

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

CABEZALES DE DISTRIBUCION MULTIPLE

TESSICO, D. F.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Nt. 109

PRESIDENTE	Prof. ALEJANDRO ANAYA DURAND.
VOCAL	Prof. ANTONIO FRIAS MENDOZA.
SECRETARIO	Prof. JOSE ANTONIO ORTIZ RAMIREZ.
ler. SUPLENTE	Prof. CLAUDIO A. AGUILAR MARTINEZ.
20. SUPLENTE	Prof. ENRIQUE BRAVO MEDINA.

Sitio donde se desarrolló el tema:

INSTITUTO MEXICANO DEL PETROLEO.

SUSTENTANTE: MARCO ANTONIO DURAN PEÑA.

ASESOR DEL TEMA: I. Q. JOSE ANTONIO ORTIZ RAMIREZ.

A mis padres:

J. Trinidad y Ma. Francisca

A mis hermanos:

Ma. del Carmen

Agustín

Raúl (q.e.d.)

Arturo (q.e.d.)

Irma

Francisco Patricia

A mi esposa:

Ma. Dolores

A mi amigo:

José Antonio Ortíz R.

A todos los que me han brindado su amistad.

> Con sincero agradecimiento al: Instituto Mexicano del Petréleo.

RESUMEN

En este trabajo se discute fricción, cambios de momentum y pér didas en corrientes laterales en la distribución y colección de flu jo presentes en los cabezales de distribución múltiple. Se presen ta información para cuantificar los efectos de las ramas adyacentes en situaciones de distribución de flujo. Se da un método para determinar la distribución de flujo en cabezales tanto de descarga co mo de colección. Se ilustra un método simplificado de cálculo para evaluar la distribución de flujo en sistemas de ramas múltiples, tales como los que se encuentran en el flujo a través de varios cam biadores de calor conectados en paralelo.

Los conocimientos teóricos y prácticos presentados en el desarrollo de este trabajo, tienen su utilidad al final del mismo, cuan do se da solución a un problema real que involucra el fenómeno de los cabezales de distribución múltiple. Para la solución al pro-blema que se plantea, se desarrolló e implementó un programa de com putadora que proporciona la información requerida para un análisis satisfactorio del fenómeno.

Se hace notar que se están analizando flujos que no están esta bilizados completamente y para los cuales las constantes de las fó<u>r</u> mulas están basadas en una cantidad limitada de resultados experi--mentales.

INDICE

		PAG
1,	Introducción	1
2.	Teoría	5
	2.1 Distribución de Flujo	6
	2.2 Colección de Flujo	10
3.	.Efectos de las Ramas Adyacentes	13
4.	Pérdidas para el Flujo en Ramas Inclinadas	16
5.	Ecuaciones para Cabezales de Distribución	19
6.	Ecuaciones para Cabezales de Colección	24
7.	Cálculo de Distribuciones de Flujo en Cabezales	26
8.	Métodos Simplificados para Sistemas de Cabezal	29
9.	Modelación del Problema	37
10.	Resultados	40
11.	Conclusiones	67
12.	Nomenclatura	
13.	Referencias Bibliográficas	70
	Apéndice A (Gráficas)	73
	Anándice B (Programa de Computadora)	104

1. INTRODUCCION

Si bien existe una cantidad considerable de literatura acerca de la distribución del flujo de una corriente principal en varias corrientes, así como de la formación de una corriente principal simple a partir de varias, toda esta información disponible, aún no ha sido organizada de manera sistemática y en una forma acepta blemente comprensible. Como consecuencia de lo anterior, a menu do hay una gran incertidumbre en cuanto a la elección del método lógico para abordar un problema de diseño de cabezales, ya sean de distribución o de colección.

El problema de la distribución de un fluído es más viejo que la industria química, y los trabajos de investigación en mecánica de fluídos se remontan a la época de Bernoulli. Por esta razón, en la literatura se tiene disponible una gran cantidad de procedi mientos de cálculo para resolver algunos problemas de distribución de fluídos. De hecho, se han gastado muchos esfuerzos en esta dirección y como consecuencia, se han publicado varios artículos excelentes. No obstante ésto, el campo de la distribución de un fluído es tan extenso y la mecánica del flujo tan compleja, que <u>ú</u> nicamente se ha cubierto un pequeño porcentaje de muchas facetas. Consecuentemente, la información disponible en relación a técnicas y procedimientos de diseño para obtener una apropiada distribución de fluído, es insuficiente en muchos de los casos encontrados en la práctica de la Ingeniería.

La mayor parte de los investigadores del tema se han dedicado a analizar sistemas particulares, los cuales se encuentran dentro de condiciones con rangos muy estrechos de operación. Por lo tan to, las correlaciones empíricas obtenidas en cada uno de estos pro gramas experimentales, se ven obstaculizadas en su aplicación por limitaciones muy serias. La generalización o extrapolación de es tos datos es difícil, y muy a menudo ésto da lugar a conclusiones conflictivas en relación con la información provista por otros in vestigadores.

La Industria Química se ha vuelto altamente competitiva y está demandando refinamientos que nunca antes se requirieron, en cuananto se refiere a la distribución de fluídos. Esta demanda, re-fleja el reconocimiento de que dichos refinamientos dan lugar a -procesos más económicos.

Sin embargo, pronto surge la pregunta acerca del grado de refinamiento en la distribución de un fluído; la cual, únicamente -puede ser contestada por y para casos particulares más que por medio de una declaración o informe generalizado. Naturalmente, en forma ideal a nosotros nos gustaría tener un perfil de distribución en ausencia de cualquier gradiente. La realización de este traba jo idealizado, está influenciada por limitaciones mecánicas e hidr<u>o</u> dinámicas aunadas a las esenciales consideraciones económicas.

La distribución uniforme de un fluído, muy a menudo es esencial para la operación del equipo de procesamiento químico tal como cam biadores de calor tubulares, quemadores, reactores tubulares, sobr<u>e</u> calentadores en hornos, etc. Lo anterior puede ser posible, si puede mantenerse constante la presión del fluído en todo el canal principal de distribución. Si no sucede ésto, cada una de las co necciones de rama lateral se tendrá que equipar con una válvula de control, la cual permitirá que se hagan compensaciones en el flujo a fin de contrarrestar las variaciones de presión; que a su vez causarán variaciones en la velocidad de flujo a través de ramas l<u>a</u> terales idénticas, dando lugar así a que se tenga un flujo preferencial indeseable en alguna zona particular del equipo.

Para obtener una distribución óptima, se debe disponer de una consideración apropiada acerca del comportamiento del fluído en el cabezal de distribución, así como de las condiciones de flujo corriente arriba y corriente abajo de dicho distribuidor. El diseño del distribuidor, puede fracasar debido a que no se tomó en cuenta el mecanismo de flujo corriente arriba o a que éste no se entendió completamente; y naturalmente, un distribuidor excelente se puede volver inefectivo a causa de las condiciones corriente abajo.

La distribución de flujo, se puede hacer razonablemente uniforme cuando existe un balance apropiado entre las energías cinética y potencial y el momentum de la corriente de entrada y las pérdidas por fricción a lo largo de la longitud del distribuidor y finalmente la caída de presión a través de las aberturas y líneas laterales. Cuando en un cabezal de distribución predominan la energía cinética y la fuerza de momentum de la corriente de entrada, se descargarán cantidades crecientes de fluído a medida que éste viaja hacia el extremo cerrado del cabezal.

Cuando predominan las pérdidas por fricción a lo largo del dis tribuidor, se distribuirán cantidades decrecientes de fluído a medida que éste viaja hacia el extremo cerrado del cabezal. Se pue de tener un disturbio de flujo corriente arriba, tal como el produ cido por una válvula o un codo, superimponiendo una energía cinét<u>i</u> ca y fuerza de momentum predominantes en la corriente de entrada. Con lo anterior, se provoca que el flujo de las ramas cercanas al punto de disturbio, se más grande que el de la zona media del cab<u>e</u> zal.

La figura 1. ilustra los diferentes patrones de distribución mencionados arriba:

- A.- Muestra la distribución ideal a lo largo de la longitud de la unidad; ilustrando ésto, con flechas de velocidad de descarga de igual altura.
- B.- Representa el caso de cuando predominan el momentum y la energía cinética.
- C.- Ilustra cuando tenemos al término de fricción como predominante.
- D.- Ejemplifica una combinación entre el primer o segundo caso con condiciones de flujo corriente arriba alterados desfavorablemente.

La tendencia en la Industria Química, es hacia admitir la con veniencia de diseños de cabezales que suministren una distribución escencialmente uniforme. La distribución uniforme, deberá obtener se a bases óptimas de diseño, manteniento la inversión original (da

da por tamaño de equipo) y el costo de operación (tales como los requerimientos de potencia) en un mínimo.

Muchos autores han indicado previamente que se puede mantener una presión aproximadamente uniforme en un cabezal de distribución múltiple si se varía el área de la sección trnsversal del mismo; en tal razón que, la velocidad del fluído puede permanecer aproximad<u>a</u> mente constante a medida que disminuye el gasto másico de flujo. Naturalmente, tal diseño trabajaría bien únicamente a un gasto dado. Por ejemplo, si se cambia el gasto de flujo al que se diseñó, puede modificarse el balance de fuerzas friccionales y de momentum dando lugar muy posiblemente a que se presente una distribución mala de flujo.

Con frecuencia el diseñador puede establecer limitantes; tales como la maldistribución de flujo o las pérdidas de presión per misibles. El trabajo presente, intenta describir un método unidi mensional para optimizar diseños dentro de las limitantes anteriores y considerando únicamente cabezales simples de sección transversal contínua; donde el fluído Newtoniano entra o deja el cabezal en el extremo abierto y en cada uno de los casos el cabezal se determina en el extremo cerrado. Dicho cabezal, está provisto de tu bos o ramas laterales (del mismo tamaño y diámetro), unidos a éste a ángulos rectos y dispuestos igualmente espaciados.

2. TEORIA.

Existen dos influencias principales en la presión de un fluído que circula en un cabezal:

a) Efectos de momentum.

b) Efectos friccionales.

El momentum del fluído en un cabezal de descarga, tiende a produ cir una elevación en la cabeza estática (piezométrica) debido a la desaceleración de una parte del fluído; la cual cambia de dirección para fluir en la rama lateral. En un cabezal de colección, los efectos de momentum influyen en la dirección opues ta; la presión estática tiende a ser más grande en el extremo cerrado del cabezal y disminuye hacia el extremo abierto a medida que el flujo se acelera en cada una de las ramas laterales, que en este caso constituyen una alimentación.

El esfuerzo cortante de la pared o fricción, causa una caí da de presión estática en la dirección del flujo en ambos tipos de cabezal (distribución o colección). Este efecto se puede predecir con aproximación razonable según los datos existentes en la literatura. En el cabezal de descarga, los efectos de momentum y fricción trabajan en direcciones opuestas; mientras que en el de colección dichos efectos se refuerzan.

La solución teórica para el caso especial de ramificación bidimensional de flujo, usando la teoría clásica de líneas de corriente libres de Helmholtz-Kirchhoff (13); daría características de flujo que permitirían obtener relaciones de presión-ve locidad en una unión T simple. Cuando se usan los resultados obtenidos de la forma anterior para predecir características de flujo en fluídos reales, existen numerosas incertidumbres en su aplicación. Parece ser, que cuando se usa el mismo método apli cado a cabezales de colección, se obtienen resultados aún menos confiables. Se puede concluir que en la actualidad, únicamente una cantidad muy pequeña de análisis teórico es válida dentro de rangos considerables de las variables significativas y que además pueda tener aplicación general como referencia para la comparación y evaluación de medidas de laboratorio.

Por las razones anteriores, los métodos presentados en las siguientes secciones de este trabajo, se usan para poner en cl<u>a</u> ro y explicar los cambios de momentum.

2.1 DISTRIBUCION DE FLUJO.

2.1.1 CAMBIOS DE MOMENTUM A TRAVES DE UNA UNION "T" SIMPLE.

Para describir la situación de la división de flujo se gún^{como} muestra en la figura 2; podemos aplicar directamente las formas simplificadas de las ecuaciones convencionales de mome<u>n</u> tum y de energía macroscópica.

Aquí se asume, que la velocidad media promedio en cada una de las secciones de la frontera es representativa del flujo en esa sección, y que el fluído que se separa a trayés de la rama lateral, ha perdido totalmente la componente axial de su velocidad antes de cruzar la superficie de control. Si se asume que la velocidad es proporcional a la potencia 1/7 de la distancia a la pared, tenemos la siguiente relación de velocidad:

(v²)prom/Vprom = 1.02 V prom

Aquí haremos uso de un perfil plano de velocidades tal que:

El incremento de presión para el flujo que continúa en el cabezal después de pasar la unión "T", se relaciona a la dism<u>i</u> nución de velocidad según la ecuación:

$$p_{\mathbf{b}} - p_{\mathbf{v}} = \frac{Q}{q_{\mathbf{c}}} \left(\mathbf{v}_{\mathbf{v}}^{2} - \mathbf{v}_{\mathbf{b}}^{2} \right) \tag{1}$$

Donde:

p_D = presión estática en la sección corriente abajo (1b/ft²)
p_U = presión estática en la sección corriente arriba (1b/ft²)
V_U = Velocidad en la parte del cabezal corriente arriba de la rama lateral. (ft/seg)

V_D = Velocidad en el cabezal corriente abajo de la rama lateral. (ft/seg)

Las observaciones experimentales han revelado, que el incremento de presión usualmente difiére del valor calculado según la ecuación presentada anteriormente. La discrepancia de valores se explica según la hipótesis de que la dirección de la corriente que continúa en el cabezal, no es exactamente normal a la abertura de la rama lateral y que la descarga lateral viene de una región de velocidad de flujo baja, en la cual la energía cinética es menor que el promedio (17) relativo al flujo remanente.

Así pues para balancear la ecuación se introduce un factor de corrección de momentum (k_D) , el cual generalmente es menor que la unidad. Como consecuencia de lo anterior, la ecuación (1) deberá ser modificada a:

$$\not p_{D} - \rho_{U} = \Delta p = \frac{k_{D} \rho}{q_{e}} \left(v_{U}^{2} - v_{D}^{2} \right)$$
(2)

No obstante que k_D podría ser estimado teóricamente a través del cálculo de la dirección de las líneas de corriente en el flu<u>f</u> do en la vecindad de la abertura de la rama lateral; un curso de acción más seguro, es determinar su valor a partir de cambios de presión observados experimentalmente (1, 2, 3, 5, 7, 12, 13, 22). La figura 3, muestra gráficamente los resultados de algunas de es tas pruebas desarrolladas durante las cuatro décadas pasadas. En la referencia 29, se encuentran algunos resultados experimentales adicionales.

Las pruebas anteriormente mencionadas, se llevaron a cabo en uniones T de esquinas tanto afiladas como redondeadas y además en conexiones T soldadas; en las cuales el flujo de la rama lateral tuvoque pasar a través de un diámetro más pequeño que el existente

en la unión con la pared del cabezal. La evidente dispersión entre los puntos de la figura 3, sobre todo en la región de flu jos pequeños en la rama lateral, se puede atribuir en parte, a las fallas en las técnicas de medida y cálculo y a las diferencias de geometría en los equipos usados para dichas pruebas.

Un factor adicional muy importante que contribuye a esa -dispersión de los datos, es que se usó el cuadrado de la velocidad promedio en los cálculos de momentum, sin tomar en cuenta los ajustes necesarios para balancear el efecto de las variaciones de velocidad a través de las secciones. Para conecciones de rama lateral relativamente pequeñas, la velocidad del fuído que descarga en dicha rama en cierto modo está abajo de la promedio; ya que las bajas velocidades se presentan cerca de la pared y también debido a que se requiere menos fuerza para desviar un fluído más lento. La suposición anterior se ve respaldada por el hecho de que para una relación de descarga dada $W_{\rm B}/W_{\rm U}$, en tre más grande sea el diámetro de la rama latemal, más grande es el área transversal en la cual la rama puede tomar su flujo de la región de velocidades abajo de la promedio. Así pues según se muestra en la fig. 3.

La ganancia aparente de energía potencial es lo más grande para una rama con $D_B/D_U = 1.0$, y disminuye a medida que se reduce D_{B^*}

Desafortunadamente la peor divergencia entre los datos de la figura 3, se sucede en las relaciones de diámetro de rama a cabezal más grandes y a pequeños flujos en la línea secundaria. En caso contrario lo anterior sería muy representativo y útil p<u>a</u> ra muchas aplicaciones; entre otras, para flujos en cabezales de cambiadores de calor enfriados por aire, cabezales en sobrecale<u>n</u> tadores, etc.

Según indican las curvas de la figura 3, los valores del coeficiente de corrección de momentum para cabezales de distribución, varían desde aproximadamente 1.0 para flujos muy pequeños en la línea secundaria hasta cerca de 0.3 para flujos predominantemente emadicha rama lateral; indicando ésto que la ganane cia en cabeza de presión para este caso es significativamente

grande. Se puede demostrar, que esta ganancia en cabeza de presión siempre es menor que la mitad de la que se presenta en una expansión repentina.

2.1.2 COEFICIENTES DE PERDIDA EN CORRIENTES LATERALES:

La figura 4, muestra los valores graficados de los coefi cientes de contracción (C_{cd}) obtenidos teóricamente para una división de flujo en una rama lateral. Las pérdidas de ener gía resultantes, se tomaron que sean como las que se presentan en una expansión brusca corriente abajo de la sección mar cada V_c en la figura 5; donde la contracción del flujo deberá asumirse esencialmente completa.

Por esta razón, el término de pérdida de presión en una línea secundaria se determinó según la fórmula de Borda-Carnot para pérdidas en un ensanchamiento súbito:

$$\Delta p = \frac{e \left(v_{v_e} - v_B \right)^2}{2q_e} \tag{3}$$

Lo cual es exacto, para agua en flujo turbulento y aplica bastante bien a flujo turbulento de gases y vapores con velocidades superiores a 200 ft/seg (16). (V_{vc} es la velocidad promedio en la vena contracta).

La comparación entre las pérdidas de cabeza calculadas para el flujo que se desvía del cabezal a la línea secundaria, con la cabeza de velocidad de flujo en la rama misma; da como resultado el coeficiente de pérdida K_p , donde:

$$K_{\mathcal{D}} = \frac{\mathcal{H}_{\mathcal{B}}}{\frac{\mathcal{V}_{\mathcal{B}}}{2q}} = \left(\frac{1}{C_{CD}} - 1\right)^{2}$$
(4)

Donde:

H_{B-D} diferencia de cabeza estática entre la rama lateral y el conducto corriente abajo de dicha línea secundaria. (ft) $V_{\rm B}$ = Velocidad en la rama lateral. (ft/seg)

La figura 6 muestra una gráfica de coeficientes medidos experimentalmente, junto con los valores comparables de de co<u>e</u> ficientes de pérdida obtenidos por derivación teórica; lo cual se muestra por líneas contínuas.

Según observación, nos percatamos de que hay una concordancia razonable entre los resultados teóricos y experimentales; excepto para $D_B / D_U = 1$ y $V_B / V_U > 0.6$ en donde ocu rren diferencias significativas. Es muy difícil justificar estas diferencias debido a las varias suposiciones implícitas en los cálculos.

2.2 COLECCION DE FLUJO:

2.2.1 CAMBIOS DE MOMENTUM A TRAVES DE UNA UNION "T" SIMPLE:

En la figura 56 se ilustran por medio de flechas los patro nes de flujo según las visualiza el diseñador; además se mues tra el efecto de la contracción seguido por una expansión en la tubería principal. De nuevo encontramos que debido a tal fenómeno, las ecuaciones de momentum a través de la rama abierta y para el lado de la unión de flujo en el cabezal requieren factores de corrección.

Como consecuencia de lo anterior, la ecuación para combinación de flujo (1) se modifica al introducir un factor de corrección de momentum; obteniéndose así la siguiente ecuación:

$$(p_{D} - p_{U}) = \Delta p = \frac{k_{c} \varrho}{q_{c}} \left(V_{U}^{2} - V_{D}^{2} \right)$$
 (5)

A partir de la ecuación (5), se puede determinar la disminución de presión estática a través de la unión "T" para el caso de combinación de flujo.

En la figura 8, se muestran graficados los resultados ex perimentales para el factor de corrección de momentum. Las pérdidas indicadas varían de aproximadamente 1.4 a 2.5 veces la cabeza de velocidad corriente abajo; además, las pérdidas más grandes se presentan para la relación de diámetros más p<u>e</u> queña probada experimentalmente.

2.2.2 COEFICIENTES DE PERDIDA EN CORRIENTES LATERALES.

Para representar la pérdida de cabeza que ocurre en el fl<u>u</u> jo de la rama lateral que se vuelca en el cabezal, en la fi<u>gu</u> ra 9 se muestran los valores del coeficiente de pérdidas en c<u>o</u> rriente lateral (K_c) para tres relaciones de diámetro de línea secundaria a diámetro de cabezal, donde:

$$K_{\rm c} = \frac{H_{\rm B-D}}{\frac{V_{\rm B}^2}{2q}}$$

Se recalca que en la referencia (29), se encuentra info<u>r</u> mación adicional acerca de más datos experimentales de dichos coeficientes.

Cuando tenemos flugos pequeños en el tubo lateral, se presentan pérdidas negativas o sea hay una ganancia aparente en energía. Lo anterior se puede explicar lógicamente para el caso limitante de $W_B / W_D = 0$; ya que aquí la presión en la línea secundaria es igual a la que se tiene en la unión con el cabezal y además la velocidad es cero. Así pues, se tiene ne una ganancia de energía para flujos muy pequeños en la línea secundaria. Dicha ganancia es también aparente, a medida que el fluído va de la rama lateral a una región del flujo principal en donde la velocidad local esté abajo de la promedio.

A medida que W_B / W_D tiende a cero, cada una de las curvas de K_c se acerca a un valor de

$$H_{B-D} = \frac{\sqrt{2}}{2q}$$

(6)

2.2.3 NOTA PARA COEFICIENTES DE MOMENTUM Y PERDIDAS EN CORRIENTES LATERALES PARA COLECCION Y DISTRIBUCION DE FLUJO:

Los resultados mostrados en las figuras 3, 6, 8 y 19, fue ron tomados principalmente del trabajo de McNown (5); quien re copiló y valoró esencialmente todos los datos referentes al te ma y que se encontraban disponibles hasta 1953.

3. EFECTOS DE LAS RAMAS ADYACENTES.

Se debe enfatizar que, si bien los resultados de prueba en una unión simple usualmente son suficientes para definir las ca racterísticas de un sistema completo de distribución múltiple; es necesario sin embargo, valorar el efecto que se presenta al tener ramas sucesivas y entre las cuales existe una distancia relativamente corta corriente abajo. Si vamos a determinar la variación de presión en un cabezal de descarga, por medio de aplicaciones sucesivas de la ecuación (2) y con corecciones como las presentadas en la figura 3, y además presuponiendo el cono cimiento de las características de la resistencia a la fricción entre las líneas secundarias; debemos tener algún conocimiento de la magnitud de la interacción ó de la separación mínima entre ramas sucesivas que no causará efectos significativos.

Se han llevado a cabo medidas experimentales (20) para es paciamientos entre ramas adyacentes de 4, 8 y 14 veces el diámetro del cabezal; pero dichas medidas no estuvieron bien def<u>i</u> nidas y únicamente se obtuvieron datos útiles de los valores promedio de los muchos de los resultados de prueba (15). Las conclusiones de esta experimentación fueron que: la recuperación de presión estática aquí, es menor que la que se obtiene por medio del factor k_D tomado de la figura 3 y de a cuerdo a los siguientes porcentajes:

15% menor para el espaciamiento de 4 diâmetros, 10% para el espaciamiento de 8 diâmetros y menos de 5% para el de 14 diá metros. Estos valores variaron considerablemente con la rela ción de descarga. Probablemente, no ocurriría ninguna interacción significativa si el espaciamiento entre las líneas adyacentes ruera de 20 diâmetros de cabezal o más.

Hasta la fecha, no ha sido posible evaluar totalmente el efecto de interacción de las ramas adyacentes en la combinación de flujos.

Relativo a la interacción con las corrientes de entrada o salida de los cabezales, se deberán hacer consideraciones para

el caso de que las líneas de alimentación sean parecidas a las secundarias.

Los niveles de presión estática local en tales tuberías de entrada deberían ser más altos que a lo largo del cabezal; además; al ser la tubería de entrada perpendicular a la rama de des carga más cercana la presión debería ser más baja. Desafortuna damente todo lo anterior aún no se puede predecir con precisión aceptable.

Se puede reducir tal efecto de entrada, al mover la primera conexión de línea secundaria al menos 5 diámetros de cabezal lejos de la entrada del fluído al cabezal. Así mismo, los diá metros del cabezal y de la línea secundaria deberán ajustarse de tal manera que una variación de una ó dos cabezas de velocidad en la presión estática, no influencíe en grado considerable la distribución de flujo.

También se han determinado algunas características en sistemas con líneas laterales dobles (5) tomando como referencia para ello una serie de pruebas en un cabezal con un par de ramas colocadas simétricamente. Las elevaciones de presión medidas en dicho cabezal a cantidades de flujo inferiores a $2W_p/W_{rr} =$ 0.25 coinciden con los resultados para una unión "T" simple cuando se hace uso de un diámetro equivalente para el área de la rama doble (Ver figura 10). Para valores de la relación de descarga entre 0.25 y 0.75, se encontro una recuperación más grande para lateral doble; lo cual se debió presumiblemente a la mayor oportunidad que tiene el fluído que se mueve a bajas velocidades de fluir en una u otra de las líneas secundarias. Para relaciones que exceden a 0,75, los valores observados dis minuyen rápida e inesperadamente a medida que incrementamos la relación de descarga. A grandes valores de W_p/W₁₁, el flujo fué muy inestable y se tuvieron cambios rápidos y periódicos en la división de flujo, causando con ello pérdidas excesivas. Unicamente cuando se colocó una placa de división entre las dos ramas se tuvieron resultados acordes y se pudo continuar la lí nea sólida de la figura 10. Con lo anterior, se estableció

una división de flujo igual y estable y con ello la elevación de presión se convirtió esencialmente en la predicha por las pruebas en ramas laterales simples.

4. PERDIDAS PARA EL FLUJO EN RAMAS INCLINADAS.

Vazsonyi (4) presentó las siguientes ecuaciones; las cua les están basadas en el trabajo de investigadores previos. Para una tubería recta que se divide en dos ramas (Ver figura 11), el cambio de cabeza a través del sistema está dado por la ecuación:

$$2g H_{U-B} = \lambda_1 v_0^2 + (2\lambda_1 - \lambda_2) v_B^2 - 2\lambda_2 v_U v_B \cos \alpha' \qquad (7)$$

Donde $\lambda_1 \lambda_2$ y α ' son funciones de un factor α dado en las figuras 12 y 13.

Para dos líneas secundarias rectas que se combinan en una tubería principal (Ver figura 14), el cambio de cabeza a lo largo del sistema está dado por la ecuación:

$$Z_{q}H_{B-D} = \lambda_{3}v_{0}^{2} + v_{D}^{2} - 2v_{D}\left(\frac{V_{B}W_{B}}{W_{D}}\cos\beta' + \frac{V_{U}W_{U}}{W_{D}}\cos\delta'\right) \quad (8)$$

Donde λ_{ϑ} es una función de β que se da en la figura 15; $\beta' \eta \delta'$ son funciones de β y δ de la figura 13.

Se hace notar que el tema de pérdidas de flujo en ramas inclinadas, se discute con detalle en las referencias (30) y (31) de reciente publicación.

Cuanic combinamos las ecuaciones (7) y (8) con la ecuación (1) y usamos las constantes apropiadas de las figuras 12 , 13 y 15 para un ángulo de rama de 90°, se pueden derivar fórmulas para líneas secundarias del tipo de codo o de unión "T" común. Además, si incluímos un factor de 1.25 en dichas fórmulas para considerar los efectos de entrada o salida para el caso de ra mas colocadas muy próximamente, se obtiene una serie de ecuaciones de trabajo que se resumen enseguida:

Las fórmulas anteriores se aplican para la caída de presión en la trayectoria mostrada por las líneas contínuas en los esque mas; las unidades son $1b/ft^2$. En estas ecuaciones, un resultado positivo representa una pérdida de presión y uno negativo, re superación de presión. Las ecuaciones anteriores únicamente son útiles para cabezales que tengan entre 5 y 15 conexiones de rama secundaria o lateral.

5. ECUACIONES PARA CABEZALES DE DISTRIBUCION.

En la figura 16 se muestra un esquema con nomenclatura para un cabezal de descarga; el cual consiste de un número finito de secciones sencillas (rectas) separadas por un número igual de conexiones de línea secundaria. Dichas ramas laterales son uniformes en tamaño y se encuentran igualmente espaciadas. Así mismo, se muestran esquemáticamente los niveles de presión tanto para las ramas laterales como para el cabezal, extendiendo las líneas de presión hasta los puntos centrales de las líneas secundarias para mayor claridad.

A continuación se dan ecuaciones para determinar fricción en el cabezal, descarga en la rama y cambios de momentum. Es tas ecuaciones se pueden resolver para obtener las cantidades de flujo en la línea secundaria y la presión y velocidad corriente abajo en la misma; teniendo únicamente como datos las condiciones de velocidad y presión a la entrada del cabezal y la presión a la salida de las ramas.

Para las pérdidas de presión por fricción en una sección elemental Δx de la entrada del cabezal, podemos aplicar la ecuación de Fanning según:

$$\dot{p}_{u} - \dot{p}_{o} = -\frac{2e}{g_{c}} f_{o} \frac{v_{o}^{2}}{D} \Delta z \qquad (9)$$

En cuanto a la selección del factor de fricción (fo) se hace notar que según datos disponibles (14), el factor de fric ción tanto para flujos compresibles como para incompresibles sigue o es la misma función del número de Reynolds. Ya que para flujo compresible adiabático los números de Reynolds usualmente son altos en el régimen turbulento, la variación del factor de fricción con respecto a la temperatura a lo lar go de la tubería es pequeña y en consecuencia, en los cálculos se puede hacer uso de los mismos valores de factor de fricción ajustados únicamente por los efectos debidos a las variaciones de velocidad a lo largo del cabezal.

Las ecuaciones y datos presentados en este trabajo se apl<u>i</u> can al flujo de fluídos incompresibles; tales como líquidos, gases y vapores que presenten cambios de densidad menores del 10% y velocidades menores de 200 ft/seg. (Sujetándonos a las condiciones anteriores, en caso de que usáramos la densidad . del fluído a la entrada de la tubería para determinar la cafda de presión en la misma, el error que resultara al hacer dicha consideración generalmente no excedería los límites de incertidumbre que se tienen para el factor de fricción.).

Se hace notar que al final de la sección elemental se tienen ne una conección para rama de salida, y que además se tienen presentes discontinuidades en cuanto a presión y velocidad. Los sambios producidos por los factores anteriores, se pueden calcular a partir de balances de materia y de momentum.

Para determinar la cantidad de flujo a través de la línea secundaria se establece un balance de materia, en donde se ha ce uso de la media aritmética de las presiones corriente arri ba y corriente abajo de la abertura de la rama conjuntamente con la ecuación para una placa de orificio según:

$$V_{D} - V_{U} = -\frac{4\alpha C}{D} \Delta x \sqrt{\frac{2q_{c}}{e^{f}} \left(\frac{\beta_{U} + \beta_{D}}{2} - \beta_{s}\right)}$$
(10)

Donde:

 A = Fracción del área interna del cabezal que está ocu pada por la abertura de la conección de la rama la teral.

C = Coeficiente de descarga apropiado para el orificio.
 Muchos autores han usado con buenos resultados coeficien
 tes de descarga que van de 0.6 a 0.63, lo cual representa a proximadamente pérdidas de 2¹/₂ cabezas de velocidad.

La suposición anterior, constituve el punto débil del mé todo para la determinación de las curvas de gradientes de pre sión y de distribución de flujo. La caída de presión a través de un orificio generalmente es. mayor (en uno o dos órdenes de magnitud) que los términos de energía cinética. momentum o fric ción en el cabezal mismo: de lo cual se puede deducir que un error pequeño en el coeficiente del orificio produce alteracio nes bastante fuertes, y de ahi que dicho coeficiente sea de im portancia vital. El coeficiente de descarga es una función de la relación de tamaño de la abertura para la línea secundaria a diámetro del cabezal, de la forma de dicha abertura. de la presión corriente arriba y del régimen y gasto de flujo a través de la abertura. Para evaluar dicho coeficiente se cuenta con datos experimentales (Ver figuras 6 y 9); pero éstos presentan un rango de validez muy restringido y en consecuencia, no se pueden aplicar en una forma directa y sencilla al diseño inicial de cabezales. Así pues, para poder de terminar el valor exacto del coeficiente de descarga como una función de todas las variables arriba mencionadas, es necesario contar con una cantidad de datos experimentales más exten sa y variada. Se ha demostrado(16), que si la componente normala la pared del cabezal de la velocidad a lo largo del cabezal, el efecto que presenta esta última en el coeficiente de descarga es muy pequeño.

En la ecuación (10), & (la fracción de área interna del cabezal que se ocupa para la conexión de la línea secundaria) está dada por:

$$\alpha = \frac{d^2}{4D\Delta z} = \frac{nd^2}{4DL}$$

Donde n es el número de puntos en los que se coloca una rama lateral.

La tercera ecuación que nos es útil, está basada en el balance de momentum:

$$\dot{p}_{\mathrm{D}} - \dot{p}_{\mathrm{U}} = \frac{k_{\mathrm{D}}}{q_{\mathrm{C}}} e\left(v_{\mathrm{U}}^{2} - v_{\mathrm{D}}^{2}\right) \qquad (11)$$

Así pues, las ecuaciones (9), (10) y (11) son las básicas para interpretar una sección elemental de un cabezal de descar ga que contiene una sola conección de rama lateral. Según se mencionó previamente, dichos cabezales se pueden resolver a me nos que se conozcan las condiciones de velocidad y presión a la entrada del cabezal y la presión a la que descargan las líneas secundarias.

La solución se puede simplificar considerablemente si agrupamos algunas de las variables dependientes e independientes en parámetros adimensionales, según:

$$y = \frac{5.64 \alpha C}{D} \Delta x = \frac{1.41 C d^2}{D^2}$$
 (12)

$$P_{0} = \frac{(p_{0} - p_{B})q_{c}}{2\rho v_{0}^{2}}$$
(13)

$$F_{D} = \frac{f_{\alpha}}{2^{5/2} \alpha C}$$
(14)

$$V_{\rm D} = \frac{V_{\rm D}}{V_{\rm O}} \tag{15}$$

Donde p_B es la presión externa uniforme a la descarga de los orificios, los cuales constituyen las ramas secundarias.

Asumiendo que el factor de fricción varía con la velocidad del fluído de acuerdo a la relación generalmente aceptada para tubos lisos se puede tener:

$$F_{D} = F_{O} V_{D}^{-\frac{1}{4}} \tag{16}$$

Por lo tanto, las ecuaciones básicas seráns

$$p_{u} - p_{o} = -F_{o} V_{o}^{2} y \qquad p_{u} - p_{D} = -F_{o} V_{D}^{1/4} y \qquad (17)$$

Además para la primera y las siguientes secciones:

$$\nabla_{\mathbf{p}} - \nabla_{\mathbf{u}} = -\frac{y}{q} \sqrt{\frac{p_{\mathbf{u}} - p_{\mathbf{p}}}{p_{\mathbf{u}}}} \tag{18}$$

y finalmente:

$$\dot{p}_{\mathcal{D}} - \dot{p}_{\mathcal{U}} = \frac{k_{\mathcal{D}}}{2} \left(v_{\mathcal{U}}^2 - v_{\mathcal{D}}^2 \right) \tag{19}$$

Después de éstos arreglos, se puede resolver el problema en tér minos de únicamente tres parámetros adimensionales: p_0 , F_0 y y; donde p_0 está relacionada a la presión y al momentum del fluído en el extremo abierto del cabezal; F_0 a la fricción en la sección recta de entrada al cabezal y "y" a la distancia entre las conexiones de ramas adyacentes. Por definición: $V_0 = V_u = 1$ a la entrada al cabezal y en la primera sección. Para obtener una expresión para V_D podemos combinar las ecuaciones (18) y(19) según:

$$V_{\rm D} = -\frac{1}{1+\frac{y^2k_{\rm D}}{2}} \left\{ V_{\rm U} - \sqrt{\frac{y^4k_{\rm D}^2}{4}V_{\rm U}^2 + 2p_{\rm U}^2 \left(1+\frac{y^2k_{\rm D}}{1+\frac{y^2}{2}}\right)} \right\}$$
(20)

Para la rutina de cálculo, las condiciones de entrada al cabezal se substituirán, sección por sección, por las condiciones corrien te abajo de la línea secundaria. En la sección 7 se dan resul tados numéricos para un cabezal de distribución en términos de los tres parámetros anteriores.

6. ECUACIONES PARA CABEZALES DE COLECCION:

En la figura 17 se muestra un esquema de un cabezal de colección, constituído por un número finito (tres) de secciones rec tas separadas por igual número de conexiones de línea secundaria; las cuales son uniformes en tamaño y en espaciamiento. En el diagrama se muestran esquemáticamente los niveles de presión tan to para las ramas como para el cabezal. (Las líneas de presión se encuentran extendidas hacia el centro de la rama).

Los detalles de las derivaciones matemáticas para obtener las expresiones necesarias para el cálculo son esencialmente los mismos que los que se realizaron para los cabezales de distribución. Las ecuaciones para los cabezales de colección difieren de las relaciones correspondientes para los cabezales de descarga por dos raz nes: El fluído aquí, fluye de las ramas hacia el condu cto principal, y ya que la distancia a lo largo del cabezal se mide a partir de su extremo abierto; la dirección de incremen<u></u> to de longitud será opuesta a la del flujo del fluído.

Comenzando los cálculos en dicho extremo abierto se encuentra que:

$$p_{D} - p_{0} = -F_{0} V_{0}^{2} y \qquad p_{D1} - p_{U} = -F_{0} V_{U}^{3/4} y \qquad (21)$$

Las expresiones anteriores son las ecuaciones reagrupadas de Fanning para la primera y subsecuentes secciones, y:

$$V_{u}-V_{D} = -\frac{1}{4}\sqrt{p_{u}+p_{D}}$$
 (22)

$$p_{u}-p_{D}=-\frac{k_{c}}{2}\left(v_{D}^{2}-v_{u}^{2}\right) \tag{23}$$

Es importante observar que:

у

$$p_{o} = \frac{(p_{s} - p_{o})q_{c}}{2\varrho v_{o}^{2}}$$
(24)

en donde se usan los diferenciales de presión entre el cabezal y la línea secundaria en forma similar como se hizo en la ecuación (13). La nomenclatura es similar a la que se tiene para los cabezales de distribución. De nuevo, para obtener una expresión V. Combinamos las ecuaciones (22) y (23) según:

$$V_{\nu} = \frac{1}{1 - \frac{y^{2}k_{c}}{\sqrt{2}}} \left\{ V_{b} - \sqrt{\frac{y^{4}k_{c}^{2}}{\sqrt{4}}} V_{b} + 2y_{f}^{2} h_{b} \left(1 - \frac{y^{2}k_{c}}{\sqrt{2}}\right) \right\}$$
(25)

Otra vez, por definición Vo = $V_D = 1$ en el extremo abierto del cabezal. Para el cálculo paso a paso, las condiciones de entrada al cabezal serán sustituídas sección por sección por las condiciones corriente arriba presentes en la rama lateral.

En la sección 7 se dan resultados núméricos para cabezales de colección.

7. CALCULO DE DISTRIBUCIONES DE FLUJO DE CABEZALES:

Las ecuaciones presentadas en las secciones 5 y 6 se apl<u>i</u> can satisfactoriamente para la estimación y para la mayoría de los propósitos de diseño de cabezales. En los proyectos en donde son esenciales resultados más precisos, se puede estudiar en el laboratorio una unión típica o un acoplamiento de uniones; de tal manera que los resultados obtenidos pueden ser usados pra el diseño de un sistema completo de distribución o colección múltiple.

Las ecuaciones (17), (19) y (20) para cabezales de descarga y las ecuaciones (21), (23) y (24) para cabezales de co lección, se pueden resolver por cálculos simples de paso a pa so. En éste método se usarán los valores apropiados en los tres parámetros adimensionales P_o , F_o y "y". Estos valores representan respectivamente las condiciones de flujo en el ex tremo abierto del cabezal, la primera selección de caída de presión en términos de energía cinética y las relaciones geométricas del cabezal. Así mismo, es necesario insertar los valores para los factores de corrección de momentum $K_D \delta K_C$ (Ver figuras 3 y 8) ($K_D \delta K_C$)variable dependiente).

El procedimiento a seguir para el cálculo es como sigue: Determinar la primera sección incluyendo la primera conección de línea secundaria, usando para ello los datos iniciales de proceso. Para calcular la siguiente sección, hacemos uso de los datos de presión y velocidad al final de la sección anterior; iterando en cada vez el factor de corrección de momentum. Encontrando los valores complementarios de F_o para un valor dado de pérdida de cabeza de velocidad, podemos conseguir un balance entre los efectos de fricción y de momentum, lo cual nos dará una distribución de flujo aproximadamente uniforme. Sin embargo, en la práctica, ningún par de valores de P_o y F_o proporciona una distribución perfectamente uniforme. Esto es más notorio para el caso de un cabezal de colección.

Con objeto de ilustrar algunos patrones de distribución de flujo que se presentan en cabezales, en las figuras 18 a 31 se muestran 14 conjuntos de curvas típicas; las cuales se derivan de los resultados de cálculos en la computadora. Los valores usados de $K_D y K_C$ se muestran con líneas discontínuas en las figuras 3 y 8. Aquí no se toma en cuenta la interferencia probable entre aberturas para conexión de una línea se cundaria. La figura 18 contiene curvas de distribución de flujo para un cabezal caracterizado por ramas espaciadas a y = 0.05 y una pérdida de presión pequeña de 0.4 cabezas de velocidad; lo cual es representativo de un flujo a alta velocidad; en el punto de entrada.

Si el flujo de la primera rama es igual al flujo de la ditima, con $F_0 = 0.45$, en la parte media del cabezal se tendrá aproximadamente un -22% de maldistribución de flujo. En este cabezal es evidente la inestabilidad de la distribución de flu jo, ya que si incrementamos en 10% el valor de F_0 (de 0.45 a 0.5), provocamos que el cabezal sea inoperante; mientras que si disminuímos F_0 en 10% (de 0.45 a 0.41) tendremos como resul tado un + 50% de maldistribución.

Las figuras 19, 20, 21 y 24 muestran cabezales con pérdidas de presión cada vez mayores, lo cual nos indica que se tienen bajas velocidades en los cabezales y teniendo como resultado una distribución de flujo cada vez mejor. El diseña dor, puede aprovechar algunas secciones de una curva de distri bución dada, al variar las velocidades de entrada por medio de cambios en la sección transversal.

Las figuras 22, y 23 pueden servir para comparación de distribuciones de flujo en el mismo cabezal. La primera se calculó con K_D dependiente del flujo y la segunda con K_D cons tante. A modo de comparación, tenemos que en este cabezal de baja velocidad la distribución de flujo para los valores más comunes de F_o (entre 0.01 y 0.5), es de 7 a 10% con K_D dependie<u>n</u> te del flujo y de 10 a 14% para el caso en donde K_D es constante; lo cual nos muestra una discrepancia notable. Lo anterior resalta la necesidad de seleccionar el valor correcto de K_D .

Las figuras 25 a 31 muestran curvas de distribución de flu jo tomando las mi_smas características de pérdida presión-velocidad que se ilustraron antes para cabezales de recolección.

De nuevo el espaciamiento entre conexiones de rama es de y= 0.05. Comparando los pares de cur_vas con condiciones similares, se observa que la distribución de flujo es menos uniforme en los cabezales de colección que en los de distribución.

Al manejar la misma cantidad de fluído y con una maldistribución similar, nos encontramos con que los cabezales de recolección requieren una sección transversal más grande que los cabezales de distribución.

Para los cálculos anteriores se ha despreciado la influen cia de la presión en la densidad del fluído. Cuando se considera la influencia de la expansión del fluído, parece ser que el tamaño requerido de los cabezales de colección es aún más gran de que el que se indicó anteriormente.

Las figuras 32 y 33 muestran los resultados condensados y combinados, de los cálculos llevados a cabo en algunos grupos de cabezales de distribución y de descarga. En las fórmulas F y Y mostradas, se usaron los valores de 0.6 y 1.0 para el com ficiente de descarga en el orificio (C), para cabezales de descarga y colección respectivamente. Para los coeficientes de corrección por momentum, se usaron los valores mostrados en las figuras 3 y 8 despreciando la interferencia que se presenta corriente abajo. Por medio de estas curvas (32 y 33), se puede obtener un estimado rápido de la maldistribución en la mayoría de los diseños de cabezales.
8. METODOS SIMPLIFICADOS DE DISEÑO PARA SISTEMAS DE CABEZAL:

El dimensionamiento preciso de distemas de distribución de flujo haciendo uso de las ecuaciones (12) a (25), es un proceso que consume mucho tiempo y que es innecesario en muchos casos. A continuación se describen métodos simplificados para dicho dimensionamiento; los cuales proporcionan una exactitud generalmente aceptable para la mayoría de las aplicaciones en ingeniería.

Se define la Maldistribución (Mal) como:

$$Mal = \begin{cases} El mayor flujo a través de una rama - 1 \\ El flujo más pequeño a través de una rama (26) \end{cases}$$

Inicialmente se asume que tenemos igualdad de flujo a tr<u>a</u> vés de cada una de las líneas secundarias, seguido lo cual popodemos hacer uso de la ecuación (2) para determinar un imbala<u>n</u> ce aproximado de presión entre la primera y la última rama; ta<u>n</u> to en el cabezal de entrada como en el de salida. Según se ilustra en las figuras 18 a 31, no siempre sucederá que las <u>a</u>berturas primera y última darán la maldistribución más grande; sin embargo generalmente éste será el caso cuando tratemos con equipo de proceso. Para este análisis se tomarán como adecuados los valores globales promedio de $k_{\rm D}$ = 0.6 y $k_{\rm C}$ = 0.9 para el factor de recuperación de momentum en cabezales de distribución y colección respectivamente.

La maldistribución en cabezales largos, además de los efeç tos de momentum se ve influenciada por los efectos de fricción. En el cálculo de cabezales, se puede hacer una distinción clara entre caída de presión y pérdidas por fricción.

La caída de presión únicamente puede representar una conversión de energía de presión a cualquier otra forma de energía; mientras las pérdidas por fricción representan una pérdida neta en la energía-trabajo total disponible del fluído.

Cuando se determina la influencia de la fricción en la maldist_ribución, suponemos que se tiene igual flujo a través de cada una de las ramas laterales, según lo cual la caída de presión friccional en el cabezal se puede estimar a partir de la velocidad de entrada (V_o) , la longitud (L), el factor friccional en el extremo abierto del cabezal (f_o) y haciendo uso de la ecuación (9) modificada para la longitud total (L)

$$\Delta p_{fo} = -\frac{Zp}{ge} f_o \frac{v_o^2}{D} L \qquad (26a)$$

Ya que se puede asumir que el factor de fricción es inversamente proporcional a la potencia 1/4 de la velocidad y además que la velocidad del fluído cambia en cada una de las ramas, se presenta a continuación una tabla (tabla 2) en la cual se da un conjunto de factores de corrección para la caída de presión determinada según la ecuación (26a),a las condiciones de entrada (o salida). Esta tabla se usó para obtener las pérdidas por fricción en un cabezal con un número específico de líneas secundarias igualmente espaciadas.

En consecuencia:

$$\Delta p_m = C_{\rm f} \Delta p_{\rm fo} \qquad (27)$$

Según se puede observar en la tabla, la variación en el factor de fricción o en el número de aberturas laterales presenta un efec to relativamente poco importante en las pérdidas de presión estima das inicialmente. La segunda columna de la Tabla 2 presenta fac tores de corrección para el caso de que se tenga un factor de fric ción constante a lo largo del cabezal.

Haciendo uso de un factor de fricción asintótico de 1/3 y de una combinación de las ecuaciones (2) y (27), se pueden derivar fórmulas de trabajo simplificadas que proporcionen una aproximación al cambio de presión (normalmente un incremento) que se tiene a lo largo de la longitud analizada de un cabezal de distribución de sección transversal uniforme. La ecuación que se obtiene para este caso es:

$$\sum \Delta p_d = \frac{e_{V_0}^2}{2g_e} \left(1.2 - \frac{4f_o L}{3D} \right) \qquad (28)$$

y para un cabezal de colección de sección transversal uniforme, la disminución de presión a lo largo de la longitud analizada se obtiene según:

$$\sum \Delta p_e = -\frac{e_{V_o^2}}{2q_e} \left(1.8 + \frac{4f_o L}{3D} \right) \qquad (29)$$

Factores de corrección para caída de presión friccional (C_{f}) (25)

Número de ra- mas en la pa <u>r</u> te de cabezal analizada.	Caso: c_{uando} el factor de fricción es - proporcional a $(N_{\text{RE}})^{-1/4}$	C _f Caso: cuando el factor de fricción es - cte. a lo la <u>r</u> go del cabezal		
2	0.297	0.250		
3	0.319	0.278		
4	0.330	0.292		
5	0.336	0.300		
6	0.341	0.306		
7	0.344	0.310		
8	0.347	0.313		
۵	0.364	0.333		

Mediante la raíz cuadrada de la caída de presión a través de las trayectorias de flujo paralelas, obtenemos una me dida aproximada del flujo en éstas. Por lo tanto, la ecua ción (26) se puede re-escribir como:

$$Mal = \left(\sqrt{\frac{\sum \Delta p_{max}}{\sum \Delta p_{min}}} - 1\right) \times 100$$
 (30)

Finalmente, se dan algunas recomendaciones para el primer estima do en un dimensionamiento de cabezales.

- (a) Area total de la abertura de la rama ≤ 1.0 Area transversal del cabezal
- (b) Longitud del cabezal (L) (70.0 Diámetro del cabezal (D)
- (c) Usar regimen a contra-corriente y una combinación de entrada y salida del cabezal en forma de "U" cuando:

$$\frac{2C_{\rm f}f_{\rm o}L}{k_{\rm d}D} < 1.0$$

EJEMPLOS NUMERICOS:

En los siguientes ejemplos se ilustra la aplicación de algunos de los métodos y principios precedentes:

A) Se van a distribuir 1000 lb/hr de vapor de agua a 5 psia en l6 partes a_proximadamente iguales haciendo uso para ello de un cabezal constituído de un conducto recto y de sección - transversal cuadrada; al cual están soldados, a ángulos rectos l6 tubos de 1.5 pulgadas de diámetro interno. El cabezal tiene una longitud de 8 ft y los intervalos entre ramas adyacentes son de 6 pulgadas. Se considerará en principio un cabezal de sección transversal interna de 6'' X 6'' con un radio hidráulico de 1.5 pulgadas y un diámetro equivalente de 4x1.5 = 6''. El vapor entra en el extremo abierto del cabezal.

SOLUCION;

Velocidad del flujo a la entrada:

Número de Reynolds: $N_{RE} = \frac{6 \times 81.7 \times 0.01325 \times 10^4}{12 \times 0.012 \times 6.72} = 67000$

Factor de fricción: f = 0.0054Usando la figura 32: $\alpha = 0.0123$ $F_{prom} = 0.130$ $Y_{prom} = 0.667$

Maldistribución : Mal 2 16.5% aproximadamente

Cambio de presión en el cabezal (en cabezas de velocidad) $ev^{2} = 3.6$

$$\frac{e_{V_0^2}}{2q_e}$$
Donde: $\frac{e_{V_0^2}}{2q_e} = 1.415 \ \overline{lb}/ft^2$

Así pues, la caída de presión entre el punto de entrada al cabezal de distribucióny la primera línea secundaria es: 1.415 x 3.6 = 5.1 \overrightarrow{lb}/ft^2 La prueba con otros diámetros arroja los resultados mostrados en la tabla siguiente (Estos resultados se usarán únicamente co mo una guía burda, ya que las relaciones de diámetros están fuera del rango de validez de 1:3 a 1:4 de la figura 32).

TABLA 3

Ejemplo numérido: Determinación de maldistribución y pérdidas de presión en varios cabezales de distribución.

				Pérdida de pre- sión en el cabe zal (en cabezas de velocidad).	Caída de presión entre el punto - de entrada al c <u>a</u> bezal y la prim <u>e</u> ra rama.
Sección transve <u>r</u> sal del cabezal.	Fprom	Y _{prom}	Mal. aprox	<u>Δρ</u> <u>ev²</u> 2ge	Δp <u>lb</u> ft ²
9"x9"	0.198	0.296	3%	26	7.25
8"x8"	0.183	0.375	4 %	14	6.25
7"x7"	0.167	0.491	6 %	7.2	5•47
6"x6"	0.130	0.667	16.5%	3.6	5.10

Al colocar una tubería de entrada de sección transversal si milar en la parte media del cabezal de 6"x6", se obtendría la si guiente distribución:

$$F_{o} = 0.153$$

$$Y_{o} = 0.334$$

Maldistribución = 3.5 %

Ya que existen conexiones de línea Secundaria cerca de la en trada central y en la vecindad de las cuales no se puede predecir con mucha precisión la distribución de presión, se puede asumir que tenemos un flujo de 3 % más alto que el mínimo; lo cual nos da como resultado que tengamos presente un flujo mínimo en la tercera línea secundaria a partir de la entrada.

B) Se tienen 475 000 lb/ hr de agua de enfriamiento a 60°F en un cabezal de 8" cédula 40. En los diagramas siguientes se mues tran las posibles alternativas para arreglos de distribución de flujo. Determinar la maldistribución presente en cada uno de ellos.

Cafda de presión a través de la primera rama y el cambiador de calor igual a 3 psi aproximadamente.

(a) Arreglo a contracorriente en forma de "U"

(b) Arreglo a contracorriente en forma de "Z"

(c) Arreglo a contracorriente en forma de rectángulo.

Arreglo (a).- Cabezal de entrada: Determinar las caídas de presión debidas al efecto de momentum y al de fricción.

Velocidad de entrada $V_{o} = 6.09 \text{ ft/seg}$

De la ecuación (28), el incremento de presión en el cabezal de en trada es:

$$\Sigma \Delta \beta = \frac{62.34 \times 6.09^2}{2 \times 32.174} (1.2 - \frac{4 \times 0.004 \times 105}{3 \times 0.66}) = 12.65 \text{ lb/ft}^2$$

De la ecuación (29), la disminución de presión en el cabezal de descarga (salida) de 8" con una temperatura del agua de 60°F:

$$\Sigma \Delta p_{e} = \frac{61.01 \times 6.21^{2}}{2 \times 32.174} (1.8 + \frac{4 \times 0.00375 \times 105}{3 \times 0.66}) = 95.5 \text{ lb/ft}^{2}$$

Debido a que la caída de presión a través de la primera rama y el cambiador de calor es aproximadamente de 3 psi = $432\overline{1b}/ft^2$ y a que dicha caída de presión en la última rama y cambiador es: $432 + 95.5 - 12.65 = 514.85 \overline{1b}/ft^2$, la maldistribución estimada será de: (ecuación 30)

$$Mal = \left(\sqrt{\frac{514.85}{432}} - 1\right) 100 = 9\%$$

Este 9 % de flujo extra causaría una caída de presión de: $(1.09^2 - 1) 432 = 51.4 \overline{1b}/ft^2$; la cual si se consumiera en un cambiador de calor cancelaría una gran parte de la diferencia de presión de: 95.5 - 12.65 = 82.85 $\overline{1b}/ft^2$ que causa la maldistribución. El problema anterior deberá resolverse iterativamente. Usando los mismos datos para el arreglo (b), la caída de presión a través de la primera rama del cabezal de salida es/ 432.0 + 95.5 = 527.5 $\overline{1b}/ft^2$ y la caída de presión a través del ca bezal de entrada y la última rama es: 432+12.65= 419.4 $\overline{1b}/ft^2$. Lo cual nos proporciona una maldistribución del 12 %. Sin hacer caso del efecto de balanceo que ofrece el cambiador en el circuito. Arreglo(c).- Para este arreglo se obtuvieron los siguientes valo res: $\Sigma \Delta p_b = 6.53 \overline{1b}/ft^2$ $\Sigma \Delta p_c = -20.4 \overline{1b}/ft^2$ Mal= 1.5 %

9. MODELACION DEL PROBLEMA

" SISTEMAS DE CABEZALES DE DISTRIBUCION Y/O COLECCION MULTI-PLE EN SUPERCALENTADORES "

Según se estableció, un sistema de cabezales de distribución y colección múltiple consiste de un conducto principal al cual están conectadas varias trayectorias paralelas de flujo; las cua les desembocan a un tubo de descarga común. Este tipo de cabezales se usa comunmente en equippos de transferencia de calor.

Los dos principales tipos de sistemas de cabezales a considerar son los siguientes:

- Direcciones de entrada y salida del flujo en el mismo lado del arreglo paralelo (Figura A)
- Direcciones de entrada y salida del flujo en lados opuestos del arreglo paralelo (Figura B)

El presente análisis determina la solución al problema de di seño y simulación, para el caso de sistemas de cabezales con direcciones de entrada y salida del flujo en el mismo lado del arre glo paralelo, así mismo como para las alternativas de flux de ca lor constante y zonificación de fluxes en la celda del horno en que se encuentra colocado el supercalentador.

La solución se enfoca hacia la determinación de los perfiles de: distribución de flujo, caída de presión, temperatura de pared, temperatura del fluído de proceso, coeficiente interno in dividual y coeficiente global de transferencia de calor; todo lo anterior por tubo y por zona de flux de calor constante en el so brecalentador objeto del presente estudio según el siguiente plan teamiento general:

1.- Determinación de los parámetros de diseño del equipo:

Diámetro del cabezal de distribución. Diámetro del cabezal de colección. Número de trayectorias paralelas de flujo. (tubos) Longitud del tubo. Diámetro del tubo. Espaciamiento entre tubos. Según las condiciones de operación presentes: Gasto de fluído a manejar. Temperatura de entrada del fluído. Presión de entrada del fluído. Propiedades físicas del fluído. Flux o fluxes de calor en la celda. (Determinación según zonificación basada en las propiedades geométricas y de operación del horno así como en las características de combustión presentes).

Haciendo uso de los criterios de dimensionamiento presentados en el desarrollo del tema y teniendo como limitantes factores tales como:

> Caída de presión permisible en el equi**j**o. Temperatura de salida a la cual se requiere el fluído. Limitantes termodinámicas y físicas propias del fluído de proceso a manejar.

2.- Simulación del equipo haciendo uso del dimensionamiento, para la determinación de los perfiles antes mencionados en donde se podrán dtectar situaciones importantes para el diseño mecánico y térmico del supercalentador tales como:

Temperaturas de pared muy altas; de lo cual dependerá la presencia de puntos calientes y la elección del material a usar en la construcción.

Tubos con muy poco flujo; los cuales estárán sometidos a condiciones de calentamiento más severas.

Todo lo anterior se encaminará a tener la opción abierta <u>pa</u> ra determinar el mejor diseño o el más económico, dependiendo de lo que se requiera y satisfaciendo el servicio para el cual está destinado el equipo.

A continuación se muestran algunos conceptos fundamentales para el objetivo que se persigue:

DISTRIBUCION DE FLUJO:

Según se puede observar de las figuras mos tradas, tenemos un problema de trayectorias paralelas de flujo. La distribución de flujo se encuentra a través de una convergen cia de prueba y error, en la cual se supone el flujo en cada una de las trayectorias y se iguala la caída de presión en cada una de las trayectorias posibles.

El criterio a seguir para la suposición del flujo en cada una de las trayectorias, estará basado en una analogía con los coeficientes de descarga en placas de orificio, según se mencionó en el presente texto. Para la corrección de esta primera suposición, se hace uso de una ajuste polimomial a los puntos <u>ge</u> nerados. Esta curva al final nos arrojará el perfil real de di<u>s</u> tribución de flujo en las trayectorias paralelas. CAIDA DE PRESION:

El cálculo de caída de presión se lleva a cabo en forma paralela al de determinación de distribución de flujo; ya que éste es el criterio que se sigue para la convergencia. Para la determinación de caída de presión se dispone de tres diferentes métodos, cada uno de los cuales desgloza el cálculo en caídas de presión friccionales y de momentum.

Habiendo satisfecho los anteriores puntos, se procede a d<u>e</u> terminar los perfiles restantes ya mencionados.

39

10. RESULTADOS

A continuación se muestran los resultados de la solución a dos problemas de sistema de cabezales de distribución y colección múltiple.

El tratamiento para cada uno de estos casos es diferente, ya que se tienen variaciones en cuanto a las condiciones de flux de calor externo presentes en la celda. En el primer problema se tiene una tendencia a la idealidad ya que se considera la presencia de una única zona de flux de calor constante, situación poco factible en la realidad; en tanto que en el segundo, el sistema se ve sometido a la acción de diferentes zonas de flux de calor con<u>s</u> tante obtenidas mediante la simulación previa de una zonificación.

Los datos que se obtienen son los parámetros de diseño y los resultados de la simulación del sistema. Estos datos son los bá sicos para la especificación térmica y mecánica del equipo en cues tión.

La comparación y evaluación de los resultados obtenidos con el presente método para el problema de cabezales de distribución múltiple, se hizo contra una solución del mismo que se presentó en PFR ENGINEERING SYSTEMS, INC. Fourth Annual Technical Seminary Febrero 6, 1976; Pasadena, California.

Los principales factores de comparación fueron la maldistribución de flujo y la caída de presión; obteniéndose con el primero de ellos una concordancia de -4.1 a + 5.6 % y con el segundo + 7.2 %, respecto a los resultados presentados en el Seminario mencionado. Las anteriores variaciones se consideraron aceptables para los fines de diseño y simulación que se persiguen. INDICE DE TIPO DE FLUX (IFL)1NUMERO DE ZONAS POR TUBO (N)1INDICE DE TIPO DE CABEZAL (ICA)1NUMERO DE DATOS DE FLUJO PARA EL AJUSTE1DE LA CURVA DE DISTRIBUCION (LL)6INDICE DE METODO COEF.TRANSF.CALGR (IMH)1INDICE DE METODO CAIDA DE PRESION (IM)1INDICE DE GE.ERACION DE GRAFICAS (KAN)1

NUMERU DE TUBOS (NTT)	96	
LUNGITUD LEL TUBU (LT)	25.00	FT
DIAM. INT. DEL TUBO (DMI)	•3698	FT
DIA.INT. DEL CABEZAL (UMA)	1.3333	FT
GASTO TOTAL DE FLUJO (4VAT)	53092.00	LB/HR
TEMPERATURA DEL FLUIDO (TVA1)	1260.00	GF
PRESION DEL FLUIDO (PME)	34.40	LB/IN2

ZUNIFICACION DE FLUXES

T∟MP. (GF)	L. ZOHA (FT)	FLUX (BTU/HRFT2
1895.00	.833	12000.00
1895.00	25.000	12000.00
1895.00	.853	12000.00

JASTO PROMEDIC DE FLUJU (P) 559.29 LB/HR

. TUBO 1.0.

J	ZONA	DE	FIUX	CTF.	NO.
-	_ U	<u> </u>			

- AFWT(I) FLUJO EN EL TUBO I (LB/HR)
- PU(I) CAIDA DE PRESION TUBO I (LB/IN2)
- ATW(J,I) TEMP. PAREN JEL TUBO I ZONA J (GF)
- ATVA(J,I) TEMP. FLUIDO DEL TUBO I ZONA J (GF)
- ANIO(U,I) COEF. INDIV. TRANSF. CALOR TUBO I ZONA J (BTU/HRFT2GF)

AUG(J,I) COEF. GLOB. TRANSF. CALOR TUBO I ZONA J (BTU/HRFT2GF)

1	715.89						
1	715.89	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
		2.01000	1	10.885	25.673	1529.16	1260.98
			2	5.506	7.966	1707.19	1574.42
			3	16.682	30.092	1751.17	1575.14
2	710.34	2.57+76	1	10.846	25.404	1531.59	1261.96
			. 2	5.586	7.919	1708.46	1576.17
			3	16.049	29.801	1753.66	1576.90
3	704.86	2.53481	1	10.307	25.136	1534.04	1262.95
			2	5.566	7.874	1709.71	1577.92
			3	16.595	29.501	1755.66	1578.66
4	699.45	2.49503	1	10.767	24.870	1536.50	1263.96
			2	5.540	7.829	1710.97	1579.67
			j	16.540	29.203	1757.65	1590.42
5	694.12	2.45721	1	10.726	24.605	1538.97	1264.96
			2	5.526	7.784	1712.21	1581.41
			- 3	16.484	28.906	1759.63	1582.17
o	688.80	2.41955	1	10.685	24.341	1541.46	1265.98
			5	5,506	7.740	1713.45	1583.16
			3	16.427	28.610	1761.61	1583.93
7	683.07	2.33203	1	10.644	24.079	1543.96	1267.01
			2	5.487	7.697	1714.68	1584.90
			3	16.368	28.316	1763.57	1585.68
8	078.56	2.34044	1	10.602	23.818	1546.48	1268.04
			2	5.408	7.654	1715.90	1586.63
			3	16.309	28.022	1765.52	1587.43
9	673.51	2.31097	1	10.560	23.558	1549.01	1269.08
			2	5.449	7.612	1717.12	1588.37
			3	10.247	27.729	1767.46	1589.17
10	668.55	2.27022	1	10.517	23.299	1551.55	1270.14
			2	5.430	7.570	1718.32	1590.10
			3	16.185	27.437	1769.39	1590.91
11	663.05	2.24217	1	10.474	23.042	1554.11	1271.20
			2	5.411	7.529	1719.52	1591.32
			3	16.121	27.147	1771.31	1592.65
12	658.03	2.20881	1	10.431	22.785	1556.68	1272.27
			2.	5.393	7.489	1720.72	1593.55
			3	16.055	26.857	1773.21	1594.39
13	654.08	2.17614	1	10.386	22.530	1559.27	1273.34
			2	- 5.375	7.449	1721.90	1595.27
			3	15.988	26.568	1775.11	1596.12
4	649.40	2.14414	1	10.342	22.275	1561.87	1274.43
			2	5.357	7.410	1723.08	1596.98

			3	15,920	26.280	1776.99	1597.85
15	644.80	2.11202	1	10.296	22.022	1564.49	1275.53
-			2	5.340	7.372	1724.25	1598.69
			3	15.850	25.993	1778.86	1599.57
10	640.27	2.08215	1	10.250	21.770	1567.12	1276.63
			2	5.322	7.334	1725.41	1600.40
			3	15.779	25.706	1780.72	1601.29
17	635.81	2.05213	1	10.204	21.519	1569.77	1277.74
			2	5.305	7.296	1726.56	1502.10
			3	15.706	25.421	1782.57	1603.00
10	631.43	2.02275	1	10.157	21.269	1572.44	1278.97
-			2	5.288	7.260	1727.71	1503.80
			3	15.631	25.136	1784.40	1604.71
19	627.11	1.99401	1	10.109	21.020	1575.12	1280.00
	0		2	5.272	7.224	1728.84	1605.49
			3	15.555	24.852	1786.22	1606.42
20	.22.00	1.96590	1	10.061	20.771	1577.81	1281.14
	022-00		2	5.256	7.138	1729.97	1607.17
			3	15.478	24.569	1788.03	1608.12
21	-18.71	1.93840	1	10.012	20.524	1580.53	1282.30
	010111	1	2	5.240	7.153	1731.09	1608.86
			3	15 399	24.286	1789 83	1609.82
22	-14-62	1.01151	1	9.963	20.277	1583 26	1283.46
~~	61102	1.71131	2	5 224	7.110	1732 20	1610.53
			3	15 318	24.004	1791 61	1511.50
23	610.c0	1.88522	1	9,912	20.031	1586.00	1284.63
20	210.00	1.00022	2	5.209	7.036	1733.30	1512.20
			3	15 235	23.723	1793.39	1613.19
24	-06-65	1.85953	1	9.662	19.786	1588.77	1285.81
67	800.03	1.00000	2	5 193	7.053	1734 40	1613.86
			3	15 151	23.442	1795 14	1614.87
25	02.78	1.83443	1	9.810	19.542	1591.55	1287.00
25	002.10	1.00.40	2	5 179	7.021	1735 48	1515.52
			3	15,065	23.162	1796.89	1516.54
26	698.98	1.50991	1	9.758	19.299	1594.34	1288.21
	3,00,00	1.00.01	2	5.164	6.989	1736.56	1017.17
			3	14.977	22.882	1798.62	1618.21
27	595.25	1.78596	1	9.705	19.056	1597.16	1289.42
- '	555.25	1.100.00	2	5 150	6.958	1737.63	1618.81
			3	14.888	22.603	1800.34	1619.87
28	591.50	1.79979	1	9.651	18.814	1599.99	1290.64
20	552.00	1	2	5.136	6.928	1738.68	1620.45
			3	14.796	22.324	1802.04	1621.52
29	588.02	1.77711	1	9.596	18.572	1602.84	1291.88
	JUSTOL	1	2	5.122	6.898	1739.73	1622.07
			3	14.703	22.045	1803.73	1623.17
30	584.51	1.75498	1	9.541	18.332	1605.71	1293.12
	50.001	2010-100	2	5.109	6.869	1740.78	1623.70
			3	14.608	21.767	1805.41	1624.81
31	581.08	1.73339	1	9.485	18.091	1608.60	1294.38
	301.00	1010003	2	5.096	6.841	1741.81	1625.31
			3	14.511	21.490	1807.07	1626.44
32	577.72	1.71234	1	9.428	17.852	1611.51	1295.64
	511012.	1.11234	2	5 084	6.814	1742 83	1626.92
			3	14.412	21.212	1808.72	1628.07
33	574 13	1.69182		9.370	17.612	1614 44	1296.92
55	511.43	1.07102	2	5.071	6.787	1743.85	1628.52
			3	14.311	20.935	1810.36	1629.69
34	571.21	1.67183	1	9.311	17.374	1617.39	1298.21
		1-0,100	2	5.059	6.750	1744.85	1630.11
			3	14.208	20.658	1811.98	1631.30
			<u> </u>	A T B NY M M			

35	568.07	1.65235	1	9.251	17.135	1620.36	1299.51
			2	5.048	6.735	1745.85	1631.69
1.00			3	14.103	20.381	1813.59	1532.90
36	565.00	1.63339	1	9.191	16.897	1623.35	1300.82
		•	2	5.037	6.710	1746.84	1637.26
			3	13.996	20.105	1815.19	1634.50
37	562.01	1.61494	1	9.129	16.660	1626.36	1 302.15
			2	5.026	6.686	1747.81	1634 83
			3	13.887	19.828	1816.77	1636 00
38	559.08	1.59699	1	9.066	16.422	1629 30	1403 40
			2	5.015	6.662	1748 78	1636 30
			3	13.776	19.552	1918 30	1637 67
39	556.24	1.57954	1	9.003	16.185	1672 44	1.50/ 97
			5	5 005	6 630	1002.44	1004.00
			3	13 662	10 075	1749.74	1537.94
40	553.46	1.56259	1	3.938	19.275	1019.09	1039.24
	000010	1.000000	2	0.005	15.949	1033.52	1306.19
			ž	4. 995	6.617	1750.70	1539.48
41	50.76	1.54617	,	13.347	18.999	1821.43	1540.81
*1	550.70	1.34013	1	0.072	15.712	1638.62	1307.57
			2	4.985	6.596	1751.64	1641.01
0.5	. 1. 0		3	13.429	18.722	1822.96	1642.37
42	540.13	1.53016	1	8.805	15.476	1641.74	1308.95
			2	4.977	6.575	1752.57	1042.53
			3	13.309	18.446	1824.48	1643.92
45	545.57	1.51407	1	8.737	15.239	1644.89	1510.35
			2	4.968	6.555	1753.50	1544.05
			3	13.187	18.169	1825.98	1645.46
44	543.09	1.49966	1	3.667	15.003	1648.06	1311.75
			2	4.960	6.536	1754.42	1645.55
			3	13.062	17.892	1827.47	1646.99
45	540.00	1.40513	1	8.597	14.767	1651.26	1313.19
			2	4,952	6.517	1755.32	1647.05
			3	12.935	17.614	1828.94	1548.52
46	538.34	1.47107	1	8.525	14.531	1654.48	1314.63
			2	4.945	6.499	1756.22	1648.54
			3	12.805	17.337	1830.40	1650.04
47	236.07	1.457+7	1	8.451	14.294	1657.73	1316.08
			2	+.938	6.432	1757.11	1650.01
			3	12.073	17.059	1831.85	1651.55
43	533.08	1.44435	1	3.377	14.058	1661.00	1317.55
			2	4.931	6.465	1757.99	1651 49
			3	12.538	16.781	1833.20	1653 05
49	531.77	1.43108	1	3.301	13.821	1664 31	1510 03
			2	4.925	6.450	1753 87	1652 9/
			3	12.401	16.502	1834 71	1650 50
50	-29.72	1.419+8	1	8.223	13.534	1667 60	1400 57
	-		2	4.919	6.434	1750 77	1520.55
			3	12.261	16.222	1976 17	1004.09
51	527.75	1.40774	1	8 144	13 347	1630.13	1050.05
	ua u	11.0.1.1	2	4 914	13.347	10/1.00	1522.04
			7	12 110	15 047	1760.59	1055.83
52	525.55	1. 39.45	1	2 067	13.945	1837.55	1057.51
	520.05	1.0.040	1	0.005	13.110	1674.39	1323.57
			2	4.909	6.407	1761.44	1657.26
53	- 0h - 07	1 746.4	3	11.974	15.662	1838.91	1658.98
55	524.03	1.33301	r	7.980	12.872	1677.81	1325.11
			2	4.905	6.394	1762.28	1658.69
54	500 an	1 775 37	5	11.826	15.381	1840.29	1660.44
54	522.28	1.3/523	1	1.896	12.634	1681.26	1326.67
			2	4.901	6.382	1763.11	1560.10
EE .			3	11.675	15.099	1841.66	1661.90
55	520.00	1.30529	1	7.810	12.395	1684.74	1328.25

54	518.99	1 355-0	2 3	4.897 11.521	6.370 14.816	1763.94 1843.01	1561.50
56	518.99	1 355-0	3	11.521	14.816	1843.01	1663 35
6.6	518.99	1 355.0					
50		1.00000	1	7.722	12.156	1688.26	1329.94
			2	4.894	6.360	1764.75	1662.90
			3	11.364	14.532	1844 35	1664 70
57	517.46	1.34676	1	7.633	11.916	1601 81	1371 05
		1.0.010	2	4 801	6 750	1091.01	1331.45
			7	11 304	.0.330	1765.56	1064.29
54				11.204	14.248	1845.68	1666.23
50	510.00	1.33817	1	7.541	11.675	1695.40	1333.0B
			2	4.889	6.341	1766.37	1665.66
			3	11.042	13.962	1847.00	1567.66
59	514.62	1.33002	1	7.447	11.434	1699.02	1334.72
			2	4.588	6.333	1767.16	1667.03
			3	10.876	13.676	1848.31	1669 08
60	513.30	1.32231	1	7.351	11.192	1702.68	1336 30
			2	4.886	6.325	1767 05	1660.70
			3	10 706	17 790	1707.95	1950.34
61	\$12.07	1 31515	,	7 250	13.308	1049.01	1070.50
	512.07	1.01000	1	1.252	10.949	1700.38	1:38.07
			2	4.000	6.318	1765.73	1669.75
2.0			3	10.534	13.099	1850.91	1671.92
02	210.90	1.30823	1	7.152	10.705	1710.12	1339.77
			2	4.885	6.312	1769.51	1571.09
			3	10.358	12.808	1852.19	1673.33
63	509.01	1.00105	1	7.049	10.460	1713.90	1 541 . 40
			2	4.886	6.307	1770.28	1672.43
			3	10.173	12.516	1853.46	1674 74
64	208.79	1.29592	1	5.943	10.214	1717 73	1 44 3 23
			2	4.887	6.303	1771 00	1677 7/
			x	9 905	10.003	1051 70	1073.75
65	507.44	1	ĩ	5 P30	12.225	1854.72	10/0.14
	301004	1.2.040	-	0.004	9.900	1/21.00	1345.00
			2	4.008	6.299	1/71.80	1675.08
20			5	9.008	11.928	1855.98	1677.54
60	500.97	1.20038	1	0.123	9.717	1725.51	1346.78
			2	4.390	6.296	1772.55	1576.40
			3	9.617	11.631	1857.23	1678.94
07	506.17	1.28078	1	6.609	9.467	1729.47	1348.59
			2	4.892	6.294	1773.30	1677.71
			3	9.423	11.333	1858.47	1680.34
68	505.44	1.27003	1	6.492	9.216	1733 40	1350 110
			2	4 895	6.007	1770 00	1630.92
			3	9 204	11 033	1950 70	1079.01
69	504.79	1.07.03	1	5.224	11.002	1009.70	1081.74
	201013	1.2.2.30	2	0.071	0.902	1/3/.54	1352.28
			2	4.099	0.293	1//4./8	1630.31
70	1.011	1 0-0 7		9.021	10.750	1860.93	1683.14
10	504.21	1.50301	1	0.247	8.708	1741.66	1354.16
			2	4.903	6.293	1775.52	1681.61
	-		3	8.814	10.425	1862.15	1684.54
11	503.71	1.20087	-1	6.120	8.451	1745.83	1356.07
			2	4.907	6.294	1776.25	1682.90
			3	8,602	10.118	1863.37	1685.95
72	503.27	1.20453	1	5.989	8.192	1750.05	1.358.00
			2	4.912	6.296	1770.97	1684 18
			3	8.386	9.809	1864 58	1697 36
75	502.91	1.26204	1	5.853	7.931	1754 34	1350 06
			2	4.918	6.200	1777 70	1605
			3	8 165	0 407	10/5 70	1085 47
74	602.63	1 20121	1	5 710	9.49/	1865.78	1588.79
	502.03	1.20121	1	5.714	1.008	1758.69	1361.95
			2	4.924	6.303	1778.42	1586.75
			3	7.938	9.182	1866.98	1590.22
15	502.41	1.20025	1	5.570	7.402	1763.11	1363.97
			2	4.931	6.307	1779.14	1688 03

			3	7.707	8.865	1868.18	1691.07
70	502.27	1.25976	1	5.422	7.134	1767.60	1366.03
			2	4.939	6.313	1779.86	1689.31
			3	7.470	8.544	1869.38	1693.13
77	502.21	1.25974	1	5.269	6.863	1772.15	1568.11
			2	4.947	6.319	1780.58	1690.59
			3	7 227	8.219	1970 57	1504 51
78	502.21	1.20020	1	5.110	6.589	1776.79	1370.24
		1.5-050	2	4.955	6.326	1781 30	1691 97
			3	5.979	7.891	1871 77	1696 12
79	502.30	1.26115	1	4.946	6.312	1781 51	1372.40
	30-100		2	4 965	6.334	1762 02	1603 15
			3	. 724	7.560	1872 94	1607 66
6.1	500 HE	1 26250		0 776	6.071	1704 74	1091.00
00	502.45	1.50524	2	4.175	6 7/17	1700.31	1374.00
			2	4.373	7 224	102.15	1594.44
0.1	F 10 - 0	1 0-1127	3	0.402	1.224	10/4.15	1999.23
01	502.08	1.20400	1	4.000	5.745	1791.21	1376.84
			2	4.985	6.353	1783.47	1695.74
			3	6.194	6.883	1975.35	1700.85
82	502.98	1.20097	1	4.417	5.458	1796.20	1379.13
			2	4.997	6.364	1784.20	1697.04
			3	5.918	6.538	1876.54	1702.52
83	503.35	1.20993	1	4.226	5.165	1801.30	1381.46
			2	5.009	6.375	1784.94	1698.35
			3	5.634	6.183	1877.75	1704.26
84	503.00	1.27341	1	4.028	4.867	1806.51	1383.85
			2	5.022	6.383	1785.68	1699.67
			3	5.341	5.831	1878.95	1706.08
85	504.32	1.27744	1	3.821	4.564	1811.84	1386.30
			2	5.035	5.402	1786.43	1701.01
			3	5.039	5.469	1880.17	1708.01
80	504.91	1.23201	1	3.604	4.254	1817.30	1388.80
			2	5.049	6.416	1787.19	1702.37
			3	4.728	5.099	1881.39	1710.08
87	505.58	1.28720	1	3.469	4.063	1818.96	1391.45
			2	5.065	6.432	1787.99	1703.79
			3	4.406	4.722	1882.63	1712.38
88	506.32	1.29302	1	3.226	3.731	1824.99	1394.17
	2002	1.1.1.1.1.1	2	5.081	6.449	1788.81	1705.24
			3.	4.071	4.336	1883.89	1714.94
89	507.13	1.09945	1	2.969	3.389	1831.22	1.396.99
	501015	1.2	2	5.008	6 467	1700 64	1706 72
			2	3.090	3 0/11	1905 14	1717 96
90	E 08 0	1 70650		3.124	3.941	1003.10	1300.00
90	500.02	1.30332	2	2.097	5.057	1700 50	1399.90
			2	7 7 0	7 570	1790.00	1700.24
~ 1			3	3.302	3.534	1480.40	1/21.52
91	208.38	1.31425	1	2.408	2.674	1844.40	1402.94
			2	5.130	6.506	1791.39	1709.92
			3	2.982	3.113	1987.80	1/25.66
92	510.01	1.32274	1	2.093	2.295	1851.42	1406.13
			2	5.156	6.528	1792.32	1711.47
			3	2.583	2.677	1889.20	1731.57
93	511.12	1.33198	1	1.763	1.899	1858.84	1409.51
			2	5.178	6.551	1793.30	1713.20
			3	2.160	2.222	1890.68	1740.73
94	512.30	1.34204	1	1.395	1.479	1866.75	1413.14
			2	5.202	6.575	1794.36	1715.07
			3	1.708	1.742	1892.34	1758.77
95	513.56	1.35293	1	.983	1.023	1875.39	1417.16
			2	5.228	6.602	1795.54	1717.15
			3	1.231	1.240	1894.47	1923.42

INDICE DE TIPO DE FLUX (I=L)	2
NUMERO DE ZONAS POR TUBO (N)	3
INDICE DE TIPO DE CABEZAL (ICA)	1
NUMERO DE DATOS DE FLUJO PARA EL AJUSTE De la curva de distribúción (LL)	6
INDICE DE METODO COEF.TRANSF.CALOR (IMH)	1
INDICE DE METODO CAIDA DE PRESION (1M)	1
INDICE DE GENERACION DE GRAFICAS (KAN)	1

NUMERO DE TUBOS (NTT)	96	
LONGITUD DEL TUBO (LT)	25.00	FT
DIAM. INT. DEL TUBO (DMI)	.3698	FT
DIA.INT. UEL CABEZAL (UMA)	1.3333	FT .
GASTO TOTAL DE FLUJO (WVAT)	53692.00	LB/HR
TEMPERATURA DEL FLUIDO (TVAI)	1260.00	GF
PRESION DEL FLUIDO (PME)	34.40	LB/IN2

ZONIFICACION DE FLUXES

TEMP. (GF)	1. 2044 (FT)	FLUX (BTU/HRFT2)
135+.00	. دئی	5110.00
1428.00	d.333	6170.00
1602.00	0.333	9397.00
1874.00	ى 3ئى.	15560.00
2213.00	.833	24000.00

GASTO PROMEDIO DE FLUUY (MP) 559.29 LB/HR

I		TUBO NO.									
J		LONA DE FLUX	CTE	NC.							
AFWT	(1)	FLUJO EN EL TUBO I (LB/HR)									
PD(I)	CAIDA DE PRESION TUBO I (LB/IN2)									
ATW (J,I)	TEMP. PARED	DEL 1	TUBO I ZONA	J (GF)						
ATVA	(J,I)	TEMP. FLUIDO	DEL	TUBO I ZON	AJ (GF)						
AHIO	(J,I)	COEF. INDIV.	TRA.	SF. CALOR	TUBO I ZONA	J (BTU/HRF	T2GF)				
AUG (J.I)	COEF. GLOB.	TRANS	SF. CALOR T	UBO I ZOMA J	(BTU/HRFT	2GF)				
ĭ	AFWT(I)) PD(I)	J	AUG(J,I)	AH10(J,1)	ATW(J,I)	ATVA(J,I)				
	715 40	15730	1	17 894	26.674	1322.94	1260.24				
1	/15.59	•43728	-	6 359	9.031	1306 40	1294.06				
			2	5 607	8.478	1537.63	1354.74				
			4	0.529	8.348	1760.87	1453.03				
			5	14.079	27.426	1859.66	1454.56				
2	710.34	.44505	1	17.781	26.391	1323.29	1260.48				
-	110-01		2	6.326	8.379	1396.65	1294.36				
			3	6.577	8.426	1538.08	1355.17				
			'+	6.500	8.298	1761.58	1453.69				
			5	14.620	27.156	1863.11	1455.24				
3	704.86.	.43402	1	17.667	26.110	1323.64	1260.72				
			2	6.794	8.328	1396.89	1294.65				
			3	6.547	8.375	1538.53	1355.60				
			4	0.470	8.248	1762.27	1454.34				
			5	14.542	26.866	1865.61	1455.41				
4	099.45	•42359	1	17.553	25.830	1323.99	1260.96				
			2	0.762	8.278	1597.12	1356 02				
			3	6.017	8.323	1762 96	1454 99				
			4	14 163	26 579	1868 11	1456.59				
5	-04 2	.11275	1	17.439	25.552	1324.34	1261.20				
5	094.12	•41215	2	5.731	8.228	1397.36	1295.23				
			3	6.488	8.275	1539.41	1356.45				
			4	6.412	8.150	1763.64	1455.64				
			5	14.383	26.291	1870.62	1457.26				
0	-88.86	.40211	1	17.323	25.275	1324.69	1261.44				
			2	6.700	8.179	1397.59	1295.53				
			.3	6.459	8.226	1539.84	1356.37				
		the second second	4	6.383	. 8.101	1764.32	1456.29				
			5	14.303	26.005	1873.13	1457.93				
7	683.67	•39106	1	17.207	24.999	1325.04	1261.59				
			2	6.569	8.151	1597.81	1293.02				
			3	6.430	8.177	1340.27	1/156 07				
			4	0.354	35 731	1875 65	1458 50				
	70 54	19100	1	17 091	20.725	1325.30	1261.93				
0	010.56	.30140	2	6 630	8.083	1398.04	1296.12				
			3	6 402	8.129	1540.69	1357.72				
			4	6.326	8.007	1765.65	1457.57				
			5	14,141	25.438	1878.17	1459.26				
9	673.51	. 37132	1	16.974	24.451	1325.73	1262.18				

			2	6.608	8.035	1398.26	1296.41
			3	6.374	8.081	1541.11	1358.14
			4	6.298	7.960	1766.30	1458.21
			5	14.059	25.156	1880.70	1459.92
10	668.55	.30142	1	16.856	24.179	1326.08	1262.43
			2	6.579	7.989	1398.49	1296.70
			3	6.346	8.035	1541.53	1358.56
			4	6.271	7.915	1766.95	1458.84
			5	13.976	24.875	1883.23	1460.57
11	663.05	.35170	1	16.737	23.909	1326 42	1262 67
	000000		2	6 549	7 043	1308 71	1202.00
			2	6 319	7.020	1590.71	1297.00
				6 243	7.900	1341.94	1050.95
			4	13 803	7.870	1/0/.09	1459.47
12	-58.93	- 74216	1	15.618	24.090	1306 77	1461.43
14	200.00	• 3+210	2	6 520	23.039	1320.77	1202.92
			3	6 201	7.043	1590.95	1350 30
				6 316	7.945	1342.35	1009.09
			5	17 900	7.825	1700.22	1460.09
1 2	ELL CO	17.70	5	13.008	24.318	1888.51	1461.48
15	034.08	. 33219	1	10.495	23.371	1327.11	1263.17
			2	0.491	7.853	1399.14	1297.58
			3	0.264	7.898	1542.75	1359.91
			4	6.189	7.781	1768.85	1460.72
		2.11	S	13.724	24.041	1890.86	1462.53
14	549.40	.32338	1	15.378	23.103	1327.45	1263.43
			2	6.463	7.809	1399.36	1297.88
			3	0.237	7.854	1543.15	1360.22
			4.	0.163	7.738	1769.47	1461.33
			5	13.038	23.765	1893.41	1463.17
15	644.30	•31455	1	10.257	22.837	1327.80	1263.68
			2	6.434	7.765	1399.57	1298.17
			3	0.211	7.810	1543.55	1360.63
			4	0.13/	7.695	1770.08	1461.95
			5	13.552	23.490	1895.97	1463.31
10	640.27	.30568	1	10.135	22.572	1328.14	1263.93
			2	6.407	7.722	1399.78	1298.46
			3	6.185	7.767	1543.94	1361.04
			4	6.111	7.653	1770.68	1462.56
4	5 S.		5	13.466	23.216	1898.54	1464.45
17	635.01	•29697	1	16.012	22.308	1328.49	1264.19
			2	6.379	7.680	1399.99	1298.76
			3	6.159	7.725	1544.33	1561.45
			4	6.086	7.611	1771.27	1463.16
			5	13.378	22.943	1901.11	1465.08
18	631.43	.23842	1	15.889	22.045	1328.82	1264.44
			2	6.352	7.638	1400.19	1299.05
			3	6.134	7.683	1544.71	1361.36
			4	ó.060	7.571	1771.86	1463.76
			5	13.290	22.672	1903.69	1465.71
19	627.11	.28003	1	15.765	21.783	1329.15	1264.70
			2	6.326	7.598	1400.39	1299.34
			3	6.108	7.642	1545.08	1362.26
			4	6.036	7.530	1772.44	1464.36
-			5	13.201	22.401	1906.28	1466.34
20	622.08	.27179	1	15.640	21.522	1329.49	1264.96
			2	6.299	7.557	1400.60	1299.64
			3	6.084	7.601	1545.46	1362.66
			4	6.011	7.491	1773.01	1464.95
			5	13.111	22.131	1908.87	1466.96
21	618.71	.26371	1	15.514	21.262	1329.83	1265.22
			2	6.273	7.518	1400.80	1299.93
			and the second se				

			3	6.059	7.561	1545.82	1363.06
			4	5.987	7.452	1773.58	1465.54
			- 5	13.021	21.862	1911.47	1467.58
22	614.62	25577	1	15.388	21.003	1330.17	1265.48
			2	6.248	7.479	1400.99	1300.22
			3	6.035	7.522	1546.19	1363.46
			4	5.963	7.413	1774.13	1466.13
			5	12.930	21.595	1914.08	1468.20
23	610.60	.24799	1	15.261	20.745	1330.50	1265.74
20	010000		2	6.223	7.440	1401.19	1300.52
			3	6.012	7.484	1546.54	1363.86
			4	5.940	7.376	1774.68	1466.70
			5	12.838	21.327	1916.69	1468.91
24	06 55	240.54	1	15,133	20.487	1330.83	1266.01
24	000.00	.24034	2	6 199	7.403	1401.38	1300.81
			3	5 988	7.446	1546.90	1364.25
				5 016	7 330	1775 20	1467 28
			5	10 745	21 061	1019 32	1469 42
		. 7.0	5	12.745	21.001	1919.52	1266 07
25	602.78	.23284	1	15.004	20.231	1551.17	1200.21
			2	0.174	7.366	1401.57	1501.10
			3	5.965	7.409	1547.25	1364.64
			4	5,894	7.302	1775.75	1467.85
			5	12.651	20.796	1921.95	1470.02
26	598.98	.22549	1	14.874	19.975	1331.50	1266.53
			2	ó.150	7.329	1401.76	1301.39
			3	5.943	7.372	1547.59	1365.03
			4	5.871	7.267	1776.28	1468.41
			5	12.557	20.531	1924.59	1470.62
27	595.25	.21827	1	14.743	19.720	1331.83	1266.80
-			2	6.126	7.294	1401.95	1301.68
			3	5.921	7.336	1547.93	1365.42
			4	5.849	7.232	1776.79	1468.97
			5	12.461	20.267	1927.24	1471.21
28	= 91.60	.21118	1	14.612	19.465	1332.16	1267.07
	572000		2	6.103	7.259	1402.13	1301.98
			3	5.899	7.301	1548.27	1365.90
			4	5.827	7.197	1777.30	1469.52
			5	12.365	20.004	1929.90	1471.81
20	628 00	. 00404	1	14.479	19.212	1332.49	1267.34
29	200.02	•20724	9	6 081	7.020	1402 31	1302.27
			1	5 877	7 267	15/18 50	1366.18
			5	5.806	7 163	1777 80	1470 07
			5	10.000	10 7/10	1032 57	1472 30
				12.200	19.742	1732.07	1267 61
30	584.51	•19/42	1	14.345	18.959	1552.62	1207.01
			2	0.058	7.191	1402.49	1302.30
			3	5,850	7.235	1546.92	1360.36
			4	5.785	7.130	1778.29	1470.61
			5	12.170	19.480	1935.24	1472.97
31	581.08	.19074	1	14.212	18.706	1333.15	1267.88
			2	6.037	7.158	1402.67	1302.85
			3	5.835	7.200	1549.24	1366.94
			4	5.765	7.098	1778.77	1471.15
			5	12.071	19.219	1937.93	1473.55
32	577.72	.18418	1	14.076	18.455	1333.48	1268.15
			2	5.015	7.126	1402.85	1303.14
			3	5.815	7.167	1549.55	1367.32
			4	5.744	7.066	1779.25	1471.68
			. 5	11.971	18.958	1940.63	1474.12
33	574-43	.17776	1	13.940	18.203	1333.80	1268.42
			2	5.994	7.094	1403.02	1303.43
			3	5.795	7.135	1549.86	1367.69

			4	5.725	7.035	1779.71	1472.20
			5	11.870	18.698	1943.35	1474.69
34	571.21	.17145	1	13.803	17.953	1334.13	1268.70
54	511.11		2	5.974	7.063	1403.19	1303.72
			3	5.776	7.104	1550.17	1368.06
			4	5.705	7.004	1780.17	1472.72
			5	11.768	18.438	1946.07	1475.25
35	- 68 7	.10568	1	13.665	17.703	1334.46	1268.97
00			2	5.954	7.033	1403.36	1304.01
			3	5.757	7.074	1550.47	1368.42
			4	5.086	6.975	1780.62	1473.24
			5	11.665	18.179	1948.81	1475.81
76	5.00	-159-2	1	13.525	17.453	1334.78	1269.25
50	505.00	.10,22	2	5.934	7.003	1403.53	1304.29
			3	5.738	7.044	1550.76	1368.79
			4	5.668	6.946	1781.06	1473.74
			5	11.561	17.921	1951.56	1476.37
37	562.01	.15328	1	13.385	17.203	1335.10	1269.53
51	302.01	.1.0000	2	5.915	6.974	1403.69	1304.58
			3	5.720	7.015	1551.05	1369.15
			4	5.649	6.917	1781.49	1474.24
			5	11.456	17.662	1954.32	1476.92
***	50 63	14747	1	13 243	16.955	1335.42	1269.81
20	559.00	•1+/+/	2	5.896	6.946	1403.85	1304.87
			z	5.702	6.987	1551.34	1369.51
			4	5.631	6.889	1781.91	1474.74
			5	11.350	17.404	1957.10	1477.46
75		14177	1	13,100	16.706	1335.75	1270.09
39	500.24	•1+1/1	2	5.878	6.919	1404.01	1305.16
			3	5.684	6.959	1551.62	1369.86
			4	5.614	6.862	1782.32	1475.23
			5	11.243	17.147	1959.89	1478.00
10 m		130.0	1	12.956	16.458	1336.07	1270.37
40	200.40	•10019	2	5 360	6.892	1404.17	1305.45
			3	5.967	6.932	1551.89	1370.22
			4	5.597	6.836	1782.73	1475.71
			5	11.135	16.890	1962.70	1478.54
0.1	: 50 76	13072	1	12.811	16.210	1336.39	1270.65
41	550.70	.100/2	2	5.843	6.866	1404.33	1305.73
			3	5,651	6.906	1552.16	1370.57
			4	5.581	6.810	1783.13	1476.19
			5	11.025	16.633	1965.52	1479.07
1. 2	648.13	.12537	1	12.665	15.962	1336.70	1270.94
46	340.10		2	5.826	6.841	1404.48	1306.02
			3	5.634	6.880	1552.43	1570.91
			4	5.564	6.785	1783.51	1476.65
			5	10.914	16.376	1968.36	1479.59
0.3	545.57	-12012	1	12.517	15.714	1337.02	1271.22
45	540.01		2	5.810	6.816	1404.63	1306.30
			3	5.619	6.855	1552.69	1371.26
			4	5.549	6.761	1783.89	1477.11
			5	10.802	16.119	1971.22	1480.11
44	543.00	.11449	1	12.368	15.466	1337.34	1271.51
	343.09		2	5.794	6.792	1404.78	1306.59
			3	5.603	6.831	1552.94	1371.60
			4	5.534	6.737	1784.26	1477.57
			5	10.689	15.863	1974.09	1480.63
45	.40.58	.10997	1	12.218	15.219	1337.66	1271.90
	510.00		2	5.779	6.769	1404.93	1306.87
			3	5.589	6.808	1553.19	1371.94
			4	5.519	6.714	1784.62	1478.02

			5	10.574	15.606	1976.99	1481.14
46	538.34	.10505	-1	12.065	14.972	1337.97	1272.09
			2	5.764	6.746	1405.07	1307.16
			3	5.574	6.785	1553.43	1372.27
		1	4	5.504	6.692	1784.97	1478.46
			5	10.458	15.350	1979.90	1481.65
47	536.07	.10927	1	11.913	14.724	1338.29	1272.38
	500101		5	5.749	5.724	1405.21	1307.44
			3	5.560	6.763	1553.67	1372.60
			4	5 490	6.670	1785 30	1478 89
			5	10.341	15.094	1982.84	1492.15
48	- 33-88	.14458	1	11.758	14.477	1338.60	1272.67
	200.00	•10.00	2	5.735	6.703	1405.35	1307.73
			3	5.547	6.742	1553 91	1 372 93
			- 4	5.477	6.650	1785 65	1479 32
			5	10.222	14.837	1985 79	1482.65
40	- 31 - 77		1	11 602	14.320	1338 01	1272 97
+ 2	551 • 11	• • • • • • • • • •	أ	5 700	£ £33	1005 40	1308 01
			2	5 534	6.000	1550 10	1477 06
			3	5.554	0.721	1004.14	1070.20
			-+	5.404	0.029	1785.98	14/9./4
F	0.0 100		5	10.102	14.551	1980.77	1483.14
50	529.12	.09551	1	11.444	13.982	1339.22	1273.25
			2	5.709	6.663	1405.63	1508.29
			5	5.521	5.701	1554.36	1573.58
			4	5.451	6.610	1790.29	1480.15
-			Э	9.980	14.324	1991.77	1483.63
51	527.75	· 6 7113	T	11.205	13.734	1339.54	1273.56
			2	5.697	6.644	1405.76	1308.58
			3	5.509	6.682	1554.58	1373.90
			4	5.439	6.591	1786.60	1430.55
			5	9.857	14.068	1994.80	1434.12
52	525.35	.13036	1	11.124	13.485	1339.85	1273.96
			2	5.685	6.626	1405.89	1308.36
			3	5.495	6.664	1554.79	1374.21
			4	5.427	6.573	1786.90	1480.95
-			5	9.732	13.811	1997.86	1434.60
53	524.03	• U5208	1	10.961	13.237	1340.16	1274.16
			2	5.674	6.609	1406.02	1309.14
		•	3	5.486	6.646	1555.00	1374.52
			4	5.416	6.556	1787.19	1481.34
			5	9.005	13.553	2000.94	1435.08
54	522.28	.07850	1	10.797	12.988	1340.46	1274.46
			2	5.663	6.592	1406.15	1309.42
			3	5.476	6.629	1555.20	1374.83
			4	5.405	6.539	1787.47	1481.73
-			5	9.477	13.296	2004.05	1485.56
55	00.050	.07403	1	10.631	12.739	1340.77	1274.76
			2	5.653	6.576	1406.28	1309.70
			3	5.466	6.613	1555.40	1375.14
			4	5,395	6.523	1787.74	1482.10
			5	9.347	13.038	2007.18	1486.03
50	518,99	.07075	1	10.463	12.489	1341.08	1275.06
			2	5.643	6.560	1406.40	1309.98
			3	5.456	6.597	1555.59	1375.44
		L.N.	4	5.385	6.508	1788.00	1482.47
			5	9.215	12.779	2010.35	1486.50
57	517.46	.06697	1	10.293	12.239	1341.39	1275.37
			2	5.634	6.546	1406.52	1310.26
			3	5.447	6.583	1555.78	1375.74
			4	5.376	6.494	1788.25	1482.83
			5	9.081	12.520	2013.55	1486.96

58	516.00	.06328	1	10.121	11.988	1341.69	1275.69
			2	5.625	6.532	1406.64	1310.54
			3	5.438	6.569	1555.96	1376.03
			4	5.367	6.480	1783.50	1483.18
			5	3.945	12.261	2016 79	1447 43
59	514.62	.05970	1	9.947	11.737	1342.00	1275 98
			2	5.617	6.519	1406 76	1410 92
			3	5.430	6.555	1556 13	1 476 33
			4	5 350	6.067	1798 77	1437 50
			5	a 307	12.001	2020 04	1407 20
60	513.30	-05621	1	9 771	11 /18/	13/2 30	1276 10
00	210.00	.00021	2	5 600	11.404	1342.30	16/0.00
			2	5.009	0.507	1400.88	1511.10
			5	5.422	0.543	1550.31	1576.62
			4	3.351	6.455	1788.95	1483.86
61	10 7	.5004	5	0.007	11.740	2023.37	1498.35
01	512.07	.05201	1	9.090	11.231	1342.01	1276.61
			2	5.002	6.495	1406.99	1511.38
			3	5.415	0.531	1556.47	1376.90
			4	5.343	6.443	1789.17	1434.19
		1	5	8.525	11.473	2026.72	1488.31
04	510.90	.04952	1	9.412	10.977	1342.91	1276.92
			2	5.596	6.484	1407.10	1311.66
			3	5,408	6.520	1556.63	1377.18
			4	5.336	6.432	1789.38	1484.51
			5	3.381	11.216	2030.11	1489.27
65	509.01	.64051	1	9.229	10.722	1343.22	1277.24
			2	5.590	6.474	1407.21	1511.94
			j	5.402	6.510	1556.79	1377.46
			4	5.330	6.422	1789.57	1484.33
			5	8.234	10.952	2033.54	1489.73
64	508.79	.0+321	1	9.044	10.466	1343.52	1277.56
			2	5.584	6.464	1407.32	1312.22
			3	5.396	6.500	1556.94	1377.74
			4	5.324	6.412	1789.76	1435.13
			5	3.085	10.688	2037.02	1490.19
65	507.04	.04019	1	8.856	10.209	1343.82	1277.97
			2	5.579	6.455	1407.42	1512.50
			3	5.341	6.491	1557 00	1379 01
			4	5.318	6.404	1789 94	1445 43
			5	7.934	10.422	2040 54	1420 66
60	506.97	.03728	1	8.666	9.951	1344 12	1278 20
	30-077		2	5.575	6.443	1407 53	1 512 78
			3	5 386	6.483	1557 27	1 479 29
			4	5 313	6 396	1700 11	1/105 70
			5	7.779	10.156	2044 11	1401.12
67	- 06-17	Sulta	1	473	0.601	1344 40	1070 50
0.	200.11	•00++0	2	5 571	5.001	1044.42	1210.02
			3	5 382	5.475	1557 36	1373 55
				5 300	6 790	1700 37	1070.00
			5	7 623	0.304	1/90.27	1436.00
68	505 10	05173	1	6 277	9.000	2047.74	1491.59
00	203.44	•05175	-	5 5:4	9.430	1044.72	14/0.00
			4	5.500	6.434	1407.73	1013.33
			5	5.370	6.409	1557.49	1378.81
			4	3.305	0.332	1790.43	1480.28
< 13	04 70		5	1.463	9.619	2051.42	1492.07
09	504.79	.02910	1	0.070	9.107	1345.03	1279.17
			2	5.566	6.429	1407.83	1313.51
			3	5.375	6.463	1557.62	1379.07
			4	5.301	6.376	1790.57	1486.54
			5	7.300	9.348	2055.16	1492.55
70	504.21	.02656	1	7.076	3.903	1345.33	1279.51

			2	5.564	6.424	1407.93	1313.89
			.3	5.372	6.458	1557 74	1379 33
			14	5 208	- 371	1700 70	1406 80
				3.2.75	0.371	1/90.70	1-80.80
	.7.7.	A	2	1.134	9.076	2058.97	1493.05
/1	203.11	.02412	1	1.0/1	8.637	1345.63	1279.84
			2	5,562	6.420	1408.02	1.514.17
			3	5.370	6.454	1557.86	1 379.58
			4	5.296	6.367	1790.83	1487.06
			5	6 965	8.803	2062 83	1403 55
70	103.07		1	7 463	0.000	1745 07	1990 17
14	505.21	•04110	-	1.405	6.309	1343.75	1400.17
			2	5,561	0.410	1408.12	1314.45
			3	5.000	6.450	1557.97	1379.83
			4	5.294	6.363	1790.95	1487.30
			5	6.792	8.527	2066.77	1494.07
73	502.11	.01953	1	7.251	8.100	1346.23	1280.51
			>	5.561	6.414	1408 21	1 514 73
			2	6 367	6 117	1400.01	1300 00
			5	5.507	5.447	1550.08	1.580.08
			-+	3.292	6.361	1791.05	1487.54
				6.616	8.250	2070.78	1494.60
74	502.03	.01738		7.036	7.828	1346.53	1280.85
			2	5.561	6.412	1408.30	1315.01
			z	5 367	6.445	1553 19	1320 33
				5.201	6 750	1000.16	100.00
				5.291	0.004	1/91.15	148/./5
			3	0.430	7.970	2074.86	1495.15
15	502.41	.01502	1	0.016	7.553	1346.83	1281.20
			2	5.562	6.410	1408.39	1315.30
			3	5.367	6.444	1558.27	1380.57
			4	5.291	6.357	1791.24	1487.99
			5	0.252	7.639	2079 03	1495.73
70	502.07		1	. 507	7.276	1307 13	1281 50
10	202.21	•01007	1	5.565	1.210	1047.10	1201.04
			4	3.364	6.410	1400.48	1515.58
			3	5.001	6.443	1550.37	1380.81
			4	5.291	6.357	1791.32	1438.20
			5	0.064	7.405	2083.28	1496.33
77	502.21	.01151	1	0.365	6.997	1347.43	1281.89
			2	5.560	6.411	1408.56	1515.86
			3	5.368	6.443	1558 45	1 381 . 05
			11	5 201	6 757	1701 30	1001.00
	1 A A A A A A A A A A A A A A A A A A A			5.291	7 110	1/91.09	1/00.41
-			5	2.012	7.119	2007.03	1490.97
18	202.21	.00970	T	0.134	6./15	1341.13	1282.25
			2	5,568	6.412	1408.65	1316.15
			3	5.370	6.444	1558.54	1.581.28
			4	5.292	6.358	1791.46	1488.61
			D	5.674	6.830	2092.07	1497.65
79	502.30	.00316	1	5.997	6.429	1348.03	1282.50
	00-00			5. 571	C 11 1 1	1409 77	1 416 117
			4	5.571	0.414	1406.73	1310.43
			2	3.312	6.446	1558.02	1381.52
			4	5.294	6.359	1791.51	1488.90
			5	5.472	6.538	2096.62	1498.38
03	062.45	.000.5	1	5.655	6.140	1348.33	1282.96
			2	5.575	6.416	1408.81	1316.72
			z	5 374	6.440	1558 60	1391 75
			11	5 206	6.362	1701 56	1408 00
			6	5 0/5	6.002	1191.00	1400.99
			5	5.205	6.242	2101-28	1499.17
81	502.68	.00010	1	5.408	5.848	1348.63	1283.33
			2	5.580	6.420	1408.90	1317.01
			3	5.377	6.452	1558.76	1381.98
			4	5.298	6.365	1791.59	1489.17
			5	5.052	5.944	2106.07	1500.04
82	102.69	.0.1375	1	5.155	5.550	1348 93	1293 70
04	502.90	.00010	1	5.505	6 1:04	1010.00	1217 70
			4	5.305	0.424	1400.98	1011.00

			. 3	5.361	6.456	1558.83	1382.21
			· · · ·	5.301	6.359	1791.62	1439.34
			Б	+.033	5.642	2110.98	1501.00
63	103.35	1.1221	1	1.097	5.251	1349.24	1284.07
00	200.00		1	500	5 U 20	1000 06	1417 60
			-	3.390	0.429	1407.00	1317.00
			3	0.085	0.400	1000.09	1082.44
			*	5.505	0.3/3	1/91.04	1439.51
			5	+.007	5.336	2116.04	1502.07
64	503.00	•00138	1	+.032	4.940	1349.54	1234.45
			۷	5.597	6.435	1409.14	1317.99
			3	5.390	6.466	1553.95	1382.67
			4	5.309	6.378	1791.65	1489.67
			5	+.375	5.025	2121.25	1503.30
65	204.JZ	.00000	1	+.360	4.635	1349.85	1284.84
			ž	5.504	6.441	1409.21	1513.19
			3	5.395	6.472	1559.00	1382.89
			.\$	5.314	6.385	1701.66	1449.33
			5	4.135	4.710	2126.64	1504.72
80	04.41		1	4 030	1.310	1750 16	1205 23
00	-01.01	•000000	5	5 611	- 1119	1000.10	1416 50
				5.011	5.440	1407.47	1318.30
			2	0.401	0.4/3	1009.05	1393.12
			*	2.019	6.391	1791.05	1439.98
			5	3.337	4.389	2132.21	1506.39
87	503.03	(0104	1	5.192	3.996	1350.47	1235.63
			۷	5.019	6.456	1409.37	1318.91
			3	5.408	5.487	1559.10	1383.35
			4	5.325	6.399	1791.64	1490.13
			5 .	3.029	4.052	2137.99	1508.41
80	506.32	LUZUZ	i	3.495	3.666	1350.79	1236.03
			2	5.628	5.465	1409.45	1319.12
			3	5.+14	6.496	1559.14	1383.58
			4	5.331	6.407	1701 62	1400 27
				3. 3.32	3.729	21/4 01	1510 91
29	5.7.13		1	3 1 37	3.329	1361 10	1226 45
	201-10		2	5.637	± 175	1001-10	1310 11
			3	5.400	6.475	1907.00	1.407 01
			5	G 370	6.505	1307.19	1000.41
			1	3.335	0.410	1/91.00	1490.41
0			2	3.00+	.3.338	2150.30	1514.11
90	500.02	00002	1	2.307	5.940	1351.43	1235.38
			4	5.04/	0.435	1409.80	1319.77
			3	5.430	6.515	1559.22	1584.04
			+	5.345	6.426	1791.55	1490.55
			Б	2.793	3.038	2150.91	1518.37
91	508.90	00353	1.	2.534	2.621	1351.75	1237.32
			2	5.653	6.496	1409.69	1320.10
			3	5.439	6.526	1559.26	1584.28
			4	5.353	6.437	1791.53	1490.69
			5	2.562	2.789	2160.07	1524.40
92	510.01	00353	1	2.164	2.249	1352.09	1237.79
	0		2	5.670	6.508	1409 77	1320 45
			3	5 442	4 530	1550 30	1320.45
				5 361	6 Ula	1701 40	1004.00
			5	2 202	2 401	21691.48	1-90.32
03		- come	4	2.240	2.401	2100.13	1000.01
93	211.15	00556	-	1.010	1.859	1352.43	1238.26
			4	2.082	0.521	1409.85	1320.32
			3	0.450	6.550	1559.34	1534.78
			4	3.370	6.461	1791.43	1490.97
			5	1.894	1.999	2176.96	1549.54
94	512.30	00360	1	1.419	1.446	1352.79	1288.76
			2	5.695	6.535	1409.95	1321.20
			3	5.468	6.564	1559.38	1385.06

		4	5.379	6.473	1791.38	1491.12
		5	1.01/	1.579	2187.10	1584.10
213.201	00402	1	.987	.999	1353.17	1289.32
		2	5.709	6.549	1410.05	1321.63
		. 3	5.479	6.578	1559.42	1385.36
		4	5.389	6.487	1791.32	1491.29
		5	1.134	1.161	2201.07	1717.42
	513.56,	513 . 56) 00402	4 5 513.56)00402 1 2 3 4 5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

DFIN

11. CONCLUSIONES

a) El modelo está implementado para el manejo de una sola con figuración geométrica; la cual corresponde a la presentada en la fig. A.

b) Según se pudo observar de una serie de problemas analizados, la convergencia en cuanto a la distribución de flujo se refi<u>e</u> re, es más acelerada si se dispone de más de 50 y menos de 160 tr<u>a</u> yectorias de flujo en el sistema que se pretende diseñar y/o simu lar.

c) Las figuras 18 a 31 muestran patrones para un estimado rá pido de la maldistribución de flujo en la mayoría de los diseños de cabezales. Estas curvas típicas se derivan de los resultados de cálculo en la computadora con un método simplificado que se ilustra en el texto del presente trabajo. Se presentan grupos de curvas tanto para factores de corrección de momentum ($K_D \circ K_C$) constantes como para factores dependientes de flujo, haciendo uso para todas ellas de los valores de 0.6 y 1.0 para el coeficiente de descarga en el orificio en cabezales de descarga y colección respectivamente.

Con objeto de acelerar la convergencia de la distribución de flujo, los valores obtenidos de las mencionadas gráficas constitu yen un primer estimado a usar^{en} el método riguroso de solución implementado en el programa de computadora.

d) En el problema que se analizó se obtuvo una maldistribución de flujo de +17 a -6% respecto al flujo promedio, una caída de presión promedio por tubo recto de 2.1 psi y una caída de presión total promedio de 10.9 psi. Los valores de los anteriores parámetros fueron los que se obtuvieron mediante una optimización empírica y no se pudieron mejorar debido a que se tenía fijo el número de tubos.

Queda como trabajo a desarrollar la implementación de un algoritmo de optimización ya sea en base a costos o a variables de proceso, para poder determinar el sistema más económico y/o el que satisfaga los requerimentos del proceso. e) Aunque en este problema se obtuvo un comportamiento satis factorio, con el presente método es posible detectar mediante los perfiles generados, aquellos tubos que están sujetos a condiciones extremas como son: temperaturas de pared más altas que las permiti das por el material o tubos con muy poco flujo, lo cual determina el reemplazo continuo de los mismos.

f) La principal desventaja del modelo desarrollado es que e<u>e</u> tá basado en el análisis de flujos que no están totalmente estabilizados y para los cuales las constantes de las fórmulas están basadas en una cantidad limitada de resultados experimentales.

12. NOMENCLATURA.

PARAM	TRO	JNIDADES
A	Area de sección transversal	ft ²
C	Coeficiente de contracción	-
c	Coeficiente de descarga de orificio	-
C,	Factor de corrección para caída de presión	1
1	friccional.	-
d	Diámetro interno 6 diámetro equivalente de	3
	la rama lateral.	ft
D	Diâmetro interno é equivalente (4 X radio	b
	hidráulico) del cabezal, para conductos o	ie
	sección transversal ordinaria.	ft
f	Factor de fricción, definición de Fanning	-
F	Parámetro de factor de fricción f	
	2 ^{5/2} ~ (3
g	Aceleración local debida a la gravedad	ft/seg ²
e _c	Factor de conversión (constante dimension	al 32.17 lbft
		lb _f seg
H	Cabeza estática	ft
k	Factor de corrección de momentum	-
K	Coeficiente de Pérdida	-
L	Longitud de cabezal analizada	ft
n	Número de ramas laterales	e
NRE	Número de Reynolds	-
p		2
	Presión estática	lb _f /ft ²
P	Presión estática Cambio de presión adimensional	lb _f /ft ²
P V	Presión estática Cambio de presión adimensional Velocidad (promedio)	lb _f /ft ² - ft/seg
P V V	Presión estática Cambio de presión adimensional Velocidad (promedio) Velocidad adimensional	lb _f /ft ² - ft/seg
P V V	Presión estática Cambio de presión adimensional Velocidad (promedio) Velocidad adimensional Flujo másico total	lb _f /ft ² - ft/seg - lb/seg
P V V W J	Presión estática Cambio de presión adimensional Velocidad (promedio) Velocidad adimensional Flujo másico total Parámetro geométrico del cabezal 1.41 C _d ²	lb _f /ft ² - ft/seg - lb/seg
P V W	Presión estática Cambio de presión adimensional Velocidad (promedio) Velocidad adimensional Flujo másico total Parámetro geométrico del cabezal 1.41 C_{d^2} p^2	lb _f /ft ² - ft/seg - lb/seg
P V W J	Presión estática Cambio de presión adimensional Velocidad (promedio) Velocidad adimensional Flujo másico total Parámetro geométrico del cabezal $\frac{1.41 \text{ C}_d 2}{p^2}$ Parámetro de distancia adimensional 1.41	lb _f /ft ² - ft/seg - lb/seg -

LETRAS GRIEGAS:

PARAME	TRO	UNIDADES
x	Angulo entre cabezal y rama lateral en la conexión.	
ß	Angulo entre cabezal y rama lateral en la conexión.	_
x	Peso específico	lb _f /ft ²
8	Angulo entre cabezal y rama lateral en la conexión.	
Δx	Longitud de cabezal entre conexiones sucesiva	8
,λ2,λ3	de rama, lateral. Factores de corrección por caída de presión es	f ð 1
	ramas laterales inclinadas.	
е	Densidad del fluído de proceso	lb/ft ³
σ.	A _B	

AU

λ.

SUBINDICES:

prom	Promedio
В	Ramal lateral
B1,B2,e	tc Primera, segunda, etc., rama lateral a partir del extremo abierto del cabezal.
c	Convergencia de flujo
d	División de flujo.

1.3. REFERENCIAS BIBLIOGRAFICAS:

- BUTTERWORTH, D., COWAN, G.H. GLASTONBURY, A.G. y ST. PIERRE, C.C. "Single phase flow distribution in multi-tube banks." AERE-R 6763, (1971).
- ST. PIERRE, C.C. y GLASTONBURY, A.G. "Pressure changes for two phase flow across single T-junctions." AERE-R 7131, (1972)
- 3. GLASTONBURY, A.G. y ST. PIERRE, C.C. "Flow distribution in single and two phase flow in an 8-tube manifold." AERE-R 7239, (1972).
- VAZSONYI, A. "Pressure loss in elbows y duct branches." Annual meeting of the Am. Soc. Mech. Engrs. Nov. 29-Dic 3, 1943. Trans. ASME, Vol. 66, págs. 177-183 (1944).
- MCNOWN, J.S. "Mechanics of Manifold flow." Trans. ASCE, Vol. 119, págs. 1103-1142, Paper No. 2714 (1954).
- ZENZ, F.A. "Minimize Manifold Pressure Drop." Hydrocarbon processing y Petroleum Refiner, Vol. 41, No. 12, págs. 125-130 (1962).
- ACRIVOS, A., BEBOCK, B.D. y PIGFORD, F.L. "Flow distribution in manifolds." Chem. Eng. Sci., Vol. 10, pags. 112-124 (1959).
- BAJURE, R.A. "Amodel for flow distribution in manifolds."
 J. of Eng. for Power (Trans. of the ASME), págs. 7-12(1971).
- 9. ST. PIERRE, C.C. y GLASTONBURY, A.G. "Pressure changes for twophase flow across single junctions." AERE-R 6764, (1971).
- PERRY, J.H. Chemical Engineers Handbook (4a. Ed.). a) BOUCHER,
 D.F. y ALVES, G.E. "Fluid and Particle Mechanics." Sección 5.
- 11. ROUSE, H. "Engineering Hydraulics" (pág. 437), J. Wiley and Sons.
- SOUCEK, E. y ZELNICK, E.W. Trans. Amer. Soc. Civil Engrs. Vol. 110, págs. 1357-1400, (1945).
- McNOWN, J.S. y HSU, E.Y. Application of Dynamics Proceedings, Midwestern Conference on Fluid Dynamics, J.W. Edward, Ann Arbor, Mich., págs. 143-153 (1951).
- 14. KEENAN y NEUMANN, J. App. Mech. A 91-A100 (1946).

- 15. KAYS, Transaction Am. Soc. Mech. Engrs., págs. 1067-1074 (1950).
- GROBMAN, DITTRICH, GRAVES, Trans. Am. Soc. Mech. Engrs., págs. 1601-1607 (1957).
- 17. ESCOBER, J. "Studies of manifold flow." M. Sc. Thesis, Univ. of Iowa (1946).
- BARTON, J.R. "A study of diverging flow in pipe lines" M. Sc. Thesis, Univ. of Iowa (1946).
- 19. VILLEMONTE, J.R. "Some basic concepts on flow in branching con duits." ASCE. J. Hydraulic Div., Vol. 103, No. 7 Págs. 685-697 (1977).
- YANES, A. "Studies of multiple laterals in manifold flow." M. Sc. Thesis, Univ. of Iowa (1946).
- NIAZ, S.M. "A study of converging flow in pipe lines."
 M. Sc. Thesis, Univ. of Iowa (1947).
- 22. HECKER, G.E. NYSTROM, J.B., QURESHI, N.A. "Effect of Branch Spacing on Losses for Dividing flow." ASCE. J. Hydraulic Div., Vol. 103, No. 3, págs. 265-279, (1977).
- CRISI, J.S. "Make plate to guide header flow." Hydrocarbon Processing, (Sept. 1973).
- 24. HOOPES, J.W., ISAKOFF, S.E., CLARKE, J.J. y DREW, T.B. "Friction losses in screwed iron tees." C.E.P. 44, No. 9, págs. 691-696 (1948).
- SIMPSON, L.L. "Process piping: Functional desing." Chen. Eng. Deskbook Issue, págs. 178-180 (Abril 14, 1969).
- SENECAL, V.E. "Fluid distribution in process equipment." Ind. Eng. Chem. Vol. 49, No. 6, pgs. 993-997 (Junio 1957).
- 27. CRANE CO. "Flow of fluids through valves, fittings and pipe." Tech. Paper No. 40, 41005 Kedzie Avenue, Chicago, Ill. 60632.
- 28. IDELCHIK, I.E. Handbook of hydraulic resistance. "Coefficients of Local Resistance and of Friction." USAEC Report No. AEC-TR-6630 (1966).
- 29. MILLER, D.S. "Internal flow. A guide to losses in pipe and duct systems." The Britzsh Hydromechanics Research Aslociation, Cranfield, Bedford (1971).

- 30. Engineering Sciences Data Unit, 251-259 Regent Street, London, W1R 7AD. "Pressure losses in three leg pipe junctions: dividing flows." Report. 73022, (1973).
- 31. Engineering Sciences Data Unit. "Pressure losses in three leg pipe junctions: combining flows." (1973).

GRAFICAS A LAS QUE SE HACE REFERENCIA EN EL PRESENTE DESARROLLO.

FIG. I._PATRONES DE DISTRIBUCION DE FLUJO EN CABEZALES DE CARGA

FIG.2._SUPERFICIE DE CONTROL PARA BALANCE DE MOMENTUM

(Segun St. Pierre y Glastombury(2) y complementado por Mezey)

FIGURA 4-- COEFICIENTE TEORICO DE CONTRACCION, Cod PARA DIVISION DE FLUJO EN UNA FASE-(Según St. Pierre y Glastonbury⁽²⁾)

FIGURA 6. - COEFICIENTE DE PERDIDA EN CORRIENTE LATERAL PARA DIVISION DE FLUJO EN UNA FASE (Según St. Pierre y Glastonbury⁽²⁾)

FIGURA 8 FACTOR DE CORRECCION DE MOMEN-TUM, COLECCION DE FLUJO EN UNA UNION T SIMPLE Y UNA FASE (Segun St. Pierre y Glastonbury⁽²⁾)

FIGURA II-DIVISION DE FLUJO EN RAMAS INCLINADAS

FIGURA 15 -- FACTOR DE CORRECCION PARA CAIDA DE PRESION EN RAMAS HORIZONTALES INCLINADAS CON COLECCION DE FLUJO (Según Vazsonyi (4))

FIGURA 14 -- COLECCION DE FLUJO EN RAMAS INCLINADAS.

.

PROGRAMA DE COMPUTADORA PARA LA SIMULACION Y/O DISEÑO DE CABEZALES DE DISTRIBUCION MULTIPLE EN SUPERCALENTADORES.

C::::		
L	PRUGRAMA I	PRINCIPAL PARA LA SIMULACION Y/O DISENO DE CABEZALES
C	UE DISTRI	BUCION MULTIPLE EN SUPERCALENTADORES
C	UBJETIVO:	1) DETERMINACION DE LOS PARAMETROS DE DISENO.
C		2) OBTENCION DE LOS PEREILES DES CATDA DE PRESION.
C		DISTRIBUCION DE ELUJO, TEMPERATURA DEL ELUIDO DE
C		PROCESO TEMPERATURA DE DADED Y COEFICIENTES IN-
C		DIVIDUAL Y GLOBAL DE TRANSFERENCIA DE CALOR
C		TODO LO ANTERIOR POR TURO Y ROD ZONA DE CLUX
č		CONSTANTE.
č	FULCION:	FECTUA LA LECTURA DE DATOS IMPRESTON DE DESULTADOS
Č.		CONVERGENCIAS Y EL CONTROL DE LAS SUBPLITINAS USADAS
ũ.		PARA EL ANALISTS
C	VANIABLES	PRINCIPALES:
C	IFL	INDICE DE TIPO DE FILIX
C		1: FLUX CONSTANTE 2: ZONTETCACTON DE ELUYES
Č.	14	LIMERO DE ZOUAS DE ELLY CONSTANTE EN TRANC DECTO
Č.	10	INDICE DE TIPO DE PEGINEN DE FUNO
7		L'ENTRADA Y CALIDA DOD EL MICHO LADO
č		I ENTRADA I SALIDA FOR EL MISMO LADO
č	M	NOLLE DE VETODO DE CALOURO DE CALON DE DESCLON
i.	•	A METODO DE CALCULO DE CATUA DE PRESION
č		A METODO RIGOROSO SIN FACTORES DE CORRECCION
č		2. METODO RIGOROSO CON FACTORES DE CORRECCION
C C	1171	JIMERO TUTAL DE TUROS
č	i T	AMELTID DEL TUDOS
č	. 161	LANSTHE LETERNO DEL CASESAL (ES)
č	IM	DIAMETHO INTERNO DEL CABEZAL (FT)
č	aVuT	UTAMETRO INTERNO DEL TOBO (FT)
C C	UM.	DESIGN NEGLA DE FLUIDO (LB/HR)
č	TV. 1	TEMPERATURA DE EUTRADA DEL EUTRO (OE)
C	T Y (1.3)	APPEGLO DE ENTRADA DEL FLUIDO (GF)
ĩ		A ZUNA DE FLUX CONSTANTE
č	π.T.(LASTO LA EL TRANO DE CADETAL ALRADA
č		(ASTU EN EL THAMU DE CABEZAL (LB/HR)
č	"P	GASTO PROMODIO (LEVIR)
	INIEGES T	. I
	REAL LI	
	UINENSION	ITERA(10) + APE(10) + PD(100) + WIG(100)
	COMMUN /RC	IMITVIIIVOIALIDIWIPMEILITSITCIMIPTIPTEPDC.
1	PULOPUEA	PETLC . WTC. IMA. WTT. DMI. CK (8.4)
	COMMUN /RC	22/ IFL .N. I. TVA1. INH. T(10) . ATEX(10.3)
1	RUEIRUTIA	W, AUG(10,100), AHIO(10,100), ATW(10,100), ATVA(10,100)
	CONMUN /RC	a/ AF(110), AWT(110), LL, FF, GG, OO, HH, AFWT(110), AS2DWT
	HAMELIST/1	IND/IFL . N. ICA . L. IMH. IM. KAN
	NAMELIST/H	ROG/NTI . T. DMA . DMI . WVAT . PME . TVAL . RDE . RDT . RW
111	HONMAT (BE)	10.6)
112	FURMAT (5F1	5)
1110	FORMAT (3F)	13.5)
115	FORMAT(1U)	(3)
114	FORMAT (10F	5.3)
110	FORMAT(1HC	5X, GASTO PROMEDIO DE FLUJO (WP) 1,3X, F6.2,3X,
1	'Lu/nR'/)	
125	FORMAT 15A	+HJJ= ,13,5X,3HT= ,13,20X,16HRE MENOR DE 2000//1
124	FORMAT 15X	'WTC=',E14.7.5X,'WTT=',E14.7.5X,'SWT=',F14.7,
1	SX . 'XRE='	L14.7/)
1244	FORMATISA.	'TTT=',E14.7,5X,'WWW=',E14.7,5X,'DDD=',E14.7,5X.
1	1 = 1 = 10/	()
125	FORMAT (54	' I''+X, 'AFWT(I)', 4X, 'PD(I)', 5X, 'J', 3X, 'AUG(J, I)'.
1	5X . AH10 (J+I)'+3X+'ATW(J+I)'+3X+'ATVA(J,I)'//)
126	FORMAT (5%	12,4X,F6.2,4X,F7.5,4X,I1,4X,F6.3,5X,F6.3,5X,F7.2,

15X,F7.2) 723 FORMAT (32X, 11, 4X, F6.3, 5X, F6.3, 5X, F7.2, 5X, F7.2) 138 FORMAT(5X, ITC=2 EL FLUJO ESTA ENTRANDO Y SALIENDO POR EL 1 MISMO LADU") 139 FORMAT (5X, 'I=', I3, 5X, 'WTT=', E14.7, 5X, 'SWI=', E14.7, 5X, 1'WTC=', E14.7, 5%, 'SE ACABO EL FLUJO') 627 FORMAT(1H1,5X, 'INDICE DE TIPO DE FLUX (IFL)', 15X, 12) 628 FORMAT(1HU, 5X, 'NUMERO DE ZONAS POR TUBO (N) ', 15X, 12) 629 FORMAT(1H0,5X,'INDICE DE TIPO DE CABEZAL (ICA)',12X,I2) 630 FORMAT(1H0,5X,'NUMERO DE DATOS DE FLUJO PARA EL AJUSTE',/, 15X, DE LA CURVA DE DISTRIBUCION (LL) ', 10X, 12) 631 FORMAT(1HU, 5X, 'INDICE DE METODO COEF. TRANSF. CALOR (IMH) ', 3X, 12) 632 PORMAT(1H0,5X, 'INUICE DE METODO CAIDA DE PRESION (IM) .5X,12) 633 FORMAT(1H0, 5X, 'INDICE DE GENERACION DE GRAFICAS (KAN) . 5X, 12//) 634 FORMAT(1H0, 5X, 'NUMERO DE TUBOS (NTT)', 17X, 12) 635 FORMAT(1HU, 5X, 'LONGITUD DEL TUBO (LT) ', 10X, F8, 2, 3X, 'FT') 630 FORMAT(1H0,5X, 'DIAM. INT. DEL TUBO (DMI) ',7X,F8.4,3X, 'FT') 637 FORMAT(1HU, 5X, 'DIA. INT. DEL CABEZAL (DMA) ', 6X, F8.4, 3X, 'FT') 630 FORMAT(1HU, 5X, 'GASTO TOTAL DE FLUJU (WVAT)', 5X, F8.2, 3X, 'LB/HR') 639 FORMAT(1HU, 5x, 'TEMPERATURA DEL FLUIDO (TVA1)', 3x, F8.2, 3x, 'GF') 640 FORMAT(1HU, 5X, 'PRESION DEL FLUIDO (PME) ', 8X, F8.2, 3X, 'LB/IN2'//) 641 FORMAT(100,5X, ZONIFICACION DE FLUXES'//) 042 FORMAT(1HU, 5X, 'TEMP. (GF) ', 5X, 'L. ZONA (FT) ', 5X, 'FLUX (BTU/' 1, 'HRFT2)'/) 643 FORMAT(1H0,7X+7.2,9X+F6.3,12X+F8.2/) 645 FORMAT(1H1,5X, 'I',11X, 'TUBO NO. ') 640 FORMAT(1H0,5X, 'J',11X, 'ZONA DE FLUX CTE. NO. ') 647 FORMAT(110,5X, 'AFWT(1)', 5X, 'FLUJO EN EL TUBO I (LB/HR)') 640 FORMAT(1H0,5X, PU(1) ,7X, CAIDA DE PRESION TUBO I (LB/IN2)) 649 FORMAT(1HU, 5X, 'ATW(J, I) ', 4X, 'TEMP. PARED DEL TUBO I ZONA J', 1 . (GF))) 650 FORMAT(1H0,5X, 'ATVA(J,I)', 3X, 'TEMP. FLUIDO DEL TUBO I ZONA J', 1' (GF)') 651 FORMAT(1H0,5X, 'AHIO(J,I)', 3X, 'COEF. INDIV. TRANSF. CALOR', 1' TUBO I LONA J (BTU/HRFT2GF)') 652 FORMAT(1HU, 5X, 'AUG(J, I) ', 4X, 'COEF. GLOB. TRANSF. CALOR', 1' TUBO I ZUNA J (BTU/HRFT2GF) 1/1) NPISOH=2 UO 99999 IPROB=1, NPROB READ(5, IND, END=999) READ(5, PRUG) KEAD(5,111)((CK(I,J),I=1.8),J=1.4) NOE = N+2 60 TO (1112,1114), IFL 1112 READ(5,1110)((ATEX(I,J),1=1,NOE),J=1,3) GO TO 1115 1114 READ(5,112)((ATEX(1,J),I=1,NOE),J=1,3) 1115 READ(5,113)(AT(I), I=1,LL) KEAD (5,114) (APF(1), I=1,LL) WRITE (0,027) IFL WRITE (0,020)N WRITE (6,029) ICA WRITE (6,630) LL "RITE (0,631) IMH WRITE (0,032) IM WRITE (0,033) KAN WRITE(0,034)NTT #RITE (0,035) LT WRITE (0,630)DMI WRITE (0,637) DMA WRITE (6,630) WVAT

```
WRITE (0,039) TVA1
    WRITE (0,040) PME
    WRITE (0,041)
    "RITE(0,042)
    WRITE(0,04)((ATEX(I,J),J=1,3),I=1,NOE)
    IF(ICA.GT.1) GO TO 1000
    ANIT=NIT
    WP=WVAI/ANIT
    00 2 I=1.LL
    NX=WP*APr (1)
    AWI(1)=WA
  2 CONTINUE
 10 CALL REGUU
    "RITE(0,110)WP
    SVI =U.
    505=0.
    15=0
    SWi=U.
    SPUI=0.
    SPUS=0.
    J=1
    00 500 I=1,96
    AFNT(I)=+F+GG+1+HH+I++2+00+I++3
    1F(I.GI.1) GO 10 333
    AT(1)=1
    00 TU 16
335 AT(LL+1-1)=I
 10 IF(J.GT.1) GO TO 3
    w10(1)=Arwi(1)
  5 1F(I.GI.1) GU TO 4
    ATL= VAT
    "TI=AFWT(1)
    00 TU 5
  4 WTT=AFWT(1)
    1F(J.GT.1) GO TO 777
    SWI=SWI+AFAT(I-1)
    ATL= NAT-SHI
    IF(WIC)87,07,88
 07 WRITE (U. 139) I.WTT . SWI . WTC
    00 TU 99999
 38 60 TO 5
777 SW1=SW1
    ATC=WVAT-SWI
    1FIWTC189.09.5
 89 WRITE (0,139) 1, WTT , SWI , WTC
    UO TO 99999
  5 CALL CUTVTW(ITERA, WTC, DMA, WTT, DMI, PME, JJ, XRE, TTT, WWW, DDD)
    JJJ=1(JJ)
    60 TU(51:35),JJJ
 31 HRITE(0,123) JJ.JJJ
    WRITE (0,124) WTC, WTT, SWI, XRE
    WRITE (0,1244) TTT, WWW, DDD.I
    60 TO 99999
 35 ITC=1
    m=1
    IF(I.GI.1) GU TO 0
    TV1=TVA1
    60 TU 7
  O TVI=ATVA(M,I-1)
  7 IVU=ATVA(M.I)
    TS=ATEX (M.L)
```

AL=ATEX(M,2) U=AUG(M.1) W=WTC U=UMA CALL CAPRE SPLI=PUI M=1+2 IV1=ATVA(M-1.I) TVU=ATVA(M.I) IS=ATEX(M.I) AL=ATEX(M.2) U=AUG(M.1) CALL CAPKE SPUS=PUS GO TO (10,20), IFL 10 ITC=5 M=2 TV1=ATVA(M-1.I) IVG=ATVA(M.I) TS=ATEX(M,1) NENTI D=UMI AL=LT U=AUG(M.1) CALL CAPRL PDT=PETEC 12 PD(I)=SPU1+SPDS+PDT GO TO 13 20 IT=N+1 PDT=U. 00 15 M=2,1T TVI=ATVA(M-1,I) IVU=ATVA(M.I) IS=ATEX(M,1) AL=ATEX(M.2) WEWTT U=UMI U=AUG(M.I) IF (M.LE.2) GO TO 8 IF (M.GT.2. AND.M.LT.IT) GO TO 9 ITC=4 GO TO 11 8 ITC=2 GO TO 11 9 ITC=3 11 CALL CAPRE PDT=PDT+PETEC GO TO 12 15 CONTINUE 13 IF(I.LT.2) GO TO 222 GO TO 888 222 AWT(I)=AFWT(I)*1.1 SVP=SVP+WIG(I)**2 SDS=SDS+(AFWT(I)-w1G(I))**2 J=1 GO TO 500 888 CONV=ABS(PU(I)-PD(1)) IF(CONV.LE.1.500000) GO TO 14 J=J+1 AY=ABS((AFWT(1)-AFWT(1-1))/2.) IF(PD(1)-Pu(1)) 30,30,40

```
30 AFAT(I)=AFWT(I)+AY
          00 TU 060
      40 AFAT(I)=AFAT(1)-AY
     660 AWI (LL+I-1) = AFWT(I)
          IF (J.GT.20) GO TO 17
         60 TU 16
       14 AWI(LL+I-1)=AFWT(I)
         1F(I.GE.U) GO TO 17
         SVH=SVP+WIG(I)**2
         SDS=SDS+(AFWT(I)-WIG(I))**2
         J=1
         60 TO 500
       17 SVP=SVP+WIG(I)**2
         SUS=SUS+(AFWT(1)-W1G(1))**2
          J=1
          1F(IS.UE.3) GO TO 000
          VP=(SVP/1)**0.5
          US=(505/1) **0.5
          AA=US
         1F(AAA.LL.1000.000) GO TO 500
          L=LL+1-1
          15=15+1
          60 TO 18
      SUU CONTINUE
      600 WRITE (0,045)
          WRITE (U, U4U)
          WRITE(0,047)
          WRITE (0,040)
          WRITE (0,049)
          WRITE (0,050)
          WRITE (0,051)
          WRITE(0:052)
          WRITE (0,125)
          INNIN=11+2
          INH-I-I
          00 720 KK=1. INN
          00 721 K=1.NNN
          1F(K.Ew.1) GO TO 722
          ARITE (0, 723)K, AUG(K, KK), AHIO(K, KK), ATW(K, KK), ATVA(K, KK)
          60 TU 121
      722 WRITE(0,120)KK+AFWT(KK)+PD(KK)+K+AUG(K+KK)+AHIO(K+KK)+ATW(K+KK
         1) +ATVALK+KN)
      721 CONTINUE
      720 CONTINUE
          NUI=NTT-2
          00 TU (236,239) . KAN
      239 CALL PLOIS(0.0.2)
          CALL AVISO( 'IFN')
          CALL FACTOR(0.00)
          CALL PERFIL (AUG, AHIO, ATW, ATVA, AFWT, NUT, IFL)
          CALL FINAL
      238 60 TO 99999
     1000 WRITE(0,136)
    99999 CONTINUE
      999 STUP
         ENU
    COMPILATION:
                   NO DIAGNOSTICS.
```

```
SUDRUTINA DE REGRESION POLINOMIAL (METODO DE MINIMOS CUADRA-
C
      UOS). EFECTUA LA REGRESION DE LOS DATOS DE GASTO DE FLUIDO
C
      POR TUDO, JENERANDU UN MEJOR ESTIMADO Y AL FINAL LA CURVA DE
С
      UISTRIBUCION DE FLUJO EN EL CABEZAL DE ACUERDO A LOS CRITE -
C
      RIUS DE CONVERGENCIA PRESENTES.
C
      SULRUUTINE REGCU
      INTEGER T
      COMMUN /RC3/ T(110), WT(110), N, F, G, O, H, FWT(110), S2DWT
      ALIEN
      ST=0.
      STEEU.
      510=0.
      ST4=0.
      515=0.
      STO=U.
      SW1=0.
      ST.T=0.
      STZWI=U.
      STOWIEU.
      S2LWI=U.
      00 5 I=1 14
      5T=ST+1(1)
      ST2=ST2+T(1)**2
      5T5=ST5+1(1)**5
      5T4=5T4+T(1)**4
      ST5=ST5+T(1)**5
      STU=ST0+T(1) **0
      SW1=SWI+WT(I)
      STWT=STW1+I(I)*WT(I) .
      ST2WT=ST2WI+T(1)**2*#T(1)
      ST3WT=5T3wT+1(1) **3*wT(1)
      UNU=S12*(S14*ST6-ST5**2)=ST3*(ST3*ST6-ST4*ST5)+ST4*(ST3*ST5-ST4**2
     1)
      UET1=AN*UNU
      U03=5T*(ST+*ST0-ST5**2)-ST3*(ST2*ST6-ST3*ST5)+ST4*(ST2*ST5-ST3*ST4
     1)
      UET2=ST+UUS
      UE13=ST2*(ST*(ST3*ST0=ST4*ST5)=ST2*(ST2*ST6=ST3*ST5)+ST4*(ST2*ST4=
     1510**21)
      DET4=S13*(ST*(ST3*ST5=ST4**2)=ST2*(ST2*ST5=ST3*ST4)+ST3*(ST2*ST4=S
     113++2))
      DET=DET1-DET2+DET3-DET4
      +1=SNT+UNU
      F2=ST*(STWT*(ST4*ST6=ST5**2)=ST3*(ST2WT*ST6=ST3WT*ST5)+ST4*(ST2WT*
     15T5-5T5W1+5T4))
      +3=ST2*(STwT*(ST3*ST0=ST4*ST5)=ST2*(ST2WT*ST6=ST3WT*ST5)+ST4*(ST2W
     1T*5T4-5T3W(*5T3))
      +4=S[3*(ST#T*(ST5*ST5=ST4**2)=ST2*(ST2WT*ST5=ST3WT*ST4)+ST3*(ST2WT
     1*ST4-ST3#T*ST3))
      +=(F1-F2+F3-F4)/ULT
      01=AN*(ST#T*(ST4*ST6=ST5**2)=ST3*(ST2WT*ST6=ST3WT*ST5)+ST4*(ST2WT*
      15T5-ST3WT*5T4))
      02=SWT +DOS
      G3=ST2*(ST*(ST2WT*ST6-ST3WT*ST5)-STWT*(ST2*ST6-ST3*ST5)+ST4*(ST2*S
      113wT-ST3*ST2WT))
      04=ST3*(ST*(ST2WT*ST5-ST3WT*ST4)-STWT*(ST2*ST5-ST3*ST4)+ST3*(ST2*S
      1T3wT-ST3*ST2WT))
      G=(G1-G2+G3-G4)/DET
      0=(ST3*(SwT-F*AN-G*ST)-ST2*(STWT-F*ST-G*ST2))/(ST3**2-ST4*ST2)
      H=(SWT-F*AN-G*ST-0*ST3)/ST2
```

	rWT(I)=F+G*T(I)+H*T(I)**2+0*T(I)**3
	320WT=320WT+(FWT(I)-WT(I))**2
5	CONTINUE
	RETURN
	ENU
c::::	***************************************

COMPILATION: NO DIAGNOSTICS.

```
SUBRUTINA PARA LA DETERMINACION DE COEFICIENTES DE TRANSFEREN-
CIA DE CALOR, TEMPERATURAS DEL FLUIDO DE PROCESO Y TEMPERATU-
C
C
C
      RAS DE PARED.
       VARIABLES PRINCIPALES:
C
              TEMPERATURA DEL FLUIDO AL INICIO DEL INTERVALO (GF)
TEMPERATURA DEL FLUIDO AL FINAL DEL INTERVALO (GF)
C
      TVI
      TVO
              LONGITUD DEL INTERVALO (FT)
C
      AL
C
      15
              TEMPERATURA EXTERNA EN EL INTERVALO (GF)
              CUEFICIENTE GLOBAL DE TRANSF. DE CALOR (BTU/HRFT2GF)
С
      U
              RESISTENCIAS A LA TRANSFERENCIA DE CALOR POR INCRUS-
      RUE
C
C
      RDT
              TACION.
C
      RN
      SUBROUTINE COTVTW (CONT, BWTC, BDMA, BWTT, BDMI, BPME, J, BRE, T, W, D)
      INTEGER CONT. TEST
      REAL JAT
      DIMENSION CONT(10)
      COMMON /RC2/ NIFL, NN, NI, BTVA1, NTMH, TEST(
     110), BATEX(10,3), BRDE, BRDT, BRW, BAUG(10, 100), PAHIO(10, 100), PATW(10,
     2100) BATVA(10,100)
      COMMON /RC21/ BCT, BPR
      IF (NIFL.LE.1) GO TO 1
      L2=NN+2
      60 TU 2
    L L2=3
    2 00 100 J=1.L2
      IF (NI.LE.1.AND.J.LE.1) GO TO 3
      IF (NI.LE. 1. AND. J. GT. 1. AND. J. GE.L2) GO TO 4
      IF(NI.LE.1.AND.J.GT.1.AND.J.LT.L2) GO TO 5
      IF(J.GT.1.AND.J.GE.L2) GO TO 6
      IF (J.GT. 1. AND. J.LT.L2) 60 TO 5
      T=BATVA(J,NI-1)
      GO TO 7
    3 T=STVAL
      H=HWIC
      D=DMA
      GO TU 9
    4 WEDWIC
      DEODHA
      GO TU O
    5 A=OWIT
      D=3DM1
    3 TEGATVA(J-1,NI)
      GO TO 9
    S ITUEBATVA(J-1,NI-1)
      TCA=DATVA(J.NI-1)
      TTU1=BATVA(J-1,NI)
      TRES=TTU1+BWTC*(TCA-TTU)/(BWTC-PWTT)
      T=TRES
    7 N=dwic
      DEODMA
    9 BTVIET
      BTVO=BTVI
      CALL PROPIE(W, D, BTVI, BPME, BTVO, BCP, BVISS, BRE)
   3J GO TU(10,20,20), NIMH
   20 CONTINUE
   10 IF (BRE.GE.2000 .. AND. BRE.LE.8000.) GO TO 11
      IF (BRE. CE. 2000 .. AND. BRE. GT. 8000.) GO TO 12
      TEST(J)=1
      00 TU 555
   11 X=3A(EX(J,2)/D
```

*		0=(ALOG(BRE)-7.65)/2.66
*		B=7.04/(5.52+ALOG(X))
*		Y=0**B
*		JHT=EXP(0,33*ALOG(X)*(Y-1,)+(1,42*Y)+3,1447)
*		TEST(J) = 2
*		GO TO 13
*	12	JHT=0.022*3RE**0.8
*	13	HIU=JHT*(BCT/D)*BPR**0.4
*		$HO=BATE_X(J,3)/(BATE_X(J,1)-T)$
*		TEST (J)=2
*		C) 17 (J) = 0
*		TW=H0*(SATEx(J,1)-T)/(HI0+H0)+T
*		3VISCR=495.E-4
*	17	3TR=TW/(1.8*647.31)
*		BV1S=0.4725541*BTR**0.8181473*BVISCR*2.42
*		BBVISS=6VIS/3600.
*		HIO=HIO*(BVISS/BBVISS)**0.14
*		5T%=+10*(BATEX(J,1)-T)/(HI0+H0)+T
*		C=ABS(BTW-TW)
*		IF(C+LE.2.000000)GO TO 14
*		$\Gamma_n = B \Gamma_W * (B T W / T W)$
*		CONT(J) = CONT(J) + 1
*		GO TO 17
*	14	U=1./(BEDE+BRDT+1./HI0+1./H0+BRW)
k		BAUG (J+(I)=U
k		BAHIO(J,NI)=HIO
ĸ		BATW (J, pI) = TW
¥ .		IF(NI.GT.1.AND.J.GE.L2) GO TO 15
×		0T0X=3.1416+D+BAUG(J,NI)*(BATEX(J,1)-T)/(W+BCP)
k .		DELX=BATEX(J+2)
ĸ		T=T+DTD _X *DELX
k i	13	BATVA(J,MI)=T
×	100	CONTINUE
k	555	RETURN
k		
ĸ	C:::::	

F CUMPILATION:

NO DIAGNOSTICS.

```
SUBRUTINA PARA EL CALCULO DE CAIDAS DE PRESION FRICCIONAL Y
0
      DE MUMENTUM HACIENDO USO DE METODOS TANTO RIGUROSOS COMO EM-
6
Ĺ
      PIRICOS.
      VARIABLES PRINCIPALES:
C
C
      ITC
             INDICE DE TIPU DE CALCULO DE CAIDA DE PRESION
C
             1: LABEZAL
             2: TUBO+CUNTRACCION
C
             3: IUBO RECTO
L
             4: IUBO+EXPANSION
L
C
             5: TUBO+CONTRACCION+EXPANSION
             CALUA DE PRESION CABEZAL INFERIOR (PSI)
CALUA DE PRESION CABEZAL SUPERIOR (PSI)
      PUL
C
6
      PDS
L
      PUIP
             CAIDA DE PRESION TRAMO RECTO (PSI)
L
      PUCO
             CALLA DE PRESION CONTRACCION (PSI)
             CAIDA DE PRESION EXPANSION (PSI)
L
      PULX
L
             MASA VELOCIUAU (LB/SEGFT2)
      12
      ٧I
L
             VELUCIDAD A LA ENTRADA DEL INTERVALO (FT/SEG)
L
      VO
             VELUCIDAD A LA SALIDA DEL INTERVALO (FT/SEG)
6
             FACTOR DE FRICCION ( DEFINICION DE FANNING)
      r
      SULRUUI INE CAPRE
      COMMON /RCI/ 11M, ATVI, ATVO, AAL, AD, AW, APME, AU, ATS, IITC, IM, APDI,
     1APUTR, APUS, APUCO, APDEX, APTEC, AWTC, ADMA, AWTT, ADMI, ACK (8,4)
      COMMUN /KC11/ AG, AVO, AVI, AF, AVE, ADENI,
     1ADENU ADENP AVP
      CALL PROPIL (AW, AU, ATVI, APME, ATVO, ACP, AVISS, ARE)
      50 TU (10,10,20), IIM
   10 CD=ABS(AIVI/ATVO-1.)
      1F(CD.0T.0.4) 60 TO 1
      CPU=- (AG+ (AV0-AV1)/32.2)+2.*AF*AVE*AAL*AG**2/(32.2*AD)
      60 TU 3
    1 K=ABS(ATV1-ATVO)
      1F(R.GI.SU.000) GO TO 2
      CPC=-(AG+*2*ALUG(AUENI/ADENO)/(32.2*ADENP))+2.*AF*AAL*AG**2/
     1(32.2*AD*AUENP)
      60 TO 3
    2 CPC=-(AG*(AVO-AVI)/32.2)+(1800.*1.*10.72/(32.2*18.016))*AF*ACP*
     1AG**3/(APME*AU)*(ATV1-ATV0+ATS*ALOG((ATV1-ATS)/(ATV0-ATS)))
    S IF(IITC.LE.1) 00 TO 4
      APUTR=CPL
      60 TU 0
    4 IF(IM.LE.1) 60 TO 5
      APUS=CPC
      00 TU 30
    5 APUI=CHC
      60 TO 50
   20 AG1=4.*A.TL/(3.1410*3600.*ADMA**2)
      NG2=4.*(ANTC-ANTT)/(3.1416*3600.*ADMA**2)
      LPM=4.*AF*AAL*AG**2/(2.*32.2*AD*ADENP)+ABS((AG1**2-AG2**2)/
     1AULNP)/(2.+32.2)
      CP1=4.*AF *AAL*AG**2/(AD*2.*32.2*ADENP)
      IF(IITC.LL.1) GO TO D
      APUTR=CPT
      60 TU 0
    6 IF(IM.LE.1) 60 TO 7
      APUS=CPM
      00 TO 50
    7 APUI=CPM
      60 TO 50
    8 GO TU(50,30,40,60,30),IITC
   30 GO TU(70,80,80), IIM
```

```
BU Y=AWTT/AWTC
    A=ADMI/AUMA
    UO 9 1=1.5
     1F(X-ACK(1,1)) 9,90,100
  9 CONTINUE
    J=5
    60 TO 11
  90 J=1
    KJ=0
     00 TO 11
 100 J=1-1
    KJ=1
  11 AK1=ACK(J,2)+ACK(J,3)*Y+ACK(J,4)*Y*Y
     1F(KJ.LE.0) GO TO 12
     AK2=ACK (J+1+2)+ACK (J+1+3)*Y+ACK (J+1+4)*Y*Y
     AK= (AK1+AK2)/2.
  12 AK=AK1
     APUCU=-AK*AUENP*AVP**2/(2.*32.2)
     00 TO 13
  70 APUCO=-AVL*AG**2/(4.*32.2)
  15 IF(IITC.LT.5) GO TO 200
     60 TO 14
  OU APUCO=U.
     Y=AWTT/ANTL
     A=ADMI/ADMA
  14 00 TU(300,400,400), IIM
 400 00 15 1=0.8
     IF(X-ACK(I.1)) 15.500.600
  15 CONTINUE
     J=0
     60 TO 16
 500 0=1
     NJ=0
     00 TU 16
 600 J=1-1
     NJ=1
  10 AK1=ACK(J,2)+ACK(J,3)*Y+ACK(J,4)*Y*Y
     AK2=ACK(J+1+2)+ACK(J+1+3)*Y+ACK(J+1+4)*Y*Y
     AK=(AK1+AK2)/2.
  17 AK=AK1
     APUEX=#K*AUENP*AVP**2/(2.*32.2)
     60 TU 18
 300 APLEX=AVE*AG**2/(2.*32.2)
     60 TO 18
-200 APLEATU.
     00 TO 18
  40 APUCUEU.
     APUEX=0.
  10 APTEC=APUTK+APUCO+APDEX
  50 KETURN
     ENU
```

COMPILATION:

NO DIAGNOSTICS.

```
SUBRUTINA PARA LA DETERMINACION DE LAS PROPIEDADES FISICAS
C
     DEL FLUIDO Y NUMEROS ADIMENSIONALES REQUERIDOS
C
C
     VANIABLES PRINCIPALES:
C
     VE
           VOLUMEN ESPECIFICO PROMEDIO (FT3/LB)
L
     UEN
           UENSIDAD PROMEDIO (LB/FT3)
L
     CP
           CAPACIDAD CALORIFICA (BTU/LB)
С
     VP
           VELOCIDAD PROMEDIO (FT/SEG)
C
     RE
           NUMERO DE REYNOLDS
C
     PR
           NUMERO DE PRANDTL
     SUDROUTINE PROPIE(CW, CD, CTVI, CPME, CTVO, CCP, VISS, CRE)
     COMMON /RC11/ CG.CVO.CVI.CF.CVE.CDENI.CDENO.
    1LDENP,CVP
     COMMON /RC21/ CCT.CPR
     CG=4.*CW/(J.1416*3000.*CD**2)
     CVEI=10./2*CTV1/(18.016*CPME)
     CVL0=10.72*CTV0/(18.016*CPMF)
     CVL=(CVE1+CVE0)/2.
     CDENI=1./CVEI
     CDENG=1./CVEO
     CULNP=1./CVE
     CVU=CG+CVEU
     CV1=CG*CVE1
     CVF=(CVO+CVI)/2.
     CTVP=(CTVI+CTVO)/2.
     XTVP=CTVP-460.
     YTVP=(XTVP-32.)/1.8
     CCF=(7.7+0.04594E-2*YTVP+0.2521E-5*YTVP**2-0.8587E-9*YTVP**3)
    1/10.010
     CT=(XTVP**2-600.*XTVP+8.E4)*0.0132/61824.-(XTVP**2-432.*XTVP
    1+128.E2)*0.0159/33600.+(XTVP**2-232.*XTVP+6.4E3)*0.0199/73600.
     VISCH=495.6-4
     IR=CIVP/(1.8*647.31)
     v15=0.4725541*TR**0.8181473*VISCR*2.42
     VISS=VIS/3000.
     CPR=CCP+VIS/CCT
     CRL=CD*CVP*CDENP/VISS
     1F(CRE.LE. 30000.) GO TO 3
     VCNE=CRE**-0.20
     LF=0.046+LKE**-0.20
     00 TO 5
   3 VCKE=CKE**-0.25
     CF=0.079*CKE**=0.25
   5 REIURN
     ENL
```

COMPILATION:

NO DIAGNOSTICS.

C::::: C C C C	SUBRUTINA PARA GRAFICAR LOS PERFILES RESULTADO DE LA SIMULA- CION. LOS PERFILES YA MENCIONADOS EN EL PROGRAMA PRINCIPAL MULSTRAN SU APLICACION EN EL DISENO TERMICO Y MECANICO DEL EQUIPO.
	SULROUTINE PERFIL (AUG,AHIO,ATW,ATVA,AFWT,NUT,IFL) DIMENSION AUG(10,100),AHIO(10,100),ATW(10,100),ATVA(10,100) .AFW1(110),X(100),Y(100),G(10,100)
114	FORMAT(4(5A)E14.7)/)
110	FORMAT(7(2x)F3(1)/)
1000	+ OKMAT(2(5X+E14.7)/)
	rv=ivUT
	60 TU (253,254),1FL
255	
250	00 TU 250
250	1Pr RE=5
200	UO 2 J=1, IPERF
	00 1003 N21=1,100
	Y(1,21)=0.0
1005	CONTINUE
	U0 6 1 1 - 1 - WIT
5	Y(L1)=AFWT(L1)
U	CONTINUE
	UO TU 17 .
10	00 7 L2=1, NPROB
	DO = B = 1 (1 2 - 1 3)
6	CONTINUE
7	CONTINUE
	50 TU 17
15	U0 9 L4=1, NPROU
	DO 11 L5-1(NO)
11	CONTINUE
	COLTINUE
	00 TU 17
20	UO 12 L6=1,NPR0B
	5(16+17)=24+10(16+17)
15	CONTINUE
12	CONTINUE
	60 TO 17
25	UO 14 L8-LINPROB
	G(18,19) = AUG(18,19)
10	CONTINUE
14	CONTINUE
17	1F(J.GT.1) GO TO 70
70	10 10 19 1CASO=NPRO+1
79	U0 99999 IPR05=1,ICAS0
	1F(J.GT.1) GO TO 19
	UO 77 LLL=1+NUT
77	
//	60 TO 21
19	IF(IPROB.GT.1) GO TO 24

```
A(1)=1.0
    x(2)=95.U
    D=6(1.1)
    A=0(1,1)
    UO 31 NN=1.NPROB
    UO 32 I=1, NUT
    U=AMAX1(G(NN.I),A)
    C=AMIN1 (G(NN,1),D)
    1F (A.GL.B) GO TO 37
    A=b
3/ 1F(D.LL.C) GO TO 32
    J=C
JE CONTINUE
SI CONTINUE
    1(1)=D
    1(2)=A
    00 TU 27
24 00 1 L=1 .NUT
    X(L)=L
  1 CONTINUE
    15=IPRUB
    16=15-1
    00 18 J10=1.NUT
    Y(J10)=G(10,J10)
 18 CONTINUE
27 IF (IPROB . NE. 1) GO TO 99
21 00 TU (111,112,113,117,118),J
111 CALL PLOT(1.0,-40.0,-3)
    00 TU 22
112 CALL PLOT(0.0,20.0,-3)
    60 TO 22
115 CALL PLOT(17.0,-40.0,-3)
    00 TU 22
117 CALL PLOT(0.0,20.0,-3)
    00 TU 22
110 CALL PLOT(17.0,-40.0,-3)
22 CALL PLOT(0.0,2.5,-3)
    CALL PLOT (0.0,18.106,2)
    LALL PLOT (14.106, 10.160, 2)
    CALL PLOT (14.106.0.0.2)
    CALL PLOT(0.0.0.0.2)
    UALL PLOT (1.085,1.083,-3)
    LALL PLOT (0.0.16.0.2)
    LALL PLOT (12.0, 16.0,2)
    CALL PLOT (12.0,0.0,2)
    LALL PLOT (0.0.0.0.2)
    VALL PLOI(1.0,1.0,-3)
    LALL MUIMP(9.012.0,1.010.0)
    00 TU (30, 35, 40, 45, 50) .J
SU CALL STMBOL (1.0,14.5,0.28,31HPERFIL DE DISTRIBUCION DE FLUJO,
   10.0.01)
    00 TO 42
30 CALL SYMBUL (1.0,14.5,0.28,27HPERFILES DE TEMP. DEL VAPOR,
   10.0.271
   00 TU 41
40 CALL SYMBUL (1.0,14.5,0.28,26HPERFILES DE TEMP. DE PARED:0.0,26)
    00 TO 41
45 CALL STMULL (1.0,14,5,0.28,30HPERFILES DE COEF. INT. (TUBOS),
   10.0.30)
    00 TO 41
50 CALL SYMBUL (1.0,14,5,0.28,24HPERFILES DE COEF. GLOBAL,0.0,24)
```

. 41	CALL SYMBOL(2.5,13.5,0.14,20H1. CALL SYMBOL(2.5,13.0,0.14,17H2. G0 T0 (257,258).(E)	ZONA 1 ZONA 2	(CABEZAL).0.0 (TUBO).0.0.1	0,20) 7)
250	CALL SYMBOL(2.5,12.5,0.14,17H3. CALL SYMBOL(2.5,12.0,0.14,17H4. CALL SYMBOL(2.5,11.5,0.14,20H5.	ZONA 3 ZONA 4 ZONA 5	(TUBO),0.0,1 (TUBO),0.0,1 (CABEZAL),0.	7) 7) 0,20)
017	00 TO 42			
251	CALL STMBUL(2.3,12.5,0.14,20H3.	ZONA 3	(CABEZAL) .0.),20)
	CALL SCALF (Y, 14. 0, N, +1)			
	CALL AXIS(0.0.0.0.11HTUBO NUMER	0,-11,10	.0.0.0.X(N+1)	X(N+2))
	00 TO (60,05,70,75,80),J			
00	CALL AXIS(0.0,0.0,19HGASTO VAPO	R (LB/HR),+19,14.0,90	.0,
65	CALL AXIS $(0,0,0,0,19)$ TEMP. VADO	2 160 0	.+10.14 0.00	0.
	LY (N+1) , Y (N+2))		//.19/14.0/90	
	60 TO 01			
70	CALL AXIS(0.0,0.0,19HTEMP. PARE	GR. R	,+19,14.0,90	.0.
	$1Y(N+1) \cdot Y(N+2)$			
-7				
75	(ALL AXIS(U,U,U,U,S/HCOEF . INT.)	TUBOS (BTU/(HR*FT**2*	¢G•F)),
	00 TO 01			
80	CALL AXIS (U.0, U. U. STHCOEF. GLOB	AL (BTU/	(HR*FT**2*G.F)),
	1+33,14.0,90.0,Y(N+1),Y(N+2))			
61	WRITE(0,114)X(N+1),Y(N+1),X(N+2) + Y (N+2)		
	"RITE(0,1000)(Y(I),I=1,2)			
	IF (J.GI.I) GO IO 83			
8.5	IF(IPROB-NE-1) GO TO 99			
	GO TU 99999			
99	CONTINUE			
	CALL LINE (A,Y,N,1,U,O)			
	wRITE(0,115)(X(I),I=1,NUT)			
quaquu	CONTINUE			
2 2 2 2	CONTINUE			
	KETURN			
	ENU			
C::::				::::::

COMPILATION:

NO DIAGNOSTICS.

· 100//P+C915