTROL.

Se proporcionará toda la instrumentación necesaria para-el buen funcionamiento de cada una de las etapas del tratamiento. El panel de la unidad desionizadora deberá con
tener:

- . Alarma de alta conductividad.
- . Alarma de alto o bajo nivel en el desgasificador.
- . Alarma de alta cantidad de sílice en el efluente aniónico.
- . Alarma de alta o baja conductividad en efluente regenerante aniónico.
- . Alarma de alta o baja conductividad en el efluente regenerante ácido.

CAPITULO II

2.1. GENERALIDADES ACERCA DEL PROCESO DE TRATAMIENTO DE AGUA PARA EL CASO ESPECIFICO DE UNA PLANTA PRODUCTORA DE P.V.C.

La Planta elegida es productora de policloruro de vinilo, - a partir del monómero.

En la reacción de polimerización el agua desmineralizada, -juega un papel muy importante, ya que de la pureza de ésta -depende la calidad del polímero.

Además, se requiere la producción de vapor como medio de ca - lentamiento y como accionador de turbinas, por lo que se hace necesario la intervención de calderas, las cuales deben-ser alimentadas con agua desmineralizada.

De aquí que el proceso de desionización es necesario, y condu ce a requerir dos niveles de pureza:

1. AGUA OCUPADA EN LA POLIMERIZACION.

2. AGUA DE ALIMENTACION A CALDERAS.

Las cuales tienen composiciones diferentes y que por lo tanto el tratamiento seguido para alcanzar esta pureza es diferente.

La Planta productora de P.V.C., será localizada en la región norte de la República Mexicana, en el Estado de Tamaulipas, la presión atmosférica es de 760 mm. Hg. y la temperatura — ambiente es de (77°F). 25°C

2.2. DIAGRAMA DE FLUJO DEL AREA DE SERVICIOS.

ANALISIS DE AGUA CRUDA.

Los requerimientos de agua desmineralizada, agua de enfriamiento, agua tratada y agua potable son indicados en el dia grama de flujo; la planta no contempla ninguna expansión afuturo.

El agua será bombeada de un río cercano a la fábrica. El agua cruda es depositada en una fosa de donde se transporta
por medio de bombas verticales hasta el clarificador, donde
se le adicionan los productos químicos necesarios para la clarificación, el efluente del clarificador es filtrado encamas de arena, para posteriormente ser suministrado en sumayor parte como agua de enfriamiento y a través de camas de
carbón activado, siendo el efluente ocupado para desmineralización, distribución y agua potable.

El agua que es forzada a través de las unidades desmineralizadoras, será ocupada por la reacción de polimerización, -- para dilución de reactivos que intervienen en el proceso, - agua de alimentación a calderas y a requerimientos de proceso (lavado de sellos de bombas, etc.) Se presenta a continuación el análisis del agua cruda y de los efluentes de -- los filtros de arena y de carbón activado, así como el ---- efluente final. El río del cual se tomará el agua para uso industrial, presenta las siguientes características:

- Tendencia incrustante a temperatura ambiente.
- Tendencia corrosiva a temperatura ambiente.
- El agua no es apta para la bebida, por lo tanto se recomienda la cloración.

El análisis es el siguiente:

	the state of the s				
÷.	ppm CaCO3	Efluente Filtros de	Efluente Carbón	Ef. Final	
CALCIO	300	Arena	Activado	7	
MAGNESIO	139;			a	
SODIO	_111				
CATIONES TOT.	550			0 a 5	
BICARBONATOS	180				
CARBONATOS				The Kenny	
CLORUROS	.83				
SULFATOS	_287				
ANIONES TOT.	550			0 a 5	
DUREZA TOTAL	439			0	
CO2 (como CO2)					
FIERRO					
MANGANESO	· · · · · ·			y + 4	
TURBIDEZ	200	1.0	1.0		
PH	7.5				
SILICE (como Si	102) 15			0.2	
CONDUCTIVIDAD				5-10	
COLOR (JTU)	50				
CLORO RESIDUAL		1.0	• 0	0	
	497	10 To	Y		

tabla.1

Por otra parte, la Planta trabaja con dos calderas, las cuales -tienen una capacidad individual de 50000 kg/Hr. de producción de
vapor de 150 psig., y el agua de alimentación deberá tener las siguientas características.

DUREZA 1.0

TDS. 2.0

Fe. 0.0

0.005

SiO₂ 0.05

tabla.2

Todo como ppm CaCO3

La máxima concentración de sólidos en el domo de vapor, podrá - ser de 3500 ppm. El análisis precedente no es el que corresponde al del efluente de las unidades desmineralizadoras, sino que esconsecuenccia de un tratamiento especial, el cual se muestra en el diagrama de flujo.

Como el propósito de este trabajo es el de desmineralización del agua cruda y no del tratamiento seguido para alimentación a calderas, sólo se describirá brevemente los pasos seguidos en éstatas:

1.- Del efluente de las unidades aniónicas se deriva una línea - que alimenta a un tanque de almacenamiento de agua desminera lizada, que tiene el propósito de conservar siempre agua de-alimentación a calderas.

- 2.- El segundo paso consiste en bombear el agua hacia un "desaereador". El "Desaereador" es un equipo que tiene la función de remover los gases disueltos en el agua, los cuales son -- principalmente: oxígeno y bióxido de carbono, la operación-de dicho equipo se puede definir así:
 - a). Calentamiento: Por medio de vapor, el agua es calentada hasta la temperatura de saturación, donde teóricamente la solubilidad de cualquier gas es 0.
 - b). Agitación Mecánica: El agua calentada es mecánicamente agitada; con el término "agitada" se quiere decir que deberá ser expuesta a un máximo valor de superficie de --- contacto con la atmósfera lavadora, (en este caso el vapor) de aquí que existan métodos tales como; atomización, de cascada, etc. de tal manera que el agua es tratada en forma de gotas o película, produciéndose la remoción de los gases indeseables.
 - c). Remoción de Gases: El vapor, deberá ser pasado adecuada mente a traves del flujo de agua "lavándola" y llevándose fuera los gases en cuestión, la operación se basa en el hecho de que la Ley de Henry, establece que la cantidad de gas disuelto es proporcional a la presión parcial delgas, así que el vapor produce una baja presión parcial de los gases ocurriendo así el fenómeno.

3.- El efluente del desaereador es tratado con pequeñas cantidades de Hidrazina (NH₂ - NH₂) y fosfatos. El primero con el objeto de quitar cualquier traza de oxígeno que no haya sido removido por el desaereador, los fosfatos, sirven para eliminarla dureza restante.

Las reacciones que ocurren son:

$$0_2 + N_2 H_4 \longrightarrow 2H_2 0 + N_2$$

 $6Na_3 PO_4 + 10CaCO_3 + 2 NaOH \longrightarrow Ca_{10} (PO_4)_6 (OH)_2 + 10Na_2CO_3$

Otro tipo de compuestos utilizados para eliminar dureza son los quelatos:

finalmente esta agua es alimentada a calderas.

Es importante no perder de vista que el tratamiento seguido - para alimentación a calderas tiene por objeto evitar la corrosión debida a $^{\circ}$ 2 y $^{\circ}$ 2 y la incrustación de calcio y magnesio en los equipos de transferencia de calor.

2.3. DIAGRAMA DE BLOQUES DEL SISTEMA DEL TRATAMIENTO DE AGUA.

La secuencia en el procesamiento de agua se muestra en una forma resumida enla figura No. 3

El proceso se inicia con la entrada de agua al reactor endonde se llevará a cabo la clarificación. La clarificación
es aquel proceso de remoción de sólidos suspendidos los cua
les aparecen como turbiedad, color y materias coloidales.—
Como se sabe el agua puede tener además de material mineral
disuelto y gases disueltos, otras impurezas, tales como:

- a). Turbidez y sedimentos.
- b). Color y materia orgánica.
- c). Sabores y olores.
- d). Microorganismos.

Turbidez y Sedimentos: Es la medida de la opacidad del agua con respecto a ciertos estandares, es materia suspendida in soluble, aquella materia que por su tamaño se asienta rápida mente se llama sedimento.

El método de determinación de turbidez es por medio del método <u>Jakson de bujía</u>, el cual se basa en la luminosidad deuna bujía a través del agua contenida en tubos de vidrio de longitud conocida.

DIAGRAMA DE BLOQUES DEL SISTEMA

DE TRATAMIENTO DE AGUA

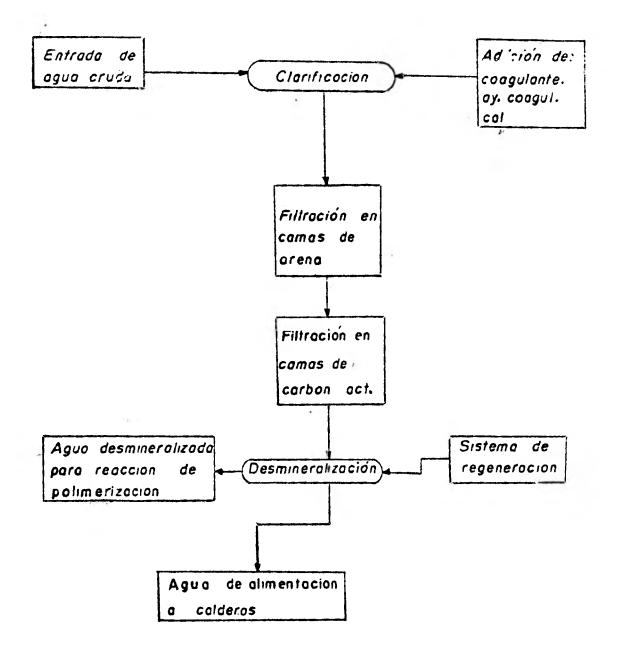


fig 3

Color y materia orgánica. La determinación del color, se debe de hacer con respecto al color verdadero del agua y no del - aparente.

El color verdadero es aquel que se presenta después de que - la materia suspendida ha sido removida, la remoción de estamateria se hace por centrifugación. El parámetro contra elcual se hace la determinación de color, es la unidad de color; la cual es producida por la dilución de lmg. de K2PtCl6 en - l lt. de agua la remoción se hace por medio de coagulación y filtración (remoción de color).

Sabores y Olores: Prácticamente todos los olores en los suministros de agua natural con excepción de H₂S son de origen orgánico, los sabores de tipo orgánico pueden ser removidospor medio de carbón activado, aereación, etc.

Los sabores y olores producidos por H₂S y Fe, pueden tratarse así: (La forma comercial de remoción de H₂S es por la oxida - ción con cloro)

$$H_2S + 4Ci_2 + 4H_2 O \longrightarrow H_2 SO_4 + 8 HCL$$

La manera de remoción de Fe también, es por medio de oxida -ción de bicarbonato de fierro (que es el compuesto más común
en el agua) a una forma poco soluble.

2 Fe (HCO₃)₂ +H₂O +
$$\frac{1}{2}$$
 O₂ ---- Fe (OH)₃ + 4CO₂

Esto se consigue con aereación, asentamiento y filtración.

El Fe, puede ser removido también por medio de oxidación, con cloro.

2Fe
$$(HCO_3)_2 + Cl_2 + Mg \\ Na_2$$
 $(HCO_3)_2 \rightarrow 2Fe (OH)_3 + Mg \\ Na_2$ $Cl_2 + CO_2$

Y por medio de intercambio catiónico.

Fe
$$(HCO_3)_2 + H_2 R \longrightarrow FeR + 2H_2CO_3$$

<u>Microorganismos:</u> Se presentan principalmente en aguas superficiales.

Los microorganismos pueden ser plantas o animales.

El proceso de clarificación involucra las siguientes etapas:

Coaquiación: Es aquella etapa que consiste en la adición de subtancias químicas y rápido mezclado con el agua cruda, y-cuyo propósito es el de aglomerar los sólidos finamente divididos. Se sabe que la forma de actuar de éstas substan-cias procede de dos maneras:

a). Las partículas que dan color y turbidez al agua, poseen cargas eléctricas de tal manera, que los coagulantes se leccionan partículas con cargas opuestas agrupándolas.

b). El coagulante reacciona con la alcalinidad del agua formando precipitados gelatinosos, llamados "Floculos" loscuales atrapan partículas finas que se encuentran en supaso.

Ejemplo de este tipo de reacción es:

Al₂ (SO₄)₃ + 3Ca(HCO₃)₂ - 2Al(OH)₃ + 3CaSO₄ + 6CO₂

Existen gran variedad de coagulantes usados y son utilizados de acuerdo a las características presentes de valo res de PH y costeabilidad.

- Floculación: Sigue de la etapa de coagulación, consiste en la formación de precipitados acompañada de una agitación lenta.
- Sedimentación: Es el paso final de la clarificación, los -flóculos formados se asientan, el agua clarificada se -eleva a nivel y es separada de los lodos.

En la operación de clarificación no sólo la adición de coagulantes participan en el proceso, la cloración del agua cruda es el primer paso en el pretratamiento, estedestruye muchas de las materias orgánicas por oxidaciónésta oxidación se efectúa más rápidamente a PH bajos. La
adición de los demás agentes químicos, es variable y --para cada tipo de agua, se deberá hacer el estudio delproceso de clarificación más eficiente. Una de las razo
nes principales para efectuar el proceso de clarifica---

ción, consiste en que por medio de éste, es posible eliminar la sílice coloidal, la cual es un verdadero problema - en las operaciones de desmineralización. La sílice en estado coloidal, no es removida por intercambio iónico y estado "Sílice no reactiva".

La sílice dentro de los equipos de transferencia de calorconstituye un problema con las incrustaciones, de aquí elgran interés por la remoción de ésta.

La sílice "no reactiva", dentro de los domos de las calderas se vuelve sílice reactiva debido a la gran presión y - temperatura. Otro de los agentes químicos agregados en el proceso de clarificación es el de "ayuda coagulante", su-participación consiste en la formación de puentes ó ligadu ras entre los flóculos finamente divididos, haciendo las - masas más grandes y más pesadas.

La adición de cal, en el proceso puede tener varias finalida-des entre ellas podemos citar: la de ajustar valores de PH
en donde los coagulantes trabajan óptimamente. La adición
de cal también es usada, para reducir dureza; las reacciones para éste propósito son:

$$Ca(HCO_3)_2$$
 + $Ca(OH)_2 \rightarrow 2Ca CO_3 + 2H_2O$
 $Mg(HCO_3)_2$ + $2Ca(OH)_2 \rightarrow Mg(OH)_2$ + $2CaCO_3$ + $2H_2O$

La siguiente etapa en el tratamiento de agua es la <u>filtra</u> ción. La filtración se considera como una operación unita ria y se define como la separación de las partículas sólidas suspendidas en un fluido forzándolos a pasar a travésde un medio poroso, fibroso ó granular.

La filtración se lleva a cabo por la diferencia de presión total entre la suspensión a filtrar, el medio filtrante y-el filtrado obtenido; existe además una resistencia ocasio nada por el depósito de partículas sólidas sobre el medio-filtrante, que va incrementándose conforme la filtración -avanza, hasta agotar el volúmen filtrante disponible.

Las clasificaciones que se hacen para los tipos de filtros es muy variado pero la más aceptada es:

- 1). Filtros por gravedad.
- 2). Filtros a presión.
- 3). Filtros a vacío.
- 4). Filtros centrífugos.

Para la selección del equipo de filtración.

Se consideran 2 aspectos:

- Tipo de Filtro.
- Medio filtrante.

Para escoger el tipo de filtro se consideran los diferentes puntos:

- a). Flujo de agua a tratar.
- b). Calidad del influente y del agua tratada.
- c). Disponibilidad de terreno.

Este estudio se enfoca a el tipo de filtros de gravedad como lo indica la especificación, (sin embargo, podría caber la posibilidad de que algún proveedor cotizara el tipo de-filtro a presion); he aquí algunas ventajas de los filtros a presión, respecto a los filtros por gravedad.

- 1.- Ocupan menor espacio.
- 2.- Se construyen rapidamente.
- 3.- Pueden operarse a altas perdidas de carga.

Desventajas:

- 1.- No se puede inspeccionar fácilmente a material filtran te.
- 2.- Dificil mantener gastos constantes de filtración.
- 3.- Mayor costo de operación y mantenimiento.

Para seleccionar el medio filtrante se consideran dos aspectos:

Selección de Material Resistencia al calor, abrasión.
Resistencia a la rotura.
Facilidad de limpieza.

Selección del tamaño Tamaño mínimo de partículas adecuado: retenido.

Permeabilidad.

Materiales más usados como medios filtrantes :

- a.- Arena.
- b.- Antracita.
- a). Arena: es el medio más utilizado para la filtración de agua fría, tiene el inconveniente de contaminar con -- sílice.
- b). Antracita: Se usa cuando la arena no es recomendable; sus lechos no se agrietan, tiempos de filtración más largos.

En la práctica, el proceso de filtración se diseña de talmanera que el medio filtrante, puede estar constituido devarias capas de diferente tamaño y material. Esto fué --- aplicado en base a que los tiempos de filtración en los modelos convencionales eran cortos. El modelo convencional consistía en una capa de arena fina, en la parte superior-y, posteriormente, capas de arena de tamaño menos fino, debido a que la arena fina tiene una cantidad de espacios reducidos disponibles para la filtración, estos eran rápidamente ocupados por los sólidos contenidos en el agua, incrementando así la caida de presión y disminuyendo la velo cidad de filtración; apresurando así, el retrolavado, además cuando se hacia el retrolavado, la clasificación de tamaños de partículas desaparecía, lo cual traía como consecuencia, deficiente filtración y pérdidas del medio filtran

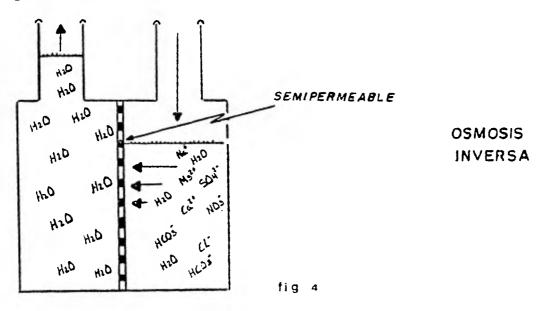
Es por eso que la utilización de capas más gruesas al principio del lecho filtrante, alarga las carreras, sólo hay que -- cuidar que el tamaño sea convenientemente elegido, de tal manera que la velocidad de retrolavado no sea excesiva y fluidice demasiado la cama y que la calidad de filtrado se deteriore, por este concepto, al dejar pasar agua con sólidos. La - colocación de partículas más gruesas de baja densidad en el-tope del filtro y partículas más finas en el fondo de más alta densidad, es la solución.

La siguiente etapa en el proceso de purificación del agua, es la desmineralización, en el caso específico de éste estudio el problema se enfoca hacia una desmineralización por intercambio iónico. Este proceso ha sido muy utilizado, ya que ha sido el que económicamente ofrece una operación más costeable en relación a las demás opciones propuestas. Sin embargo nose puede obviar algunos otros procesos, que pueden ser aplica bles para la remoción de impurezas iónicas disueltas en el agua y que para casos específicos, pueden llegar a presentarse como operaciones indicadas para algún proceso en particular.

El proceso de cal-carbonato o proceso "Clark-Porter" puede -ser aplicable para aguas donde se tenga alta cantidad de dure

za. Como se sabe, la dureza se debe a la presencia de sales de calcio y de magnesio en forma de: bicarbonatos, carbona tos, sulfatos, cloruros y nitratos. La dureza se divide = en "temporal" (debida a bicarbonatos, carbonatos) y "perma nente" debida a no carbonatos. El proceso se lleva a cabo por la adición de Ca(OH) 2 y Na2 CO3. Las reacciones que se -- llevan a cabo son las siguientes:

$$Ca (HCO_3)_2 + Ca (OH)_2 \longrightarrow 2Ca CO_3 + 2 H_2 O$$


Mg SO₄ + Na₂ CO₃ + Ca (OH)₂ - Mg (OH)₂ + Ca CO₃ +Na₂ SO₄
El proceso cal-carbonato tiene una variante: el anterior es
conocido como "cal-carbonato en frio", la variante consiste
en la adición de calor,llevándose a cabo, una aceleración-en las reacciones anteriores con la ventaja de que tambiénel oxígeno y la sílice son removidas en mayor cantidad quecon el proceso en frío.

Otro proceso utilizado para la purificación, consiste en laevaporación del agua, cuya operación, se presenta atractiva-cuando el agua a tratar tiene gran cantidad de sólidos di-sueltos, es decir; cuando el agua cruda contiene más de ---500 ppm de sólidos disueltos.

Otro proceso que se esta utilizando en la actualidad, es el de ósmosis inversa.

El proceso consiste en forzar el agua a través de una membrana semipermeable reduciendo el contenido mineral en un 96% -con respecto al agua de alimentación. Hoy en día el procesode osmosis inversa es muy usado en la desalación de agua de mar.

Existen algunas ventajas en relación al intercambio iónico, éstas pueden ser: No deja pasar sílica coloidal, las membranas no son sensibles a ser lastimadas por materia órganica, el -- equipo utilizado es compacto. También existen algunas desven tajas como son: las membranas son químicamente menos resisten tes que las resinas, las membranas son más caras que las resinas, si hay materia suspendida puede lastimar las membranas. A continuación se muestra el principio de operación de este-- proceso.

El proceso de desmineralización por intercambio iónico, se basa en las propiedades adsorbentes de los materiales quese utilizan para el intercambio, siendo aparentemente unareacción de 20. orden la que rige la velocidad de adsor--- ción. Las propiedades de los materiales intercambiadores- de iones fueron observadas y reportadas desde el año de -- 1818, por un químico alemán (Fuchs), quien descubrió que -- cuando se mezclaban soluciones de aluminato de sodio y --- silicato de sodio se producía un compuesto que presentaba- propiedades intercambiadoras. Pero fué hasta 1905, en don de por fin el químico alemán Robert Gans descubrió que los compuestos anteriormente mencionados podrían ser aplicados para el ablandamiento de aguas. Su primer compuesto lo -- hizo fusionando caolín, soda ash y arena.

Para el año de 1934 se desarrolló un tipo enteramente nuevo de intercambiadores que eran notables, los cuales al ponerse en contacto con ácido se regeneraban, siendo éste el -- primer gran paso en el proceso de desmineralización.

Hoy en día la mayoría de los intercambiadores usados son - resinas sintéticas, hechas de la polimerización de compues tos orgánicos siendo estos los más frecuentes: estireno -- (80-92%) y divinilbenceno (8-20%).

Existe una gama de intercambiadores los cuales poseen diferentes características, sin embargo los podemos dividir en

cuatro diferentes tipos.

1). Intercambiadores fuertemente ácidos. Este tipo de resinas tienen como iones intercambiables grupos hidrógeno.

La fórmula química estructural de una resina típica es la siguiente:

Las reacciones de intercambio se llevan a cabo:

Estas resinas, son regeneradas con ácido clorhídrico o conácido sulfúrico, el nivel de regeneración escogido se refle
jará en la eficiencia de intercambio de la resina. Este --tipo de resina la cual, tiene como grupo funcional, el sulfónico actuan sobre todo el rango de PH removiendo a losgrupos alcalinos débiles.

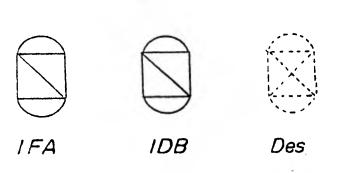
2). Intercambiadores debilmente ácidos. La fórmula estructural de una resina de este tipo es la siguiente:

Como se puede observar, el grupo funcional es el carboxilico. Actuan en rangos de PH en donde la alcalinidad es alta. Laregeneración también puede hacerse con los ácidos mencionados y es costumbre que cuando una columna de resina inter-cambiadora debilmente básica es seguida de una fuertementeácida, la regeneración se lleva a contracorriente, al mismotiempo, pasando primero porla fuertemente ácida y posterior
mente por la débil.

3), Intercambiadores fuertemente básicos. Los intercambiado res de este tipo actuan sobre todo el rango de PH, removien do iones débilmente ácidos. Una fórmula estructural típica de esta resina es la siguiente:

reacciones típicas de intercambio:

4) Resinas Intercambiadoras debilmente básicas Actúan sobre un rango de PH alto, la fórmula química de este tipo de resina es:

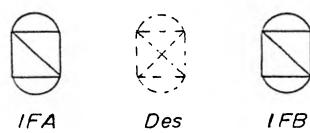

son:

El proceso de desmineralización se puede resumir de la siquiente forma:

El agua pretratada pasa a través de las unidades de intercambio catiónico, en donde todos los cationes son intercambiados por iones hidrogeno, el efluente de estas unidades, fluye hacia el desgasificador el cual tiene la función de eliminar el CO, del agua.

El efluente del desgasificador es enviado a las unidades aniónicas en donde todos los aniones son removidos. Si la pureza del agua requerida es grande, el efluente de estas últimas unidades pasa a través de unidades pulidoras dándole al agua, la pureza necesaria. Los arreglos más comunes, que dependiendo de las necesidades de pureza de agua, se aplican en la industria

Arreglo No. 1

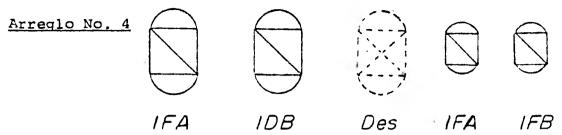

En donde para todos los arreglos:

1FA- Interc.fuerte ácido. 1FB- Interc.fuerte básico. 1DA- Interc.débil ácido. 1DB- Interc.débil básico Des-. Descarbonatador.

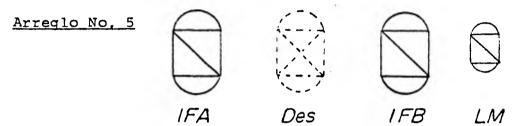
LM - Lecho mixto.

Este se usa en plantas industriales en donde se requiere la reducción de electrolito de 2 a 10 ppm y en donde la reducción de sílice no es importante; no es aplicable para propósitos de alimentación a calderas.

Arreglo No. 2



Este sistema reduce el electrolito hasta 2 o 3 ppm y la sílice a-


Arreglo No. 3

Este puede ser usado cuando el efluente del intercambiador fuerte mente ácido tiene un PH muy bajo de modo que la unidad débilmente básica ahorrará sosa para la regeneración de la unidad aniónica.

Reduce la cantidad de electrolito a 0.2 ppm y la sílice a .02 ppm. las unidades secundarias sirven como unidades pulidoras.

Este sistema reduce el electrolito a .04 ppm y la sílice a .01 ppm.

Arreglo No. 6

Este sistema es usado en plantas pequeñas en donde el costo -inicial debe ser pequeño aunque los costos de operación sean -altos.

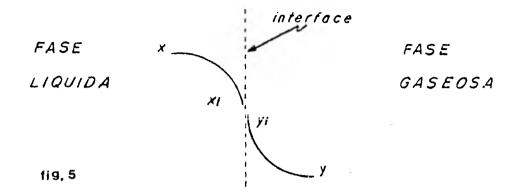
El diseño de la unidad descarbonatadora en un sistema de desmi neralización entra en el campo de las operaciones unitarias — en las cuales se lleva a cabo una transferencia de masa. El - fenómeno que ocurre en ésta unidad es el de "desorción", en el-cual un componente en la fase líquida es eliminado, al ser — puesto en contacto con un gas.

En efecto, el diseño de ésta unidad, intermedia entre las unidades catiónicas y aniónica, corresponde al de una torre agotadora en donde por medio de aereación, el bióxido de carbono contenido en el líquido es removido.

La importancia de la eliminación del CO₂ es evidente ya que éste proporciona un carácter corrosivo al agua.

El proceso lo podemos referir en base a la Ley de Henry que sostiene:

$$Pa = Ha Xa ---- (1)$$


La solubilidad de un gas es proporcional a la presión parcial del gas en contacto con el agua. Al producir la aereación se satura con oxígeno de tal forma que decrece la presión parcial del ${\rm CO}_2$, produciéndose la desorción.

El fenómeno de transferencia se lleva a cabo por la existencia -de un gradiente de concentración en la dirección de la transfe--rencia de masa.

Esto se puede explicar gráficamente de la siguiente manera: Fig. 5

La concentración del componente a transferir en el seno del lí -quído es "x" y caerá hasta "xi" en la interfase.

La concentración en el seno del gas es "y" y su concentración en la interfase aumentará a "yi".

En el equilibrio, la velocidad con la cual el componente a transferir en el seno del líquido, alcanza la interfase, ·· debe ser igual a la velocidad con que éste se difunde en elgas, de tal forma que no haya acumulación en la interfase.
Escribiendo el flux del componente en cuestión, en términos de los coeficientes de transferencia de masa y de los cam--bios de concentración adecuados;

$$Na = ky (yi - y) = kx (x-xi) \dots (2)$$

En donde:

Na = Flux de transferencia de masa (1b mol/ft² hr.)

kx = Coeficiente de masa de transferencia del líquido ----(lb mol/ft² hr.)

ky = Coeficiente de transferencia de masa del gas (lb mol/ ft² hr.) Rearreglando la ecuación (2) se tiene

$$ky (yi-y) = kx (x-xi)$$

$$\frac{kx}{ky} = \frac{yi - y}{xi - x} ---- (3)$$

Si los coeficientes de transferencia de masa son conocidos, la concentración interfacial es conocida y de aquí, "Na", puede - ser determinada.

Los coeficientes de transferencia fueron calculados por el método desarrollado por Shulman, que están basados en experien-cias hechas al hacer pasar diferentes fluidos a través de anillos Raschig y monturas o silletas Berl.

Para anillos Raschig y silletas, los coeficientes de transferencia están dados por la siguiente ecuación:

$$\frac{\text{FG ScG } ^{2/3}}{\text{G}} = \frac{\text{KG pBM ScG } ^{2/3}}{\text{G}} = 1.195 \frac{\text{ds G'}}{\mu \text{''G } (1-\epsilon_0)} ---- (4')$$

En donde:

F = Coeficiente de transferencia de masa (lb mol/ft² hr.)

Sc = No. de Schmidt ($\mu^{"}/\beta D$) adimensional.

G = Velocidad super. molar del gas (lb mol/ft² hr. atm)

K = Coeficiente de transferencia de la fase gaseosa.
(lb mol/ft² hr at.

pBM = Media logaritmica de la presión parcial del gas (atm).

 ϵ o = Espacios vacios en el empaque. (ft³ espacios/ft³ de empaque).

G' = Velocidad sup. del gas (lb/ft² hr.)

 $\mu''_{L:G}$ = Viscosidad (lbs/ft³ hr.) = 2.42 μ'

 μ' = Viscosidad (centipoase).

El coeficiente para el líquido esta dado por:

$$\frac{\text{K1 ds}}{\text{DL}} = 25.1 \cdot \frac{\text{ds L}}{\text{M}^{2}\text{L}} \qquad 0.45 \text{ sc}^{0.5} \qquad ---- (5)$$

En donde: K1 = Coeficiente de transferencia de mase en la fase líquida (lbmol/hr ft2 lbmol/ft3

d_s = Diámetro de una esfera de igual superficie queuna partícula de empaque (ft)

 $D_{T} = Difusividad (ft^2/hr.)$

Sc = No. de Schmidt adimensional.

L' = Velocidad superficial del líquido (lb/ft². hr.)

El método es relativamente simple, consiste encontrar los coe
ficientes anteriormente predichos por medio de la gráfica ---
(fig.42); mostrada mas adelante junto con los datos obtenidos
por medio de la tabla (7)

Para encontrar la altura del empaque en la unidad desgasificadora el método utilizado parte de un balance general, teniendo
como datos iniciales; la cantidad de agua a tratar, su concentración, la concentración final del efluente líquido y la concentración inicial del efluente gaseoso.

Quedando como incognita, la cantidad de gas a tratar y la concentración de este efluente.

Trazando la curva de operación en base a las concentraciones - predichas e indicando en este mismo diagrama la curva de equilibrio, la cual esta basada con datos de equilibrio del componente que será desorbido, se procede a encontrar la cantidad-mínima de gas que es posible utilizar en la operación. Cabe -- aclarar que estos balances, son hechos en base a el inerte, -- gaseoso y líquidos. Con el valor mínimo del flujo del gas, se procede a calcular 1.5 veces ésta cantidad, el cual es comúnmen te utilizado como un valor práctico.

Posteriormente con la relación de coeficientes de transferencia de masa, de la fase líquida y de la fase gaseosa, junto con -- las curvas de equilibrio y de operación se calcula por medio -- de la ecuación.

$$N_{tg} = 2.3 \begin{cases} \log y_1 \\ y - y_j \end{cases} d(\log y) +1.152 \log \frac{1-y_2}{1-y_1} - \dots (6)$$

Que es el valor del número de unidades de transferencia.

Finalmente por medio de la ecuación:

$$Z = Htg Ntg --- (7)$$

se calcula la altura del empaque.

En donde;

N_{tg}: numero de unidades de transferencia

Htg = altura de una unidad de transferencia

2 = altura total del empaque

CAPITULO III

3.1. TABULACION DE LAS CARACTERISTICAS DEL SISTEMA DE

CLARIFICACION.

Existen dos.tipos fundamentales de equipos para clarificación:

- a).- Equipo Convencional: La floculación y el asentamiento se hacen en diferentes tanques.
- b).- Equipos de contacto de sólidos suspendidos: El tiempo de retención es menor y el proceso se hace en un solo tanque.

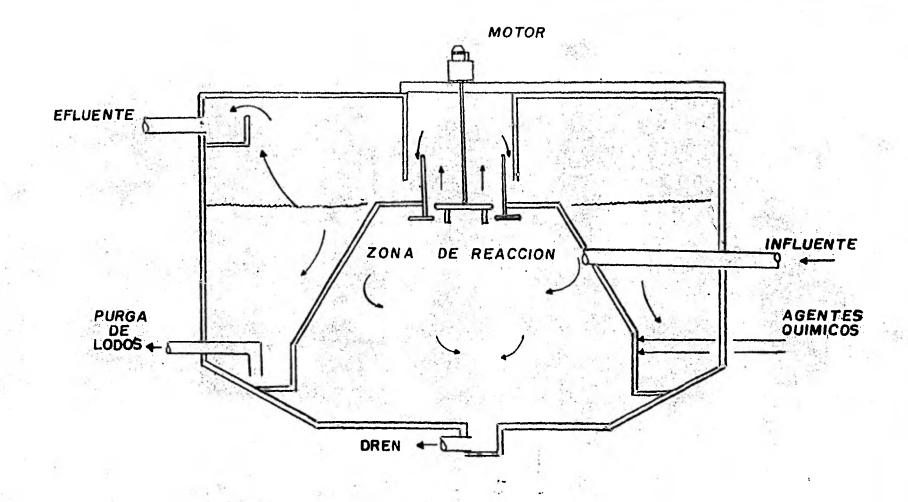
Debido a los problemas de espacio y eficiencia, los equipos de contacto de sólidos están desplazando a los equipos convencionales.

El dibujo (fig6) muestra el modelo de clarificador "INFILCOACCELATOR" el cual actúa a altas velocidades y como bomba de
baja cabeza para mover los lodos desde la zona de reacción,
a la zona de clarificación. El asentamiento del lodo en la
zona de reacción es prevenida por las corrientes parásitasdel agitador, un concentrador de lodos es colocado en la periferia del fondo de la zona de clarificación. El aguaes elevada hacia la parte superior saliendo clarificada. La
eficiencia de esta reactor es alta.

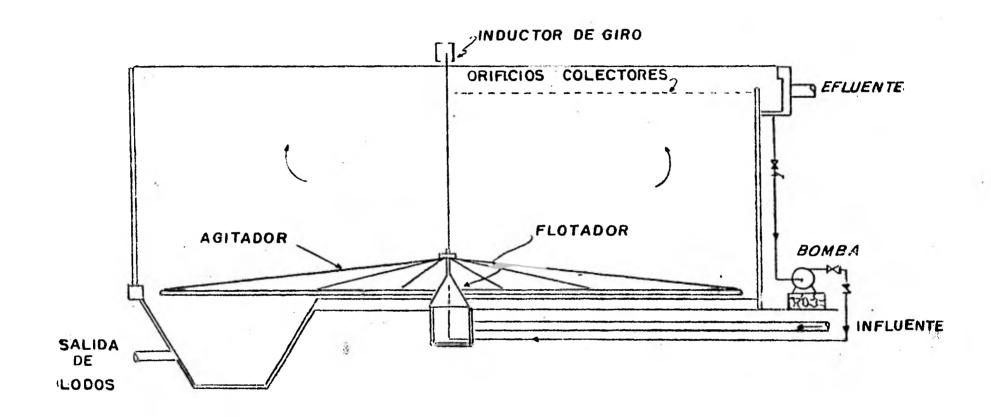
Clarificador modelo "PERMUJET", (fig. No. 7),— este tipo de « clarificador tiene la particularidad de que las rastras -- 4

inducen a los lodos hacia un colector de lodos, no habien do recirculación.

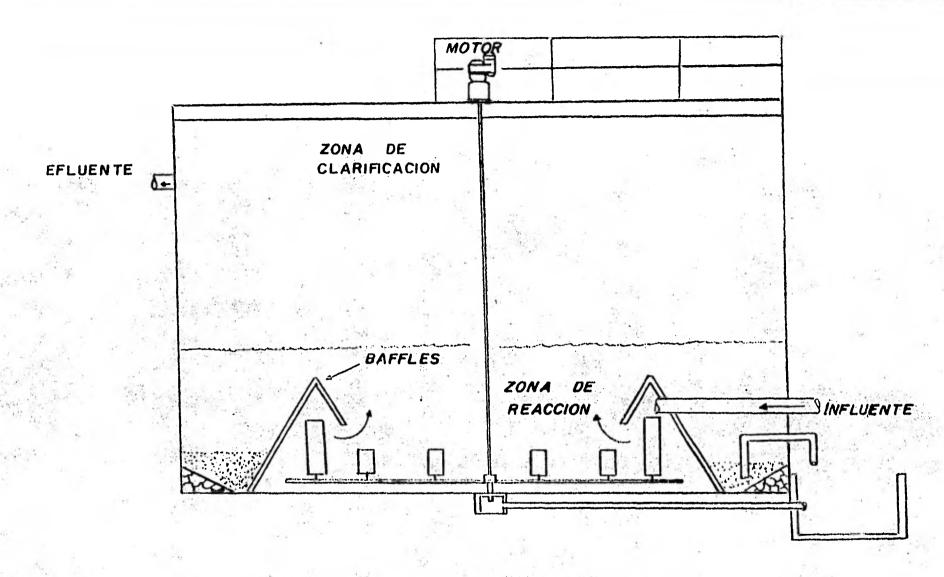
La operación es menos eficiente. Las rastras son impul-sadas por la presión ejercida de una bomba, que succiona-agua clarificada y la descarga sobre unas paletas, las -cuales están unidas a dichas rastras que sirven como im-pulsor.


La probabilidad de falla en éste equipo, es doble, debido al sistema "motor-bomba".

Clarificador modelo "COCHRANE" que al igual que el modelo "INFILCO ACCELATOR" es accionado por medio de un motor -- eléctrico, fig8.


El flujo de la zona de reacción, a la zona de clarifica-ción, es hacia arriba a través de largas puertas centra-les radiales; tiene baffles diseñados, de modo que se --permite el regreso de particulas de la zona de clarificación a la zona de reacción. Eficiencia alta en clarificación.

La alimentación de agentes químicos puede hacerse por dos caminos:


- a). Seco
- b). Líquido.

INFILCO ACCELATOR

PERMUJET

REACTOR COCHRANE

La alimentación en seco se hacen en Plantas grandes y en donde las cantidades de agentes químicos a ser alimentados, entre sucesivos recargos, en un tanque alimentadoren base líquida también fueran muy largas.

La alimentación líquida puede ser de 2 formas:

- a). En solución.
- b). En Suspensión.

La última requiere de un agitador.

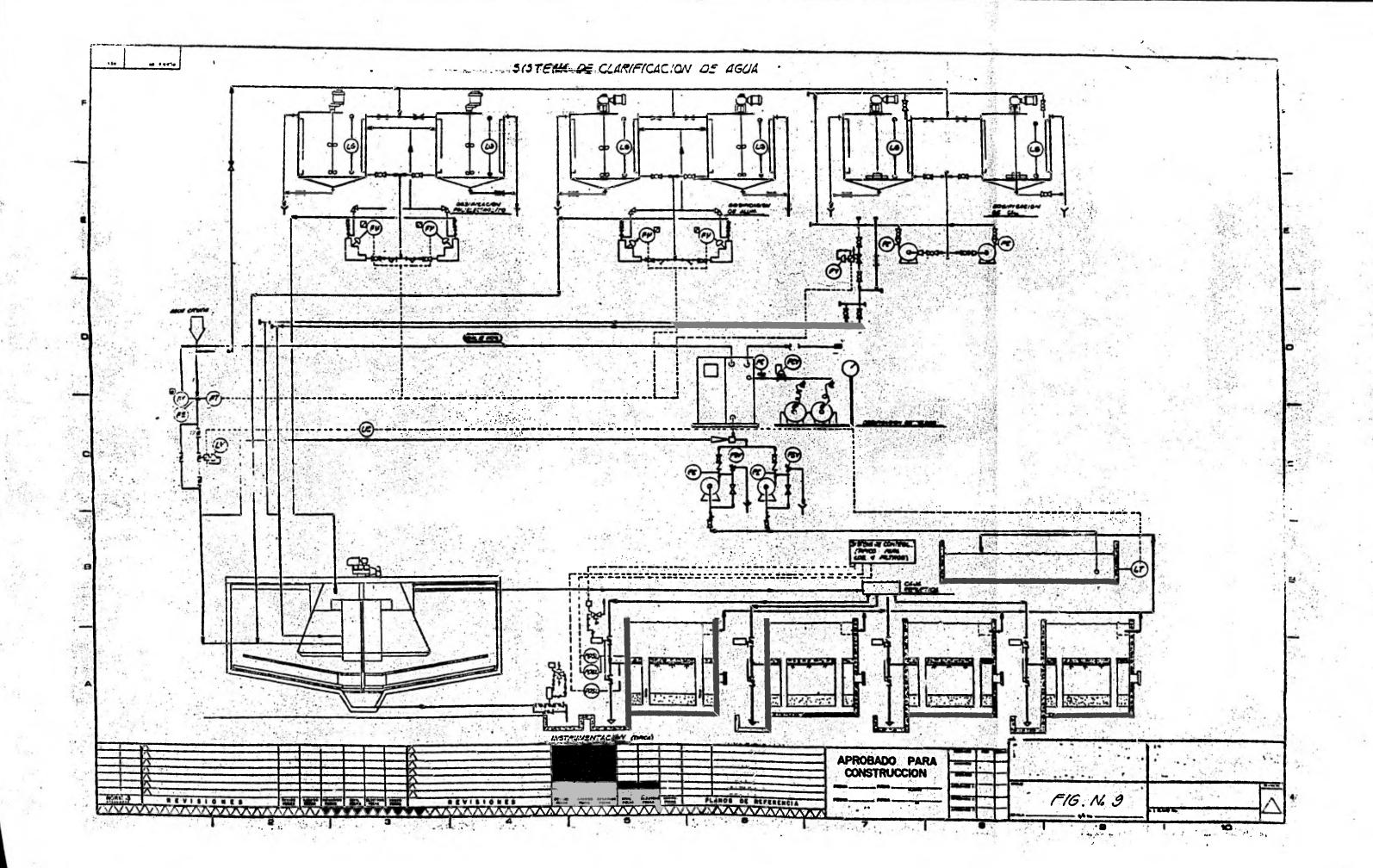
El equipo que forma el sistema de preparación e inyec--ción de químicos es el siguiente:

a). Clorador:

a.1. Bomba del clorador.

b). Agente Coagulante:

- b.1. Tanque de ag. coagulante.
- b.2. Agitador ag. coagulante.
- b.3. Motor del agit. de ag. coag.
- b.4. Bomba de alimentación del ag. coag.
- b.5. Motor de la bomba.


c). Agente Ayuda. Coag.

- c.1. Tanque de agente de ayuda coagulante.
 - c.2. Agitador de agente de ayuda coagulante.
- c.3. Motor del agitador, ayuda coagulante.
 - c.4. Bomba de alimentación.
- c.5. Motor de la bomba.

d). Cal.

- d.1. Tanque de sol.
- d.2. Agitzdor de sol. de cal.
- d.3. Motor de agit. de cal.
- d.4. Bomba
- d.5. Motor de la bomba.

A continuación se muestra un sitema de clarificación y filtración, en el cual se indica la instrumentación básica necesaria para la operación. Fig.No. 9

DESCRIPCION	REQUERIDO		PROVEEDOR A	PROVEEDOR B	PROVEEDOR C	
CLARIFICADOR.			A SACTOR STATE			
1.1. General	医异性征 化二溴异丙烷		an following the state of the second	a later or on the problems	5.44 21 131 E-11014-14	
tipo	Por proveedor		Rec. de lodos	Colchón de lodos	Recirc.de lodos	
Modelo	Set Mean Community of the		Infilco Acelator	Permujet	Cochrane Reactor	
1.2 Cond. Operación.			the state of the principle		WHEN THE YEAR	
Flujo de diseño (GPM)	3000		300Q	2290	3000	
Area tra.reac/floc/clar(ft4)	Por proveedor		13.6/10.16/3052	15.06/1410/3672	13.6/1115/2975	
Vel.Flujo Clar. (GPM/ft2)	The Me	1	0.99	0.62	1.0	
Cap. de diseño (ft3)	Por pr	oveedor	89700	90517	66038	
Purgas GPM	THE . 15, 54.	go regular.	150	66	90	
Frecuencia y duración	- 5-19-30 -	t.s. = 2.5	2 hrs. /2 min.	15 min/imin	1 hora / 1 min.	
Dims: Diam./altura (ft)	The Property of	1770.1	72 / 22	88 / 22	72/16	
1.3 Construcción				The state of the state of the		
Pasillo y Escalera.	Por proveedor		Incluido	No requerido	Incluido	
Pasamano y Soportes			Incluido	No requerido	Incluido	
Tubería de retrolavado			Incluido	No incluido	Incluido	
Linea de muestreo	I CONTRACTOR		Incluido	Incluido	Incluido	
1.4 Materiales	THE LOTTER	Al a May	- Carry and Carr			
Canal colector	Por pro	veedor	Acero al carbón	Concreto	Acero al carbón	
Fondo	Concret	0-	Concreto	Concreto	Concreto	
Baffles	Por prove	edor	Acero al carbón	Acero al carbón	Acero al c	
Internos	- 45a-		Acero al carbón		Acero al c.	
Pasillo; Escalera	2 7 4 1 7	1 1 14	Acero al carbón		Acero al c	
Pasamanos	8 m/ X* 1,250 F	1	Acero al carbón	No requerido	Acero al carbón	
Tubería gral.	54 Y (5)		Acero al carbón		Acero al carbón	
	1170.00		1 - 4 - 1			
1 Maries en entage Etjel	1 georgia	7.5	1 2 2 11	3 15012	re- unia	
		- 000			***************************************	
\$					799	

		T			
DESCRIPCION	REQUERIOO	PROVEEDOR A	PROVEEDOR B	PROVEEDOR	
AG DEL CLARIFICADOR	the Rewittings to a h	AND THE RESERVE OF THE SECOND	40,14		
2.1 General	the production of the large	A CERTAIN CONTRACT	The second of th	a (1) a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Tipo	Vel variable	Vel variable	Vel variable	Vel variable	
2.2 Materiales	AND MARKET SERVICE	November 6 of the	45 X 10 13 13 15 16 16 16 16 16 16 16 16 16 16 16 16 16	The state of the s	
Rotor	Acero al C.	Acero al carbón	Acero al carbón	Acero al carbón	
Brazos	Acero al C.	Acero al carbón	Acero al carbón	Acero al carbón	
2.3 Bombas	Por proveedor	No requerido		No requerido	
Tipo/No.	化异物 控制 語數語 化二氢化二氢	to design a property of	Centrif. horiz./2	Salah in di dagan	
Capacidad GPM		Section 1995	394		
Cabeza dif. (Ft)		The state of the state of the	138		
Materiales: Cuerpo	The State of the state of	 Application Consequence 	Fierro fundido	e year of the en	
Impulsor	A CONTRACTOR OF THE CONTRACTOR	Fierro fundido			
2.4 Accionador para bomba 6 Ag			And the Second S	The state of the s	
Tipo	Por proveedor	Agitador	Bomba	Agitador.	
Kw/RPM Volts		5.6/0-1750	18.6/17501	5.62/variable	
Volts		220-440	220-440	220-440	
Fases	· 原文 新美国 解 16 · · · · · · · · · · · · · · · · · ·	等 1863年新,由西南西亚南	1 2 3 - 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d	3 40 37 40	
Ciclos		60	60	60	
2.5 Red de velocidad	Por proveedor	Requerido	No aplica	Requerido	
Relación		variable	51 (14) (14) (15) (15) (15) (15)	variable	
			7.4	100	
			N. 4.		
		20 1 (C) 2 1 (
		- May 24 2			
Not be a little of the state of	a call developed		N H ALAMAN	11774	
eg demány – a romanozanany		a supplied to the first	Charles shows	40 × 5 M T	
	The state of the s		Acceptance of the second	1 1-1-1-1-1-1	
				The state of the s	

limentación de Ag. uímicos. .l. Clorador Tipo				PROVEEDOR A		PROVEEDOR B		
.l. Clorador			V 6					
			- 1					
Tipo	n -		/				1	1,4-12
	Autom./	Autom./Manual Por proveedor		Manual	Auton.	/Manual	Autom.	/Manual
Flujo (GPM) / Pres. reg. (PSIG)	Por pro			• 1	66/	85.5	56/64,89	
Dosif, normal (ppm)	2 a 20		2 a 20		2 2 2	0	2 a 20	
.2. Accesorios	Por pro	veedor	Incluido		Inclu	ldo	Inclui	do
Difusor		 		1		- 1	1	
Analiz. de cloro res.						-		
Rotámetro	1.5							
Báscula			3 7	No incluido incluido		cluido		
Tubería de interconex.]	
Cilindros	-	1.4			No in	cluido		
	1/ 144							
.3. Bomba booster.	Por pro	veedor				·	117	
Tipo			Centrifuga		Centr	fuga	Centr	
Accionador	1 10		Motor elec.		Motor elect.		motor elect.	
Kw/RPM	. /	I	2.25/1750		3.73/1750		2.25/	1750
Volts/fases/ciclos		1	220.440	0/3/60	220-4	40/3160	220-4	40/3/60
.4. Tanque ag. coagulante	Por pro	veedor	1 2				 	
Cantidad / tipo		1	1/Vertical		1/Vertical		1/vertical	
Tamaño: Ø/h (in)			89/71		60/60		96/96	
Material			Acero	Lnoxidable	fibra de vidrio		acero inox.	
Accesorios:		-	Ind. de	Nivel	Indic	adores de N	iv. Ind.	de Nive
			Alarma	3				
.4.1. Aqitador aq. coaq.	Por pro	veedor		····			ļ	1
Cantidad		1	Uno	<u> </u>	Uno		Uno	.
: Velocidad RPM			420		350		88	
Material		1	Ac. inc	xidable	Ac.	in oxidable	Ac. Inc	xidable

DESCRIPCION	REQUERIDO	PROVEEDOR A	PROVEEDOR B	PROVEEDOR C
.4.2. Motor del Agitador	Por proveedor			
Cantidad	.5	Uno	Uno	Uno
Kw/RPM		0.187/1750	1.12/1750	0.375/1750
Volts/Fases/ciclos		220-440/3/60	220-440/3/60	220-440/3/60
Reductor de vel.		Requerido	Requerido	Requerido
.4.3. Bomba de agente	Por proveedor		D 11	
Coaqulante				
Tipo/cantidad		Diafragma/2	Diafragma/2	Pistón/2
Capacidad /GPM)		1.73	0.51	3.96
Presión de descar.(psig.)		60	60	81
				4
3.4.4. Accionador de la bomba	Por proveeedor			
ag. coag.				()
Cantidad		dos	dos	dos
Kw/RPM		0.375/1750	0.375/1750	0,373/1750
Volts/fases/ciclos	141 4	115/1/60	220/3/60	220/3/60
3.5. Tanque de ayuda coag.	Por proveedor	£ 1		4
Cantidad/tipo	(+)	1/vertical	1/vertical	1/vertical
Tamaño: Ø / h. in		3 0/60 ·	60/60	36/36
Material		Acero Inox.	Fib. de vidrio	Ac, Inoxidabl
Accesorios:	į.	Ind. de nivel	Ind. de Nivel	Ind. de Nivel
1		Alarma de nivel		10
3.5.1. Agitador ay. coag.	Por proveedor			
Cantidad		yno	Uno	Uno
Velocidad RPM	1	420	350	420
Material Material	<u> </u>	Ac. Inox.	Ac. Inox.	Ac Inox
			-	
S			1	-

Uno Uno Uno 0.187/1750 115/1/60 Requerido Diafraqma/2 0.34 60 dog 0.18/1750 115/1/60	Uno Uno Uno 0.187/1750 220/3/60 Requerido Diafragma / 2 0.41 60 dos 0.37/1750 220/3/60	Uno Uno Uno 0.375/1750 220/3/60 Requerido Diafragma / 2 3.96 81 dos 0.37/1750
Uno 0.187/1750 115/1/60 Requerido Diafraqma/2 0.34 60 dos 0.18/1750	Uno 0.187/1750 220/3/60 Reguerido Diafragma / 2 0.41 60 dos 0.37/1750	Uno 0.375/1750 220/3/60 Requerido Diafragma / 2 3.96 81 dos 0.37/1750
0.187/1750 115/1/60 Requerido Diafragma/2 0.34 60 dos 0.18/1750	0.187/1750 220/3/60 Requerido Diafragma / 2 0.41 60	0.375/1750 220/3/60 Requerido Diafragma / 2 3.96 81 dos 0.37/1750
115/1/60 Requerido Diafraqma/2 0.34 60 dos 0.18/1750	220/3/60 Requerido Diafragma / 2 0.41 60 dos 0.37/1750	220/3/60 Requerido Diafragma / 2 3.96 81 dos 0.37/1750
Requerido Diafraqma/2 0.34 60 dos 0.18/1750	Requerido Diafragma / 2 0.41 60 dos 0.37/1750	Requerido Diafragma / 2 3.96 81 dos 0.37/1750
Diafraqma/2 0.34 60 dos 0.18/1750	Diafragma / 2 0.41 60 dos: 0.37/1750	Requerido Diafragma / 2 3.96 81 dos 0.37/1750
0.34 60 dos 0.18/1750	0.41 60 dos 0.37/1750	3.96 81 dos 0.37/1750
0.34 60 dos 0.18/1750	0.41 60 dos 0.37/1750	3.96 81 dos 0.37/1750
dos 0.18/1750	dos: 0.37/1750	3.96 81 dos 0.37/1750
dos 0.18/1750	dos . 0.37/1750	dos 0.37/1750
0.18/1750	0.37/1750	0.37/1750
0.18/1750	0.37/1750	0.37/1750
0.18/1750	0.37/1750	0.37/1750
115/1/60	220/3/60	
	1	220/3/60
2/vertical	1/vertical	1/vertical
138/150	60/72	96/96
Acero al carbón	Acero al Carbón	Acero al carbó
Ind. de nivel	Ind. de nivel	Ind. de nivel
Alarmas.		19
dos	uno	uno
AB	350	BB
Ac inox	Acero inox	Acero inox
		
	_	

	DESCRIPCION	REQUE	RIDO	PROVEEDOR A	PROVEEDOR B	PROVEEDOR.	
3.6.2.	Accionador del agitador						
	de cal.	Por pro	veedor		- :		
	Cantidad			dos	uno	uno	
	Kw/RPM			3.76/1750	1.11/1750	3.75/1750	
	Volts/Fases/ciclos			220/3/60	220/3/60	220/3/60	
	Red. de vel	Ţ.	1	Requerido	Requerido.	Paguerido	
3.6.3.	Bomba alimentadora de cal.	Por proveedor					
	Tipo / cantidad		7	Centrifuga/2	Centrifuga/2	Centrifuga/2	
	Capacidad GPM			20	2	2	
-	Presión desc. (PSIG)			20	60	50	
	Dosificación lb/qal			0,002 (5%)	0,0001 (7.5%)	0.0001 (5%)	
3.6.4	Accionador de la bomba de	Por pro	veedor				
1	cal.						
	Cantidad			Dos ·	Dos	Dos	
	Kw/RPM			1.5/1750	2.23/1750	1.5/1750	
	Volts/fase/ciclos			220/3/60	220/3/60	220/3/60	
4.0 In	strumentación del Clarifica-						
	dor.	Por pro	veedor.				
	Válv. de control de flujo			Requerida	Requerida	Requerida	
	Válv. de control de lodos	ļ	 			 	
	Válv. de control ag. coag.	ļ		No requerida	No requerida	No requerida	
	Válv. de control ag. coag.		-				
	Válv. de cal	ļ	1	Requerida	Requerida	Requerida	
	Rotametro	 					
		ļ					
12		 					
<u></u>		 	······································		····		

De los puntos 1.1 a 4.0 de la tabla comparativa se puede concluir lo siguiente:

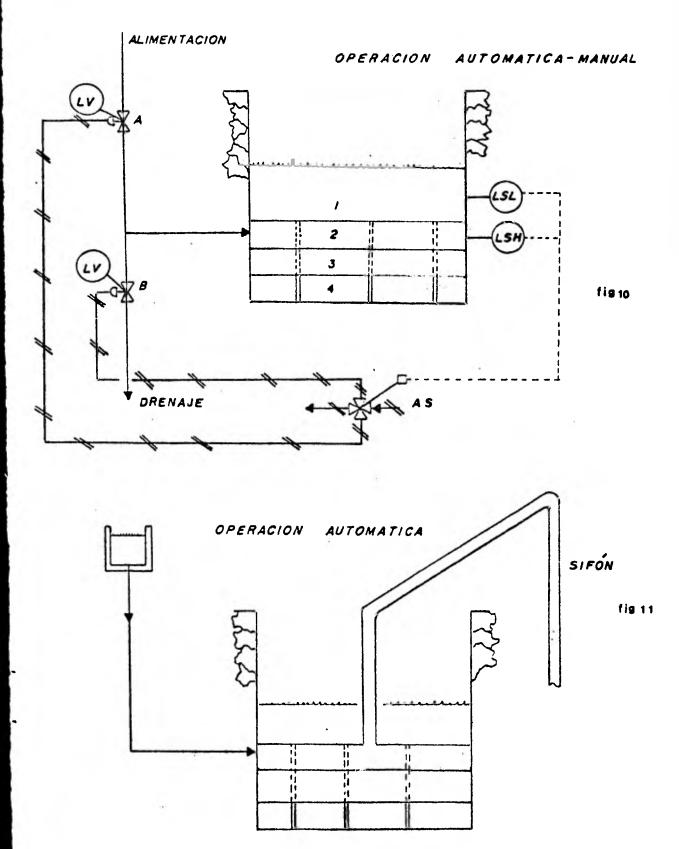
- 1.- Los proveedores "A" y "C" cumplen con todas las especificaciones de diseño requeridas.
 - a). El valor escogido de l GPM/Ft² como velocidad de eleva ción es apropiada para la calidad de agua indicada. Se debe tomar en cuenta que la magnitud de la velocidad superficial sea tal que no arrastre los sólidos—que se encuentran suspendidos.
 - b). Los tipos de clarificadores ofrecidos tienen alta eficiencia y proporcionan flexibilidad en su operación.

2.- Desviaciones.

El proveedor "B" sufre las siguientes desviaciones a las - especificaciones:

- a). El flujo de diseño no es el requerido.
- b). El tipo de clarificador ofrecido es de menor eficiencia, presentando problemas cuando las espreas que arro jan el agua sobre las paletas se tapan, impidiendo el giro de las rastras.
- c). La velocidad de elevación esta por debajo de la especificada.
- d). No proporciona todo el equipo requerido para la clo-ración.

3.- Consideraciones.


Las siguientes consideraciones deberán ser hechas entre los proveedores "A" y "C"

- a). Las purgas en el clarificador del proveedor "A" son mayores.
- b). Las potencias de algunos accionadores eléctricos -del proveedor "C" son mayores, lo que se reflejaráen un aumento del costo de operación.

3.2. TABULACION DE LAS CARACTERISTICAS DE FILTRACION.

FILTROS DE ARENA.

FILTROS DE CARBON ACTIVADO.

- El filtro consta de 4 secciones: 11g 10
- 1.- Almacenamiento de agua filtrada.
- 2.- Recepción y distribución de agua clarificada.
- 3.- Medio filtrante.
- 4.- Fondo del filtro.

En la operación normal la válvula "B" está cerrada y la válvula "A" abierta. Conforme transcurre la carrera y el medio filtran te va taponándose el nivel del líquido en el compartimiento derecepción va subiendo hasta el punto de operación del interruptor de alto nivel, este manda una señal a la válvula solenoide, la cual acciona la válvula "A" para que cierre y envia otra ---señal a la válvula "B" para que abra en ése momento la alimenta ción al filtro es cortada y empieza el retrolavado, siguiendo--el flujo una trayectoria hacia atrás del compartimiento de agua filtrada (1) hacia la recepción del líquido (2), arrastrando --los sólidos retenidos por el filtro.

Conforme el retrolavado continua el nivel del líquido en el --compartimiento de agua filtrada disminuye hasta llegar hasta -el punto de operación del interruptor de bajo nivel. Operando a
este, el cual envia una señal a la válvula solenoide que a su -vez manda cerrar la válvula "B" y a abrir la "A", con lo cual -se cierra el ciclo de retrolavado y comienza la filtración ---nuevamente.

Es importante hacer notar que este es un tipo de filtro de gravedad operado por un sistema simple, y puede haber sistemas mássofisticados para el funcionamiento de estos equipos.

OPERACION AUTOMATICA

El diseño de estas unidades es similar al anterior. fig11

Filtración: El agua entra al filtro y fluye por gravedad a --
través de la cama de arena pasando al compartimiento inferior
de donde es inducido hacia el compartimiento de almacenamiento,

colocado en la parte superior del filtro.

<u>Iniciación de retrolavado:</u> Conforme transcurre la filtración - la cama de arena se ve taponada ocurriendo una elevación del -- agua en la tubería que provocará el Sifón.

Retrolavado: Cuando el nivel rebasa el tope de la pendiente seprovoca el sifón, induciendo el agua hacia atrás, lavando la -cama.

<u>Llenado del Almacenamiento</u>: El retrolavado continua hasta va-ciar el compartimiento de almacenamiento cerrándose nuevamenteel ciclo.

DESCRIPCION	REQUERIDO	PROVEEDOR A	PROVEEDOR B	PROVEEDOR C	
5. Filtros por gravedad.	(2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	1-9-10 - 1-1-1 - 1-1-1-1-1-1-1-1-1-1-1-1-1-	1 1280 I	a comparable programme	
5.1. General	Alexander 1				
Operación	Automática/Man.	Automática/Man.	Automática	Automática/Mar	
# de filtros	2 minimo	19 (3 a 1) A 2 Maga	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	3 (55-50) 80000	
Medio filtrante	Arena	Arena	Arena	Arena	
Tamaño de partícula (in)	Por Proveedor	0.017 = 0.021	0.02 a 0.03	0.01 a 0.02	
Altura de la cama (in)	**************************************	24	24	24	
Vol. unidad/total (ft ³)		798/2394	798/1596	907/2719	
5.2. Condiciones de operación					
Plujo de diseño: GPM.	Tarkerar Since	Company the shap was	Water of the second	With the Market and	
Sistema	3000	3000	2492	3000	
Unidad	Por proveedor	1000	1246	1000	
Vel. diseño/máx. GPM/ft2	3.27	12.5/5	3/3.1	2.2/3.3	
Plujo de retrolavado (GPM)	Por proveedor	3597	7200	3782	
Vel. de retrolavado GPM/ft2		9	18	15	
Tiempo de retrol/fracuencia		5 min/24 hrs.	5 min./24 hrs.	4.5/24 hrs.	
Tiempo de llenado (min.)	and the second	15	20	15	
Turbidez de salida	1 JTU	1 JTU	1 JTU	1 340	
5.3. Construcción	Por proveedor				
Dimensiones:	Alternative Contract	1 2 2 3 3 3 3	11		
Longitud (ft)	A	20	25	20	
Ancho (ft)	Val. 12.3	20	16	20	
Altura (ft)		15	16	15.4	
Vertedero/tipo	Jawi - I	Si/disco	Si/disco	Si/disco	
Conexiones: (in)	12	1 20		 B. Martine plint 	
Entrada/salida		16/16 = 150#	14/14 - 150#	16/16 - 150#	
Retrolavado	·	12 7 150#	12 - 150#	12 - 150#	
Drenaje		3 7 150#	4 T 150#	4 - 150#	
	+				
<u></u>		1			

	DESCRIPCION	REQUERIDO	PROVEEDOR A	PROVEEDOR B	PROVEEDOR C		
5.4.	Materiales				913 939 13		
1 2	Cuerpo	Concreto	Concreto	Concreto	Concreto		
OR HE	Falso fondo/soporte	por proveedor	Acero/acero	Acero/Acero	Acero/Acero		
. 4.1	Almacén de agua		Concreto	Concreto	Concreto		
27	Vertedero	to the second	Acero al C.	Acero al C.	Acero al C.		
10		galler, te		Attition of the second			
.5.	Instrumentación	Por Proveedor.	The second second second second	100000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	Control automático		Switch de alto y	Tipo sifón	switch de alto		
	de nivel	1 24	bajo nivel	*	bajo nivel		
	Retrolavado		Válv. solenoides		Válv. solenoides		
e (Control manual de	·	Botones para		Botones para		
è .	Retrolavado	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	operar válvulas		operar válvulas		
11. 14.2	Eyectores	Eyectores		No requerido requerido			
6.0	Filtros de Carbón activado	Por Proveedor					
6.1.	General						
zulija daj s	No. de filtros 2 mínimo		3	3	2		
g# 11 -	Tipo de operación			Semiautomática	Manual		
	Vol. de carbón: (ft3)			1	The state of the s		
50	Unidad	7.7	170	56	269		
i.,	Total	27	510	158	535		
6.2	Condiciones de Oper.	Por proveedor		1			
Ç.	Flujo de diseño: GPM	7.7		1			
14	Sistema		380	378	379		
1	Unidad		126	1126	189		
-	Vel. de diseño GPM/ft2	3 a 6	3,29	4.44	3.00		
4	171						
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 1		
60							
-				1			
				1	*		

DESCRIPCION	REQUERIDO	PROVEEDOR A	PROVEEDOR B	PROVEEDOR C
3. Construcción	Por proveedor			
Dims: Ø / h - (in)		83.8/89.7	67/47	108/96
Conecciones: Entrada	24.5	3"	3",	6"
Salida		3"	3 "	6
Entrada de vapor		1 1/2"	No requerido	No requerido
		14.15		
4. Materiales	Por proveedor.			
Cuerpo/cabeza	. 1	A285/A285	A285/A285	A285/A285
Internos		Ac. Inox.	Ac. Inox.	Ac. Inox.
Recubrimiento Interno	Ερόχιςο	Epóxico	Ερόχιο	Ербкісо
		2 2		
	7.5	4		12.41
		• 1	1 1	
		1		
		222		116
			-	
				~
				<u> </u>
			<u> </u>	
				-
			+	

De los puntos 5 a 6.4 de la tabla comparativa se puede concluir:

- 1.- El proveedor "A" cumple con todas las especificaciones de diseño referidos:
 - a). Velocidades de filtración cercanas a 3 GPM/ft² son recomendados en aplicaciones industriales. En ocasiones cuando la turbidez es baja (de 25 a 50 ppm.) se utilizan flujos de hasta 10 GPM/ft²
 - b). El área de filtración concuerda con lo indicado: Area de filtración = 400 ft^2 Flujo de diseño = $1000 \text{ Gal.} \times 0.13 \text{ ft}^3 = \min \quad 1 \text{ gal.}$

=130 ft³/min.

La velocidad de diseño = 2.5 gal x .13 ft³ = min ft² gal.

=0.32 ft³/min ft²

130 Ft3/min. = 400 Ft²; corresponde a lo ofrecido 0.325 ft³/min.ft²

2.- Desviaciones:

a). El área de filtración propuesta por el proveedor "C" no concuerda con los datos proporcionados.

Proveedor "C"

Area de filtración = 400 ft^2

Flujo de diseño = 130 ft³/min.

Velocidad de diseño= 2.2 gal/min. ft² =

0.286 ft³/min.ft²

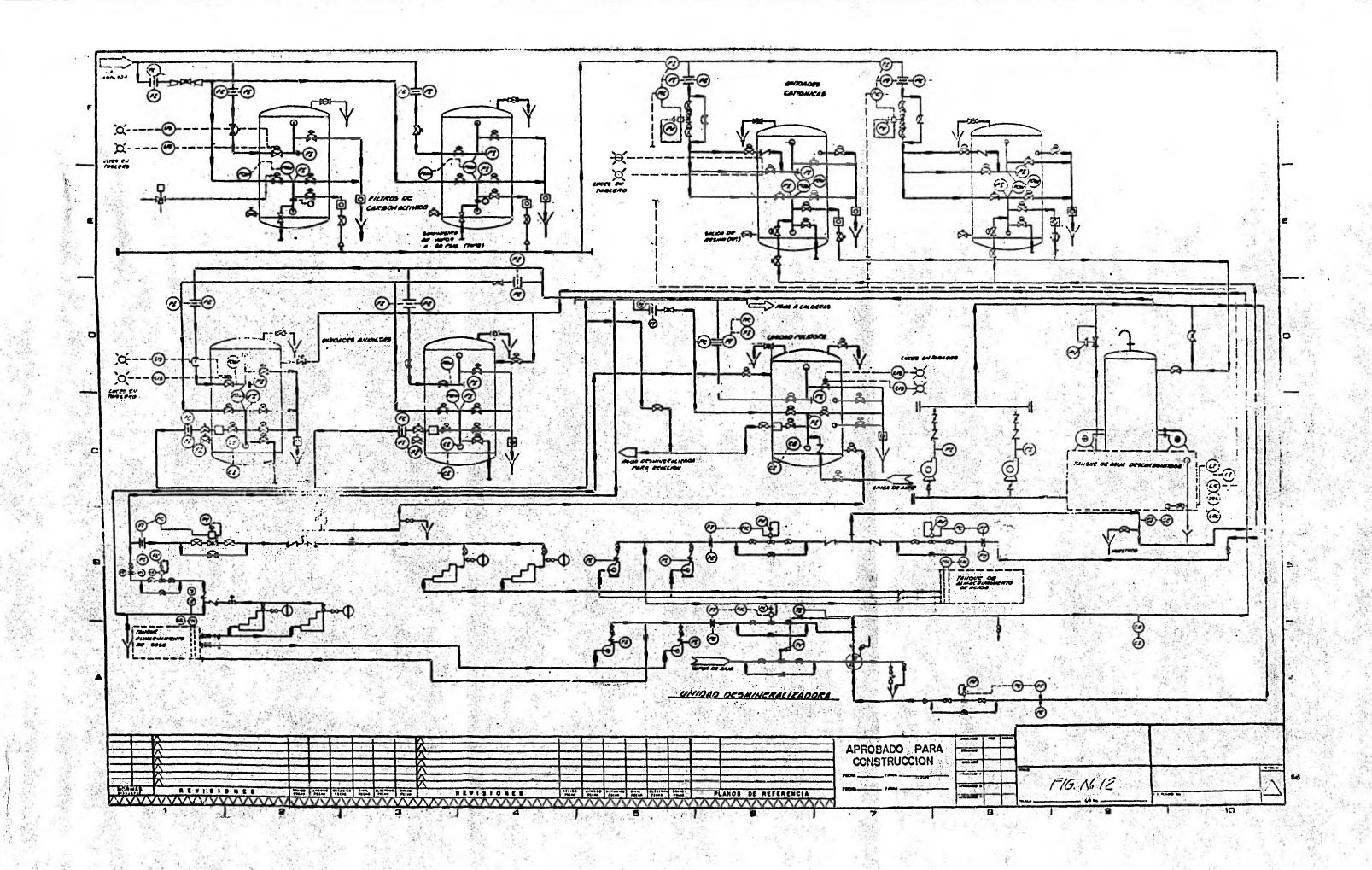
 $\frac{130 \text{ ft}^3/\text{min.}}{0.286 \text{ ft}^3/\text{min.ft}^2}$ $454.5 \text{ ft}^2 \text{ que no concuerda con los}$ $400 \text{ ft}^2 \text{ ofrecidos}$

- b). El flujo de diseño del proveedor "B" no es el indicado en el balance general.
- c). La operación del filtro del proveedor "B" es automática del tipo "Sifón" lo cual lo hace poco flexible.

Filtros de Carbón Activado.

El proveedor "A" proporciona la entrada de vapor para regeneración del carbón activado. La utilización de vapor para regeneración no ha sido un método muy eficiente para este efecto.

Sin embargo este proveedor cumple con la especificación que indica la utilización de este
método.


3.3 TABULACION DE LAS CARACTERISTICAS DEL

"SISTEMA DE DESMINERALIZACION"

A continuación se presenta un sistema típico de desmineralización por intercambio iónico, junto a un tren de filtros de ---carbón activado (fig.12).

En éste diagrama se está indicando, la instrumentación básica, para el funcionamiento de la planta desmineralizadora.

La información señalada por los diferentes concursantes es mostrada a continuación y posteriormente en el capítulo 4 enbase a ésta información se generarán los datos requeridos para efectuar la evaluación deseada.

DESCRIPCION	REQUERIDO	PROVEEDOR A	PROVEEDOR B	PROVEEDOR C		
7. Unidad Desmineralizadora	Por proveedor	•				
1.1 General.		19 1	·			
No. de trenes		2	2	2		
Capacidad (GPM)	300	300	300	300		
Ciclo de operación (Hrs.)	Por proveedor	16	16	16		
Regenerantes		H2SO4/NaOH	HC1/NaOH	H2SO4/N2OH		
.2 Unidad cationica fuerte	Por proveedor					
Tipo de resina usada		IONAC C-242	IR-120	IR-120		
Caida de presión (psi)	1	10	10	10		
7.3 Unidad aniónica fuerte	Por proveedor					
Tipo de resina usada	. 1	IONAC A-651	IRA-402	IRA-402		
Caida de presión (psi)	1	10	10	10		
7.4 Unidad pulidora	Por proveedor					
Ciclo de operación		72	144	72		
Capacidad (GPM)	225	225	225	225		
Tipo de resina utilizada	Por proveedor	IRA 402/IR-120	IRA 402/IR 120	IRA 402/IR 120		
Caida de presión (psi)		10	10	10		
7.5 Regeneración del Sistema	Por proveedor					
U. aniónica			4.1			
Bombas / Tipo		2/centrifuga	2/diafragma	2/centrifuga		
Presión de descarga (psig)		60	75	64		
Pot. motor (kw)		3.73	1.5	3.73		
Volts/Fases/ciclos		440/3/60	440/3/60	440/3/60		
				*		
67	•	*		•		

DESCRIPCION	Por proveedor		PROVEEDOR A		PROVEEDOR B		PROVEEDOR C	
7.6. Intercambiador de calor			requer	requerido		do	Requer	ido
Accesorios:		-						
Válvula de control de vanor				4				•
Trampa de vapor			1					
Termómetro	1							
Válv, de seguridad		* 1141			1			
.7. Regeneración del Sist.	Por pr	oveedor					-	
U. Cationicos.	,	1	- 	-				ī.
Bombas / Tipo		1	2 /Centrifus		2/Centrifugas		2/centrifugas	
Presión descarga (PSIG)		1	60		75		64	
Potencia motor (kw)		7	3.73			3.75)
Volts/fases/ciclos		1	440/3/60		440/3/60		440/3/60	
7.8. Regeneración Pulidor	Por Pi	oveedor				(*)	1	J. 4
7.8.1. Acido								
Bombas / Tipo			2/Dia	ragma	2/Diaf	ragma	2/Dia	ragma
P.descarga (PSIG)			100	- 4	7.5		64	
Pot. motor (kw)		Sec. 2	0.22	5	0,375		0.75	4.5
Volts/Fases/ciclos			220/3	/60	220/3/	60	220/3/	/60
7.8.2. Caústico	Por p	coveedor					1	
Bombas / Tipo	,		2/Diafragma		2/Diafragma		2/Diafragma	
Pre. descarga (PSIG)		1	100		75		64	•
Pot. motor (kw)			0.375		0.375		1.125	
Volts/Fases/ciclos			440/3	/60	440/3/	60	440/3/	/60
					- 			
		···						10 A
68								

TABLA COMPARATIVA

DESCRIPCION	REQUE	7100	DO PROVEEDOR A		PROVE	EDOR B	PROVEEDOR C		
9. Instrumentación	Por Proveedor		Requerido		Requerido		Requerido		
Alarma de alta conduct.							141	-	
Alarma de alta cant.SiOo							 		
en el efluente an.				•				1	
Alarma alta o baja		-1						1	
cond. en efluente							1		
regenerante anion.	-			J.	- 1-1				
Alarma alta o baja cond. en el efluente				•					
cond. en el efluente				o.			Α.		
reg. ácido.	1,000								
					12			1	
	1			····					
	ļ					····			
						·			
									
									
									
	·		_						
	·						·		
							· 	·	
							-}		
						····	,		
	 	~ 					-		
	1						1		
					A				
		1.00	279						
			/		-		•		
•									

TABLA COMPARATIVA

DESCRIPCION	REQUERIDO		PROVEEDOR A	PROVEEDOR B	PROVEEDOR C	
3.0 Desgasificador	Por pro	eedor		The state of the s		
General		T		-		
Tipo			Cilindrico vert.	Cilindrico Vert.	Cilindrico Vert	
Capacidad	300		300	300	300	
Empaque	Por pro	veedor	Anillos rashiq	Anillos rashig	Anillos rashiq	
Volúmen de empague (ft ³)			240.3	212	370.8	
Altura de empaque (ft)			8,5	7.5	6,52	
Area transv. (ft ²)		,	28.27	28.26	56.87	
3.1. Mat. de construcción	Por pro	veedor		 		
Tanque	- 19	0	Ac. carbón	Ac. carbón	Ac. carbón	
Distribuidor			Ac, inoxidable	Ac. inoxidable.	Ac, inoxidable	
Tuberia			Ac Carbón	Ac. Carbón	Ac. Carbón	
8.2. Sopladores del Desgasificador	Por pro	veedor				
Cant./capacidad (ft3/min)	23		2/1000	2/1765	2/3120	
Presión de descarq (PSIG)			6	10	6	
8.3. Motor del soplador	Por pro	veedor		14		
Cantidad / kw	7 - Y	-1	2/0.75	2/3.75	2/3.75	
Volts/fases/ciclos		1	440/3/60	440/3/60	440/3/60	
8.4. Bomba de transf.	Por pro	veedor				
Cantidad / tipo			2/centrif.	2/centrif.	2/centrif.	
Capacidad/cabeza			450GPM/124 ft.	700 GPM/150 ft	350 GPM/147 ft	
8.5. Motor de bombas	Por pro	veedor				
Cantidad /kw.	1 1		2/11.25	2/22.5	2/16.5	
Volts/Fases/ciclos	- 4		440/3/60	440/3/60	440/3/60	
	1					
						
7	•	1		•	•	

4.1 GENERACION DE DATOS A PARTIR DE INFORMACION DE PROVEEDORES.

DISEÑO DE UNIDADES INTERCAMBIADORAS.

Información a partir de las curvas de las siguientes resinas:

ROHM AND HAAS COMPANY : AMBERLITE IR-120

AMBERLITE IRA-402

IONAC CHEMICAL : IONAC A-651

IONAC C-242

	A	B	c	D	E	F	G	H
Ca	300	300	300	283.5	0	0	0	0
Mg	139	139	139	80	0	0	0	0
Na	111	111	111	111	5	5	5	0.1
H	0	0	0	0	433.5	433.5	0	0
CATIONES	550	550	550	474.5	438.5	438.5	5	0.1
нсоз	180	152	111.5	0	0	0	0	0
co ₃	0	0	0	35	. 0	0	0	0
OH	0	0	0	1	0	v., 0	3	0.1
CI	83	111	111	111	111	111	2	0
so ₄	287	287	327.5	327.5	327.5	327.5	0	0
ANIONES	550	550	550	474.5	438.5	438.5	5	0.1
	15 A.A.	1.04 1.00					1	1
CO2 como CO2	0.	26	62	0.	15.84	0	0	0
SiO2 como SiO2	15	15	15	15	15	15	0.1	0.01

A = Agua Cruda
B = Después de Cl
C = Después de Alumbre.
D = Después de Cal

= Efluente del Catión = Efluente del Desgasificador.

G = Ef. del anion H = Ef. del Pulidor.

MODIFICACION DEL ANALISIS DEL AGUA POR LA ADICION DE AGENTES QUIMICOS.

lo. Dosificación de cloro = 20 ppm. (Columna B).

- a). Red. de alc. 1.4 \times 20 = 28 ppm. CaCO₃
- b). Incr. CO_2 como CO_2 = 1.3 X 20 = 26
- c). Incr. en Cl ppm. $CaCO_3 = 1.4 \times 20 = 28$

20. Dosificación de Coaquiante. (Columna C)

90 ppm.

- a). Red. alc. = $90 \times 0.45 = 40.5 \text{ ppm}$. CaCO₃
- b). Incr. en CO_2 como $CO_2 = 0.4 \times 90 = 36$
- c). Incr. en $SO_4 = 0.45 \times 90 = 40.5 \text{ ppm. } CaCO_3$

30. Adición de Cal. (Columna D).

Ca > alk.

Mg red a 80 ppm.

 $HCO_3 - 0$

Na - 111

 $CO_3 - 35$

OH — 0 a 10 $Ca = \sum aniones - (Ca + Mg)$

C1 - 111

SO4 - 327.5

<u>Diseño de los pulidores</u> Flujo = 225 gal/min. (Estrato Aniónico)

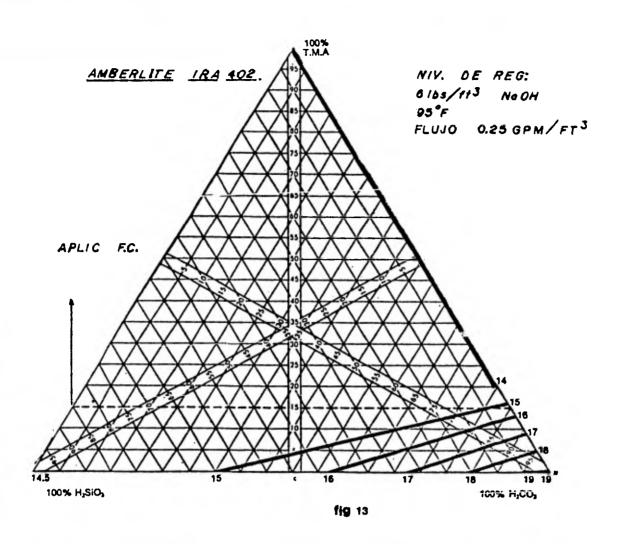
$$S_{1}O_{2}$$
- 0.1 Como $S_{1}O_{2}$ 0.083

Influente de Sílice - 0.016 fracción del total de aniones.

Aniones totales intercambiables = TAE = 5.083

$$\frac{5.083}{17.1}$$
 = 0.29 gr /gal.

duración del ciclo = 72 hrs.


el total de aniones por ciclo es 281.3 Kgr/ciclo

Capacidad de la resina:

$$TMA = \frac{2}{5.084} = 39.4\% \Rightarrow 96\%$$

s₁o₂ ⇒ 4%

a regeneración de 95°F se tiene; que con 6 lbs. de NaOH/Ft³ se consigue el nivel requerido. Fig. 13

FUGA DE SILICE

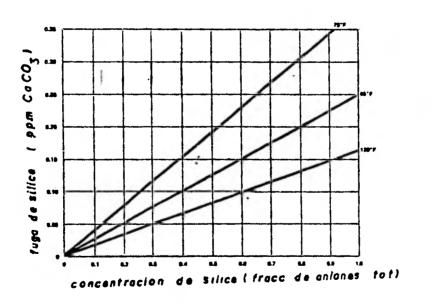
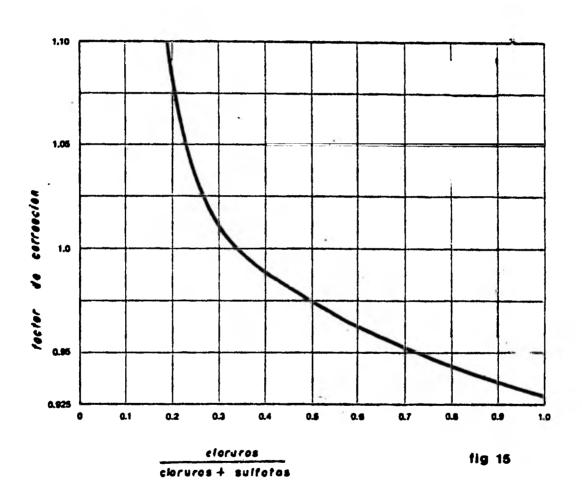



fig 14

CURVA DE FACTOR DE CORRECCION

Capacidad = $14 \text{ Kgr/ ft}^3 \times 0.93 = 13.02 \text{ Kgr/ft}^3$

para unidades mixtas se usa 80% de esta capacidad.

 $13.02 \times 0.8 = 10.41 \, \text{kgr/ft}^3$

 $\frac{281.3 \text{ kgr.}}{10.41 \text{ kgr./ft}^3} = 27.02 \text{ ft}^3 \text{ de resina.}$

altura minima requerida de resina = 2 ft.

$$\frac{27.02 f t^3}{2 f t} = 13.51 f t^2$$

Area de la sección circular

$$r = \sqrt{\frac{13.51}{\pi}} = 2.07$$

usando un Ø comercial = 4 ft A = 12.56 ft2 altura = 2.15 ft

(Estrato Cationico).

1R - 120 - Resina propuesta.

de la tabla # 4 la cual dá el valor de capacidad de la resina.
(Esta tabla esta basada en 100% de Alcalinidad.)

		2.0 lb/ft ³		4.0 lb/ft ³		6.0 lb/ft?	
Ale., %	Na, %	Capac., kgr/ft ³	Cation % Fuga	Capac., kgr/ft ³	Cation % fuga.	Capac., kgr/ft ³	Cation
0	0	11.9	1.5	18.9	0.4	23.7	0.2
	25	11.7	3.0	18.5	2.0	23.5	1.6
	50	12.2	6.5	19.4	3.9	23.8	3.0
	75	13.3	11.5	20.8	5.1	25.4	5.1
	100	14.9	29.0	22.9	13.1	27.9	7.9
50	0	12.4	1.0	19.5	0.5	25.1	0.4
	25	12.2	2.5	19.1	1.5	24.4	0.5
	50	12.6	4.0	20.2	1.7	24.8	1.0
	75	13.8	8.0	21.7	3.1	26.9	1.6
	100	15.3	20.0	23.9	5.9	28.9	2.2
100	0	12.7	0	20.4	0	25.7	0
	25	12.5	0	20.2	0	25.2	0
	50	13.1	0	20.8	0	25.9	0
	75	14.2	0	22.5	0	27.5	0
	.100	16.0	. 0	24.7	0	29.7	0

Capacidad de la resina = $21.4 \times 0.8 = 17.12 \text{ kgr/ft}^3$ a 5 lb/ft³ de ácido, TCE = cationes totales interc=5

$$TCE = _{5} = 0.29 \text{ gr./gal.}$$

para c/3 días de duración de ciclo = 72 hrs.

. . 281.3 kgr/ciclo

Volumen de resina requerido.

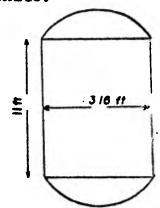
$$\frac{281.3 \text{ kgr/ciclo}}{17.12 \text{ kgr/ft}^3} = 16.4 \text{ ft}^3$$

Teniendo un área ya fijada por el cálculo de la parte aniónica del pulidor se tiene:

$$\frac{16.4 \text{ ft}^3}{12.56 \text{ ft}^2} = 1.3 \text{ ft.}$$

la profundidad minima requerida es de 2 ft.

 $\frac{16.4 \text{ ft}^3}{2 \text{ ft}} = 8.2 \text{ ft}^2 \text{ del estrato catiónico.}$


ajustando a un Ø comercial.

3 ft 2"; area = 7.876 ft^2

altura de las camas:

Catiónica = 2.08 ft.

Aniónica = 3.43 ft.

dimensiones aproximadas del recipiente pulidor: fig 16

Catiónica = 2.08 ft.

Aniónica = 3.43

100% esp.

libre = 5.51

11.02 ft.

Requerimientos:

Retrolavado:

R & H recomienda 3 gal./min/ft2 durante 15 minutos.

 $3 \text{ gal./min./ft}^2 \times 15 \text{ min.} \times 7.876 \text{ ft}^2 = 354 \text{ gal.}$

Dilución del estrato aniónico.

6 lbs. NaOH al 4%

6 X 27.02 ft3 de resina = 162.12 lbs. de sosa

Si la sosa esta al 50%

162.12

162.12

324.24 lbs. totales.

162.12 - 4%

 $\chi_0 - 100\%$

 $\chi_n = 4055$ lbs. total

4055

- 324.243,730 lbs. H_2 0 de dil. = 447 gal.

Sosa = 25.88 gal. al 50%

Tomando recomendación R & H 0.25 gal/min./ft3

 $27.02 \text{ ft}^3 \times 0.25 \text{ gal./min./ft}^3 = 6.75 \text{ gal./min.}$

- Θ -de regeneración : $\frac{447}{6.75}$ = 66.17 min.

Flujo de agua a dilución 6.75 gal/min.

Flujo de sosa a dilución 0.4 gal./min.

Estrato catiónico.

5 lbs./ft3 de ácido sulfúrico al4%

5 lbs./ft 3 × 16.4 = 82 lb. de ácido.

El ácido viene acompañado de una cantidad de agua tal:

 χ_1 - 98 \therefore χ_2 80.36 lbs. son de ácido.

1.64 lbs. son de agua

80.36 - 4%

 $x_1 - 100$

 $X_2 = 2009$

2009
- 82
1927 lbs. de agua de dilución = 231.0 gal.

a igual - ; de la parte aniónica.

Se tiene:

3.5 gal/min. de agua.

0.082 gal/min. de ácido.

Desplazamiento (40% de espacio vacío).

 $27.02 \times 0.4 \times 7.48 = 80.84 \text{ gal}.$

 $0.5 \times 7.87 \times 7.48 = 29.43 \text{ gal.}$

110.2 gal.

al mismo flujo de la etapa de reg.

110.2 gal. = 16.32 min. 6.75 gal/min.

Lavado a drenaje - (25 gal/ft³ a 6 gal/min./ft²) rec. R & H

6 gal/min/ft² x 7.876 = 47.25 gal/min.

25 gal $/ft^3 \times (27.02 + 16.4) = 1085.5$ gal.

1085.5 = 23 minutos. 47.25

Unimixing

10 ft 3 /min./ft 2 X 7.876 = 78.76 ft 3 /min. de alre.

durante 10 minutos.

787.6 ft³ de aire.

Diseño de las unidades Aniónicas:

duración del ciclo 16 hrs.

.. el flujo de cada ciclo será ;287416.96 gal/ciclo.

A esta cantidad hay que sumarle los requerimientos de Retrolavado Desplazamiento, Enjuague rápido del pulidor.

287,416.96

1,085.0

110.0

354.0 288,970.0

del análisis del efluente del desgasificador se tiene:

Cl - 111 ppm. CaCO3

TMA = 89.9%

SO₄ - 322.5 ppm. CaCO₃

Sílice = 2.5%

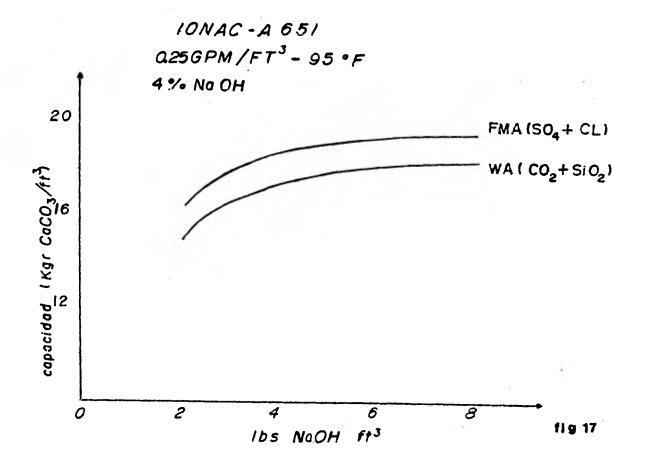
CO₂ - 15.84 ppm. CO₂

Ac. débiles (CO₂) - 7.4%

 $5_{i}O_{2} - 15 ppm. S_{i}O_{2}$

182 ppm. CaCO₃

Fuga -0.1 como SiO2


-0.083 ppm. CaCO3

Resina propuesta Ionac A-651 para 4 lbs. NaOH/ft³

Wa = $(CO_2 + S_1O_2) = 17.5 \text{ kgr}/\text{ft}^3$ SA = FMA = $(SO_4 + C1) = 18.7 \text{ kgr}/\text{ft}^3$ Si WA (% $CO_2 + S_1O_2$) + SA (% FMA) = capacidad

...

(17.5 X 0.1) + 18.7 X .9 = 18.58 kgr/ft³

% Silice de entrada - 2.5% = 16 ppb = 0.016 ppm.

ppm. Na 5 ... f Na = 1.6

 $16 \times 1 \times 1.6 = 25.6 \text{ ppb} = 0.025 \text{ ppm}.$

482 ppm/17.1 = 23.18 gr/gal.

288970 gal. x 28.18 gr. x 1 kgr. = 8144 kgr.

Capacidad 18.58 kgr/ft3

Volúmen de resina: 8144 kgr. = 438 ft³ de IONAC A651 18.58 kgr/ft³

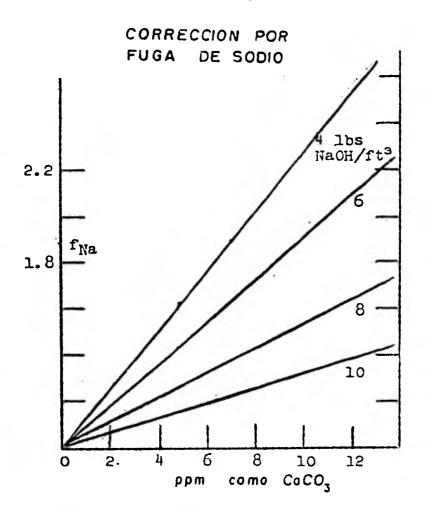
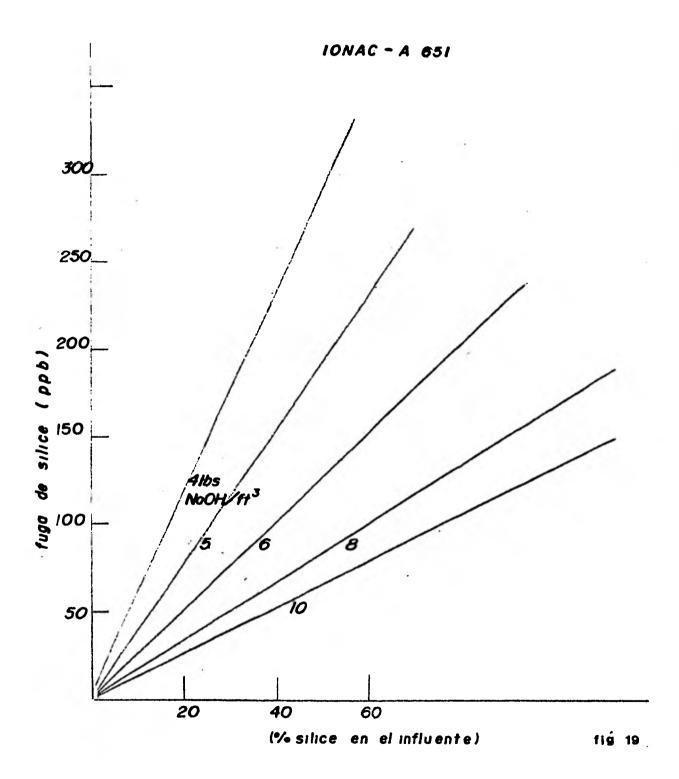
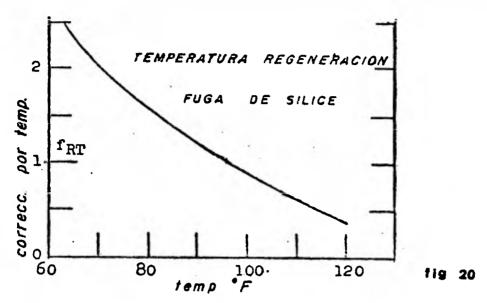




fig 18

Recomendación de flujo de servicio 6 gal/min/ft².

$$\frac{288,970 \text{ gal.}}{16 \text{ hrs.}} \times \frac{1 \text{ hr.}}{60 \text{ min.}} = 300 \text{ gal/min.}$$

$$\frac{300 \text{ gal/min.}}{6 \text{ gal/min./ft}^2} = 50 \text{ ft}^2.$$

$$= \sqrt{\frac{50 \text{ ft}^2}{\pi}} = 3.98 \text{ ft} \therefore = 0.4 \text{ ft}$$

 $A = 50.26 \text{ ft}^2$

h = altura 8.71 ft.

Retrolavado - 2 gal/min/ft² - 10 minutos

Gasto = 1005.2 gal

Regeneración

4 lbs. sosa/ft3

 $4 \times 438 = 1752 \text{ lbs. de sosa}$

1752 - 4%

 $\chi_3 = 100\%$.. $\chi_3 \cdot 43.800$ lbs. totl.

-3.504 40.296 lbs. H_2O de dilución = 4830 gal.

280 gal. de sosa al 50%

Flujo recomendado de inyección: 0.25 gal/min/ft3

 $0.25 \times 438 = 109.5 \text{ gal/min.}$

5110 gal = 47 min. 109.5 gal/min.

Flujo de sosa = 6 gal/min.

Flujo de agua = 108 gal/min.

Desplazamiento: (40 % de espacios vacios)

438 ft 3 X 0.4 X 7.48 gal/ft 2 = 3276 gal.

siguiendo con el mismo flujo de dilución.

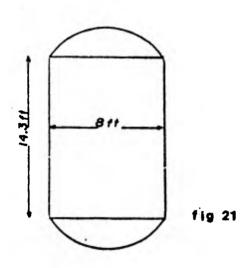
3276 qal. 108 gal/min. = 30.33 min.

Lavado a drenaje - Recomendado - igual al flujo de oper.

6 $gal/min/ft^2 \times 50.26 ft^2 = 301.56 gal/min.$

El flujo total recomendado por IONAC correspondiente a desplazamiento y lavado rápido es 75 gal/ft³.

 $75 \times 438 = 32850 \text{ gal.}$


Si el Desplazamiento es: 3276 gal.

.. Lavado a drenaje = 32850 - 3276 = 29574

29574 gal. 301.56 gal/min. = 98 min.

Diseño del recipiente. - (75% de espacios libres.)

0.75 X 8.17 ft + 8.17 ft 14.3 ft de parte recta

2 unidades - 1 operación 1 regeneración.

Diseño de Unidades Catiónicas.

Resina propuesta IONAC C-242

% Na = 23.4 %

Mg/dureza total. = 16.85%

% Alcalinidad = 7.37 %

Fuga = 5 ppm.; % Aniones fuertes = 0.92

Fuga - (%) de aniones.

5 - 0.92 = 4.08

Regeneración = $5 lbs./ft^3$

Capacidad = 18 kgr./ft3

Flujo de agua a tratar: consiste en el flujo normal: 287416.9 gal. más los requerimientos de servicios a la unidad aniónica.

que son 38685 gal. + 678 gal. de agua descationizada.

que es usada para regeneración del pulidor:

TOT = 326779.9 gal; Del análisis de agua - TCE = 474.5 ppm.

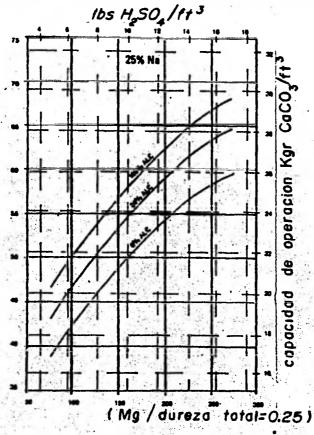
TCE = $\frac{326779.9 \times \frac{474.5}{17.1 \times 1000}}{17.1 \times 1000} = \frac{9067 \text{ kgr./ciclo.}}{17.1 \times 1000}$

9067 kgr. = 503.38 ft³ de IONAC C-242 18 kgr./ft³

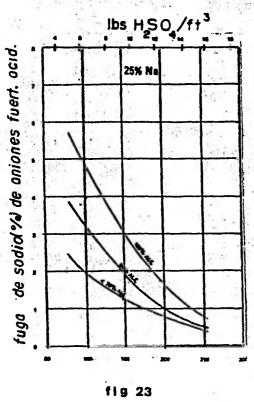
Usando un Ø similar al de la unidad aniónica.

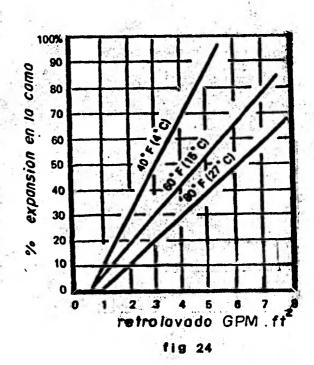
 \emptyset propuesto = 10 ft A = 78.53 ft²

 $\frac{503.38}{78.53}$ = 6.4 ft de alto.


Retrolavado: de 50 a 75% de expansión de la cama.

Tomando 6 gpm/ft2


(Fig. # 24)


 $6 \times 78.53 = 471.18 \text{ gpm}$

10 minutos ; 4711.8 gal.

IONAC-C 242 REGENERACION: IOO% IbsH₂SO₄/ft³

- 90

REGENERACION:

 $5 \text{ lbs/ft}^3 \times 503.38 \text{ ft}^3 = 2517 \text{ lb } \text{H}_2\text{SO}_4$

HACIENDO LA REGENERACION EN :

2 PASOS

1/2 al 2%

1/2 al 4%

 $\frac{2517}{2}$ = 1258.5 lbs.

1258.5 - 2%

 $X_4 - 100\%$

 $X_4 = 62900$

1258.5 - 100%

X₅ - 98%

 $X_5 = 25.67 \text{ lbs. } H_2O$

que acompañan al ácido

62900

- 1258.0

- 26 61616 lbs. de agua de dilución = 7386 gal.

lbs.de ácido de 98% = 83.64 gal.

Flujo recomendado = 0.75 gpm/ft³ por IONAC.

 $0.75 \times 503.38 = 376 \text{ gpm. de agua}$

 $\frac{7836 \text{ gal}}{376 \text{ gpm.}}$ = 19.64 min.; dilución de ácido = 4.25 gal/min.

Dilución para 4%

$$X - 100\%$$
 $X = 31450$

- 1258

.. a la misma velocidad:

$$\frac{30166}{62.4}$$
 x $\frac{7.48}{19.64}$ = 184 gpm. de agua de dilución

Acido = 4.25 gpm.

Desplazamiento: Flujo recomendado 0.375 gpm./ft3.

$$503.38 \times 0.375 = 188.2 \text{ gpm}.$$

Volúmen recomendado 1.5 BV

en donde BV = volúmen de cama.

 $1.5 \times 503.38 = 755.07 \text{ ft3} = 5647 \text{ gal.}$

$$\frac{5647}{188.26}$$
 = 30 minutos de desplazamiento.

Lavado a Drenaje: Recomendado 1.25 gpm./ft3.

 $1.25 \times 503.38 = 629 \text{ gpm}.$

Volúmen recomendado GBV

$$6 \times 503.38 \times 7.48 = 22591.6 \text{ gal.}$$

$$\frac{22591.6}{629}$$
 = 36 minutos.

DIMENSIONES APROX. DE LA UNIDAD CATIONICA.

6.4 ft. de resina

6.4 X 0.75 11.2 ft de altura

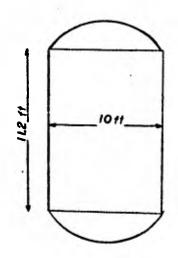


fig 25

ANALISIS DEL PROVEEDOR "B"

	A	В	C	D	E	F	G	Н
Ca.	300	300	300	300	0	· O	0	o
Mg.	139	139	139	139	0	. 0	O	0
Na.	111	111	111	111	5	5	5	0.1
	0	0	0	0	407	407	0	. 0
CATIONES	550	550	550	550	412	412	5	0.1
нсо	180	166	138	138	0	0	0	0.
co ₃	0.	0	0	0	0	0	0	0
OH	0	0	0	0	0	0	5	1
C1	83	97	97	97	97	97	0	0
so ₄	287	287	315	315	315	315	0	0
ANIONES	550	550	550	550	412	412	5	.1
		900	1		1	9 14.		40
CO ₂ como CO ₂	0	13	37.8	37.8	98.5	0	0	0
s_{i}^{0} como s_{i}^{0}	2 15	15	15	15	15	15	.1	0.01

table 5

A.	Agua Cruda	E		Ef.	cama cationica
B.	Adición de cloro	E	7.	Ef.	Desgasificador
c.	Adición de Coagulante.	. 6	3.	Ef.	Cama aniónica.
n	Dorlf de Ca(OH).	1	Ħ.	Ef.	Pulidor.

Modificación al análisis del agua cruda por la adición de agentes químicos.

Adición de Cloro: propone adicionar 10 ppm.

Red. Alc. 1.4 X 10 = 14.0 ppm. $CaCO_3$

Incr. CO_2 como $CO_2 = 1.3 \times 10 = 13$

Dosificación de coagulante $(Al_2(SO_4)_3 \cdot 18 H_2O)$

62 ppm.

.. Red alc = $0.45 \times 62 = 27.9 \text{ ppm. } \text{CaCO}_3$

Incr. $CO_2 = 0.4 \times 62 = 24.8 \text{ como } CO_2$

Incr. $SO_4 = 0.45 \times 62 = 27.9 \text{ ppm } CaCO_3$

(Resultados; en la columna "C"del Análisis)

<u>Diseño del Pulidor</u>. (RESINA IRA-402) Estrato Aniónico.

Influente de SiO2 (ppm. CaCO3) - 0.083

Fuga de S_1O_2 (ppm. $CaCO_3$) - 0.0083

Temp. de regeneración = 95°F

Concentración de sílice = $\frac{0.083}{5.083}$ = 1.6%

Nivel de regeneración : 6 lbs. / ft3

Capacidad = $14.5 \times 0.8 = 11.6 \text{ kg/ft}^3$

TAE = 5.083 = 0.29 gr./gal.

Tiempo de duración del ciclo = 144 hrs.

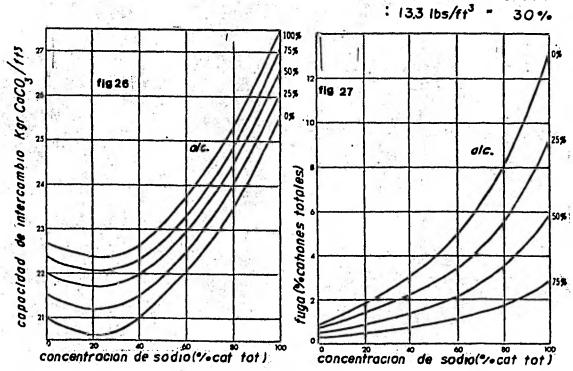
total de aniones intercambiables por cidlo. - 526 kgr.

· Volumen de resina requerido.

Estrato Catiónico :

Resina propuesta IR 120

Regeneración con HCl


Na - 5 ppm. CaCO3

alcalinid-100 %

Cantidad de cationes interc. = 567.2 kg.

Fuga - 2%

AMBERLITE IR 120 PLUS NIVEL DE REG.: 4 lbs/11 HCL 100%

Capacidad 27.5 \times 0.8 = 22 kgr/ft³

Volúmen :
$$\frac{567.2}{22}$$
 = 25.78 ft³

Teniendo una altura de 2 ft minimo; para el estrato catiónico.

$$\frac{25.78 \text{ ft}^3}{2\text{ft}}$$
 = 12.9 ft²

$$\therefore A = \pi r^2 \implies g = 4.05 ft$$

Ajustando a un Ø comercial = 4 ft; Area = 12.57 ft2.

altura del estrato Aniónico = 3.85 ft.

Regeneración simultánea.

Para sosa 6 lbs./ft3. X 48.5 = 291 lbs.

291
291
582 lbs. totales
291 - 4 %
$$\chi_6$$
 - 100 % χ_6 = 7275 lbs.

y ; 46.5 gal. de sosa.

- 60 minutos de contacto.

$$\frac{802.3}{60} = 13.37 \text{ gal/min. de agua}$$

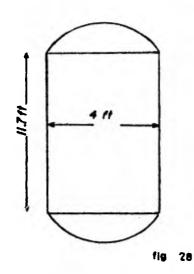
$$\frac{46.5}{60} = 0.77 \text{ gal/min. de sosa.}$$

la concentración de regeneración de HCl debe ser de 15%

.. partiendo de 30% (concentración común de venta de HCl)

$$\beta = 1.14 \times 62.4 \times \frac{1}{7.48} = 9.51 \text{ lb/gal.}$$

13.3 lbs. (30%)/ft3. X 23.78 ft3. = 342.8 lbs. de ácido.


342.8 - 100%

$$x_7 - 30 \%$$
 ... $x_{7} = 102.8$...

Estrato Cat. - 2ft.

Estrato Anión-3.85 ft.

100 % 5.85 11.7 ft.

$$X_8 = 685 lbs.$$

Flujo

$$\frac{42.6}{60} = 0.68 \text{ gal/min. de ácido.}$$

$$\frac{36}{60}$$
 = 0.6 gal/min. de agua.

Retrolavado. Flujo recomendado 3 gal/min./ft2. durante 15 minutos.

3 gal/min/ft2. X 12.57 ft2.X 15 min. = 565.6 gal.

a una vel. de 37.71 gal/min.

Desplazamiento con el flujo de regeneración.

 $48.5 \times 0.4 \times 7.48 = 145.1$

 $12.57 \times 0.5 \times 7.48 = 47$

192 gal.

Con el mismo flujo de regeneración :

$$\frac{192}{13.35}$$
 = 14.36 min.

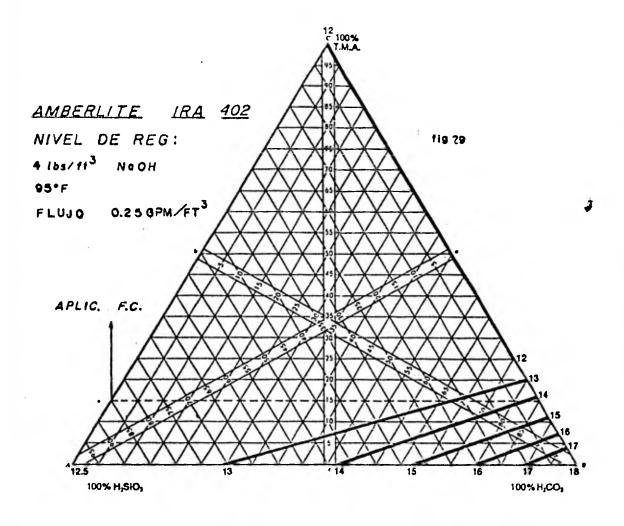
lavado rápido = 25 gal./ft3. de ambas resinas a 6 gal/min./ft2.

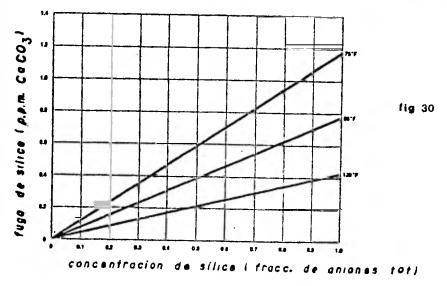
Res. An. 48.5 ft3.

Res. Cat. 25.78 ft3. 74.28 X 25 = 1857 gal.

6 gal/min./122. X 12.57 = 75.42

 $\frac{1857}{75.42} = 24.6 \text{ min.}$


Diseño de la unidad Aniónica. (Tiempo de ciclo = 16 hrs.)


Resina propuesta IRA-402; a 95°F de Regeneración del análisis del agua:

C1 - 97 ppm. CaCO3

 $SO_4 - 315 \text{ ppm. } CaCO_3$ TEA = 424.45 ppm. = 24.82 gr/gal.

 $H_2S_1O_3 - 12.45 \text{ ppm. } CaCO_3$

Flujo de operación recomendado 5 gal/min/ft2.

Area = 60.13 ft2; \emptyset = 8'9" altura 9.41 ft.

Retrolavado 3 gal/min/ft2. durante 15 minutos.

 $3 \times 60.13 \times 15 = 2705 \text{ gal.}$

a un flujo de 3 % 60.15 = 180 gal/min.

Regeneración con sosa:

4 lbs./ft3. X 566 ft3. = 2264 lbs. de sosa

 $^{\circ}$. sosa 50% = 1.5 X 62.4

2264 2264

4528 lbs.

 $\frac{4528}{62.4 \times 15}$ x 7.48 = 361.85 gal de sosa

dilución al '4%

2264 - 4%

X₉ 100%

 $X_0 = 56600 \text{ lbs. tot.}$

- 4528

52072 lbs. de agua de dil.

 $\frac{52072}{62.4}$ x 7.48 = 6241 gal. agua

Flujo de regeneración recomendado.

1.00 gal/min./ft2.

1 X 60.13 = 60.13 gal/min.

 $\frac{6241}{60.13} = 103.79 \text{ min}$

Flujo de sosa = 3.48 gal/min.

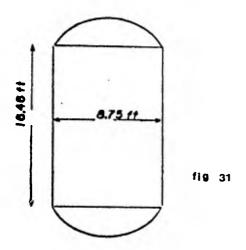
Desplazamiento (40% espacios vacios)

 $566 \times 0.4 \times 7.48 = 1693.4$

60.13 X 0.5 X 7.48= 224.8 1918.28 gal.

al mismo flujo de reg:

$$\frac{1918.28}{60.13} = 32 \text{ min.}$$


Lavado rápido

80 $gal/ft^3 \times 566 ft = 45280 gal.$

flujo 3 gal./min/ft3.X 566 = 1698 gal/min.

$$\frac{45280}{1698}$$
 = 26.66 min.

Dims. aprox. U. Aniónica.

$$9.41 + (9.41 \times 0.75) = 16.4 ft$$

Diseño de la Unidad Catiónica.

Regeneración HCl

del análisis tenemos:

$$% Na = 20%$$

Resina propuesta IR-120; con 16.7 lbs. (30%)/ft3.

Capacidad 24.2 kg/ft3.

$$TCE = 550 = 32.16 \text{ gr./gal.}$$

344500.2 gal/ciclo X 32.16 gr./gal. X l kgr/1000gr = 11079Kgr

utilizando un Ø similar al de la Unidad Aniónica.

Retrolavado - flujo recomendado (15 minutos)

6 gal/min/ft2.

6 gal/min/ft2. = 360.78 gal/min. X 15 = 5411.7 gal.

Regeneración:

16.7 lbs. al 30%/ft3.

16.7 X 457.8 = 7645.2 lbs. 7645.2 - 100%
$$x_{10}$$
 - 30% x_{10} = 2293

2293 15%

$$X_{H} = 15286$$
 lbs. totales 15286

- 7645 7641.6 lbs. de agua de dilución.

Flujo de Acido:

$$\frac{7645.2 \times 7.48}{62.4 \times 1.14 \times 1} = 804 \text{ gal}.$$

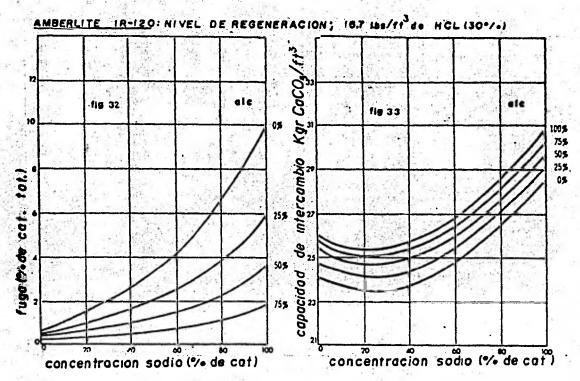
Flujo de agua:

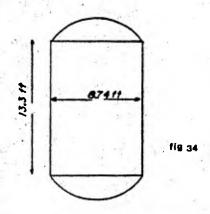
$$\frac{7641.6 \times 7.48}{62.4}$$
 = 916 gal.; Tiempo de reg. 23.2 min.

Desplazamiento (40%)

$$0.4 \times 457.8 \times 7.48 = 1369$$

$$0.5 \times 7.48 \times 60.13 = 224$$
 1594 gal


al mismo flujo de dil.:


Lavado rápido.

60 gal/ft3. X 457.8 = 27468 gal. a 6 gal/min./ft2.

Flujo = 360 gal/min.

Tiempo = 76.1 min.

ANALISIS DEL PROVEEDOR "C".

Q 2.5	A =	C	D	B	P	G	H	4
Ca.	300		300	0	0	0	0	2
Mg.	139		111	0	0	0	0	
Na.	111		139	5.	5	5	0.1	
H	0		0	365	365	0	0	
CATIONES	550		550	37.0	370	0	0.1	
HCO3	180	4	180	0	0	0	0	
co ₃	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0	0	0	0	
ОН	ο.		0	0	0	3	0.1	1
C1	83		83	83	83	1 .	0	.,
so ₄	287		287	287	287	0	0	
ANI ONES	550	7.5	550	370	370	5	0.1	
CO2comoCO2	0		0	792	5	0	0	
SiO2como C	2 15		15	15	15	0.1	0.01	

table 6

- A. Análisis de agua cruda. E. Efluente Catiónica.
- * B. Después de adicional Cl. F. Efluente Desgasificador.
- * C. Después de adicional Coag. G. Efluente Aniônico.
 - D. Después de adicional Cal . H. Efluente Pulidor.

^{*} Sin datos de dosificación

Diseño del pulidor.

Del análisis;

(ESTRATO ANIONICO)

OH - $3 \text{ ppm. } CaCO_3;$

C1 - 2 ppm. CaCO

Nivel de reg: 6lbs./ft3.

Sílice - 0.083

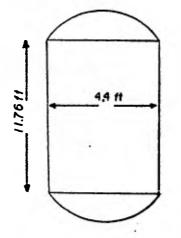
a 95°F.

Fuga - 0.0083

TEA = 5.083 = 0.297 gr/gal.

Capacidad:

 $14.0 \times 0.8 = 11.2 \text{ gr/gal}.$


. 562 kgr.

(Estrato Catiónico) (IR 120)

de la tabla (6)

5 lbs/ft3. .. Cap. = 21.4 kg/ft3. X 0.8 = 17.12 kgr/ft3.

 $\frac{5}{17.1}$ = 0.30 gr/gal. TCE = 582 kgr/ciclo

Estrato Aniónico: IRA 402 (Fig. 13)

$$\frac{562}{11.2}$$
 = 50.23 ft3.

Estrato Catiónico.

$$\frac{582}{17.12} = 40 \text{ ft3.}$$

Flujo recomendado = 15 gal./min./ft2.

Area = 15.32 ft2.; $\emptyset = 4'5$ "

Retrolavado - 3 gal/min/ft2. (15 min.)

Flujo = 45.96 gal/min.

= 690 gal.

Regeneración: 6 lbs. / ft3

48.1 gal. de sosa

831 gal. de agua de dil.

Tiempo de contacto = 60 min.

Desplazamiento

$$50.23 \times 7.48 \times 0.4 = 150.2$$

15.32 X 7.48 X.5 =
$$\frac{57.3}{207.5}$$
 gal.

Tiempo = 15 minutos.

Flujo a dren. 25 gal./ft3. a 6 gal./min./ft2.

.. 2255 gal.

0 = 24.5 min

Estrato Catiónico.

5 lbs. /ft3. X 40 ft3. = 200 lbs. H_2SO_4

4700 lbs. de agua de dil. = 563 gal. de agua

200 lbs. de H_2SO_4 = 13.31 gal. ácido.

Tiempo de contacto = 60 minutos

Flujo de ácido : 0.22 gal./min.

Flujo de agua : 9.96

<u>Diseño de la unidad Aniónica</u>. (Tiempo de duración del ciclo = 16 hrs.).

Flujo de diseño = 290566.7 RESINA IRA 402

C1 . - 83 ppm. CaCO₃

 $50_4 - 287 \text{ ppm. } CaCO_3$ $370 \text{ ppm. } CaCO_3$

Sílice = 12.45 ppm. CaCO₃

% TMA = 370 => 96.7% TEA = 22.36 gr./gal.

% Silice = 3.25%

290566 gal × 22.36 gr./gal.× $\frac{1 \text{ kgr.}}{1000 \text{ gr.}}$ = 6497 kgr.

Cap. = 14 X 1.05 = 14.7 kgr/ft3.

 $\frac{6497}{14.7}$ = 441 ft3. de resina

 $\frac{290566.7}{16 \text{ hrs.}} \times \frac{1 \text{ hrs.}}{60 \text{ min.}} = 302 \text{ gal.}$

a un flujo de 5 gal/min. ft2.

 $\frac{302}{5}$ = 60.53 ft2.

Area comercial = 60.13 ft2.

Altura de la cama= 7.33 ft.

Retrolavado = 3 gal./min./ft2. durante 15 minutos.

Regeneración:

6 lbs./ft3. X 441 ft3. = 2646 lbs. de sosa

2646

+ ~

<u>2646</u> 2646 - 4% 5292 lbs.

 $x_n - 100\%$ $x_{12} = 66150$

5292

60858 lbs. de agua

Flujo de agua = $\frac{60858}{62.4}$ x 7.48 = 7295 gal.

Flujo de sosa = 5292 x 7.48 = 423 gal. al 50 % 62.4 X 1.5

Flujo de regeneración:

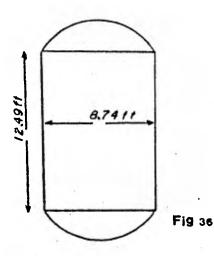
0.25 gal./min./ft3. x 441 = 110.25 gal./min.

Tiempo de regeneración:

 $\frac{7295}{110.25} = 66.16 \text{ min.}$

Desplazamiento: (40%)

 $0.4 \times 441 \times 7.48 = 1320$


0.5 X 60.13 X7.48 = $\frac{224}{1544}$ galones.

al mismo flujo de reg.:

1544 gal./110.25 gal./min. = 14 min.

Lavado a drenaje - 5 gal./min./ft3.(de 40 a 90 gal./ft3.)

80 X 441 = 35280 gal. 5 gal./min./ft3. X 441 = 2205 gal./min. 35280 = 16 minutos.

Diseño de la unidad catiónica:

Resina propuesta IR-120

% Na. = 25%

(Duración del ciclo) = 16 hrs.

% Alcalinidad = 32%

fuga = 5 ppm. $CaCO_3 \simeq 2\%$

Nivel de regeneración 8 lbs. H2SO4/ft3.

$$\frac{\text{TCE}}{17.1} = 32.16 \text{ gr./gal.}$$

Flujo 288000 2705 7295 1544 35280 1394 336218 gal.

 $336218 \times \underline{32.16} = 10814 \text{ kgr./ciclo}$

Nivel de regeneración = 81bs./ft3. de H₂SO₄

Volúmen de resina requerida = 670 ft3.

Capacidad = 17.6 kgr./ft3.

Con estos valores las dims. aproximadas de la unidad serán:

 $\emptyset = 11'5"$; Area = 103.86 ft2.

Altura = 6.45 ft.

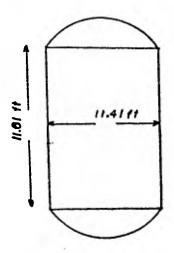


Fig 37

Retrolavado: (6 gal/min./ft2. durante 15 minutos) Recomendado.

6 gal/min./ft2.x15 min.x103.86 ft2. 9347 gal.

Regeneración:

8 lbs./ft3.x670 = 5360 lbs. de ácido.

la mitad al 2%

la mitad al 4%

 $\frac{5360}{2}$ = 2680 lbs. de ácido.

2680 - 100%

 X_{13} .98% X_{13} = 2626.4 lbs. de ácido.

131200 lbs. de agua

- 2624.4

- 55.8 128519 lbs. de agua de dil. 15405 gal. de agua

175 gal. de ácido.

Flujo de regeneración.

(0.5 gal./ft3.min.)recomendado.

0.5 X 670 = 335 gpm. $\frac{15405}{335}$ = 46 min. de reg.

Flujo de agua = 335 gpm.

Flujo de ácido= 3.78 gpm.

Ahora;2680 lbs. al 4%

2626 - 4%

X - 100% X = 65650 lbs.

- <u>2680</u> 62970

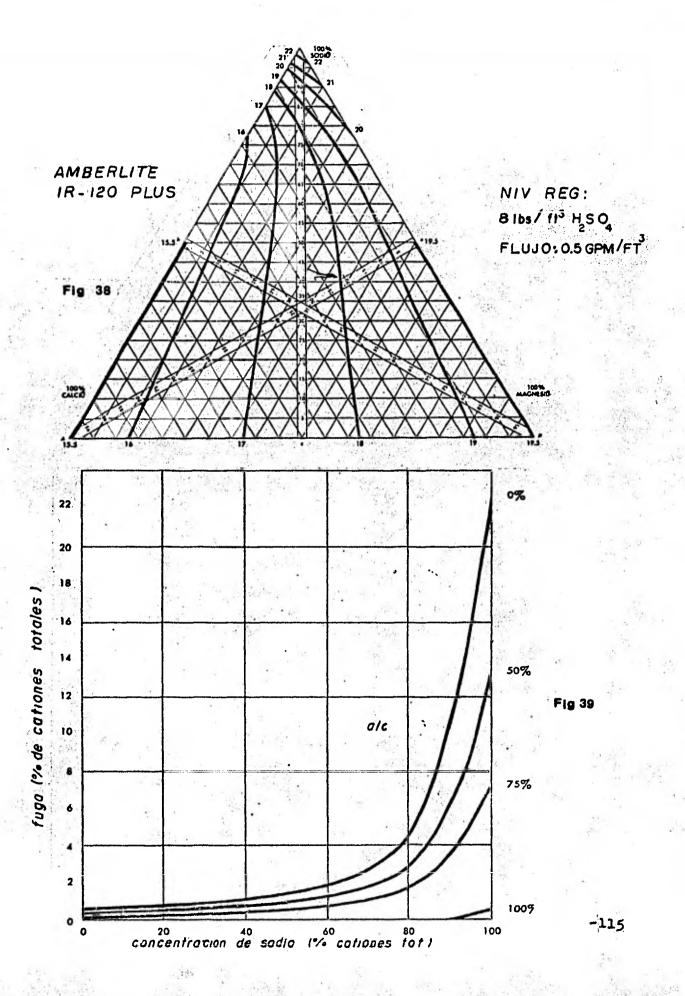
7548 gal. de agua.

al mismo flujo; (durante 23 minutos).

Flujo de agua = 328 gpm.

Flujo de ácido = 7.6 gpm.

Desplazamiento ; 2393 gal. a Flujo de 335 gpm.

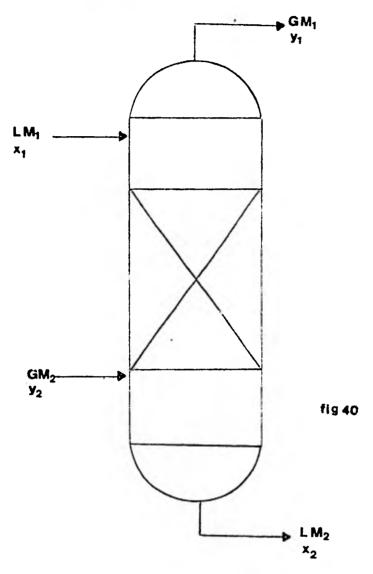

(durante 15 minutos.)

Lavado rápido: 50 gal./ft3. a 6 gal./min./ft3.

Gasto = 33500 gal.

Tiempo

53 minutos.


TABLA COMPARATIVA

DESCRIPCION	REQUERIDO	PROVEEDOR A	PROVEEDOR B	PROVEEDOR C
Pulidor				
Volúmen IRA-402		27.02 £t3.	48.5 ft3.	50.23 ft3.
Volumen IR -120		16.4 ft3.	25.78 ft3.	40 ft3.
Retrolavado (gal) / tiempo (min).		354/15 ·	565.6/15	690/15
Dilución amon. (galagua)/tiempo.		4.47/66.17min.	802.3/60	831./60
Dilución catión (gal.agua)/tiempo.		231/66.17 min.	41/60	563/60
Desplazamiento (gal.) tiempo (min.)		110/16.32	192/14.36	207/15
Enjuague rápido (gal)/tiempo(min.)		1085/23	1857/24.6	2255/25
Unimixing (SFCM)/tiempo(min).		78.76/10 min.	NO	NO.
Unidad Aniónica.				-
Volúmen:tipo/ft3.		IONAC A651/438	IRA 402/566.1	IRA 402/441
Retrolavado (gal)/tiempo(min.)		1005.2/10	2705/15	2705/15
Regeneración (gal. agua) / tiempo (min.)		4830/47	6241/103.8	7295/66.1
Desplazamiento(gal)tiempo (min).		3276/30.3	1918/32	1544/14
Lavado Dren (gal)/tiempo(min.)		29574/98	45280/26.66	35280/16
Flujo de diseño (gal.)		288970	290031.6	290566
Unidad Catiónica,				
Volumen: Tipo /Ft3.		IONAC-C242/503	IR-120/457.8	IR-120/670
Retrolavado gal/tiempo (min.)		4711.8/10	5411/15	9347/15
Regeneración gal./tiempo(min.)		11000/40	916/23.2	22953/69
Desplazamiento gal/tiempo(min.)		5647/30	1594/12.1	2393/15
Lavado Dren. gal/tiempo(min.)		22591/36	27468/7613	33500/53
Flujo de diseño/ciclo gal).		326780	344500	336268
				•
•				-
				

TABLA COMPARATIVA

DESCRIPCION	REQUERIDO	PROVEEDOR A	PROVEEDOR B	PROVEEDOR C
Unidad Pulidoa				
Dimensiones del tanque Ø /h.		3.16ft/11ft.	4ft/11.7ft.	4.41ft/11.76ft'
Volúmen de sosa por ciclo (Gal.)		25.8 al 50%	46.5 al 50%	48.1 al 50%
Volúmen de ácido por ciclo (Gal.)	\$20(172 0-1211	5,55 al 98%	36 al 30%	13.31 al 98%
Unidad Anionica				
Dimensiones del tanque Ø / h.		8ft/14.3 ft.	8.75ft/16.46ft.	8.74/12.49ft.
Volúmen de sosa por ciclo (Gal.)		280 al 50%	361.85 al 50%	423 al 50%
Unidad Catiónica.				
Dimensiones del tanque Ø / h.	14.1	10ft/11.2		11,41ft/11.61
Volúmen de ácido por ciclo (Gal).		164 gal. al 98	803 gal. al 309	6 350 gal. 98%
		e.		
		•		
				•
112		1	<u> </u>	

4.2 DISEÑO DE LA UNIDAD DESCARBONATADORA

en donde:

LM=Flujo molar del líquido a la entrada de la torre(lb mol/hr)
LM=Flujo molar del líquido a la salida de la torre.(lb mol/hr)
GM=Flujo molar del gas a la entrada de la torre. (lb mol/hr)
GM=Flujo molar del gas a la salida de la torre. (lb mol/hr)
x₁=Frac. mol en el líquido del componente a desorber.
x₂=Frac. mol en el líquido del componente desorbido.

y₁=Frac. mol en el gas del componente desorbido.
y₂=Frac. mol en el gas del componente a ser desorbido.

BALANCE

$$LM_1 x_1 + GM_2 y_2 = LM_2 x_2 + GM_1 y_1 - ... (8)$$

indicando el balance anterior en base a los inertes ;

en donde:

LM'=Flujo molar del inerte liquido (1b mol/hr)
GM'=Flujo molar del inerte gaseoso (1b mol/hr)

substituyendo en (8), queda;

si ahora se designa:

$$X_2 = \frac{x_2}{1 - x_2} - - - - - (15)$$

$$Y_1 = \frac{y_1}{1 - y_1} - \cdots - (16)$$

la ecuacion (8) se transforma en:

rearreglando términos:

$$LM'(X_2^-X_1) = GM'(Y_2^-Y_1)_- - - - - (19)$$

$$\frac{LM'}{GM'} = \frac{Y_2 - Y_1}{X_2 - X_1} - \cdots - (20)$$

la ecuacion (20) representa la linea de operacion del sistema de pendiente igual a LM'/GM' y coordenadas (X_2 , Y_2) y (X_1 , Y_1).

Para el calculo de la curva de equilibrio se parte de la -base de un comortamiento ideal para el sistema $\rm CO_2$ - $\rm H_2O$ A partir de la ley de Raoult se tiene;

en el equilibrio:

$$\frac{xp^{\circ}}{P_1} = y - - - - - \{24\}$$

$$\frac{\mathbf{p}^{\circ}}{\mathbf{p}} = \mathbf{k}$$
 la ecuacion (24) se transforma en;

$$xk = y ----(25)$$

en donde:

P'= presión parcial (psia)

 $F_t = presión total$ (psia)

pº= presión de vapor (psia)

x = fracción mol en la fase líquida

y = fracción mol en la fase vapor

k = cte de equilibrio

DESARROLLO

Como ejemplo se muestra a continuacion el diseño de unaunidad descarbonatadora a la que se alimenta 300gal.min de agua descationizada con una concentracion de 15 ppm de CO₂. El 99% de esta cantidad deberá ser eliminado.

Para esta clase de servicio el tipo de empaque utilizado es el de anillos Raschig de ceramica de 1°, de tamaño nominal, la temperatura del agua es de 77°F y la presión del sistema de 14.7psia.

Se esta considerando que el aire de entrada esta libre de CO2.

trabajando con fracciones mol se tiene;

$$x_1 = 6.12 \times 10^{-6}$$

 $LM_1 = 8324.84$ lb mol/hr

$$LM_1 x_1 = 5.09 \times 10^{-2}$$

a 99% de Desorcion se tiene;

$$5.09 \times 10^{-2} \times 0.99 = 5.039 \times 10^{-2}$$

$$LM_2x_2 = 5.09 \times 10^{-4}$$

de la ec. (9) se tiene;

LM'= 8324.78 1b mol/hr

de la ec. (10) se tiene

$$LM' = LM_2(1-x_2)$$
; $LM' = LM_2 - LM_2x_2$

.'.
$$IM_2 = 8324.78 + 5.09 \times 10^{-4} = 8324.78$$

si
$$LM_2x_2 = 5.09 \times 10^{-4}$$
 $\therefore x_2 = \frac{5.09 \cdot 10^{-4}}{8324.78} = 6.11 \cdot 10^{-8}$

Calculo de la cte. de equilibrio;

de la ec (24) se tiene ;
$$xP^{\circ}/P_{t} = y$$

la ecuacion (26) puede ser representada en funcion de relaciones mol habiendo establecido que;

$$Y = \frac{y}{1-y}$$
; $X = \frac{x}{1-x}$

la ec. (26) se transforma en;

$$\frac{Y}{1+Y} = 65 \frac{X}{1+X} - - - - - - (27)$$

la ec (27) representa la curva de equilibrio del sistema.

Con los valores obtenidos anteriormente se procede a indicarlos en una grafica de relaciones mol;

CURVA DE OPERACION

FRACCION MOL

RELACION MOL

$$x_1 = \frac{6.12 \cdot 10^{-6}}{1 - 6.12 \cdot 10^{-6}} = 6.12 \times 10^{-6}$$

$$x_{\overline{z}} = \frac{6.11 \cdot 10^{-8}}{1 - 6.11 \cdot 10^{-8}} = 6.11 \times 10^{-8}$$

CURVA DE EQUILIBRIO .

X	X/1+X	Y/ 1 + Y	Y
6.12×10 ⁻⁶	6.11×10 ⁻⁶	3,97×10 ⁻⁴	3.97×10 ⁻⁴
4.0×10 ⁻⁶	3.99×10 ⁻⁶	2.59×10 ⁻⁴	2.6×10 ⁻⁴
6.0×10 ⁻⁷	5.99×10 ⁻⁷	3.89×10 ⁻⁵	3.9×10 ⁻⁵
9.0×10 ⁻⁷	8.99×10 ⁻⁷	5.84×10 ⁻⁵	5.85×10 ⁻⁵
6.11×10 ⁻⁸	6.1×10 ⁻⁸	3.97×10 ⁻⁶	3.97×10 ⁻⁶
0	0	0	0

^{*} Datos como relacion mol.

Graficando la ecuación de equilibrio Y=65 X entre estos últimos valores se obtiene la línea de equilibrio mostrada en la gráfica. fig 41

La línea de operación mínima es también representada aquí; el valor de la pendiente es:

(
$$LM/GM$$
) min = 65.5

$$\frac{L'M}{65.5} = G'M$$

$$\frac{8324.7}{65.5}$$
 =127.05 lbmo1/hr.

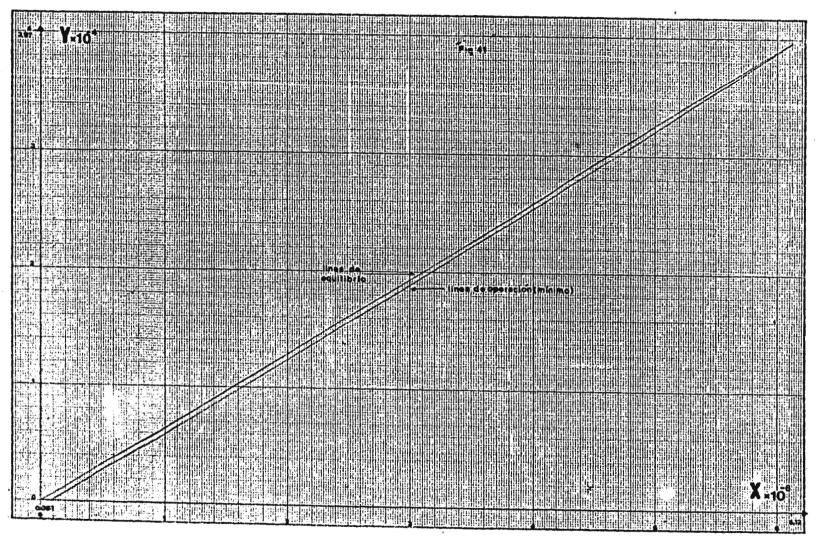
.'. 1.5 x G'MIN. como un valor de operación aceptable.

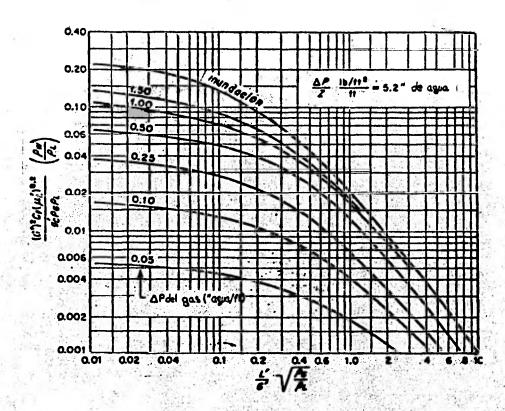
127.05 lb mol/hr. × 1.5 = 190,5 lbmol/hr. = 5524.5 lb/hr

$$L' = 8324.7 \text{ lbmol} \times \frac{18 \text{ lb.}}{1 \text{ lb.mol}} = 149844.6 \text{ lb/hr.}$$

siendo el valor de la pendiente para la nueva relacion de 43.64

Cálculo del diámetro del agotador.


$$S_9 = 0.075 \text{ lb/ft3}.$$


$$\Re = 62.4 \text{ lb/ft.3}$$

$$\frac{L'}{G'} \left[\frac{f_8}{f_4} \right]^{0.5} = \frac{149844.6}{5524.5} (0.075/62.4)^{0.5} = 0.94$$

A inundación se tiene :

$$0.02 = \frac{(G')^2 C_1(\mu_I)^{0.2}}{9c \text{ SL } S_2} \left[\frac{S_W}{SL} \right] - \dots (28)$$

119 42

en donde:

G': masa velocidad sup. del gas lb/hr ft2

C: factor de caracterización para empaques

川: viscosidad liquido en (cp)

9c= cte = 4.18E8 1b ft/1b ft2

Se dens. gas 1b/ft3

Sie dens. liq. lb/ft3

C: dens. agua lb/ft3

siendo Cf=160 el cual es obtenido de la tabla #7

	\$ 1 ML 1	TAN	ANO N	IOMINAL	PULA	3.	111		. 54		77.24
Empaque	<i>y</i> 1	¾	1/2	5/6	3/1		1%	170	2	9	3/2
Anillos Raschig Cerámico.			*			CV.					
cr 4	1,000 0.73 240	750 0.68 155	640 0.63 111	380 0.68 100	255 0.73 80		125 0.74 45	95 0.71 38	65 0.74 28	37 0.78 19	
Metal: Pulg (1/32)					of a		100				
C4 E a,	700 0.69 236	* - 🔆	300 0.84 128	258	185 0.88 83.5	115 0.92 62.7				330	
pulg.(4/16) Cf E a.	K *N		340 0.73 118	290	230 0.78 71.8	145 0.85 56.7	110 0.87 49.3	82 0.90 41.2	57 0.92 31.4	37 0.95 20.6	
Anillos Pall Plág- tico:				3 1			11421				
CF E Ap		2		97 0.88 110	, 10a-	52 0.90 63.0		32 0.905 39	25 0.91 31	-	16 23.4
Metal: C/ g ap		ALC: N		71 0.90 131.	. • 4. · 5.	48 0.936 66.3	9	28 0.953 48.1	20 0.964 36.6		
Silletas Intalox Cf &	600 0.75 300		265 0.78 190	Missing and the second	130 0.77 102	98 0.775 78		52 0.81 59.5	40 0.79 36	enie I	
Silletas Berl Cf &	900 0.60 274	,	380 0.63 142	* ;	170 0.66 82	110 0.69 76	+	65 0.75 44	45 0.72 32	·	

$$G' = \begin{bmatrix} 0.02 \times 4.18 \times 10^8 \times 0.075 \times 62.4 \times 62.4 \\ 62.4 \times (1)^{0.2} \times 160 \end{bmatrix} = 518.63$$
para 50% de inundación:

259.3 lb/hr. ft2.

el diámetro del agotador será:

.', Ø 5.2 ft

usando un Ø de 6ft.

Area = 28.27 ft2.

Cálculo de los coeficientes de transferencia.

 $\mu_{g}^{"} = 2.42 \times \mu^{1} = 0.0185 \times 2.42 = 0.044 \text{ lb/ft. hr. (para gas).}$ $\mu_{g}^{"} = 0.0185 \text{ cp.}$

 $S_9 = 0.075 \text{ lb/ft.3.}$

 $D_G = difusividad del gas = 0.258 cm2 \times 3600 seg_x 1 ft2.$ seg hr 30.482 cm2.

= 0.99 ft2./hr.

SCHMIDTH = μ^{4}/p_{3} = 0.044/0.075 × 0.99 = 0.58

 $G' = 190.5 \text{ lb/hr.ft2.} \times \frac{1 \text{ lb.mol}}{29 \text{ lb.}} = 6.56 \text{ lb.mol/hr.ft2.}$

(Para líquido).

 $L' = 149844.6 \text{ lb/hr.} \times \frac{1}{28.27 \text{ ft2.}} = 5300 \text{ lb/hr. ft2.}$

f1 = 62.4 lb./ft3.

 $\mu^{*} = 2.42 \text{ lb/ft.hr.}$

Dif.(lig) = 1.46×10^5 cm²./seg. = 5.65×10^5 ft²./hr.

SCHMIDT(liq.) = $2.42/62.4 \times 5.65 \times 10^5 = 682$

ds = diámetro de una esfera de igual superficie de l pieza de empaque

ds = 0.1167 ft.

$$\beta = 0.965 \text{ ds.}^{0.376} = 0.965 \times (0.1167)_{+}^{0.376} = 0.43$$

 \emptyset tw = $\frac{2.25 \times 10^5 (\text{L}^{1})^8}{\text{ds}^2}$ = $\frac{2.25 \times 10^5 (5300)^{-0.43}}{(0.1167)^2}$ = 0.0659 ft3./ft3.

Empoque (Tomoñ o pulg J	111)5	≠ _S	Temp ordinaria	(cp) 42	н
Anillos	0.5	0.0582	(07/10-1) (4.4) (4.4)	$\phi_{iii} = \frac{2.25(10^{-1})L'^{\frac{3}{2}}}{d_i^{\frac{3}{2}}}$	<12	$\int_{\rho_L^{0.14}(0.1183L^{\prime 0.440}-1)}^{0.897L^{\prime 0.47}\mu_L^{\prime 0.11}} \left(\frac{\sigma'}{73}\right)^{0.934-0.198 \log L'}$
d e ceramica RASCHIG	1 1.5 2	0.1167 -0.1740 0.238	$\frac{6.85(10^{-6})\mu_L^{\prime 0.48}\sigma^{\prime 0.49}}{d_t^{1.53}\rho_L^{0.53}}$	$\phi_{sw} = \frac{0.00104}{d_s^{1.81}}$	>12 .	$\frac{0.575L^{4,13}\mu_{L}^{\prime 0,11}}{\rho_{L}^{0,14}(0.1183L^{\prime 0,410}-1)} \left(\frac{c'}{73}\right)^{0.633-0.610\log L'}$
				$\beta = 0.965d^{0.310}$		
Anillos	-1	0.0427	6.36(10~*)µ;*•.**σ'•.**	$\phi_{iii} = \frac{7.90(10^{-1})L'^{\frac{3}{2}}}{d_i^{\frac{3}{2}}}$	<12	$\frac{0.375L^{*0.57}\mu_{L}^{*0.18}}{\rho_{L}^{*1.1}(0.174L^{*0.318}-1)} \left(\frac{\sigma'}{73}\right)^{0.050-0.008\log L'}$
da carbón	1.5	0.178 0.235	$= \frac{6.36(10^{-6})\mu_L^{\prime}e^{0.93}\sigma^{\prime 0.36}}{d_{\theta}^{1.31}\rho_L^{0.37}}$	$\phi_{*B} = \frac{0.00250}{d_*^{1.83}}$	>12	$\frac{0.239L^{*4,61}\mu_{L}^{*4,61}}{\rho_{L}^{*4,6}(0.174L^{*6,916}-1)} \left(\frac{\sigma'}{73}\right)^{6,914-6,116\log L'}$
RASCHIG				$\beta = 0.706d_{\theta_{i}}^{\bullet, \bullet 10}$		
Silletas	0.5	0.0532		$\phi_{IW} = \frac{2.50(10^{-4})L'^{\frac{2}{3}}}{d_{4}^{4}}$	· <20	$\frac{1.291L^{(9,1)}\mu_{L}^{',0,13}}{\rho_{L}^{(4,14)}(0.212L^{'0,413}-1)} \left(\frac{\sigma'}{73}\right)^{1.735-0.441} \log L'$
d e cerómica	1 1.5	0.1050 0.155	$\frac{1.641(10^{-4})\mu_L^{\prime 0.64}\sigma^{\prime 0.56}}{d_a^{1.14}\rho_L^{0.57}}$	$\phi_{sw} = \frac{0.00032}{d_s^{1.38}}$	>20	$ \frac{0.752L^{\prime 1,31}\mu_{L}^{\prime 0,11}}{\rho_{L}^{0,11}(0.212L^{\prime 0,411}-1)} \left(\frac{\sigma'}{73}\right)^{1.063-0.115\log L'} $
BERL				$\beta = 0.965d_0^{0.510}$		P1 (0.2122 - 1) (13)

6, x do + do - dow - dow + dow - do - dow/

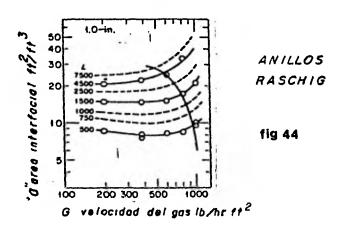
fig 43

$$\emptyset$$
 sw = $\frac{0.00104}{(0.1167)1.21}$ = 0.0139 ft³/ft³

Øo
$$w = \emptyset$$
 tw $-\emptyset$ sw = 0.0659 - 0.0139 = 0.0520
H para $\mu < 12$ es H = $\frac{0.897 \text{ L} \cdot 0.57 \ \mu \cdot 1 \cdot 0.13}{\int_{\ell}^{\ell} 0.84 (0.1183 \text{ L}^{0.43} - 1)} \left(\frac{0^{-3}}{73}\right)^{0.925 - 0.262 \log L^{2}}$

$$H = \frac{0.897 \times (5300)^{0.57} \times 1^{-0.13}}{(62.4)^{0.84} \times (0.1183 \times (5300)^{0.43} - 1)} \left(\frac{20}{73}\right)^{-0.925} - 0.925 \times 3.7$$

$$H = 1.05$$
 ... $\emptyset_0 = \emptyset_{0W} H$...


$$\emptyset$$
₀ = 0.052 x 1.05 = 0.054 ft³/ft³

$$\phi_{s} = \frac{6.85 \times 10^{-5} \times \mu \quad 0.02 \times \sigma^{,0.99}}{ds^{1.21} \times \beta^{10.37}}$$
(29)

$$= \frac{6.85 \quad 10^{-5} \times 1 \times 20^{-0.99}}{0.1167 \quad 1.21 \times 62.4^{-0.37}} = \frac{1.32 \times 10^{-3}}{0.343} = 3.84 \times 10^{-3}$$

$$\phi_r = 0.054 + 3.84 \times 10^{-3} = 0.057 \text{ ft}^3/\text{ft}^3$$

a L' = 5300 lb/hr.
$$ft^2$$
 y G' =1905 lb/hr. ft^2

$$\alpha = 21$$
 ft2/ft3.

$$\varepsilon = 0.73$$
. $\varepsilon = \varepsilon - \emptyset_{t} = 0.73 - 0.057 = 0.673$

FG Sc_G 2/3 /G = 1.195
$$\left[\frac{d_3 G'}{\mu'_6 (1-\epsilon_0)}\right]^{-0.36}$$

$$\frac{\text{FG } (0.58)}{\text{6.56}} = 1.195 \left[\frac{(0.1167 \text{ X}/190.5)}{(0.044 \text{ X}(1-.673))} \right]$$

FG = 0.81 lb.mol/hr. ft2.

Para el liquido se tiene;

$$\frac{\text{kl ds}}{\text{Dl}} = 25.1 \quad \left[\frac{\text{ds L'}}{\mu_{\text{l'}}}\right] 0.45 \text{ Scl} \quad 0.5$$

$$\frac{\text{K1 0.1167}}{5.65 \times 10^{-5}} = 25.1 \left[\frac{0.1167 \times 5300}{2.42} \right]^{0.45} \times 6.82$$

$$K1 = 25.1 \left[\frac{0.1167 \times 5300}{2.42} \right]^{0.45} - \left[\frac{6.82^{0.5} \times 5.65 \times 10^{5}}{0.1167} \right]$$

K1 = 3.84 lb mol/hr. ft2 (lb mol/ft3.)

multiplicando este ultimo valor por la densidad molar del agua, se tiene; Kl x C = Fl

donde
$$C = \frac{62.4 \text{ lb}}{13} \times \frac{1 \text{ lb. mol}}{1 \text{ 8lb.}} = 3.46$$

Fl = 13.3 lb mol /hr ft²

. . multiplicando los valores de Fl y FG por el area interfacial encontrada se tiene;

FG a = 0.81 lb mol/hr ft² x 21 ft²/ft³=17.01 lb mol/hr ft³

Fl a = 13.3 lb mol/hr ft² x 21 ft²/ft³ = 279.3 lb mol/hr ft³

Como se sabe para soluciones diluidas, las siguientes relaciones pueden ser aplicadas;

$$kya = \frac{FGa}{(1-y)_{iM}} ; \qquad kxa = \frac{Fla}{(1-x)_{iM}}$$

donde el subindice se refiere a la interfase.

$$(1-x)_{iM} \simeq 1$$
; de tal forma que se puede indicar;

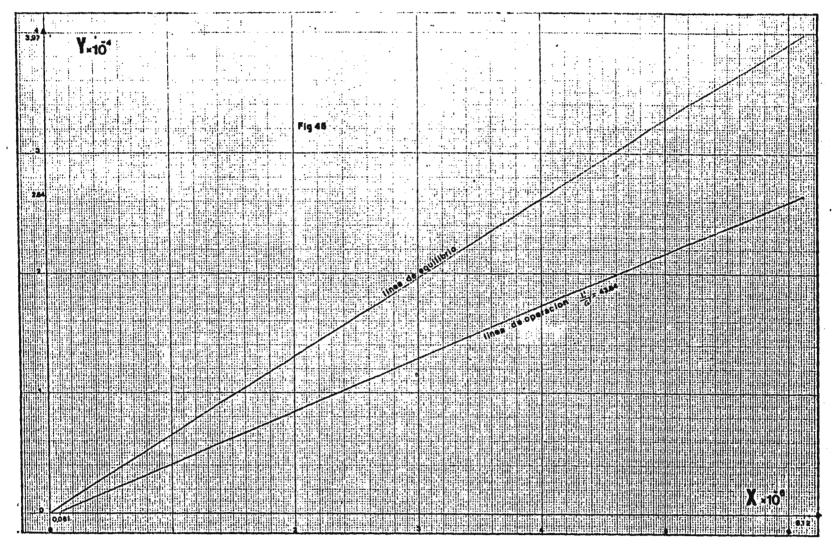
$$\frac{kx a}{ky a} = \frac{279.3}{17.01} = -16.41$$

-16.41 es el valor de la pendiente de la linea de union entre la linea de operacion y la linea de equilibrio.

La linea que representa la relacion de coeficientes de transferencia debe ser trazada en una grafica de fraccion mol. Por lo tanto es necesario transformar losvalores de relaciones mol a fracciones mol.

	LINEA DE OPERAC	ION
x	x	У
6.1×10 ⁻⁸	6.1×10 ⁻⁸	o ·
9.0×10 ⁻⁷	8.9×10 ⁻⁷	3.92×10 ⁻⁵
2.0×10 ⁻⁶	1.9×10 ⁻⁶	8.7×10-5
4.0×10 ⁻⁶	3.9×10 ⁻⁶	1.7×10 ⁴
6.1×10 ⁻⁶	6.1×10 ⁻⁶	2.6×10 ⁻⁴

LINEA DE EQUILIBRIO


X	x	у.
6.1×10 ⁻⁸	6.1×10 ⁻⁸	3.97-10-6
6.1×10 ⁻⁶	6.1×10 ⁻⁶	3.97 × 10 -4

Graficando estos valores se tiene lo mostrado en la figura No46

Calculo del No. de unidades de transferencia.

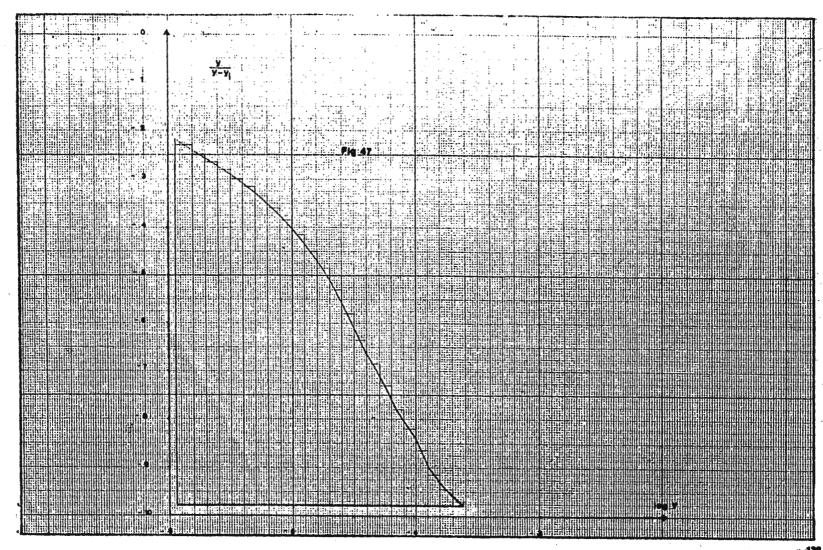
El calculo del numero, de unidades de transferencia puede ser evaluado de la ecuacion No.6 la cual indica que;

$$N_{tg} = 2.3 \int_{log y_2}^{log y_1} \frac{y}{y - y_i} d(log y) +1.152 log \frac{1 - y_i}{1 - y_i}$$

para soluciones diluidas el segundo termino del lado derecho de la ec.6 puede ser despreciado, quedando-la siguiente expresion:

$$N_{tg} = 23 \int_{\log y_2}^{\log y_1} \frac{y}{y - y_1} d \log y$$

la integral puede ser evaluada gráficamente a partir de los datos obtenidos en la fig.46


У	y ₁	у/у-у ₁	log y
0	0.008 x 10 ⁻⁶	0	-
0.02x10 ⁴	2.9x10 ⁻⁶	-2.2	-5.96
0.4x10 ⁻⁴	0.46x10 ⁻⁴	-6.66	-4.39
0.84x10 ⁻⁴	0.94×10 ⁻⁴	-8.4	-4.07
1.26x10 ⁻⁴	1.4x10 ⁻⁴	-9	-3.89
1.7×10 ⁻⁴	1.88x10 ⁻⁴	-9.44	-3.76
2.16x10 ⁻⁴	2.38x10 ⁻⁴	-9.71	-3.66
2.64x10 ⁻⁴	2.91x10 ⁻⁴	-9.77	-3.57

De la integracion se obtiene; que el area, bajo la curva es 9.63

De la ec 6 , el No. de unidades será.

$$N_{tg} = 2.3 \times 9.63 = 22.1$$

si se sabe que G; = 6.56 lb mol/hr ft²

la altura de una unidad de transferencia esta dada por la siguiente ecuacion:

y en donde el producto del coeficiente de transferencia de la fase gaseosa y el area interfacál tambienes conocido.

$$H_{tg} = \frac{6.56 \text{ lb mol /hr ft}^2}{17.01 \text{ lb mol/hr ft}^3} = 0.38 \text{ ft}$$

La altura total del empaque esta dada por la ecuacion No 7

de aqui que ;

$$Z = 22.1 \times 0.38 = 8.39 \text{ ft}$$

El ejemplo anterior sobre el calculo de la unidad descarbonatadora esta basado sobre el hecho de que el sistema CO_2 - H_2O sigue la ley de Raoult.

Sin embargo cuando las soluciones son diluidas el comportamiento de estas también puede ser representado de
acuerdo a la ley de Henry ec No.1

A continuacion se muestra los resultados obtenidos siguiendo la ec de Henry.

El balance indicado al inicio del inciso 4.2 aplica tambien a este cálculo. La evaluacion de la constante de equilibrio es el siguiente;

R = pres. parcial del comp. "a" (psia')

x = fraccion mol en la fase liquida

x = fraccion mol en la fase gaseosa

P = presion total (psia)

H = cte. de Henry (psia/frac. mol)

en el equilibrio

$$P_a = P_t y_a - \dots = (31)$$

$$P_1 y_a = x_a H_a - \dots (32)$$

$$y_a = \frac{H_a}{P_t} x_a - \dots - (33)$$

la relacion de Ha/P_{t} corresponde al valor de la cte. de equilibrio "k" la ec. puede indicarse de la siguiente forma

El valor de la cte. de Henry para el sistema $C0_2$ - H_20 es de 24108 psia/fracc. mol

La ecuación de equilibrio queda de la siguiente forma

$$y = 1640 \times ___ (35)$$

Del calculo anterior se tiene;

 $x_1 = 6.12 \times 10^{-6}$

IM =8324.84 lb mol/hr

 $x_2 = 6.11 \times 10^{-8}$

 $y_1 = 0$

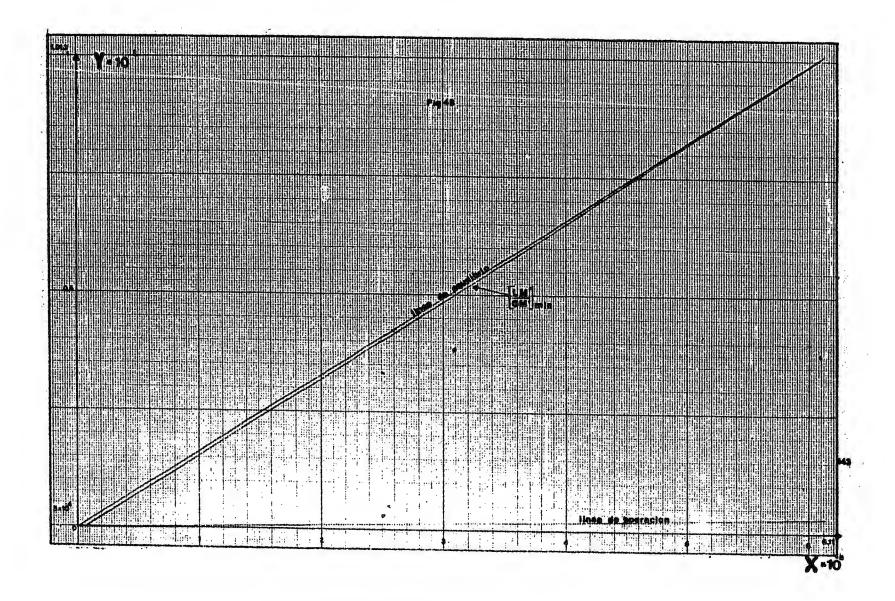
Convirtiendo los valores anteriormente indicados a relaciones mol y graficandolos junto con la linea de equilibrio se obtiene lo mostrado en la fig 48

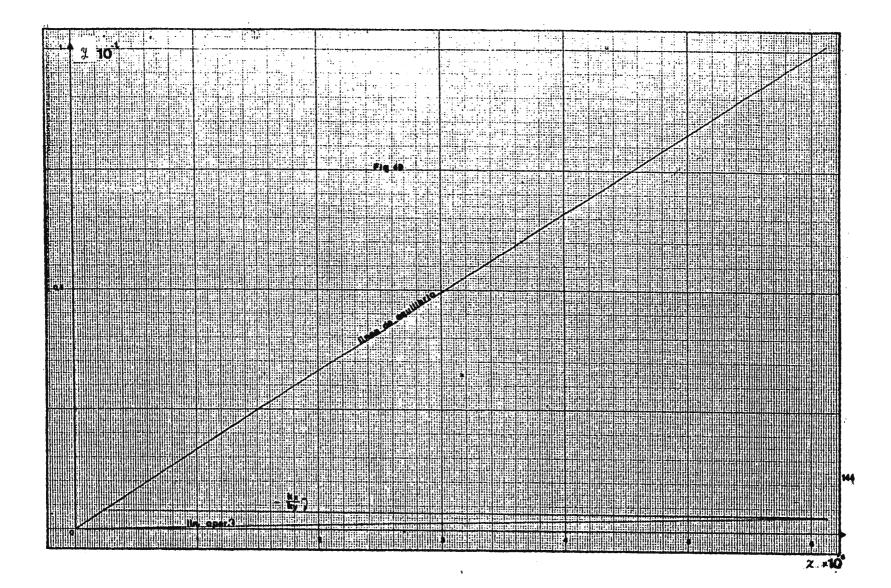
Checando para el flujo de aire ofrecido por el proveedor "A" se tiene la siguiente relacion

$$\frac{LM'}{GM'} = \frac{8324.84 \text{ lb mol /hr}}{163.4 \text{ lb mol /hr}} = 51$$

Graficando la linea de operacion con un valor de pendiente igual a 51 se obtiene lo mostrado en la fig.48 el valor de la ordenada encontrada con esta pendiente es de: $Y = 3x10^{-4}$

El metodo para encontrar el diametro del equipo es igual al mostrado en el ejemplo anterior.


El diámetro encontrado es de 5 ft, de aquí que el area de la unidad será de 19.63 ft²


Para el calculo de los coeficientes de transferencia el metodo utilizado es el de Shulman, obteniendose el siguiente resultado.

$$\frac{k \times a}{k y a} = \frac{40.72}{24.7} = -16.49$$

El cálculo del numero de unidades de transferencia es a partir de la ecuacion 6. Los datos para la integracion son obtenidos de la fig.49

У	Уi	у/у-у;	log y
3x10 ⁻⁴	0.04x10 ⁻²	-3	-3.52
0.03x10 ⁻²	0.03x10 ⁻²	-3.2	-3.6
0.015x10 ⁻²	0.02x10 ⁻²	-3.73	-3.8
0.010x10 ⁻²	0.0125x10 ⁻²	-4	-4 5
0	••	-	-

į				
u	1	4	£	
			,	

3.13 G. 7 G. 8	
	P(g 80)
	7 (x) - 1/9 © C

De la integracion grafica se obtiene que el area bajo la curva es de 0.25

El numero de unidades de transferencia es:

$$N_{tg} = 2.3 \times 0.25 = 0.575$$

si el flujo molar del gas es 8.32 lb mol/ hr ft²y el producto del cef. de transf. de la fase gaseosa y el area intrefacial es de 24.7 lb mol/hr ft³.

$$H_{tg} = \frac{8.32}{24.7} = 0.33 \text{ ft}$$

la altura total del empaque sera de;

Como se puede notar existe una gran diferencia entre los resultados obtenidos al efectuar el calculo utilizando la ley de Raoult y la ley de Henry acercandose mas a la realidad lo obtenido por la ley de Raoult.

Siendo una posible explicacion, que la ley de Henry se desvie de la realidad a causa de una disociacion en iones hidrogeno y bicarbonato. (ref.-PRINCIPIOS BASICOS DEL TRATAMIENTO DE AGUA PARA CALDERAS), por lo tanto para la evaluacion de los proveedores se utilizara la ley de Raoult

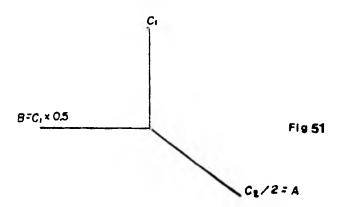
4,3, DISEÑO DEL DESCARBONATADOR POR EL METODO CORTO.

En la práctica el cálculo de las unidades descarbonatadoras, ha llevado a los fabricantes a desarrollar métodos no
tan laboriosos como el anterior. Tal es el caso de "Belco"
el cual, ha desarrollado una expresión para el cálculo de
la altura del empaque.

La ecuación es la siguiente:

En donde: h = altura del empaque en pulgadas.

K = factor de viscosidad


E = Eficiencia del empaque.

C1 = PPM de gas en el influente.

C₂= PPM en el efluente.

$$C_1 \times 0.5 = B$$

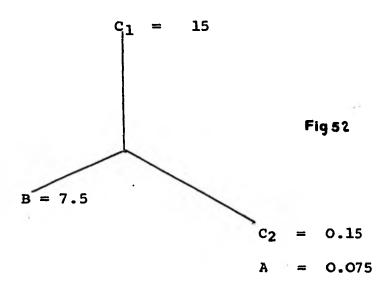
$$C_2/2 = A$$

A continuación se muestra el cálculo de un descarbonatador por medio de éste método, utilizando los valores que a continuación se listan.

Condiciones:

$$c_1 = 15 ppm$$

$$C_2 = 0.15 \text{ ppm}$$

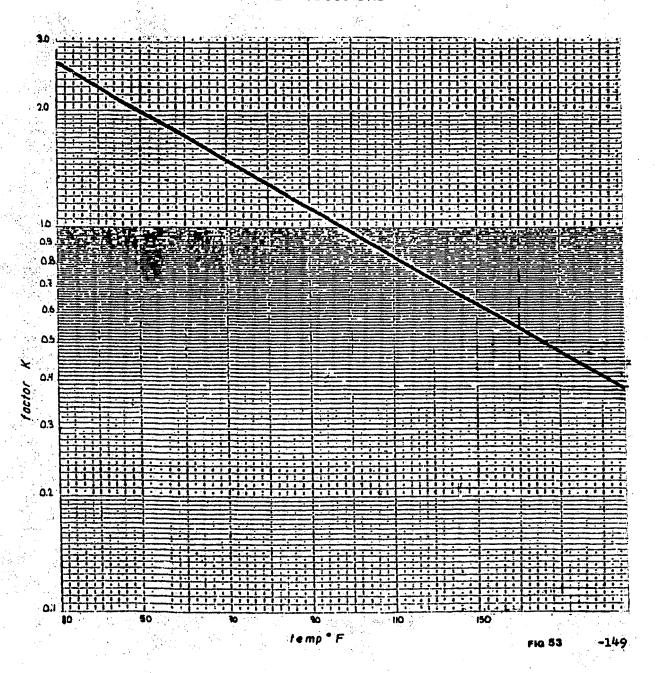

$$R = cte.(50 lb/hr-in^2)$$

$$\frac{149844.6 \text{ lb/hr}}{50 \text{ lb/hr in}^2}$$
 = 2996 in² = 20.81ft² . .

$$A = \pi r^2$$

$$D = \sqrt{\frac{20.8 \times 2}{\pi}} \times 2 = 5.14$$
 ft usar 6.0 ft

$$Area = 28.27 | ft^2$$



K de gráfica Fig 53

$$K = 1.30$$

$$E = 0.065$$
 (de tablas)

FACTOR DE VISCOSIDAD

$$h = 1.30 \times 2.3 \log (7.5 - 0.075) = 0.065$$

Siendo este el valor de la altura del empaque.

De acuerdo a las características proporcionadas en los puntos 7 a 8.4 y en base a los datos generados en el presente capítulo se puede concluir lo siguiente:

- 1.- El proveedor "A" proporciona una operación más eficientela cual se basa en las características de operación utilizadas.
 - a). Los volúmenes de agentes regenerantes son menores, como | se puede constatar en la tabla anteriormente mostrada.
 - b). Los volúmenes de resina ocupados son menores en todos los casos a excepción del volúmen utilizado por el --- proveedor "B" en la unidad catiónica en donde éste valor es el más bajo de los 3 propuestos.
 - c). La suma de los flujos requeridos para:

 Retrolavado.

Regeneración.

Desplazamiento.

Lavado a dren, etc.,

Es menor en el sistema propuesto por el proveedor "A".

- d). Proporciona el sistema Unimixing para hacer una dispersión homogenea de la banda de sodio.
- e) Las potencias de los accionadores del proveedor "A" es menor que la sugerida por los otros dos, los cual se reflejará en una disminución del costo de operación.

f). Como se puede observar del cálculo hecho para determinar el diámetro del desgasificador y la altura del empaque,el Proveedor "A" se encuentra dentro del rango de acepta ción.

De aqui que se puede concluir lo siguiente;

De la evaluación técnica de cada una de las stapas ante riormente indicadas se puede emitir el siguiente juicio: Técnicamente el Proveedor "A" ofrece un mejor, sistema que el de los otros dos Proveedores.

Como 2a. opción queda el Proveedor "C":

El Proveedor "B" no cumple técnicamente y por lo tanto queda ---fuera del concurso, omitiéndolo de las evaluación económica.

CAPITULO V

5.1 EVALUACION ECONOMICA DE LA PLANTA DE TRATAMIENTO DE AGUA.

Como se mencionó al principio de este trabajo, el ingenie

ro químico juega un papel importante dentro del juicio de

recomendación económica para la adquisición de cualquier

equipo. En el caso particular de una planta de tratamien

to de agua, los principales puntos a considerar son la in
versión inicial, los costos de operación, los cuales invo

lucran costos de regeneración de las unidades de intercam

bio, costos de la energía eléctrica consumida por los ac
cionadoresy por los diferentes equipos de la planta de tra

tamiento, etc.

La evaluación cuidadosa de estos puntos dará la facultad de emitir un juicio eficiente.

En la mayoría de los casos en la evaluación de alternativas existen proposiciones en la que el costo de inversión,
o inicial es elevada, y los desembolsos futuros son bajos,
en comparación con otros de costo inicial bajo y desembol
sos futuros elevados.

Esto no puede compararse por medio de una inspección simple. El simple hecho de que las cantidades se encuentren distribuidas en el tiempo es suficiente para exigir medidas de equivalencia.

Las comparaciones que se hacen en la práctica se conforman a uno de los siguientes métodos:

- 1) Método de costo anual
- 2) Método de valor actual
- 3) Método de tasa de rendimiento

Análisis del Proveedor A

Costo del Pretratamiento:

$$\frac{1487375 \text{ Kg}}{\text{año}} \times \frac{1.80\$}{1 \text{ Kg}} = 2,677,275 \$/\text{año}$$

Costo cloro + ayuda coaqulante = \$75,000 año

Requerimientos de la unidad cationica;

Unidad Cationica	E (7) 10 (5)		
(e)-12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O (Min)	GPM	TOTAL
Retrolavado	10	471.18	4711.8
la. Invección	19.64	376	7384.6
2a. Inyección	19.64	184	3613.7
Desplazamiento	30	188.26	5647.8
Lav. a Dren.	35.91	629	22587.4
	-(49)		43945.3

43945.3 gal x 24 hrs x 365 dias = 24060051.7 gal/año 16 hrs 1 dia 1 año.

El precio de este servicio está incluído, en el costo de clarificación.

Cada galón que pasa por la unidad catiónica cuesta:

2517 lb x 24 hrs x 365 días x .454 kq x \$4.30 = 16 hrs. 1 día. 1 año. 1 lb. 1 kg.

2,690,243\$/año de ácido

326780.0 gal. x 1 ciclo x 24 hrs x 365 dias = Ciclo 16 hrs. 1 dia. 1 mago.

178912 050.0 gal/año.

2690243.0 = 0.015\$/gal 178912050

Resumen de la unidad aniónica (agua descationizada)

	⊕(Min)	GPM	TOTAL	2.0
Retrolavado	10	100.5	1005.2	
Regeneración	47	102.7	4830	
Desplazamiento	30.3	108	3276	
Lavado a Drena.	98	301	29574	
		4 1	38685	gal

38685 gal x 24 hrs x 365 días = 21180037.3 gal/año 16 hrs. 1 día. 1 año.

0.015\$ x 21180037.5 qal. = 317700\$/año qal. año

Costo de cada galón que pasa por la unidad aniónica

3504 lb.sosa x 24 hrs. x .459 kg. x 365 días x 8.50\$ = 16 hrs. 1 día 1 lb. 1 año. 1 kg.

7,403,260\$/año de sosa

288970 Gal. x 24 Hs. x 365 días = 158211075 Gal. 16 Hs. l día. l año año

7403260 \$/año = 0.046 \$/Gal. 158211075 Gal/año

Resumen del P	ulidor	O (Mir) GP	M TOT	AL	2
			14.6		Desmin	14
Retrolavado Desplazamient		15		.6 354		4
<u>Desplazamien</u>	<u>0</u>	16.32	6	.75 <u>110</u>	Section 1985 Annual Account	
		22.9]	· 人名英格兰	THE PARTY OF THE P	.16 Gal.	
Enjuaque rápi	<u>100</u>	24.91	L 47	.3 <u>1085</u> 1550	Contract, Add the	

1550 Gal. x 24 Hs. x 365 días = 188583.3 Gal./año 72 Hs 1 día. 1 año

0.046 $\$/Gal. \times 188583.3 Gal/año = 8674.8 \$/año$

Dilución de aniónico

<u>⊕ (Min) GPM TOTAL</u> 66.17 6.75 447 Gal.

54385 Gal./año × 0.015 \$/Gal. = 815 \$/año agua descat

<u>O (Min)</u> <u>GPM TOTAL</u>

<u>Dilución de catión</u> 66.17 3.5 231.0

231 x 24 Hs. x 365 dias = 28105.00 Gal/año 72 Hs 1 dia 1 año

28105.0 Gal/año x 0.0017 \$ = 47.6 \$/año agua descat Gal.

Consumo de sosa del pulidor

324.24 Lb. Sosa x 24 Hs. x 365 días x .454 Kg x \$ 8.50 = 72 Hs. 1 día. 1 año 1 Lb. Kg

= 152234 \$/año

Consumo de acido del Pulidor

82 Lb.	x 24 Hs.	×	365 dias x	.454 Kg	×
72 Hs.	l día.		l año	1 Lb	
-			Maria San Prince Control of the Cont		

4.3 \$ = 19476 \$/año Kg.

Costos de operación del proveedor A

Clarificación	2752275	\$/año
Acido-Catión	2690243	0.3
Sosa-Anión	7403260	
Agua Descationizada	317700	1.0
Agua Pulidor	12364	". "
Sosa-Pulidor	152234	•
Acido Pulidor	19476	10 Car
Total:	13347552	\$/año

Potencia eléctrica

Clarificador	5.62	Kw.
B. Clorador	2.25	11
Ag. Coagulante	0 .1 87	11
Bomba Coagulante	0.375	11
Agit. Ayud.Coagulante	0.187	- 10.
Bomba Ayuda Coagulante	0.187	
Agit. de Cal	7.5	
Bomba de Cal	3	
Soplador	1.5	n .
Bomba del Desg.	11.25	H + i
Total:	32.05	Kw.

32.05 Kw x 24 Hs. x 365 dias x 0.85 \$ = 1 dia. 1 año Kw-Hs.

238044 \$/año

Bombas de Acido

3.73 Kw x 40 Min. x 24 Hs. x 365 días x 1 Hs. 16 Hs 1 día. 1 año 60 Min

x 0.83 \$ = 1157 \$/año Kw.-Hs

Bomba de Sosa

3.73 Kw x 47 Min. x 24 Hs. x 365 dias x 1 Hs. x 16 Hs 1 dia. 1 año 60 Min

0.85 S = 1360 S/año Kw-Hs.

Acido Pulidor (Bomba)

O.22 Kw x 66.17 Min x 24 Hs. x 1 Hs. x 365 dias x 72 Hs. 1 dia 60 Min 1 año

<u>O.85 \$</u> = 25 \$/año Kw-Hs:

Bomba-Caústico (Pulidor)

0.375 Kw x <u>66.17 Min.</u> x <u>24 Hs.</u> x <u>1 Hora</u> x <u>72 Hs.</u> 1 dia. 60 Min

365 dias x 0.85 \$ = 42.761 \$/año 1 año Kw-Hs.

Costo de Retrolavado y Regeneración de las unidades catiónicas y aniónicas:

Pot = 25 hp "Bomba de transferencia ya colocada en la planta".

25 hp x $\frac{.746 \text{ KW}}{1 \text{ hp}}$ = 18.65 KW

138867 \$/año

326780 Gal. x 24 Hs. x 365 días = 178912050 Gal. 1 año año

138867 \$/año = 0.0007 \$/Gal.178912050 Gal/año

Para la unidad catiónica

Tenemos:

0.0007 \$/Gal. x 24060051.7 Gal/año = 16842 \$/1 año

Consumo total de Energia Eléctrica

238044 \$/año

1157

1360

25

42.7

16842

258071 \$/año

Análisis del proveedor "C"

Costo de Clarificación = 895000 \$/año

Unidad cationica

Miluau Cacionica	⊕ (Min)	GPM	GASTO T	OTAL
Retrolavado	15	623	9347	
la.Regeneración	46	335	15410	Agua Cla rificada
2a.Regeneración	23	328	7544	in the second
<u>Desplazamiento</u>	7.14	335	2393	121.00
Lavado rápido	53	623	33500	
Total:			68194	Gal.

1575921985 Gal/año

x = 365 dias = 37606680 Gal/año;68194 Gal. x 24 Hs. 16 Hs.

este costo está incluído en la clarificación.

Consumo de Acido

5360 Lb. x 24 Hs. x 365 días x .454 Kq. x 4.30 \$ = 16 Hs. 1 día. 1 año 1 Lb. 1 Kg.

5728926 \$/año

Cada galón por la unidad catiónica cuesta:

336268 Gal. x 24 Hs. x 365 días = 184106730 Gal/año 16 Hs. 1 día. 1 año

5728926.1 = 0.031 \$/Gal. 184106730

Resumen de la unidad aniónica

	e (Min)	<u>GPM</u>	TOTAL	Agua des-
Retrolavado	15	180	2705	da.
Regeneración	66.16	110.25	7295	
<u>Desplazamiento</u>	14	110.25	1544	
Lavado de Drenaje	16	2205	35280	
Total:			46819	Gal.

46819 Gal. x 24 Hs. x 365 dias = 25633402.5 Gal/año

0.031 $\$/gal. \times 25633402.5 Gal/año = 794635.4 \$/año$

Consumo de Sosa

5292 Lb. Sosa x 24 Hs. x 365 dias x .454 Kq x 8.50 \$ = 16 Hs 1 dia. 1 año 1 Lb. 1 Kq

11,180,950.83 \$/año

290566.7 Gal. x 24 Hs. x 365 dias = 159085268.3 Gal/año 16 Hs. l dia. l ano

11180950.83 = 0.07 \$/Gal. 159085268.3 Resumen del Pulidor

	1.75	⊕ (Min)	GPM	TOTAL
Retrolavado	-	15	45.96	690
Desplazamiento	142	15	13.84	207.6
Lavado a Dren.		24.54	91.89	<u>2255</u>
		e Surfresh Mil I come		3146

3146 Gal. x 24 Hs. x 365 dias = 191381 Gal/año 144 Hs. 1 dia. 1 año

19329 \$/año

Dilución de Acido

563 Gal. x 24 Hs. x 365 días = 34249 Gal/año 144 Hs 1 día. 1 año

34249 x 0.031 = 1061 \$/año

Dilución de Sosa

831 Gal. x 24 Hs. x 365 dias = 50552 Gal/año 144 Hs 1 dia. 1 año

 $50552 \times 0.031 = 1567$ \$\text{\$fano}

Consumo de Acido Pulidor

200 Lb. x 24 Hs. x 365 dias x .454 Kg x 4.30 \$ -144 Hs. 1 dia. 1 año 1 Lb. Kg

= 23751 \$/año de ácido

Consumo de Sosa Pulidor

301.38 Lb. x 24 Hs. x 365 dias x .454 Kq. x 8.50 \$ = 144 Hs 1 dia. 1 año 1 Lb. Kg.

70750 \$/año de sosa

Sumando todos los costos anteriores;

1-	Clarificación	895000	\$/año
2-	Consumo de Acido	5728926.1	
3-	Consumo de Sosa	11180950.8	
4-	Agua descationizada	794635.4	n'.
5-	Agua Pulidor	21957	н.
6-	Acido Pulidor	23751	The Maria
7-	Sosa Pulidor	70750.0	
To	t a 1:	18715969.8	\$/año

Consumo de Energía Eléctrica

Potencia Eléctrica

1-	Clarificador	5.62	KW
2-	Bomba Booster de Cloro	2.25	
3-	Agitador Agente Coagulante	.375	D
4-	Bomba Agente Coagulante	.375	
5-	Agitador Ayuda Coagulante	.375	
6-	Bomba Ayuda Coagulante	.375	20 Mg
7-	Agitador de Cal	3.75	11
8-	Bomba de Cal	1.5	11
9-	Soplador	3	- 11
10-	Bombas de Ga.	16.5	.11
T O	t a 1:	34.12	Kw

34.12 Kw x 24 Hs. x 365 dias x .85 \$ 1 dia. 1 ano Kw-hs

254057 \$/año

Bomba de Acido

3.73 Kw x 70 min. x 1 Hs. x 24 Hs. x 365 días x 16 Hs. 60 Min 1 día. 1 año

0.85 \$ = 2025 \$/año Kw-ha

Bomba de Sosa

3.73 Kw. x 66.16 min. x 24 Hs. x 1 Hs. x 365 dias x 0.85 \$ 16 Hs. 1 dia. 60 Min. 1 and 1 Kw.Hs.

Acido Pulidor

0.75 Kw x 60 min. x 1 Hs. x 24 Hs. x 365 días 144 Hs. 60 Min 1 día. 1 año

x <u>0.85 \$</u> = 38.78

Sosa Pulidor

1.125 Kw x 60 Min. x 1 Hs. x 24 Hs. x 144 Hs. 60 Min 1 día.

 $\frac{365 \text{ dias}}{1 \text{ ano}} \times \frac{0.85 \text{ s}}{\text{Kw Hs.}} = 58.17 \text{ s/ano}$

Costo de Bombeo

0.0007 \$/Gal.

Para el Catión

0.0007 \$/Gal. x 37606680 Gal/año = 26324 \$/año.

Consumo total de Energía Eléctrica

254057.0

2025.0

1914.0

38.78

58.17

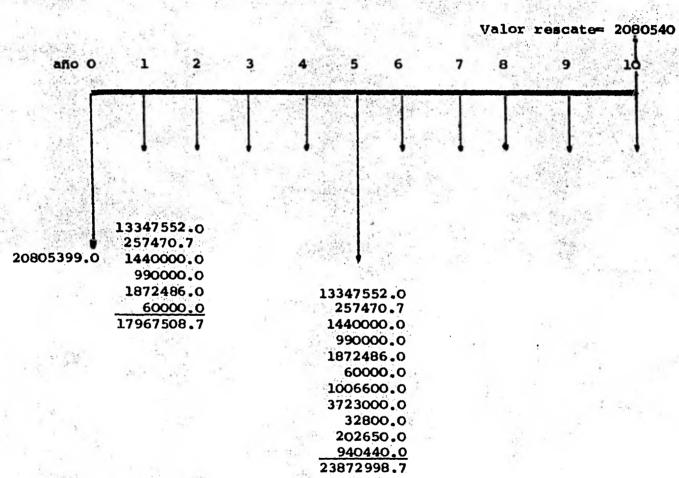
26324.0

284417.0 \$/anc

TABLA COMPARATIVA

DESCRIPCION	REOUERIDO	PROVEEDOR A	PROVEEDOR C	
9.0 Costos (\$ M.N.)	ļ į			
g Inversión Inicial	127	Moneda Nal.	Moneda Nal.	
9.2 Pretratamiento	L A	6,644185.00	6016200.00	
9.3 Filtros de arena	1.5	3,749875.00	2160500.00	
9.4 Filtros de carbón act.		2987000.00	2196000,00	
9.5 Unidad Desmineraliz.		7424339.00	11108849.00	
		incluye pte.rpto.	incluye pte.rpto	
total de Inversión Inicial		20805399.00	21481549.00	
Sex In		11		1 10 1001
				174
10 Costos de Operación *		Anuales -Mon.Nal	.Anuales-Mon.Nal.	
10.1 Clarificación		2752275.00	895000.00	
10.2 Acido U.Cationica	-	2690243.00	5728926.00	
10.3 Sosa U.Anionica		7403260.00	11180950.80	
10.4 Agua descationizada		317700.00	794635.00	i i
10.5 Agua Pulidor		12364.00	21957.00	
10.6 Sosa Pulidor		152234.00	70750,00	
10.7 Acido Pulidor		19476.00	23751.00	
			·	*
Subtotal		13347552.00	18715969.80	
Consumo de Energía Eléctrica *		Ver sub total	Ver subtotal	
10.8 Motor Clarificador		Ver subtotal	Ver subtotal	
10.9 Bomba clorador		Ver subtotal	Ver subtotal	1 A 1
10.10 Agitad.Coagulante		Ver subtotal	Ver subtotal	
10.11 Bomba Coagulante		Ver subtotal	Ver subtotal	
10.12 Agit. ayud.coag.		Ver subtotal	Ver subtot al	100
10.13 Bomba ayuda coag.		Ver subtotal	Ver subtotal	
10.14 Agit, Cal,		Ver subtotal	Ver subtotal	
10.15 Bomba de Cal		Ver subtotal	Ver subtotal	*
10.16 Sopladores		Ver subtotal	Ver subtotal	*

TABLA COMPARATIVA


DESCRIPCION	REQUERIDO	PROVEEDOR A	PROVEEDOR C	
10.17 Motor Bomba desq.		Ver subtotal	Ver subtotal	
Subtotal		238044.00	254057.00	
10.18 Motor bomba acido		1157.00	2025.00	
10.19 Motor bomba sosa	1	1360.00	1914.00	
10.20 Motor bomba pulidor	1	25.00	38.80	
10.21 Motor bomba pulidor		42.70	58.20	
10.22 Agua a U. Cationicas		16842.00	26324,00	
Subtotal		19426.70	30360.00	
Total Energia Eléctrica		257470,70	284417.00	
Total Energia Biectifica		257470,70	284417.00	
	7	25		
		•		
			1	
			1	
		,		
				•

5.2 EVALUACION DE ALTERNATIVAS - METODO DEL VALOR PRESENTE.

Este método consiste en transformar cada alternativa a una cantidad simple equivalente situada en un tiempo con siderado como tiempo cero. Para ésto, es necesario considerar los costos de operación que se tendrán en la planta.

DESCRIPCION	REQUERIOO	PROVEEDOR A	PROVEEDOR C
Costos Directos *			
Productos Químicos y Regenerantes		13347552.00	18715969.8
Energía Eléctrica		257470:70	284417.00
Mano de Obra	<u> </u>	1440000.00	1440000.00
Supervisión		900000.00	900000-00
Mantenimiento **	1		
El mantenimiento a la planta de Tratamiento de agua, consiste en			
cambiar las resinas de intercambio ionico cada 5 años y la cama de	ļ		
carbón activado cada 5 años			
U catiónica		1006600.00	1340000.00
U anionica		3723000.00	3307500.00
Pulidor Estrato Cat.	1	32800.00	80000.00
Estrato An.	1	202650.00	376725.00
Cama de Carbón Activado		940440.00	993916.00
Costos Indirectos			
Depreciación	<u> </u>	1872486.00	1933339.4
Serv.técnicos de im	1	60000.00	73000.00

PROVEEDOR "A"

Los gastos de operación en los años 1,2,3,4,6,7,8,9 son similares

Aplicando la ecuación se tiene:

$$PA_1 = \frac{17967508.7}{(1+.38)} = 13019933.8$$

PA₂= 9434734.6

PA₃ = 6836764.2

PA4 = 4954177.0

PA₅ = 4769924.9

PA₆ = 2601437.1

 $PA_7 = 1884791.6$

PA₈ = 1366014.0

 $PA_9 = 989865.2$

PA₁₀= 717293.60

PAVR = 83058.0

PA = 20805399 + 13019933.8 + 9434734.6 + 6836764.2 + 4954177 + 4769924.9 + 2601437.1 + 1884791.6 + 1366014 + 989865.2 + 717293.60 - 83058.0 = 67297277.0 \$.

Los costos de operación en los años 1, 2, 3, 4, 6, 7, 8, 9 son similares.

PBO = 21481549.0

PB1= 16917917,5

PB2= 12259360,5

PB3= 8883594.6

PB4= 6437387.3

PB5= 5883207.5

PB6= 3380270.6

PB7= 2449471.4 PB= 81600237.80 \$

PB8= 1774979.3

PB9= 1286216.9

PB10= 932041.20

PBRES= 85758.0

La ecuación que se utilizó para el ajuste a "valor presente" fue:

$$P = S/(1 + i)^n$$
 _____(37)

en dondes

P = Valor presente

S = Valor futuro

(l+i)ⁿ = Factor de pago simple

i = tasa de rendimiento (38%; interés Bancario)

n = 10 años (Vida económica)

Se espera que el valor de recuperación de la inversión inicial sea del 10%. El valor de depreciación es calculado en base al método de línea recta mediante la siguiente ecuación:

$$CAD = I - Vr/n ___ (38)$$

en donde:

CAD = Costo anual de Depreciación

I = Inversión inicial

Vr = Valor de Recuperación

De la tabulación económica puntos 9.0 a 10.22 y del analisis a valor presente mostrado anteriormente, se puede concluir:

- 1.- El Proveedor "A" es económicamente más atractivo por las siguientes razones:
 - a) La inversión inicial es menor en \$676,150.00
 - b) La diferencia de costos de operación determinados a lo años de vida útil favorecen al Proveedor "A" por \$14'302,960.80.

Los costos de operación como se ha indicado en la tabla anterior incluyen:

Costo de clarificación

Costo de regenerantes

Costo de energía eléctrica

Reposición de elementos intercambiadores

Depreciación

Mano de obra, etc.

La evaluación económica se aplicó a los Proveedores "A" y "C" únicamente, debido a que el Proveedor "B" técnicamente no cumplia con las especificaciones y requerimientos del proceso.

RECOMENDACION:

Por todo lo anteriormente señalado, se puede concluir que el roveedor "A" es el que ofrece una operación más eficiente y económicamente más atractiva en comparación con los otros 2 Proveedores. Por lo que se recomienda adquirir la Planta de

tratamiento de agua al Proveedor "A".

BIBLIOGRAPIA

DEMINERALIZATION BY ION EXCHANGE s/ed. (cap. 1,2,3,4,5,6,7,8,9,10)

Samuel B. Applebaum

TRATAMIENTO DE AGUA PARA LA INDUSTRIA Y OTROS USOS. 2/ed.

Eskel Nordel. (Cap.2,3,4,8,13,15)

MASS TRANSFER OPERATIONS 2/ed. Español (cap. 5,6,8)

Robert E. Treybal.

PRINCIPIOS DE OPERACIONES UNITARIAS. (Cap. 3 3/ed.)

Hougen and Watson.

PRACTICAS DE INGENIERIA QUIMICA (PA.QUIMICA)

M.C. Valiente.

CHEMICAL ENGINEERS! HANBOOK 5/ed. (cap. 14,16,18)

Perry/Chilton

CURSO INGENIERIA BASICA DE PROCESO (IMP-1981)

R. H Company

SYBRON/IONAC INFORMATION

Ionac Chemical

INGENIERIA ECONOMICA(Cap. 1.3.4.6)

George A. Taylor

PRINCIPIOS BASICOS DEL TRATAMIENTO DE AGUA PARA CALDERAS (-Cap.1 al 7)

Nalco.

DISTILLATION (Cap. 15)

Van Winkle

ANALISIS QUIMICO CUANTITATIVO Cap. 6 6/ed.

Pernando Orozco O.

MATHEMATICS OF COST COMPARISON

P.C. Jelen

DREW PRINCIPLES OF INDUSTRIAL

Water Treatment Cap.2