

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

REPRESENTACION RACIONAL DE FRACCIONES DE PETROLEO

2 TITUIO DE: **BA** OBTENER EL ENIERO 0 11 0 G S R E E A Ν ZAVALETA PAD JUAN MEXICO, D. F. 1979

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

TESIS 1979 M.t. 27/

	PRESIDENTE	DR.FRANCISCO BARNES DE C.
	VOCAL	DR.ALEJANDRO RAMIREZ G.
	SECRETARIO	ING.ENRIQUE BRAVO MEDINA
Jurado asignado originalmente según el tema	ler.SUPLENTE	ING. JOSE MANUEL LOPEZ A.
	2do.SUPLENTE	ING.ALEJANDRO SUAREZ M.

SITIO DONDE SE DESARROLLO EL TEMA: FACULTAD DE QUIMICA,

U.N.A.M.

SUSTENTANTE:

Juan Zavaleta Padilla

ASESOR DEL TEMA:

Dr. Francisco Barnes de Castro

SUPERVISOR TECNICO: Dr. Alejandro Ramírez G.

A MIS PADRES

A TODAS AQUELLAS PERSONAS QUE ME AYUDARON A TERMINAR ESTE TRABAJO

A MIS PARIENTES Y AMIGOS

AGRADEZCO PROFUNDAMENTE A LOS DOC-TORES FRANCISCO BARNES Y ALEJANDRO -RAMIREZ SU VALIOSA AYUDA Y AL INGENIE RO JOSE LUIS FLORES POR HABERME PER-MITIDO UTILIZAR SU SIMULADOR DE PROCE SOS.

INDICE

	1 45.
CAPITULO I - Introducción	I-1
CAPITULO II - Método Actual de Representación	∐-1
CAPITULO III - Método Propuesto	III-1
CAPITULO IV - Resultados y conclusiones	IV-1
APENDICES	A-I
	1.0

REFERENCIAS

CAPITULO I

INTRODUCCION

I.1

El petróleo es en nuestros días un recurso natural de tan vital importancia que se hace necesario buscar diversos métodos que nos permitan aprovecha<u>r</u> lo en forma más eficiente. Este aprovechamiento será mayor conforme se encuentren soluciones adecuadas a los problemas que la explotación de este recurso plantea.

Uno de los principales problemas se tiene en la destilación del petróleo, ya que se manejan mezclas complejas donde el número de componentes es tan grande que la única forma de definir la composición es a través de métodos empríricos.

Uno de los métodos más comunmente utilizados en la actualidad para repre sentar las fracciones de petroleo se basa en la creación de pseudocomponen tes. En este tipo de representación, la curva de punto de ebullición experimental se subdivide en un número arbitrario de intervalos, asociándole a cada uno de ellos un comportamiento hipotético, cuyas propiedades son calcula das a través de relaciones empíricas, en base a la información de punto de ebullición y densidad experimentales normalmente disponibles.

Esta forma de representación puede conducir a errores considerables en el cálculo de procesos de separación, lo que la hace poco confiable. En el siguiente capítulo se describe más ampliamente este método.

En el presente trabajo se propone un método de representación más racional de las fracciones de petróleo sustituyendo el uso de pseudocomponentes por componentes reales. El método se basa en el desarrollo de un modelo matemático que exprese fielmente el procedimiento experimental seguido, el cual consiste en encontrar una mezcla hipotética de componentes puros co-

1.2

munmente presentes en las fracciones de petróleo, cuya concentración es ajustada en forma tal que al ser llevada a una destilación intermitente, se obtenga una curva de destilación similar a la experimental.

De este modo se logra tener una representación más racional de las fracciones de petróleo a través de una mezcla de componentes identificables, lo que permitirá una mayor confiabilidad en la predicción de propiedades y, en consecuencia, en el cálculo de procesos de separación.

Para llevar a cabo el trabajo fué necesario plantear primero el problema de diferente forma para evitar caer en los mismos errores de concepción y cálculo de propiedades y en segundo lugar, fué necesario utilizar otros instrumentos para hacer más eficiente el proceso de cálculo, tal como el uso de una computadora digital y un programa simulador de procesos a ella integrado.

La forma concisa en que se efectuó lo anterior se describe en el capítulo III. Por último en el capítulo IV se analizan los resultados, se llega a las conclusiones finales y se hacen las recomendaciones pertinentes.

CAPITULO II

METODO ACTUAL DE REPRESENTACION

INTRODUCCION

El método de pseudocomponentes no es nada nuevo, de hecho fue descrito ya por Katz y Brown en 1933. Las discusiones más recientes al respecto han sido hechas por Hariu y Sage (1969), Cavett (1962) y Edmister (1961). El método de pseudocomponentes es un método empírico que permite caracter<u>i</u> zar mezclas complejas como las de crudos o fracciones de petróleo. La razón de la aceptación que ha tenido este método se debe principalmente a lo tedioso de los cálculos del tipo ensayo y error para vaporizaciones flash multicomponentes.

El método consiste principalmente en lo siguiente: La curva experimental de porciento destilado contra temperatura, se subdivide en un número determinado de intervalos y cada uno de ellos es manejado como si se tratara de un componente puro al hacer el cálculo de propiedades. Existen tres tipos de curvas experimentales que son comunmente utilizadas para la caracterización de fracciones de petróleo. Estas son, la curva TBP (True Boiling Point), la curva A.S.T.M. (American Society for Testing Materials) y la curva EFV (Equilibrium Flash Vaporization).

La curva TBP se obtiene de la destilación por lote del crudo o la fracción de petróleo que se desea caracterizar, llevada a cabo en una columna que conte<u>n</u> ga hasta 100 etapas de equilibrio y una relación de reflujo alto, del orden de -100.

En la figura (2.1) se muestra la curva TBP de una fracción de petróleo conocida como Nafta Jet combustible y la forma de dividirla en los diferentes intervalos o pseudocomponentes.

п.2

Fig. 2.1 - Curva TBP de una Nafta Jet combustible dividida en 20 cortes o pseudocomponentes.

La curva A.S.T.M. se obtiene de una destilación simple, usando equipo y procedimientos rigurosamente especificados en el A.S.T.M. Book Standars (American Society for Testing Materials, Philadelphia, 1960). El equipo de destilación allí especificado consiste básicamente en un matraz de destilación de determinadas dimensiones, un refrigerante en baño de hielo, un termómetro y una probeta para medir el volumen destilado. Se cargan 100 ml. de la mezcla en el matraz y se empieza a calentar hasta que la primera gota de destilado se forma (entre 5 y 10 minutos), se continúa con el proceso a una velocidad de 4 a 5 ml. de destilado por un minuto, tomando el volúmen destilado y la temperatura correspondiente para diferentes intervalos. A causa de que la destilación A.S.T.M. tiene una sóla etapa de equilibrio y reflujo muy pequeño, la separación lograda no es tan buena como en la desti lación TBP, por tal motivo cuando se emplea una destilación TBP el punto inicial tiene lugar a una temperatura menor y el punto final a una temperatu ra mayor que cuando se utiliza una destilación A.S.T.M., como puede verse en la figura (2.2). Por otro lado, las destilaciones A.S.T.M. son más rápidas de efectuar y cuestan menos dinero que las TBP, pero son menos pre cisas en cuanto a la definición de las características de la fracción del petró leo a que se refiere.

En la destilación EFV, el vapor y el líquido obtenidos a una temperatura d<u>a</u> da permanecen juntos hasta que se alcanza el equilibrio entre fases y post<u>e</u> riormente se separa la cantidad vaporizada; el experimento se repite para diferentes temperaturas. Esta destilación produce una separación más p<u>o</u> bre que en el caso de una destilación A.S.T.M.

11.4

Porciento Destilado

Las condiciones de equilibrio entre fases de fracciones o crudos de petróleo, necesarias para el diseño del equipo de proceso, pueden ser obtenidas a partir de los datos de destilaciones EFV. Sin embargo este procedimiento generalmente requiere cantidades considerables de tiempo y dinero, de tal modo que los datos EFV no se encuentran con frecuencia en la liberatura. Por esta razón han sido desarrolladas correlaciones empíricas que permiten predecir los datos EFV a partir de destilaciones analíticas TBP ó A.S.T.M. A continuación se presentan algunas de las correlaciones usadas con más frecue<u>n</u> cia.

ALTERNATIVAS

Exidten diferentes métodos alternativos, que parten del mismo principio de dividir la curva de porciento destilado en pseudocomponentes, pero que calculan las constantes necesarias de cada uno en forma diferente.

Dentro de los métodos más comunmente utilizados en la actualidad se encuentra el de Edmister (1961). El método propuesto por este autor permite predecir los datos EFV a partir de datos TBP ó A.S.T.M. por medio de correlacio nes gráficas. Ejemplos de las destilaciones analíticas utilizadas por Edmister para el desarrollo de sus correlaciones son las siguientes:

A.S.T.M .:

D 86	Para productos de petróleo ligeros
D 158	Para gosolinas
D 1160	a 760 mm Hg para aceites medianos
D 1160	a 10 mm Hg para aceites pesados

TBP:

Columna Oldershaw

De Polea o Banda

Es necesario mencionar aquí las ecuaciones siguientes propuestas por este autor debido a su importancia y aplicación. Para el cálculo del factor ace<u>n</u> trico por ejemplo, propone la siguiente relación:

$$W = \frac{3}{7} \left| \frac{l_{eq}}{\frac{Te}{Te}} - \frac{1}{2.0} \right| - \frac{1}{2.0}$$
(2.1)

Dónde: W = Factor acéntrico Pc= Presión crítica Tc= Temperatura crítica Tb= Temperatura normal de ebullición

Esta ecuación es aplicable para mezclas de Hidrocarburos así como para frac ciones de petróleo, las condiciones críticas y el punto de ebullición en algunos casos pueden obtenerse de tablas. La figura (2.3) por ejemplo, permite conocer el valor de la Presión crítica para fracciones de petróleo. Otro modo de calcular estas constantes, es por medio de correlaciones empíricas empleando las densidades API y el punto de ebullición promedio como datos.

Fig. 2.3 - Presión crítica de fracciones de Petróleo

Otra relación importante propuesta por Edmister, se refiere al cálculo del volúmen molal del líquido mediante la siguiente relación:

$$V_{...} V_{...} (3.7 + 3.0 T_{...})$$

12 21

Dónde: VI = Volúmen molal del líquido, ml/g-mol Vw = Factor de expansión del líquido Tr = Temperatura reducida

Esta ecuación permite el cálculo del volúmen del líquido como una función de la temperatura, su eficiencia depende de los valores apropiados del factor de expangión, para lo cual se pueden utilizar las propiedades a 25°C -(Cuando éstas estén disponibles) y calcular hacia tras Vw, esto asegura que el volúmen del líquido será exacto a esa temperatura y muy cercano al correcto a cualquier otra.

El método de Edmister es bastante popular, sin embargo el hecho de depen der de correlaciones gráficas limita considerablemente su aplicación, esto impide por otro lado abundar más respecto a él en este trabajo. Ultimamente con el uso de computadoras electrónicas el método de pseudocom ponentes se ha vuelto más práctico. Cavett (1962) desarrolló un programa de computación que permite calcular las propiedades de los pseudocompoentes, que se hacen necesarias para efectuar los cálculos de equilibrio líquido-vapor, por medio de polinomios que utilizan las temperaturas de ebullición, el peso molecular y las densidades API como datos.

La primer constante por calcular según este método corresponde a la tempera tura de ebullición promedio para lo cual se propone la siguiente ecuación:

$$\overline{TE} = \underline{\overline{TEC} + \overline{TEH}}$$
(2.3)

Dónde: TE = Temperatura de Ebullición promedio, °F TEC = Temperatura de Ebullición Cúbica promedio, °F TEM = Temperatura de Ebullición Molal promedio, °F Si se conoce la densidad API (dato generalmente conocido para las fracciones

de petróleo), se puede conocer la densidad relativa (Sp.G.60°F/60°F) y calcular después la densidad a la temperatura deseada a través de la ecuación:

Sas = (0.48907) (SR.G. 60"F/60"F) (2.4)

Dónde: S_{MS} = Densidad a 25°C, gr/ml Sp.G.(60°F/60°F) = Densidad relativa (Líquido a 60°F referido a H₂O a 60°F)

Conocida la densidad se puede obtener el volumen molal del líquido a 25°C con la ecuación:

$$V_{1} = \frac{P_{1}}{S_{15}}$$
(2.5)

Dónde: Vl = Volúmen molal del líquido, ml/g-mol PM= Peso Molecular

La temperatura crítica puede calcularse mediante el siguiente polinomio:

$$Te = a_0 + a_1 T + a_1 T^2 + a_2 \lambda T + a_3 \lambda T^2 + a_4 T^4 \lambda^2 \qquad (2.6)$$

Dónde: Tc = Temperatura crítica, °R T = Temperatura de ebullición molal promedio (TEM), °F A = Densidad API

a°, a1, a2, a3, a4, a5, a6 = Constantes.

Así también para calcular la presión crítica Cavett propone un polinomio:

```
Dónde:
Pc = Presión crítica, Psia
T = Temperatura de ebullición promedio (TE), °F
A = Densidad API
```

 b_0 , b_1 , b_2 , b_3 , b_4 , b_5 , b_6 , b_7 = Constantes.

Las ecuaciones (2.6) y (2.7) se pueden usar para el cálculo de las constantes críticas en mezclas de hidrocarburos así como de fracciones de petróleo, estas ecuaciones tienen la ventaja de estar en función de datos normalmente di<u>s</u> ponibles para las fracciones como son la temperatura de ebullición promedio y la densidad API, de aquí su uso frecuente en este campo.

Otras ecuaciones de importancia que propone este método son las siguientes:

$$V_{w} = \frac{V_{1}}{5.7 + 3.0 \left(\frac{366.69}{5}\right)}$$
 (2.8)

Dónde: Vw = Factor de expansión del líquido Vl = Volúmen molal del líquido, ml/g-mol Tc = Temperatura crítica, °R

Esta ecuación puede obtenerse de la propuesta por Edmister (ec.2.2) cuando se resuelve para Vw, esto puede hacerse aquí dado que VI es conocido de la ecuación (2.5). Para el cálculo del factor acéntrico se utiliza la siguiente relación, la cual fue propuesta por Pitzer, et al (1955) como una función de la presión.

$$\omega = -\log_{10} P_{\tau}^{*} - 1.0$$
 (2.9)

Dónde: w = Factor acéntrico

$$P^{\circ}r = Presión de vapor reducida = \begin{bmatrix} P^{\circ} \\ P_{\bullet} \end{bmatrix}_{T_{v=0,7}}$$

La relación $(P^{\circ}/Pc)_{reg}$ en la ecuación anterior corresponde a una presión de vapor reducida cuando la temperatura reducida es de 0.7.

Otro parámetro que es de importancia para el cálculo de las constantes de equilibrio por este método, es el parámetro de solubilidad, definido por la ecuación:

$$S = \left[\begin{array}{c} (\mu^{*} - \mu) - RT \\ V \end{array} + P \right]$$
(2.10)

Dónde: **g** = Parámetro de solubilidad H* = Entalpía del gas ideal, Cal/g-mol H = Entalpía del componente puro, Cal/g-mol RT = 592.4439 P = Presión, Psia. Para conocer el valor de H se utiliza un programa que calcula H como – H*-(H*-H) dado que normalmente la diferencia de entalpía (H*-H) del líquido con el gas ideal está disponible. Para el cálculo de H* se utiliza la siguiente ecuación:

$$H^{*} = Ha + (Hb) (T) + (He) (T^{2}) + (Hd) (T^{2})$$
(2.11)

Dónde:
H* = Entalpía del gas ideal, BTU/lb-mol
T = Temperatura, °F
Ha = PM [
$$c_{+}c_{1}A+c_{2}A^{2}+c_{3}A^{6}+C_{4}K+c_{5}K^{4}+C_{4}K^{4}]$$

Hb = PM [$c_{+}+c_{4}A+c_{4}A^{2}+c_{4}A^{6}+c_{4}K+c_{6}K^{4}+c_{5}K^{3}]$
Hc = PM [$c_{+}+c_{+}A$]
Hd = PM [$c_{+}+c_{+}A$]
A = Densidad API
K = Factor de caracterización del pseudocomponente
co, c₁, c₂, c₃, ..., c₁₇, c₁₈ = constantes.

Es necesario hacer notar que aún cuando la ecuación (2.11) proporciona el valor de H* en BTU/lb-mol, en la ecuación (2.10) debe de usarse en Cal/g-mol. Los valores de las constantes en la ecuación anterior (2.11), así como las de las ecuaciones (2.6) y (2.7) se presentan en el apéndice I. Para evaluar la constante de equilibrio (Ki), que es lo que finalmente se pre tende conocer para poder proceder con la evaluación del punto de burbuja y de rocío y con los cálculos flash, este método propone la siguiente relación:

$$4: = \frac{\Upsilon_{i}^{L} \varphi_{i}^{L}}{\Phi_{i}^{T}}$$
(2.12)

Dónde:

ł

Ki = Constante de equilibrio para el pseudocomponente i
* = Coeficiente de actividad del líquido para el pseudocomp.i
= Coeficiente de fugacidad del liq.para el pseudocomp. i
= Coeficiente de fugacidad molal parcial del vapor para el pseudocomponente i.

Los coeficientes de la ecuación anterior \vec{k} , $\vec{\Phi}'_{2}$, $\vec{\Phi}'_{2}$, $\vec{\Phi}'_{3}$ están en función de Tc, Pc, Vw, w y $\hat{\bf{S}}$, de tal forma que las ecuaciones (2.3) a (2.11) quedan relacionadas necesariamente con la ecuación (2.12), las ecuaciones mediante las cuales puede hacerse esto quedan fuera del contexto de este trab<u>a</u> jo, sin embargo, se presentan en el apéndice II.

Otro método que se presenta como alternativa para representar a las fraccio nes de petróleo a través de pseudocomponetes fue desarrollado más recientemente por Hariu y Sage (1969), los cuales elaboraron un programa de com putación que permite predecir los datos EFV (Equilibrium Flash Vaporitation), a partir de la curva True Boiling Point. Las ecuaciones que ellos proponen utilizan tambióne polinomios en función de las temperaturas normales de ebullición y las densidades API para poder efectura el cálculo de las propiedades de los pseudocomponentes. La temperatura se obtiene directamente de la curva experimental, esta temperatura es en realidad una temperatura de ebullición promedio, la densidad puede calcularse si se conoce la densidad relativa de cada pseudocomponente, mediante la siguiente ecuación:

SP. G.
$$(co^{*}F/Go^{*}F) = (\overline{TE})^{\frac{1}{2}} / F_{e}$$
 (2.13)

Dónde: Sp.G. =	Densidad relativa (Líquido a 60°F referido a H ₂ O a 60°F)
TE =	Temperatura de ebullición promedio del pseudocomponen te (°R)
Fc =	Factor de caracterización.

Conocida la densidad se procede a transformar el volúmen del pseudocomponen te (en porcentaje del total destilado) a peso y posteriormente mediante el peso molecular a moles, finalmente con el número de moles y los valores apropiados de K (constantes de equilibrio) se puede proceder a la evaluación del pun to de burbuja y de rocío y los cálculos flash necesarios.

Para el cálculo del peso molecular, utilizan la relación siguiente:

(2.14)

Dónde: X = Temperatura de ebullición promedio (°F) Y = Factor de caracterizacion $A_{00} = \div 0.6670202$ $A_{10} = \div 0.4383705 x10^{2}$ $A_{10} = \div 0.4383705 x10^{2}$ $A_{10} = \div 0.4352531 x10^{2}$ $A_{01} = \div 0.4552531 x10^{2}$ $A_{11} = \div 3.755585 x 10^{-4}$ $A_{12} = \div 3.875950 x 10^{7}$ $A_{01} = \div 5.578496 x 10^{-3}$ $A_{12} = \div 1.566228 x 10^{-8}$

Esta ecuación es válida incluso para el cálculo del peso molecular de componentes cuyo punto de ebullición es muy alto.

Para conocer los valores de K:(constantes de equilibrio) de los pseudocompo_

nentes, estos autores utilizan la siguiente ecuación:

(2.15)

$$l_{0310} P = \sum_{i=0}^{6} A_{i} \left[\frac{T_{0}^{i}/T - 0.0002867 T_{0}^{i}}{748.1 - 0.2145 T_{0}^{i}} \right]^{6}$$

Dónde: P° = Presión de vapor (mm Hg) T'_b = Temperatura normal de ebullición (°R) T = Temperatura del sistema (°R) $A_{\circ} = + G. % G % % G$ $A_{0} = + G. % G % % G$ $A_{1} = - 3. 56 % G % G$ $A_{2} = + 1.6 $ 4060 $ x 10^{6}$ $A_{3} = - 4. $ 58 8 6 \% $ x 10^{6}$ $A_{4} = - 1. $ 58 8 8 6 \% $ x 10^{6}$ $A_{5} = + 5. $ 66 \% $ (1 x 10^{15})$

El término entre paréntesis de esta ecuación fue dado por Maxwell y Bonnell (1957), los valores de Ai (para i=1,6) fueron desarrollados por Hariu y Sage (1969). La temperatura normal de ebullición (Tb') corresponde en realidad a una temperatura correjida por la presión y el factor de caracterización mediante la relación siguiente:

$$Tb' = Tb - 2.5$$
 (Fc - 12.0) log. 10 (P/760) (2.16)

Una vez conocida la presión de vapor, el valor de la constante de equilibrio (K) correspondiente se encuentra dividiendo P entre la presión total, es decir:

$$Ki = Pi/Pt$$
(2.17)

Donde: Ki = Constante de equilibrio del pseudocomponente i Pi = Presión de vapor del pseudocomponente i Pt = Presión Total.

Esta correlación es recomendada en un rango de 20 a 200 psig. El punto de burbuja puede ser encontrado ajustando la temperatura hasta que la función siguiente sea igual a cero.

Dónde: x_i = Fracción mol del pseudocomponente i en el líquido.

La K de cada componente es expresada como función de la temperatura, de igual forma el punto de rocío corresponderá a la temperatura donde la siguiente función sea cero.

Dónde: Yi = Fracción mol del pseudocomponente i en el vapor. (2.18)

(2.19)

Cuando el punto de burbuja y de rocio han sido establecidos, los cálculos de flash son hechos a intervalos de temperatura definidos entre estos dos límites.

Finalmente en la tabla (2.1) que se presenta a continuación se han calculado algunas de las propiedades de la Nafta Jet combustible de la figura (2.1), cuando la curva es dividida en 20 pseudocomponentes.

TABLA 2.1

PROPIEDADES DE UNA NAFTA JET COMBUSTIBLE REPRESENTADA CON 20 PSEUDOCOMPONENTES

Componentes	PM	TC	PC	w
*				
Corte 1	113.13	1021.6	405.28	0.36457
Corte 2	113.59	1027.3	410.27	0.36659
Corte 3	113.97	1032.9	415.44	0.36858
Corte 4	114.35	1041.5	423.54	0.27152
Corte 5	114.35	1059.8	443.47	0.37714
Corte 6	114.71	1076.6	457.23	0.38518
Corte 7	116.47	1084.9	454.13	0.39311
Corte 8	119.50	1092.2	442.73	0.40357
Corte 9	123.80	1098.1	423.21	0.41743
Corte 10	126.72	1104.0	412.51	0.52758
Corte 11	128.19	1110.0	410.40	0.43308
Corte 12	126.68	1116.0	408.31	0.43849
Corte 13	131.19	1122.2	406.27	0.44379
Corte 14	132.36	1127.0	404.74	0.44780
Corte 15	133.19	1130.4	403.73	0.45058
Corte 16	134.02	1133.8	402.73	0.45332
Corte 17	134.86	1137.1	401.74	0.45604
Corte 18	136.75	1142.5	397.49	0.46190
Corte 19	139.74	1149.8	390.02	0.47092
Corte 20	138.56	1178.5	424.13	0.47060

*

PM = Peso molecular, calculado con la ecuación (2.14)

Tc = Temperatura crítica, calculada con la ecuación (2.6)

Pc = Presión crítica, calculada con la ecuación (2.7)

W = Factor acéntrico, calculado con la ecuación (2.1)

CONCLUSIONES

El método de pseudocomponentes presenta varios problemas y limitaciones, entre las que se pueden mencionar las siguientes:

En primer lugar, los datos TBP y A.S.T.M. en la literarura actual son extremadamente inconsistentes, debido principalmente a las diferencias entre las técnicas y los aparatos utilizados en los experimentos.

Por otro lado, las correlaciones de los diferentes métodos alternativos, pr<u>e</u> dicen apropiadamente la misma curva EFV en algunos casos, pero difieren bastante en otros. Esta diferencia es mayor cuando se trata de mezclas c<u>u</u> vos puntos de ebullición son altos.

Además, la forma de asociar componentes a fracciones destiladas presupone que el experimento consiste en una serie independiente de condiciones de equi librio simple de componentes hipotéticos puros. Sin embargo el experimento consiste en realidad en una destilación intermitente donde se encuentran en equilibrio dos fases multicomponentes, por lo que la temperatura de ebulli ción de la mezcla es superior a la del componente puro más volátil y la tem peratura final, debido al tiempo de respuesta de los aparatos de medición, es normalmente menor que la que correspondería al componente puro más pesado. Esto elimina la influencia que puedan tener los componentes más ligeros y los más pesados en la predicción de la composición de la mezcla. Este método, como se puede ver, resulta ser una forma de representación poco confiable, ya que puede conducir a errores considerables en el cálculo de procesos de separación.

II.21

CAPITULO III

METODO PROPUESTO

INTRODUCCION

En este capítulo se describe la forma en que surgió y se desarrolló el método propuesto, así como las herramientas que fue necesario utilizar para llevarlo a cabo.

La idea de desarrollar algún método que sustituyera a los usados actualmente para representar fracciones de petróleo, nace de la necesidad de superar los errores a que pueden conducir los métodos existentes. Primeramente debería partir de diferentes consideraciones para no incurrir en los mismos erro res de concepción y de cálculo de propiedades. Además se deseaba representar las fracciones ya no a través de componentes ficticios sino de componentes reales.

En el método propuesto no se utiliza la curva de temperatura de ebullición como punto de partida tal como en el método actual, sino más bien como patrón de comparación. El método equivale a mezclar hipotéticamente componentes puros comunmente presentes en las fracciones de petróleo, en número y en cantidades tales, que la mezcla así obtenida al ser llevada a una destilación intermitente se comporte en forma similar a la experimental. Además el peso molecular, el punto de burbuja y de rocío así como la predicción de entalpía para diferentes temperaturas y presiones deben de coincidir también con los datos experimentales. Para la comparación se utilizaron los datos experimentales de fracciones del petróleo obtenidos por Lenoir y Hipkin (1973) consistentes principalmente en naftas parafínicas y aromáticas. Esta forma de representación permitirá tener una mayor confiabilidad en la predicción de propiedades y se puede esperar también que la mezcla se comporte en forma equivalente a la fracción de petróleo, no sólo para diseño de

III.2

procesos de separación similares a la representada sino también para operaciones diferentes.

La mezcla propuesta debe poseer características especiales para que pueda imitar el comportamiento experimental que tiene la fracción de petróleo bajo las mismas condiciones de presión y temperatura. Obtener una mezcla con tales propiedades efectuando físicamente el experimento hubiera requerido de mucho tiempo para probar diferentes mezclas, puesto que el número de compo nentes y la cantidad de cada uno de ellos podía variarse hasta obtener un número casi infinito de mezclas posibles. Más aún existía la posibilidad de que una mezcla con las características deseadas no pudiera obtenerse ó que varias mezclas pudieran representar una misma fracción. Esto convertía al método en poco práctico ya que se hubiera requerido de mucho tiempo para poder representar una sola fracción de petróleo y se desea llegar a represen tar un gran número de ellas en forma rápida. Fue necesario utilizar otros instrumentos que permitan probar gran cantidad de mezclas diferentes, pero para hacer uso de ellos era necesario plantear el problema en forma diferen te.

Puesto que las posibilidades de mezcla eran muchas y sólo se deseaba obtener aquella mezcla capaz de comportarse de igual modo que la fracción de petróleo y con el menor número de componentes posibles, el problema se reducía en realidad a lograr una mezcla óptima. Planteado entonces como un problema de optimización, cuyo objetivo era encontrar la mezcla más adecuada entre un gran número de mezclas factibles, se hizo necesario poder representar lo más fielmente posible la mezcla real a través de algún

Ш.3

modelo capaz de reproducirla; es decir, que simulara el proceso experimen tal que se pretendía seguir físicamente. El modelo debería ser lo más simple posible, puesto que sería utilizado un gran número de veces y, sin embargo, debería poder reproducir con bastante aproximación los resultados experimentales. Más adelante se describe este modelo en la parte de simu lación.

No era suficiente el poder probar una sóla mezcla a través del modelo, sino que era necesario contar con algún instrumento que modificara la composi-ción de la mezcla en base a la comparación con el comportamiento experime<u>n</u> tal de la fracción de petróleo, aumentando o disminuyendo la cantidad y aún el número de los componentes iniciales hasta lograr la mezcla óptima. Esto se refiere a la selección y adaptación del método de búsqueda descrito en la pa<u>r</u> te correspondiente a optimización. Fue necesario utilizar una computadora digital, ya que el número de cálculos involucrados en la búsqueda del valor óptimo era demasiado grande para realizarlos a mano.

Esto trajo consigo grandes ventajas, ya que la rapidez con que la máquina hace cálculos permitía probar gran cantidad de mezclas para más de una fra<u>c</u> ción de petróleo que se deseaba representar.

ORGANIZACION DEL TRABAJO

Tratar de ajustar la composición para que la predicción de propiedades fuera igual a la real, pretendiendo igualar simultáneamente tanto el peso molecular, como la curva de punto de ebullición, la temperatura de burbuja y de rocío y la entalpía, era poco razonable, puesto que a pesar de contar con la computadora, tratar de encontrar una mezcla que presentara una buena aproxi

Ш.4

mación en los valores de todas las propiedades antes mencionadas requería de demasiado tiempo de máquina y podía restringir de tal modo el método que no le permitiría la suficiente mobilidad para que la búsqueda fuera más ágil.

Por esta razón se pensó en dividir el trabajo en dos partes.

En la primera de ellas se centraría la búsqueda en encontrar el mejor ajuste posible de la curva de punto de ebullición y del peso molecular al mismo tiem po. En la segunda parte, se trataría de encontrar el mejor ajuste en la temperatura de burbuja y de rocío. Si al evaluar las desviaciones que se tenían en los parámetros de la segunda parte, utilizando la composición obtenida por el ajuste hecho en la primera, éstas resultaban ser poco significativas, no sería necesario llevar a cabo un ajuste adicional.

De otro modo, si las desviaciones eran considerables, se tomaría la compos<u>i</u> ción obtenida por el ajuste de la primera parte para iniciar la búsqueda en la segunda. Posteriormente se volverían a evaluar las desviaciones que prod<u>u</u> jeran en los parámetros de la primera parte la composición obtenida en la segunda, para que, en caso de existir desviaciones considerables, volver a repetir el proceso de búsqueda. La figura 3.1 es la representación gráfica de la forma en que se llevó a cabo el trabajo.

Las predicciones de entalpía no fueron incluidas en los parámetros de comparación para dirigir la búsqueda en ninguna de las dos partes anteriores, debido a que el número de datos que hubiera sido necesario comparar era demasiado grande y la evaluación de las desviaciones producidas requeriría de un tiempo de computadora no disponible normalmente, sin embargo, a pesar de que no se incluyeron para la búsqueda estos datos, si se evaluaron

III.5

Fig. 3.1 Diagrama de Bloques para la secuencia de Búsqueda

las desviaciones producidas y se utilizaron para la comparación final.

SIMULACION

Es el modelo matemático el que permitiría simular el proceso que se deseaba seguir en cada una de las partes en que se dividió el trabajo.

A continuación se hace la descripción del modelo utilizado y del proceso que se pretendía simular a través de él.

El modelo matemático utilizado en este trabajo, se basa en el empleo de la ecuación de estado de Soave-Redlich-Kwong, la cual es una modificación a la ecuación original de Redlich y Kwong (1949), ecuación (3.1), propuesta por -Soave en 1972, con las reglas de mezclado de Barnés (1973). Esta ecuación, a pesar de su simplicidad, predice con una considerable exactitud las propiedades termodinámicas y las constantes de equilibrio en sistemas de hidroca<u>r</u> buros ligéros y fracciones de petróleo. En este trabajo no se abundará más respecto a la aplicabilidad y validez de esta ecuación, ya que ésto fue probado en un trabajo anterior (José Luis Flores Luna, 1976).

$$P = \frac{RT}{V} - \frac{A}{\sqrt{v}}$$

*(3.1)

* Los términos de la ecuación anterior, se analizan en el apéndice III.

La forma de alimentar el modelo a la computadora para que efectúe los cál

culos necesarios es a través de un programa elaborado para tal efecto, el cual además leerá los datos e imprimirá resultados. En este caso el programa utilizado es un simulador general de procesos, el cual contiene la ecuación de estado antes descrita. Este programa, escrito en lenguaje - -FORTRAN, consta de un paquete de subrutinas, capaz de simular diferentes procesos (Flores Luna, 1976). En esta primera parte del trabajo, se desea ba simular la destilación intermitente de una mezcla de hidrocarburos saturados. La figura 3.2 esquematiza este proceso. Esto proporcionaría los datos necesarios de temperatura de ebullición contra porciento evaporado de la mezcla propuesta, para poder compararlos con los datos experimentales de la fracción de petróleo. Puesto que cada temperatura obtenida de este modo representa un punto en la curva de temperatura de ebullición, es de suponerse que a mayor número de puntos se tendrá una mejor aproximación. Sin embargo, ya que para cada mezcla propuesta será necesario simular el proceso, el número de puntos no podrá ser muy grande y, en consecuencia, el número de etapas de destilación será limitada; en la práctica se utilizaron un máximo de 12 y un mínimo de 10 etapas ó destilaciones sucesivas.

MODIFICACIONES AL PROGRAMA

El programa original incluye el uso de un Block Data que contiene las propie dades físicas de 25 compuestos diferentes necesarias para poder efectura la simulación. La subrutina REPROP extrae las constantes necesarias del block data y establece las unidades para los cálculos internos. Puesto que los com ponentes que permitieran representar la fracción de petróleo elegida podían no estar incluidos en el Block Data (los únicos hidrocarburos saturados inclu ídos en él, están comprendidos entre el metano y el octano) y, además, el -

ш.8

Fig. 3.2 Proceso simulado en la parte I.

ш.9

volumen ocupado por éste era una carga considerable para la ejecución del programa, se decidió sustituirlo por ecuaciones apropiadas que permitieran evaluar las constantes físicas que eran indispensables. Las ecuacio-nes 3.2 a 3.5 proporcinan el valor de las constantes necesarias como el p<u>e</u> so molecular, presión crítica, temperatura crítica y factor acéntrico, en base a la información del número de carbonos de cada componente. Estas ecuaciones forman parte de la subrutina REPROP modificada, la cual además establece como, en la original, las unidades con que se llevan a cabo los cálculos.

El utilizar ecuaciones que calcularan las constantes físicas de los componen tes, implicaba el idealizar éstos componentes. Esto, a pesar de restar cierta presición, proporcina una mayor simplicidad al método y, puesto que se pretende dar mayor importancia a la metodología propuesta y no tanto a la exactitud obtenida, lo anterior queda justificado. Por otro lado, sería más fácil afinar posteriormente la exactitud si el método resultaba ser el adecuado para resolver el problema.

(3.2)

Dónde: W = Factor Acéntrico

PH = (Ne) (14.02695) + 2.0158

(3.3)

ш.11

Dónde: Nc = Número de carbonos

$$T_{e} = \frac{1.8 F U}{0.04 V + [0.02 V + - 0.0004 V +]}$$
(3.4)

Dónde Fn = $4(2+(8\mu_c))^{\frac{1}{2}}$ -123.9

$$P_{c} = \frac{68.065 \text{ Tc}}{\Gamma(0.5153 \text{ Wc}) + 14.5188 \text{ JU}_{c} + 14.556}$$
(3.5)

Dónde: Tc = Temperatura crítica

Dónde: Pc = Presión crítica

Otra modificación necesaria fue el ajuste de los datos reportados por Passut y Danner (1972) para el cálculo de las propiedades termodinámicas de los <u>ga</u> ses ideales, como entalpía, capacidad calorífica y entropia, hecha a través de cinco coeficientes; en lugar de utilizar estos datos directamente y puesto que se pretendía eliminar el uso de Block Data que los contenía, se ajustó un polinomio mediante métodos de regresión, utilizando el criterio de mínimos cuadrados para predecirlos. El reporte correspondiente a este ajuste ya fue hecho en un trabajo anterior (Luis Puente Moreno, 1978) por lo que solamente se presenta a continuación las ecuaciones recomendadas.

$$H* = BT + CT2 + ET4 + FT5$$
(3.6)

$$Cp* = B + 2CT + 3DT2 + 4ET3 + 5FT4$$
(3.7)

$$S* = B \ln T + 2CT = 3/2 DT2 + 4/3 ET3 + 5/4 FT4$$
(3.8)

Dónde:
H * = Entalpía del Gas Ideal
Cp = Capacidad Calorífica a presión constante del Gas Ideal
S * = Entropía del Gas Ideal
B =
$$-0.024924 + 0.051906 / N$$

C = $4.6089 \times 10^{4} - 1.6997 \times 10^{5} / N$
D = $-1.0988 \times 10^{7} + 2.7088 \times 10^{7} / N$
E = $3.0588 \times 10^{7} + 5.2541 \times 10^{19} / N$
F = $-0.6027 \times 10^{16} - 3.086 \times 10^{5} / N$
T = Temperatura, °R

III.12

Además de las modificaciones anteriores se añadieron al programa algunas subrutinas extras, cuya descripción se hace en el apéndice IV.

OPTIMIZACION

No sólo era necesario poder simular el proceso como se mencionó anteriormente, sino modificar también la composición de la mezcla óptima. Esta par te del trabajo se refiere al método de búsqueda utilizado y a la forma de evaluar el óptimo. Antes de continuar es indispensable definir cual será el óptimo al que se pretende llegar. Para esta parte del trabajo se considerará como óptimo aquella mezcla capaz de aproximarse lo mejor posible al peso molecular experimental y de reproducir lo más fielmente el comportamiento experimental de la curva de punto de ebullición de la fracción de petróleo que se pretende caracterizar. Además es deseable que esta representación se l<u>o</u> gre con el menor número de componentes posible. Definido el objetivo, es requisito disponer de los medios adecuados para alcanzarlo. Uno de ellos se refiere a la elección del método de búsqueda apropiado, el cual necesita alguna forma de evaluar lo distante que se encuentra del óptimo, es decir, se hace necesario definir una función objetivo.

FUNCION OBJETIVO

La función objetivo es la forma de expresar matemáticamente el óptimo definido anteriormente.

Esta función permitirá evaluar las desviaciones que en el peso molecular y en la curva de punto de ebullición producirán los cambios de composición de mezcla. Esta función debe tener la suficiente sensibilidad para ajustar paralelamente los dos parámetros de comparación mencionados arriba. En el óptimo exácto la función objetivo deberá ser igual a cero, pero ya que ésta es

III.13

una situación ideal, bastante difícil de lograr, lo que se hace normalmente es fijar un cierto valor de tolerancia mínimo y, cuando la función objetivo alcanza este valor, se considera estar en el óptimo. Las ecuaciones utilizadas para evaluar la función objetivo son las siguentes:

$$FPL = \begin{bmatrix} \frac{PH_0}{PH_{MQ}} & -1 \end{bmatrix}^2$$
(3.9)

Dónde: PMc = PM calculado PMexp. = PM Experimental

$$F_{T} = \frac{2}{Z_{tin}} \left[\frac{T_{ex}}{T_{exp}} - 1 \right]^{2}$$
(3.10)

Dónde : To_(i) = Temperatura calculada para la corriente de vapor i.

Dónde: Texp : = Temperatura experimental de la misma corriente.

Deben ser establecidos también dos puntos que en adelante serán mencionados a menudo. El primero de ellos se refiere a las variables que podrá ma nejar el método y el segundo a las restricciones a que estará sujeto dicho - método. Por variable se entenderá en adelante a la cantidad de cada componente en la mezcla; dicha cantidad, representada por Xi (i=1, hasta n componentes), está dada en libras mol.

La primera restricción hecha al método es que Xi fuera mayor o igual de cero. (Xi > 0) ya que no tendría sentido manejar composiciones netativas. El método se encontraba también imposibilitado para incluir por sí mismo nuevos componentes, sólo podría modificar los datos en la mezcla inicial; sin embargo, si podría eliminar algunos de ellos (hacer Xi =0) en su bús queda del óptimo. Este tipo de restricción se manejó haciendo un cambio de variable, para transformar un problema con restricciones a uno sin restricciones; es decir si ahora se designa la cantidad de cada componente como Yi, y se iguala Xi con el valor absoluto de ella, es decir Xi= |Yi| , Xi siempre será positivo. El hecho de hacer éste cambio de variable facilita la bús queda y no altera la solución, ya que el óptimo sigue siendo el mismo. La parte del programa que hace este cambio de variable se llama traductor; la forma en que este traductor queda integrado al resto del programa se mues tra en la figura 3.3.

Debe enfatizarse que si la función objetivo depende de n variables y existen también n restricciones, linealmente independientes, sólo existe una solución y no problema de optimización; es necesario que el número de restricciones sea menor que el número de variables para que existan grados de libertad y por lo tanto un problema de optimización.

METODO DE BUSQUEDA

Los problemas en optimización suelen ser tan diversos y pretender a solucio

III.15

nar situaciones tan diferentes, que en ocasiones no se dispone de un método apropiado; cuando el problema es muy específico implica el desarrollo de un método de búsqueda especial para solucionarlo. Afortunadamente muchos de los problemas siguen un cierto patrón de comportamiento, lo que permite utilizar métodos de búsqueda generales encaminados a solucionar problemas con características comunes. Existen por ejemplo algoritmos de programación lineal que solucionan problemas de tipo lineal; algunos otros más sofisticados pueden resolver problemas muy complicados y con gran número de restricciones, garantizando de antemano llegar al óptimo en un mínimo de evaluaciones de la función. La mayoría de los métodos considerados como sofisticados necesitan para su funcionamiento la evaluación de derivadas. Para resolver el problema que nos atañe se pensó ele gir algún método que no utilizara derivadas, ya que las características del proceso que se pretendía optimizar hacía demasiado lenta la evaluación de la función objetivo y esto requeriría de un tiempo de computadora que no resultaba conveniente. El método más adecuado debería de ser un méto do de búsqueda directa que no utilizara derivadas, eligiéndose debido a sus características, el método de búsqueda desarrollado por Hooke y Jeeves (1). Tanto la simulación como la optimización forman parte de un mismo programa, los resultados obtenidos en la simulación se evalúan en la optimización. La figura 3.3 ilustra la forma en que fluye la información a través del programa.

III.16

Fig. 3.3 Diagrama de bloques para el flujo de información en el programa.

DATOS NECESARIOS

En base a la figura 3.2 la información inicial necesaria de la corriente de entrada es en primer lugar la que se refiere a los componentes y condiciones de operación. De los componentes era necesario alimentar al programa el número de ellos, el número de carbonos respectivo y la cantidad de cada uno. De las condiciones de alimentación, es necesario conocer cuando menos dos propiedades para poder calcular las restantes bajo las siguientes posibilidades:

Presión y Temperatura conocidos
 Presión y Relación de Vaporización conocidos
 Presión y Entalpía conocidos
 Presión y Entropía conocidos
 Temperatura y Relación de vaporización conocidos
 Temperatura y Entalpía conocidos
 Temperatura y Entalpía conocidos
 Temperatura y Entalpía conocidos

La forma en que se seleccionaron el número de componentes y la composición es la siguiente:

Para elegir los componentes una vez seleccionada la fracción que se deseaba representar, se procedió a examinar el rango de temperatura en el que variaba su curva de ebullición, es decir, si IBP = Temperatura inicial y EP = Temperatura final, se supuso entonces que el componente puro de menor peso molecular debería tener una temperatura normal de ebullición cercana a IBP y el componente puro más pesado debería tener una temperatura cercana a EP. -Además se tomó en cuenta el valor del peso molecular reportado para la fra<u>c</u> ción de petróleo, ya que era de esperarse que el componente que quedara entre el más ligéro y el más pesado tendría un peso molecular cercano al experimental. En la tabla 3.1 se presentan los datos en base a los cuales se hizo

ш.19

TABLA 3.1

NAFTA DE BAJO PUNTO DE EBULLICION

SELECCION DE LOS COMPONENTES INICIALES

%Evap.	T (°F)	Component Selccionado	.es	*T.N.E.(°F)	** P.M.		
IBP	106	Butano Pentano	(C-4) (C-5)	31.2 96.9	58.124 72.150		
5	152	Hexano	(C-6)	155.7	86.18		
10	172						
20	204	Heptano	(C-7)	209.2	100.2		
30	226						
40	247	Octano	(C-8)	254.0	114.25		
50	260						
60	290	Nonano	(C-9)	289.0	128.26		
70	311	Decano	(C-10)	324.0	149.29		
80	339						
90	364						
95	381	Undecano	(C-11)	392.0	156.31		
EP	395	Dodecano Tridecano	(C-12) (C-13)	421.4 436.0	170.34 184.37		

Notas:

* T.N.E. Temperatura Normal de Ebullición.

** P.M. Peso Molecular

la selección de los componentes que se deberían incluir para representar una nafta de bajo punto de ebullición.

Como se ve en esta tabla los componentes más ligéros cercanos a IBP son butano y pentano y los más cercanos a EP son undecano y dodecano. Se decidió en base al criterio anterior tomar desde butano (C-4) hasta tridecano (C-13), ya que con esto quedaban incluidos 10 componentes, dejando como componentes centrales a octano (C-8) y nonano (C-9), cuyos pesos mol<u>e</u> culares respectivos, 114.26 y 128.26, eran los más cercanos al peso molecular experimental de 120 para la nafta de bajo punto de ebullición. Esta forma de selección, hasta cierto punto arbitraria, fue hecha solamente para tener una idea de los componentes que deberían ser incluidos inicialme<u>n</u> te, pero el método de búsqueda fue el que en realidad produjo la mezcla <u>fi</u> nal. Sin embargo, salvo en algunos casos, la selección final no fue muy lejana a la hecha inicialmente por el método descrito.

Se deseaba poder representar cinco fracciones de petróleo seleccionadas de las 8 probadas por Lenoir y Hipkin (1973) en su trabajo. Por tal motivo el programa debería tener la información de cinco pesos moleculares y cinco curvas de temperatura de ebullición. La primer información podría alimen tarse directamente, ya que se trataba de valores constantes de peso molecular, pero para poder comparar la curva fue necesario ajustar un polinomio mediante métodos de regresión, utilizando el criterio de mínimos cua drados para predecir las temperaturas. Esto implicaba introducir de 6 a 10 coeficientes de regresión, dependiendo del caso, para cada fracción. Las fracciones elegidas para ser representadas son: nafta jet, nafta de bajo punto de ebullición, kerosina, gasoleo y aceite combustible, cuyas propiedades sujetas a comparación se muestran en la tabla 3.2. Sólo se muestran en esta tabla los datos experimentales de las cinco fracciones elegidas, como la curva de punto de ebullición y el peso molecular que servirán de referencia para evaluar las desviaciones que se produzcan en la primera parte. En ella, IBP (Initial Boiling Point) y EP (End Point) corresponden como en la tabla 3.1 a la temperatura inicial y final de ebullición respectivamente.

111-22

TABLA 3.2 DATOS EXPERIMENTALES COMPARADOS EN LA PARTE I

TEMPERATURA DE EBULLICION VS. PORCIENTO EVAPORADO

Fracción de Petróleo	%	IBP	5	10	20	30	40	50	c.60	70	80	90	95	EP	PM
Nafta de Bajo Punto de Ebullición		106	152	172	204	226	247	260	290	311	339	364	381	395	120
Nafta Jet Combustible		286	299	304	308	313	317	321	325	329	334	341	346	361	144
Kerosina		330	342	350	366	380	390	395	417	433	450	469	482	500	162.3
Gasoleo		477	497	503	512	518	527	535	543	553	567	585	602	621	214
Aceite Combustible		434	463	490	510	526	537	547	558	56 9	583	604	622	634	227,5

ANALISIS PRELIMINAR DE RESULTADOS

Los resultados obtenidos hasta esta parte se presentan en forma condensada en la tabla 3.3. Como se puede ver, las predicciones tanto de la curva de punto de ebullición, el peso molecular (PM), la temperatura de burbuja (TB) y de rocío (TR), así como de la entalpía obtenidas, son lo suficientemente buenas en la mayoría de los casos. De ellos, el ajuste logrado para representar a la kerosina resultó ser el mejor, ya que posee una buena aproximación en la predicción de entalpía, la cual representa gran número de puntos comparados (31puntos), y tiene el segundo mejor valor de FOB (sólo el gasoleo tiene mejor valor de función objetivo) y de A TB y A TR, (s<u>ó</u> lo la nafta jet la supera en la predicción de TB y TR).

Por otro lado, el peor ajuste resultó ser el obtenido para representar a la nafta de bajo punto de ebullición, cuyos valores de FOB, 1 TB, 1 TR, -

H son los más altos de todos. Por tal motivo se decidió que para esta fracción si sería necesario llevar a cabo la segunda parte del trabajo; además era de esperarse que al tratar de lograr valores más altos de TB y TR ya que los obtenidos hasta aquí estaban todos por abajo de los experimentales, el método tendería a hacer más pesada la mezcla, con lo cual también el peso molecular mejoraría.

Ш.23

RESULTADOS OBTENIDOS EN LA PARTE I TABLA 3.3

Fracción de Petróleo	FPM (x10 ⁻³)	FT (x10 ⁻⁴)	F O B (x10 ⁻³)	▲TB (1) (°F)	∆ TR(2) (°F)	▲ H(3) Btu/lb)	No. de Púntos	Componentes Incluidos	No.
Nafta de bajo pu <u>n</u> to de epullición	22.29	2.429	22.5329	48.185	59.45	13,02	80	de C-4 a C-13	(10)
Nafta Jet Combustible	8.427	0.12707	8.4397	19.87	21.15	3.8	62	de C-5 a C-11	(7)
Kerosina	2.403	0.102327	2.4132	39.20	29.24	0.765	31	de C-7 a C-15	(9)
Gasoleo	0.068723	0.11431	0.080154					de C-10 a C-19	(10)
Aceite Combustible	4.955	4.063	5.3613					de C-10 a C-19	(10)

(1) Error relativo promedio en la predicción de temperatura de burbuja

(2) Error relativo promedio en la predicción de temperatura de rocio
 (3) Error relativo promedio en la predicción de entalpía.

ш.25

SEGUNDA PARTE

En esta segunda parte del trabajo se utilizó el mismo modelo matemático y el mismo método de búsqueda descrito en la parte anterior; sin embargo, fue necesario hacer algunas modificaciones al programa, debido a que se pretendía efectuar un ajuste diferente.

MODIFICACIONES PARA LA 2a. PARTE

En primer lugar, y ya que no sería necesario comparar la curva de punto de ebullición, el proceso descrito en la figura 3.2 no sería necesario simu larlo. Además se adicionaron otras subrutinas al programa tal como TB y TR, cuya función es calcular la temperatura de burbuja y de rocío de la mez cla, para evaluar las desviaciones producidas con los datos experimentales reportados. En el apéndice IV se describen estas subrutinas.

Más que la simulación de un proceso determinado, esta parte corresponde a la predicción de propiedades como temperatura de burbuja y temperatura de rocío a través del modelo. Fue necesario también plantear una nueva función objetivo, capáz de evaluar en forma apropiada las desviaciones que de TB y TR se producían. La función objetivo para esta parte quedó como sigue:

$$\overline{T}_{VB} = \left[\frac{T_{BC} - T_{BC}}{T_{BC}} \right]^{2}$$
(3)

.12)

Dónde: TBc = Temperatura de Burbuja calculada TBexp: Temperatura de Burbuja Experimental

Dónde: TRc = Temperatura de Rocío Calculada

Top : Fre + Tra

(3.14)

(3.13)

Dónde: TRexp. = Temperatura de Rocío Experimental

La función objetivo planteada de la forma anterior demostró ser lo suficient<u>e</u> mente sensible a los cambios de composición de la mezcla. Es de esperarse por otro lado que el método llegue al óptimo en un tiempo menor de lo que se requirió en la parte anterior, debido a que la función objetivo era más simple de evaluar.

Como punto inicial para esta parte se tomaron los datos que aparecen en la tabla 3.3, es decir, el punto óptimo de la parte anterior.

Los resultados logrados hasta aquí se presentan en la tabla 3.4. Al comparar éstos con los de la 3.3 y la desviación de peso molecular anterior y actual, se puede verificar que estos dos parámetros mejoraron considerablemente. -Sin embargo, no sucedió lo mismo con la curva de punto de ebullición; en la figura 3.4 se muestra el ajuste logrado en la primera parte y la desviación producida después de la segunda.

Otro parámetro de comparación que, como se mencionó anteriormente, no -

Ш.27

TABLA 3.4

RESULTADOS OBTENIDOS

Nafta de Bajo Punto de Ebullición

	Parte I	Parte II				
FPM	22.29 $\times 10^{-3}$	6.42 x10 ⁻⁸				
FT	2.429 $\times 10^{-4}$	0.10135460				
FOB	22.529 x10 ⁻³	0.10135466				
▲ TB* (°F)	48.19	14.27				
▲ TR* (°F)	59.45	3.96				
▲ H* (Bfu/lb)	13.02	2.34				
Número de Puntos	80	82				
Componentes (C-4, C-5, C-6, C-7, C-8, C-10, C-11, C-12, C-13	C-4, C-5, C-6, C-7, C-8				
r mares	0-7,0-10,0-11,0-10,0-10.	0 ,,0 10,0 11,0 12,0 10				

*Errores promedio de la desviación en la

predicción de TB, TR y Entalpía.

Fig. 3.4 Predicción de la curva de punto de ebullición para un Nafta de bajo punto de ebullición.

resultaba práctico incluirlo dentro de la función objetivo, pero que por ser de suma importancia si sería objeto de evaluación, se refiere a las desviaciones de entalpía; estos resultados corresponden ya a un análisis más profundo como el del siguiente capítulo.

CONCLUSIONES

De lo anterior se puede llegar a dos conclusiones importantes:

La primera de ellas, que sí es factible representar fracciones de petróleo a través de componentes reales y obtener buenos valores en la predicción de propiedades con tales mezclas, desechando así la necesidad de utilizar pseudocomponentes para la representación.

La segunda es que después de evaluar los resultados de la tabla 3.4, queda justificado el tiempo empleado en la segunda parte, ya que mejoraron considerablemente las predicciones de TB, TR y \triangle H, además este tiempo resultó ser mucho menor que el empleado para alcanzar el objetivo de la primera parte, por tal razón se recomendaría en adelante la siguiente secuencia para llegar al óptimo:

Tratar de ajustar TB y TR (e inclusive PM) primero y dejar el ajuste de la curva de punto de ebullición para una segunda parte. Esto ahorraría gran cantidad de tiempo y permitirá representar mayor cantidad de fracciones de petróleo ó de casi cualquier mezcla desconocida, cuyos datos experimentales de TB, TR, PM, AH y curva de punto de ebullición estén disponibles.

CAPITULO IV

RESULTADOS Y CONCLUSIONES

1

Para poder hacer la evaluación de los resultados se utilizaron los datos experimentales de fracciones de petróleo obtenidos por Lenoir y Hipkin (1973), consistentes principalmente de naftas parafínicas y aromáticas. Esto permitirá conocer el error producido en la predicción de propiedades.

Además se compararon los datos obtenidos con el modelo desarrollado con los datos obtenidos por Flores Luna (1976), quien llevó a cabo los mismos cálculos representando las fracciones por medio del método de pseudocomponentes. Esta comparación permitirá saber cual de los dos métodos de representación es el más apropiado.

RESULTADOS

El primer parámetro sujeto a comparación es la predicción de la curva de punto de ebullición, para lo cual se presentan a continuación las figu ras 4.1 a 4.5. En ellas se han graficado las temperaturas de ebullición experimentales para diferentes porcentajes de destilado y la curva predi cha por el método aquí propuesto.

De la cinco figuras solamente la correspondiente a la nafta de bajo punto de ebullición no presenta una aproximación tan buena como las otras (ver Fig. 4.5), pero es necesario recordar que con esta fracción fue necesario llevar a cabo el trabajo en dos partes, dado que a pesar de haber obtenido una buena predicción de la curva de punto de ebullición en la parte I del trabajo, los otros parámetros como la entalpía, la temperatura de burbuja y de rocío y el peso molecular estaban aún lejos de los experimentales. Fue necesario entonces sacrificar un poco la aproximación a la curva de ebullición para mejorarlos. Sin embargo los resultados finales obtenidos para esta fracción justifican ampliamente este sacrificio, tal como se puede apreciar en la tabla 3.4 del capítulo anterior.

Fig. 4.1 Curva de punto de ebullición de una Nafta Jet.

Fig. 4.2 Curva de punto de Ebullición Keroseno

Fig. 4.3

Curva de punto de ebullición gasoleo

Fig. 4.4 Curva de punto de ebullición de un Aceite Combustible

Fig. 4.5 Curva de Punto de ebullición de una Nafta de Bajo punto de Ebullición.

Por lo que respecta a la predicción de entalpía en las figuras 4.6 a 4.16 se grafican las desviaciones obtenidas de A H contra la temperatura para diferentes presiones de trabajo, en este caso:

Dónde:

H^t_o = Entalpía a la presión cero y Temperatura T, en BUT/lb. H^t = Entalpía a la presión P y la misma Temperatura, en p BTU/lb.

Se comparan solamente las entalpías de tres fracciones, que son la nafta jet combustible, kerosina y nafta de bajo punto de ebullición, por no existir datos experimentales para las restantes. En la mayoría de los casos se inclu yen sólo la curva experimental y la predicha por el método propuesto, a e<u>x</u> cepción de la nafta de bajo punto de ebullición, para la cual se incluye además la curva resultante de los datos de representación a través de pseudocomponentes.

En la figura 4.6 a 4.11, que corresponde a la nafta jet y a la kerosina, se puede apreciar que las predicciones mejoran con el aumento de presión y a 1400 psia son bastante buenas. Para la nafta de bajo punto de ebullición se presenta algo semejante, con la salvedad de que las predicciones se mantienen por arriba de las experimentales, ésto debido básicamente al aumento del peso molecular (ver figs. 4.13 a 4.16).

Para tener una idea más clara en cuanto a entalpía se refiere, se presenta

la tabla 4.1, donde se resumen las desviaciones de **(H respecto de los da**tos experimentales, que tienen el método propuesto y el tradicional a través del error relativo promedio. Es necesario hacer notar por un lado el gran número de puntos que fué necesario comparar y por el otro, que la representación se realizó con 20 pseudocomponentes en un caso, y con un máx<u>i</u> mo de 10 componentes (incluso sólo 7 para jet nafta), en el otro. Estando limitados estos últimos, por las restricciones impuestas al método en esta etapa de desarrollo, a la familia de hidrocarburos saturados.

TABLA 4.1

ERROR RELATIVO PROMEDIO DE LAS DESVIACIONES DE ENTALPIA BUT/lb.

	Método F	ropuesto	Pseudoco		
	Error	No. de	Error	No. de	Rango de
Fracción	<u>Relativo</u>	Puntos	Relativo	Puntos	Temp.(°F)
Nafta de Bajo					
Punto de Ebullición	2.34	82	1.8	89	450-650
Nafta Jet	3.8	62	3.2	71	400-600
Kerosina	0.765	31	4.2	43	480-605

* La presión máxima en todos los casos fue 1400 psia.

Fig. 4.6 Ajuste de entalpía de una Nafta Jet a 30 psia

Fig. 4.7 Ajuste de entalpía de una Nafta Jet a 60 psia.

Fig. 4.8 Ajuste de entalpía de una Nafta Jet a 1400 psia.

Fig. 4.9 Ajuste Entalpía de Keroseno a 30 psia.

Fig. 4.10 Ajuste de Entalpía de Keroseno a 50 psia.

Fig. 4.11 Ajuste de Entalpía de Keroseno a 1400 psia.

Fig. 4.13 Ajuste de Entalpía de una Nafta Jet de bajo punto de Ebullición, a 200 psia.

Fig. 4.14 Ajuste de Entalpía de una Nafta Jet de bajo punto de ebullición, a 475 psia.

Fig. 4.15 Ajuste de Entalpía de una Nafta de bajo punto de ebullición. a 1000 psia.

Fig. 4.15 Ajuste de Entalpía de una Nafta de Bajo punto de ebullición, a 1400 psia.

En la tabla 4.2, se presentan las desviaciones en la temperatura de burbuja y de rocío respecto de las experimentales, a través del error relativo promedio, del método propuesto contra el tradicional de pseudocom ponentes. Como se puede ver en esta tabla el error en la predicción de TB y TR para la nafta de bajo punto de ebullición es menor que los corres pondientes para el método de psudocomponentes. Esto se debe principalmente a que en la parte II del trabajo efectuado con esta fracción, TB y TR formaron parte de la función objetivo, de tal modo que sería de esperarse que sucediera lo mismo con la nafta jet y la kerosina, obteniéndose errores más pequeños en la predicción de TB y TR al incluir en un segundo ajuste estos parámetros.

Finalmente el último parámetro que falta comparar es el peso molecular, para tal efecto en la tabla 4.3 se muestra el peso molecular predicho por el método propuesto y el correspondiente al método de pseudocomponentes, contra el experimental, como se aprecia en dicha tabla, el valor predicho por el método propuesto se encuentra más cerca del peso molecular experime<u>n</u> tal que el método de pseudocomponentes en la mayoría de los casos, a excepción de la kerosina para la cual, sin embargo se obtuvo un valor de peso lo suficientemente cercano al experimental.

IV.23

TABLA 4.2

ERROR RELATIVO PROMEDIO EN LAS PREDICCIONES DE TB y TR (°F)

	Método Propuesto			Método de Pseudocomponentes			D
Fracción	TB	\$ TR	No.de Puntos	TB	<u>&TR</u>	No.de Puntos	Presión Máxima (Psia)
Nafta de Bajo Punto de Ebullición	14.2	3.96	7	16.4	17.2	7	450
Nafta Jet	19.82	21.15	6	5.2	16.6	6	450
Kerosina	39.20	29.29	5	4.1	17.6	2	450

TABLA 4.3

PREDICCION DE PESO MOLECULAR

Fracción	Método Propuesto	Real	Método de Pseudo- Componentes
Nafta de Bajo Punto de Ebullición	120.03	120	120.5
Nafta Jet	130.78	144	130.1
Kerosina	154.34	162.3	159.7

IV.25

CONCLUSIONES

De todo lo anterior se puede desprender lo siguiente: de los cinco parámetros comparados, el peso molecular y la curva de punto de ebullición predi chos por el método propuesto son lo suficientemente buenos como para superar en algunos casos al método de pseudocomponentes, además considerando la diferencia entre el número de componentes necesarios para repre sentarlas, se requirió un mínimo de 7 y un máximo de 10 componentes reales por el método propuesto y en el caso del método tradicional se requieren co mo mínimo 20 pseudocomponentes, se puede decir que el presente método posee grandes ventajas y mejores perspectivas futuras que el método actual. Es necesario hacer notar también que el método tiene varias limitaciones aún, tal como el incluir solamente hidrocarburos normales saturados, ya que esto limita considerablemente el número de componentes disponible. Por tal razón sería recomendable incluir en un análisis posterior componentes aromáticos y olefinas, lo cual permitirá imitar mejor el comportamiento experimental. Sin embargo como se dijo anteriormente el método propuesto en este trabajo tiene grandes perspectivas, ya que sus limitacio nes probablemente se originan en las restricciones impuestas a la selección de componentes y no en su fundamentos, como sucede con el método actual de pseudocomponentes.

A. 1 APENDICES

APENDICE I

Constantes necesarios para las ecuaciones (2.6), (2.7) y (2.11)

Subindice	a	b	с
0	768.07121	2.8290406	(3.1130335) (10 ²)
1	(0.17133693)(10 ¹)	$(0.94120109)(10^{-3})$	$(3.5442502)(10^{\circ})$
2	(-0.10834003) (10-2)	$(-0.30474749)(10^{-5})$	$(-5,2716944)(10^{-2})$
З	(-0.89212579) (10 ⁻²)	(-0.20876110) (10-4)	(3.5353777) (10-4)
4	(0.38890584) (10-6)	(0.15184103) (10 ⁻⁸)	(4.3401618) (10 ¹)
5	(0.53094920) (10 ⁻⁵)	(0.11047899) (10 ⁻⁷)	(-8.9530784) (10 ⁰)
6	(0.32711600) (10-7)	(-0.48271599) (10-7)	(3.5118581) (10-1)
7		(0.13949619) (10 ⁻⁹)	(-8.1862040) (10-1)
8	· · · · · · · · · · · · · · · · · · ·		(-2.8568658) (10 ⁻⁵)
9			(1.7024654) (10 ⁻⁶)
10			(-1,4886832) (10 ⁻⁸)
11			(8.8395563) (10 ⁻²)
12			(4.2934703) (10 ⁻³)
13			(-3.0836492) (10 ⁻⁴)
14			(3.1073165) (10-4)
15			(-5.8323815) (10 ⁻⁸)
16			(-5.6334748) (10 ⁻⁸)
17	•••		(9.1745019) (10-11)
18			(-5.9563889) (10 ⁻³)

APENDICE II

Ecuaciones que permiten calcular la constante de equilibrio mediante la relac(2.11) del capítulo II, conocidas las constantes proporcionadas por las ecuaciones (2.3) a (2.11) del mismo capítulo.

$$Ke = \frac{N_{c}^{L} \phi_{c}^{L}}{\Phi_{c}^{*}}$$
(1)

$$l_{e} J_{i}^{L} = \frac{Vi (\underline{s}_{i} - \underline{\bar{s}})^{s}}{RT}$$
(2)

$$\overline{S} = \underbrace{\overline{Z} \times_i \vee_i S_i}_{\overline{Z} \times_i \vee_i}$$
(3)

$$V_{i} = (V_{w}); (5.7 + 3.0 T_{r};)$$
 (4)

$$T_{ri} = \frac{T}{T_{ei}}$$
(5)

$$\log \phi_i^* = \log \mathcal{Y}^{(n)} + w_i^* \log \mathcal{Y}^{(n)} \tag{6}$$

$$\log \mathcal{V}^{(i)} = F_2(T_{vi}, P_{vi}) \tag{8}$$

$$\mathbf{x} \quad \bar{\mathbf{y}}_{i} = (\mathbf{x}-1) \quad \underline{\mathbf{b}}_{i}^{i} - \ln (\mathbf{x}-\mathbf{b}\mathbf{p}) - \frac{A^{2}}{6} \left[\frac{\mathbf{z} A_{i}}{A_{i}} - \frac{\mathbf{b}}{6} \right] \ln \left[\mathbf{z} + \frac{\mathbf{b}}{\mathbf{x}} \right] \qquad (10)$$

$$\mathbf{z} - \frac{1}{\mathbf{z} - \mathbf{k}} - \frac{A^{2}}{6} \left(\frac{\mathbf{k}}{\mathbf{z} + \mathbf{k}} \right) \quad ; \quad \mathbf{k} = \frac{\mathbf{B}\mathbf{p}}{\mathbf{z}} \qquad (11)$$

$$A = \overline{\mathbf{z}} \quad \mathbf{y}_{i} \quad \mathbf{A}_{i} \quad ; \quad \mathbf{B} = \overline{\mathbf{z}} \quad \mathbf{y}_{j} \quad \mathbf{B}_{i} \qquad (12)$$

$$A : = \left(\frac{\mathbf{0} \cdot \mathbf{d}\mathbf{z} \cdot \mathbf{B}}{\mathbf{b}_{i}} - \frac{\mathbf{d} \cdot \mathbf{d}\mathbf{z}}{\mathbf{b}_{i}} \right)^{\frac{1}{2}} \quad ; \quad \mathbf{B}^{2} = \frac{\mathbf{0} \cdot \mathbf{c}\mathbf{B}\mathbf{c}\mathbf{T}}{\mathbf{p}_{ac}} \qquad (13)$$

$$\frac{A^{2}}{\mathbf{B}} = \left(\frac{\mathbf{0} \cdot \mathbf{d}\mathbf{z} \cdot \mathbf{B}}{\mathbf{b}_{i}} - \frac{\mathbf{d} \cdot \mathbf{d}\mathbf{z}}{\mathbf{b}_{i}} - \frac{\mathbf{c} \cdot \mathbf{c}\mathbf{B}\mathbf{c}\mathbf{T}}{\mathbf{p}_{ac}} \qquad (14)$$

$$\mathbf{B} = \left(\frac{1}{\mathbf{b}_{i}} - \frac{\mathbf{d} \cdot \mathbf{d}\mathbf{z}}{\mathbf{b}_{i}} - \frac{\mathbf{d} \cdot \mathbf{d}\mathbf{z}}{\mathbf{b}_{i}} - \frac{\mathbf{d} \cdot \mathbf{d}\mathbf{z}}{\mathbf{b}_{i}} \qquad (15)$$

$$\mathbf{z} = \frac{1}{\mathbf{1} - \mathbf{h}} - \psi \left(\frac{\mathbf{k}}{\mathbf{1} + \mathbf{h}} \right) \quad ; \quad \mathbf{k} = \frac{1}{\mathbf{z}} \qquad (16)$$

$$\mathbf{u} \quad \mathbf{b}_{c}^{\mathbf{v}} = (\mathbf{z} - 1) - \ln \left| \mathbf{z} \left(\mathbf{a} - \mathbf{h} \right) \right| - \psi \ln \left| \mathbf{1} + \mathbf{h} \right| \qquad (17)$$

$$\ln \quad \bar{\mathbf{b}}_{c}^{\mathbf{v}} = \left(\mathbf{d}\mathbf{z} \quad \bar{\mathbf{p}}_{i}^{\mathbf{v}} \right)^{\frac{1}{2}} - \mathbf{z} \qquad (19)$$

$$\mathbf{z} = \left(\mathbf{d}\mathbf{z} \quad \bar{\mathbf{p}}_{i}^{\mathbf{v}} \right)^{\frac{1}{2}} - \mathbf{z} \qquad (19)$$

$$\mathbf{z} = \mathbf{z} \quad \mathbf{y}_{i} \left(\mathbf{d}_{i} \quad \mathbf{y}_{i}^{\mathbf{v}} \right)^{\frac{1}{2}} \qquad (20)$$

 $\omega_{i} = \frac{q_{i}^{\circ}}{2} + \frac{F'}{2} \frac{P_{i}}{2} + \frac{q'}{2} +$

A.4

1

$$|u_{42}^{*} = \frac{P_{42}}{8T_{42}} \left| 1 - \frac{27}{8} \frac{9}{12} \right|$$
(23)

$$\vec{e}_{1} = \vec{p}_{1}^{\circ} + \frac{T'}{2} \vec{P}_{v1} + \vec{g}' \vec{P}_{v2}^{\circ} + \frac{H}{4} \vec{P}_{v2}^{\circ} + \frac{H}{4} (\frac{P}{P_{1}})^{3}$$
(24)

$$P_{vi} = \frac{P}{P_{vi}}$$
 (25)

En las ecuaciones anteriores:

APENDICE III

'En la ecuación de Redlich y Kwong (1949)

$$A = \frac{A_c}{T_v \cdot s}$$
(26)

$$\frac{B}{R} = 0.08664 \frac{RT_c}{R}$$
(27)

$$A_{c} = 0.42747 \frac{RT_{c}}{R_{c}}$$
 (28)

R = Constante Universal de los gases

Tc = Temperatura crítica

Pc = Presión crítica

Para establecer la forma de la función A tanto Soave (1972) como Barnés (1973) ajustaron datos de presión de vapor para gran número de diferentes compuestos.

La ecuación propuesta por Soave es:

Donde:

$$\chi^{o.5}_{a.5}$$
 1+ (0.120+1.574 w - 0.176 w⁴) (1-T₀^{o.5}) (30)

Mientras que la forma propuesta por Barnés está dada por:

$$A = Ae F' = 4.939 bF$$
 (31)

Donde

$$F' = 1 + (0.9 + 1.21 \text{ w}) (T_v^{-1.5} - 1)$$
 (32)

La extensión a sistemas multicomponentes es inmediata si se constituyen los términos a y b por términos similares am bm, calculados de los componentes puros mediante reglas apropiadas de mezclado. APENDICE IV

SUBRUTINAS ADICIONADAS AL PROGRAMA

7154 PM	THURSDAY,	JULY	21,	1971
---------	-----------	------	-----	------

CRUDOS2 (05/23/77)

100	SRESET FREE		00000100
200	SSET OWN		00000200
300	FILE S#FILES, UNIT=REMOTE		00000300
400	FILE 6=FILE6,UNIT=PRINTER		00000400
500	FILE 9#FILE9.UNIT=REMOTE		00000500
600	FILE ISNAFTAL.UNITEDISK		00000600
700		* * *	00000700
800	C*		00000800
900	ZAVALETA	•	00000900
1000	C+	•	00001000
1100	CT PEPPERENTACION RACIONAL DE CRUDOS DE PETROLEO	•	00001100
1200	C+	7*	00001200
1300	CT PROCRAMA PRINCIPAL		00001300
1000	C*	· · • •	00001400
1500		* * *	00001500
1600	COMMON/INDEX/IP.IF.NES.DEL(25)		00001600
1700	COMMON (ERAC (AFT (11)) - PHEXP. VEXP		00001700
1800	CONHON/TIT/TRAB(13), FECHA(2), USU(2), THOJA, TR, TE,	LINEA	00001800
1900	COMMON STOFAM (\$3(150,20), TS(150), PS(150), HS(150)	, \$\$(150),	00001900
3000	100(150) 70(150) F8(150) P8(150) NC.NS		00002000
2000	DATA AFT/1 27825181F+02.5.337703771.01238553E-	01,1,22963696E-03,	00002100
2200			0002200
2200	[-4.0400/2/02 00,0/0/0/0/0/0/0		0002300
2300	WALL REFLY		00002400
2400	WRITE(+))		00002500
2500	READ(1)//IF, NES		0002600
2600	WRITE(4/3)		00002700
2700			00850000
2800	CALL INDATA	NTAL P"	0002900
5400	MKTIC(4/1) SOBROOTINE 1 T-HOODES E-181141 2-6		1.1.1.1.1.1.1

3000	READ(5,/)SUBRUT	00003000
3100	GOTO (10.20.30) SUBRUT	00003100
1200	TO CALL HOUJEE	00003200
3300	6010 40	00003300
3400	20 CALL TRYTP(1.2.3.263368.)	00003400
1500		00003500
1600	30 CALL ENTALP(1.50.60)	00003600
1700	46 WRITE(9.4)	00003700
3800	1 FORMAT(" CORRIENTE DE ENTRADA Y NUM. DE ESTIMACIONES")	00003800
1000	S FORMAT(" PESO MOLECULAR Y VOL EXP")	00003900
4000	A FORMAT(" FIN DE LA FJECUCION")	00004000
4000		00004100
4100	END	00004200
69700	SUBROUTINE REPROP(INUM)	00069700
69800	C ESTA SUBRUTINA CALCULA Y ESCRIBE LAS CONSTANTES FISICAS NECESARIAS	00069800
69900	COMMON/STREAM/XS(150,20),TS(150),PS(150),HS(150),SS(150),CS(150),	00069900
70000	173(150),FS(150),RS(150),NC,NS	00070000
70100	COMMON/DATA/PC(20), TC(20), WC(20), TB(20, 20), R, BH(20, 5), ANOM(20), PM(00070100
70200	120).TOL	00070200
70300	COMMON/TIT/TRAB(13), FECHA(2), USU(2), IHOJA, IR, IE, LINEA	00070300
70400	COMMON/INDICE/KPRINT, KU, IMET	00070400
70500	DIMENSION INUM(20), BC(20), A1(5), B1(5)	00070500
70600	DATA A1/24923763E-01+.46089273E-03+1033788E-06+.11583252E-10	00070600
70700	1.= 36027157E=15/	00070700
70800	DATA 81/ 5190588E-01, 1677668E-04, 2700303E-07, 52540868E-12,	00070800
70900	1= 11185595F=14/	00070900
10.00		

		00031000
71000	GO TU(16,17,16,17),KU	00071100
71100	16 Rp#1.	00071100
71200	RT=1.1 R=1.985°	000/1200
71300	GO TO 18	000/1300
71400	17 RP=1./14.7	00071400
71500	RT#1./1.8	00071500
71600	R=1981.7	00071600
71700	18 DO 1 1=1,NC	00071700
71800	IN=INUM(I)/ANOM(I)=IN	00071800
71900	FN=154.4+(2.+8.+1H)++(1./3.)=223.9	00071900
72000	TC(1)=1.8*FN/(0.567+0.02*IN*(10.02*IN))	00072000
72100	BC(1)=(0.5153×1N+14.5788)×1N+14.556	00072100
72200	PC(1)=58.065*TC(1)/BC(1)	00072200
72300	BC(1)=BC(1)++(1./3.)	00072300
72400	WC(1)=0.05*IN	00072400
72500	PM(1)=1N+14.02695+2.0158	00072500
72600	00 1 J=1,5	00072600
72700	BH(I, J)=(A1(J)+B1(J)/IN)*TC(I)**(J-1)*PH(I)/1.9872	00072700
72800	1 CONTINUE	00072800
72900	D0 2 1=1,1C	00072900
71000	DD 2 J=1.NC	00073000
73100	TB(1, J)=(2.*SQRT(BC(I)*BC(J))/(BC(I)+BC(J)))**3	00073100
71200	TB(1, J)=(1, -TB(1, J))	00073200
73300	TB(1, J)=SQRT(TC(1)+TC(J))+(1,-TB(1,J))	00073300
71400	T8(J,1)=T8(1,J)	00073400
73500	2 CONTINUE	00073500
73600	4 00 TO(8.8.8.6)KPRINT	00073600
73700	6 RETURN	00073700
73800	B TE (LTHEA.GE. 60) CALL TITULO	00073800
71900	WRITE(11,19)/ WRITE(11,7)	00073900
74000	I INEASLINEA+6	00074000
14000		
74100	DD 9 1=1.NC	00074100
74200	WEITE(IE.10) I.ANOM(I), PM(I), PC(I), TC(I), WC(I), (BH(I,J), J=1,5)	00074200
74100	I INFANI THEA+2	00074300
74400	TE (I THEA. CE. 60) CALL TITULO	00074400
74500	e CONTINUE	00074500
74500	PETIIPN	00074600
74000	7 EOPMAT (5X, "UOMBRE", 7X, "PM", 8X, "PC", 8X, "TC", 6X, "WC",	00074700
7/1800	18y."81".11y."82".11y."83".11x."84".11x."85"./)	00074800
74900	10 FORMAT(2X, T2, 2X, T4, 2X, 3(3X, F7, 2), 3X, F4, 2, 5(3X, F10.6)/)	00074900
75000	1 FORMATCH, 44%, "PARAMETRO DE INTERACCION BINARIO",/)	00075000
75100	14 FORMAT(11X B(2X, 19, 1X)./)	00075100
75100	14 FURNATION TI 6Y 8(3Y F0.2))	00075200
75300	19 FORMAT(/.5X. "COUSTANTES FISICAS DE LOS COMPUESTOS",/)	00075300
13300	17 FURIAL COLUMNITIES I SOLONG DE LOS COLUMNES AND	00075400

12500	15 FURNALLSA, 11, 00, 0 (30) 4000	
75300	19 FORMAT(/,5%, "CONSTANTES FISICAS DE LOS COMPUESTOS",/)	00075300
75400	RETURN	00075400
75500	END	00075500
75600	SUBROUTINE TRYTR(IF, IV, IL, TBUR, TROC)	00075600
75700	DIHENSION X(25)	00075700
75800	CONMON/STDFAM/Xs(150,20), Is(150), PS(150), HS(150), SS(150),	00075800
75000	108(150).78(150).F8(150).R8(150).NC.N8	00075900
75900	200000/0414/05(20). TC(20). NC(20). TB(20,20), R, BH(20,5), ANOM(20), PM	00076000
10000		00076100
76100		00076200
76200	COMMON/INDICE/NPRINT, NO/IMCT	00076300
76300	COMMON/TIT/TRAB(13), FECHACE, USU(2), THOUA, TRATE, ETC.	00076400
76400	WRITE(9,7)" DAR LAS COMPOSICIONES DE CZ COMPONENTE	00076500
76500	READ(IR, /)(X(I), I=1, "C)	00070500
76600	CALL TRANS(X)	00076600
76700	20 WRITE(0,/)" DAR NO. DE ESTIMACIONES" / READ(IR,/)NEST	00076700
76800	IF (NEST.LE. 0) RETURN	00076800
76900	DO 30 INEST	00076900
77000	WETTE (0, /)" DAR T BUR Y T ROC" FREAD (IR, /) THUR, TROC	00077000
77100	WRITE(9,/)" DAR PRESION" / READ(IR,/)PS(IF)	00077100

		00077200
77200	TS(IF)=TBUP	00077300
77300	RS(IF)≡U.	00077400
77400	CALL FLASH(2,0,20,1F,1V,1L)	00077500
77500	CALL CORRS(IF, IL)	00077500
77600	TBUR=TS(IF)	00077800
77700	ts(IF)=TROC	00077700
77800	RS(IF)=1.	00077800
77900	CALL FLASH(2,0,20, IF, IV, IL)	00077900
78000	CALL CORPS(IF,IL)	00078000
78100	TROC=TS(IF)	00078100
78200	WRITE(6,/)" TEMPERATURA DE BURBUJA=", TBUR, "T DE ROCIDE", TROC	00078200
78100	10 CONTINUE	00078300
76400	0 TO 20	00078400
78500	RETURN	00078500
78600	END	00078600
78700	SUBPOUTINE ENTALP(IF, IV, IL)	00078700
10/00	DIMENSION V(20)	00078800
78000	CONTON/CTDEAN/Xs(150,20).TS(150),PS(150),HS(150),SS(150),	00078900
70700	COMINITY 31 REAL FS(150), RS(150), NC, NS	00079000
79000	103(150),23(150), 75(120), WC(20), TB(20,20), R, BH(20,5), ANOM(20), PM	00079100
79100	COMMON DATA PC (20) / IC (20) / IC (20) / IC (20) / IC (20)	00079200
79200	1(20), TOL	00079300
79300	COMMON / INDICE / PRINT, NUTINE I	00079400
79400	COMMON/TIT/TRAB(13), FECHA(2), 030(2), THOSA/TH/TE/EITE	00079500
79500	WRITE(9,7)" DAR LA COMPOSICION DE CACOMPONENTE	00079600
79600	READ(IR, /)(X(I), I=1, NC)	00079700
79700	CALL TRANS(X)	00079800
79800	40 WRITE(9,/)" DAR NO. DE ESTIMACIONES"	00079900
79900	READ(IR, /)NEST IF (NEST.LE.0)GO TO 50	00080000
80000	WRITE(9,/)" PRESION "; READ(IR,/)PS(IF)	00080100
80100	WRITE(9,/)" REL DE VAP" / READ(IR,/)RS(IF)	00080200
80200	DO 20 J=1,NEST	00030200
		00080300
80300	WRITE(9,/)" TEMPERATURA EN GDOS P ") READ(IR,/)IS(1)	00080400
80400	TS(IF)=TS(IF)+459.69	00080500
80500	CALL PKNOWN(2,1,10,IF)	00080600
80600	CALL CORPS(IF, IL)	00080700
80700	20 CONTINUE	00080800
80800	GO TO 40	00000000
80900	50 RETURN	00081000
81000	END	00001000
81100	SUBROUTINE HOOJEE	00081200
81200	DIMENSION X(150),X1(150),TOLE(25),X2(150),MOV(25),EFE(25,2)	00081200
81300	COMMON N.NPAR, NMAX, KP, KI, KD, ICONT	00081300
81400	COMMION/STREAM/XS(150,20),TS(150),PS(150),HS(150),SS(150),	00081400
81500	1CS(150),ZS(150),FS(150),RS(150),MC,NS	00081500
81600	COMMON/DATA/PC(20), TC(20), WC(20), TB(20, 20), R, BH(20, 5), ANOM(20), PM	00001600
81700	1(20),TOL	00081700
81800	COMMON/FRAC/AFT(11), PMEXP, VEXP	00081800
81900	COMMON/INDEX/IP, IF, MES, DEL (25)	00081900
82000	NENCI WRITE(9,/)" DAR COMPOSICION DE C/COMPONENTE"	00058000
82100	READ(5./)(X1(I),I=1,N)	00082100
82200	WEITE(9./)" DARITOL DE FUNCION, INCREM. Y TOL P/CADA VARIABLE"	00082200
82300	READ(5. /. END=30)TOLF, (DEL(I), TOLE(I), I=1, N)	00082300
02300	29 61200(X1)) KF=1	00082400
02400	17 WRITE (9, 4)" DAR CRITEPIO DE CONVERGENCIA"; READ(5,16,END=30)CRI	00082500
02500		000826000
85900	IFURINE, PURIOS 760 TO 10	00082700
82700	CRIEUT GO TO 21	00082800
82800	18 IF(CRI.NE. ITERAC")GO TO 20	00082900
82900	CRI=I	00083000
83000	CRI=2 / GO TO 21	00083100
83100		00083200
83200	20 IF (CRI.NE. "SUBDIV") COTO 22	00081100
83300	CRI=3 / GO TO 21	00003300

87/100	TO WEITE (9 /)" CRITERIO NO RECOUNCIDO"! STOP	00083400
03400		00083500
83500	SU NOTTE (9, /)" VALOPES HAX Y PARCIAL DEL CRIT DE CONVERGENCIZ"	00083600
03000		00083700
83700		00083800
83800	IFUNMAX.GE.I.AND.NMAR.GE.I.GO TO EN	00083900
83900	00 TO 21	00084000
84000	27 CONTEMPAR	00084100
84100	7 DO 1 I*1,N	00084200
84200	X5(I)=X1(I)	00004200
84300	1 X(I)=X1(I)	00004300
84400	F2=F1; F=F1	00084400
84500	55 DO 2 I=1,11	00084500
84600	IF (ABS(DEL(I)).GT.TOLE(I))GD TO 3	00084800
84700	2 CONTINUE	00084700
84800	IF (ABS(F1-F2).GT.TOLF)GU TO 3	00084800
84900	CALL IMPRE(-1,F1,X1)	00084400
85000	30 STOP	00085000
85100	3 F2#F1 MOV(I)=1	00085100
85200	DO 5 1=1,1	00085200
85300	BASE=X(I)	00085300
85400	00 4 J=1,2	00085400
85500	X(I)=BASE+DEL(I)	00085500
85600	F=FO(X); KF=KF+1 ; EFE(I,J)=F	00085600
85700	TE (E. GE. E2) GO TO 4	00085700
BERGO	ForF I GO TO 5	00085800
85900	4 DEI (1) =-DEI (1)	00085900
03700	Y(1) BRASE	00086000
86000	E vo(t)=v(t)	00086100
86100	NI-KI-1 1 K-KI	00686200
86200		00086300
86400	10 10 10 1-174	00086400
86500	IF(F2,LT.F1)G0 T0 8	00086500
86600	DO 6 I=1,N	00086600
86700	6 DEL(I)=0.5+DEL(I)	00086700
86800	KD=KD+1	000868000
86960	IF (CPI FQ 1)GU TO 71 IF (CRI FQ.3)K#KD	00086900
87000	CALL THERE (K.FI.XI)	00087000
87100	GO TO 7	00087100
87200	8 DO 9 TEL.N : X(T)=X2(T)+X2(T)-X1(T)	00087200
87700	9 X.(1)=X2(1) J F.=F2 J KP=KP+1	00087300
87/00	WETTE (9. /)" FOTE VALOR ES DE PROYECCION"	00087400
07400	F=FD(Y) 1 KFEKFAN	00087500
87500		00087600
87600	TE(MOV(1) =0 _ AND ABS(DEL(1)) GT TOLE(1))DEL(1)=DEL(1)*0.5	00087700
87700	IF (HOV(1), F0.0, AND FFE(1,2) OT FFE(1,1))DEL(1) F0.0(1)	00087800
0/800	14 1P (MUV11.CU.U.AND.CC.C.1)E. OT.CC.C.1)	00087900
87900	IFICKI.LU.JJOU TO 3	00088000
88000	IF(CRI.EQ.1)K=KP	00088100
88100	IF (K.GE.NMAX) GO TO 13	00000100
88200	IF(F.LT.F1)G0 T0 57	00080200
88300	GO TO 7	00088300
88400	ST CALL IMPRE(K,F,X); GO TO 3	00088400
88500	13 IF(F.LT.F1)CALL IMPRE(NMAX,F,X)	00088500
88600	IF(F.GT.F1)CALL IMPRE(NMAX,F1,X1)) GO TO 3	00088600
88700	16 FORMAT(A6)	00088700
88800	44 RETURN	00088800
88700	END	00088900
89000	SUBROUTINE IMPRE(K,F,X)	00089000
89100	DIMENSION X(25)	00089100
89200	COMMON H, HPAR, NHAX, KP, KF, KI, KD, CONT	00089200
89300	IF(K.LT.0)G0 TO 10	00089300
89400	TE(K. CF. WAX) CO TO 12	00089400
895 00		00089500
07500	TE CHARTENESS OF THE PARTY	

89400	WRITE(6.15)KP.KI.KF.KD.F.(X(1),I=1,N)	00089600
80700		00089700
84/00		00089800
89800		00089900
84400	TO WRITE(G, II); GO TO IN	00090000
90000	11 FORMAT(//10X, *** FORTO OFTING *** /)	00090100
90100	12 WRITE(6,13)	00090200
90200	13 FORMAT(" ANN CRITERIO DE CONVERGENCIA ALCANZADO.)	00070200
90300	14 WRITE(6,15)KP,KI,KF,KD,F,(X(I),I=),N)	00070500
90400	15 FORMAT(" PUNTO NO.", 15, /, " ITERA NO.", 15/" EVALU NO.", 15/	00090400
90500	1" SUBDIV NO.", 15/" VALOR DE LA FUNCIONI ", E12.5/	00040300
90600	2" COORDENADAS DEL PUNTO: "/25(10x, E12.5/))	00030600
90700	PRINT /, 'VALORES DE LAS VARIABLES'	00090700
90800	PRINT /, (X(1), [=1, N)	00090800
90900	WRITE (9,/)" LA EJECUCION HA TERMINADO"	00090900
91000	CALL EXIT	00091000
91100	END	00091100
91200	FUNCTION FO(X)	00091200
ot 300	DTHENSION X(25).Y(25)	00091300
91200	COMPON/DATA/PC(20), TC(20), WC(20), TB(20, 20), R, BH(20, 5), ANOM(20), PM(00091400
71400		00091500
91500	1200,000 nonecontent (150,20), Te(150), Pe(150), He(150), 99(150), Ce(150),	00091600
41000	Totar) Enters) Baters) NC.NS	00091700
91700		00091800
91800	COMMON/FRACTAFT(11), PICAFT(25)	00091900
91900	COMMON/INDEX/IP, IF, NES, DEL(25)	00092000
92000	D0 99 I=1,NC	00092100
92100	99 Y(I)=X(I)	00092200
92200	CALL TRANS(Y)	00092300
92300	CALL FUHOB(FO,FT,FV,FPM)	00092000
92400	T1=TIME(2)/60.	00092400
92500	IF(T1.GE.180.)GO TO 88	00092500
92600	88 WRITE(9,/)(X(I),I=1,NC), "PASOS=", (DEL(I),I=1,NC)	00092600

92700	CALL FXIT	00092700
02800	END	00856000
92000	SUBROUTINE FUNDE (FOR, FT, FV, FPH)	00092900
93000	COMMOU/DATA/C(20), TC(20), WC(20), TB(20,20), R, BH(20,5), ANOM(20),	00093000
01100	1PM(20).TO	00093100
93100	COMMON/STREAM/XS(150,20),TS(150),PS(150),HS(150),SS(150),CS(150),	00093200
91300	179(150).FS(150).RS(150).NC.NS	00093300
93300	COMMON/FRAC/AFT(1), PHEXP, VEXP	00093400
93410	COMMON/INDEX/IP.IF.UES	. 00093500
01400	CALL DBATCH	00073600
93000	TI - IF	00093700
93700	Vers(IL)+7s(IL)+304028_67*TS(IL)/PS(IL)	00093800
73000		00093900
93900		00094000
94000		00094100
94100		00094200
94200		00094300
94300	00 100 041,023	00094400
94400	$\frac{1}{1} = \frac{1}{1}$	00094500
94500		00094600
94600		00094700
94700		00094800
94800	TEXP=0.	00094900
94900	DO 30 K=1,11	00095000
95000	TEXP=TEXP+4F1(K)*(FV0L=100.)-~(K-1)	00095100
95100	30 CONTINUE	00095200
95200	TEXP=TEXP+459.69	00095300
95300	PRINT 20, IL, TS(IL), TEXP, FVIL	00095400
95400	20 FORMATC" CORRIENTE NO", 12, 5%, TEMPERATURA DEL LIGUIDO",	00005500
95500	1E12.5,5X," TEMPERATURA EXP=",E12.5,5X," FVUL=",E15.0)	00095500
95600	FT=FT+(TS(IL)/TEXP=1.)**2	00095800
95700	100 CONTINUE	00043700

	FV=(VF/(FS(1F)+VFXP)-1.)+*2	00095800
95900	FPM=(PHF/PMEXP=1.)**2	00095900
96000	FOB=FT	00096000
76000	PETURN	00096100
96100	END	00096200
90200	BROUTINE DBATCH	00096300
96400	COMMON /DATA /C (20), TC (20), WC (20), TB (20, 20), R, BH (20, 5), ANOM (20),	00096400
	191(20) . 10	00096500
90300	COMMON/INDEX/IP.IF.NES	00096600
96600	COMMON/STDEAM/VS(150.20).TS(150).PS(150),HS(150),SS(150),CS(150),	00096700
46700	Torrent Estrent Portent NC.NA	00096800
96800		00096900
96900		00097000
97000	DIMENSION ALFA (20), A CCCO	00097100
97100	IF/J#IF	00097200
97200		00097300
97300	IA#IT+0E2+5	00097400
97400	RS(IF)=0.	00097500
97500	CALL FLASH(2,0,20,1F,1V,1L)	00097600
97600	FSK=FS(IF)*XS(IF,IK)	00097700
97700	FVI=.2*FSK	00097800
97800	FV0=.025*FSK	00077000
97900	FVF=,0325+F3K	00047900
98000	FV=FV0	00090000
98100	00 100 JC=1,NES	00090100
98200	IF(JC.GE.S)FV=FVI	00048200
98300	IF(JC.GE.9)FV=FVF	00098300
98400	RVK=FV/(XS(IF,IK)*FS(IF))	00098400
98500	RLK=1RVK	00098500
98600	FL=0.	00098600
98700	DO 10 1C=1,NC	00098700
98800	IF(XS(IL,IC).LE.1.E-06)XS(IL,IC)=0,	000988000
98900	IF(XS(IL,IC).LE.0.)GO TO 10	00098900
99000	IF(XS(IV, 1K).LE.0.) IK=1K+1	00099000
99100	ALFA(IC)=XS(IV,IC)*XS(IL,IK)/(XS(IV,IK)*XS(IL,IC))	00099100
99200	XFL(IC)#XS(IF,IC)*FS(IF)*RLK**ALFA(IC)	00099200
99300	FL=FL+XFL(IC)	00099300
99400	10 CONTINUE	00099400
99500	IF=IL	00099500
99600	tL=IL+1	00099600
99700	tv=IV+1	00099700
99800	9x=0.	00099800
00000	DD 20 IC#1.NC	00099900
100000	vs(IF.tC)=vFL(IC)/FL	00100000
100000	TE(YS(TF.TC), IT.o.) XS(TF.IC)=0.	00100100
100100		00100200
100200		00100300
100300		00100400
100400	to Volte to)=Yolte to)/SX	00100500
100500	40 ASTERIUS-ASTERIUS/3A	00100600
100600	HS(1r)=0.	00100700
100700	FS(IF)=FL	00100800
100800	CALL FLASH(2,0,20, IF, IV, IL)	00100900
100900	100 CONTINUE	00101000
101000	IF=IFO	00101000
101100	RETURN	00101100
101200	END	00101200

REFERENCIAS

CAPITULO II

2.1 Katz, D.L., Brown, G.G., I & E C, 25, 1373	, (1933) .	
--	---------------------------	--

- 2.2 Hariu, O.H., Sage, R.C., Hydrocarbon Processing, 48, (4), 143, (1969).
- 2.3 Cavett, R., 27-st Midyear Meeting, API, Division of Refining (May. 1962).
- 2.4 Edmister, W., "Applied Hydrocarbon Thermodynamics", Gulf Publising Co., Houston, Texas, 1961.
- 2.5 Pitzer, K.S., Lippman, D.Z., Curl, R.F., Jr, Huggins, C.M., Patersen, D.E., J. Am. Chem. Soc., 77, P. 3427 (1955).
- 2.6 Maxwell, J.B., Bonnell, L.S., I & E C, 49, 1187 (1957).

CAPITULO III

- 3.1 Lenoir, J.M., Hipkin, H.G., J.Chem. Eng. Data, 18, 195, (1973).
- 3.2 Passut, C.A., Danner, R.P., Ind.Eng.Chem.Process Des. Develop., 11, (4), 543, (1972).
- 3.3 Puente, L., "Recuperación de Gas Disuelto en Crudos de Petróleo", Te sis de Licenciatura en Ingeniería Química, UNAM, México, D.F. 1978.

CAPITULO IV

.4.1 Flores, J.L., "Desarrollo de un Simulador de procesos Criogénicos", Tesis de Licenciatura en Ingeniería Química, UNAM, México, D.F. 1976.