

Universidad Nacional Autónoma de México

Facultad de Química

24.9

EXAMENES PROFESIONALES PAC. DE QUIMICA

ESTUDIO A NIVEL LABORATORIO DE UN MINERAL DE HIERRO PARA LA OBTENCION DE UN CONCENTRADO

T E S I S

JOSE RAUL ISAAK VALENZUELA

INGENIERO QUIMICO METALURGICO

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

I INTRODUCCION Y OBJETIVOS	
II CARACTERIZACION MINERALOGICA	ļ
II.1 ESTUDIO DE MICROSCOPIA OPTICA4	\$
II. 1.1 DESCRIPCION HEGASCOPICA4	,
II.1.2 DESCRIPCION MICROSCOPICA5	į
II.2 ANALISIS QUINICO CUANTITATIVO5	5
II.3 RECONSTRUCCION MINERALOGICA	5
II.4 ANALISIS GRANULOHETRICO	,
II.5 DENSIDAD DEL HINERAL	3
III DESARROLLO EXPERIMENTAL	
III.1 NOLIENDA	į
III.2 SEPARACION MAGNETICA	1
111.3 FLOTACION20	ļ
III.4 REACTIVOS UTILIZADOS	ł
III.5 RESULTADOS EXPERIMENTALES	F
IV CONCLUSIONES72	

CAPITULO I

INTRODUCCION

.

OBJETIVO

El procemamiento de minerales a nivel mundial, se está enfrentando al problema de obtener concentrados comerciales a partir de menas cada vez más pobres.

Esta situación se presenta debido al agotamiento de los yacimientos minerales de alta ley sean óxidos o sulfuros, lo que ha obligado al mejoramiento de los actuales procesos de beneficio y al desarrollo de algunos nuevos, que aprovechen al máximo posible los recursos minerales de cada nación.

En el renglón de los minerales de hierro, México no cuenta con los grandes recursos de otros países, una investigación del Consejo de Recursos Minerales realizada en el año de 1977, estimó que las reservas nacionales eran aproximadamente de 550 millones de toneladas (con una ley media de Fe de 53.5%), esto es entre reservas positivas y probables; basandose en la

capacidad instalada de las principales plantas de beneficio (aproximadamente 15 millones de toneladas/año), el autor calcula que las reservas garantizan el sumínistro de mineral de hierro para unos 25 o 30 años.

Adicionalmente, se dispone de minerales de hierro de baja ley, producidos por las operaciones de explotación minera a tajo abierto, al extraer los minerales de alta ley.

La acumulación durante años de estos minerales ha dado origen a lo que se conoce como terreros; sus leyes, aunque marginales, , el gran volumen de los mismos, dan idea de la cantidad de hierro presente en dichos terreros, constituyendo esto, un motivo más que suficiente para intentar su recuperación.

El presente trabajo tiene como objetivo la obtención de un concentrado siderúrgico comercial a partir de un mineral de terrero, tomando como base las leyes de concentrados de Fe producidos en el país, este debe reunir las siguientes especificaciones:

64.00%	mínimo	de	Fe.
0.15%	máximo	de	۴.
0.10%	maximo	de	s.
10.00%	máximo	de	insoluble.

CAPITULO II

CARACTERIZACION

MINERALOGICA

El estudio de caracterización mineralógica efectuado a una muestra de mineral, permite obtener un conocimiento rápido y útil acerca de las propiedades de la muestra tales como: presentación y aspecto físico de la muestra, composición, especies minerales presentes, distribución de tamaños y densidad. El siguiente es el estudio de caracterización realizado a la muestra de mineral de terrero.

II.1.- ESTUDIO DE MICROSCOPIA Optica

II.1.1. DESCRIPCION MEGASCOPICA:

A simple vista se puede apreciar que la muestra de mineral

está constituida de fragmentos de roca color negro a gris acerado con partes blancas y amarillas, cubiertas parcialmente por mínerales arcillosos de color rojizo.

II.1.2. - DESCRIPCION MICROSCOPICA:

La observación al microscopio revela que los fragmentos de roca color negro son cristales de magnetita y de hematita; los blancos, cristales de cuarzo y los de color amarillo son cristales de apatita; los cuales se encuentran formando agregados cementados por cuarzo, calcita y minerales arcillosos. Parte de la apatita se encuentra ocluida dentro de cristales de hematita.

II.2. - ANALISIS QUIMICO

LOB elementos de interés para el objetivo del estudio, se analizaron cuantitativamente y los resultados se muestran a continuación:

ELENENTO	LEY (%)
Fe	50.14
P	1.10
S	indícios
SiOm	14,20
AlzO.	5.37
CaO	2.75
MgO	0.41
Na	1.13
к	0.88

II.3. - RECONSTRUCCION

MINERALOGICA

En base a las observaciones megascópicas y microscópicas realizadas y al análisis químico reportado, las especies

minerales presentes en la muestra, así como sus porcentajes estimados de ocurrencia, se muestran en el siguiente cuadro:

ESPECIE MINERAL % DE OCURRENCIA

Hematita y/o Goethita	58.4
Magnetita	10.2
Cuarzo	7.9
Apatita	6.0
Calcita	1.5
Minerales arcillosos	13.6
Feldespatos	0.5

II.4. - ANALISIS GRANULOMETRICO

La granulometría de la cabeza, así como las lejes y la distribución metalúrgica de Fe, P y silice en cada fracción, se muestran en el cuadro no. 1.

La figura número i muestra la gráfica del % acumulado negativo vs. abertura de la malla (en micrómetros), a partir de la cual se determina el tamaño de partícula al 80% y que es de 2,750 micrómetros (apro:imadamente -6 mallas).

La observación al microscopio de los productos del an<mark>álisis</mark> granulometrico, revela que el mineral se encuentra liberado en la fracción -100 +150 mallas (~149+106 micrometros).

II.5. - DENSIDAD DEL MINERAL

La determinación de la densidad de la muestra se realizó utilizando el método del picnómetro con alcohol y mineral molido a -65 mallas, obteniéndose un valor de 3,95 g/cc.

La información obtenida en este capítulo, proporciona una orientación sobre los posibles métodos de beneficio que pueden emplearse para la concentración de la muestra, esto se discute en el siguiente capítulo.

PRO	DUCTO	AKET	ITURA	PESO	1	LEY	ES	[]]	311	TRIBUCIO	W (1)
(KA		INICRO	HETROSI	(5)	ACUM.	fŧ	P	\$102	fe	7	Sidu
-3/8*	11/4*	-9500	16300	2.1	100.0	53,80	0,60	11.00	2.3	2.2	1.5
-174*	+ 4	-6300	+4760	4.6	57.5	54.50	0.40	12.50	5.0	3.2	3.6
- 4	• •	-4760	+2380	17.0	93.9	53,30	0.30	12.70	18.2	9.0	14.4
- 8	+ 14	-2380	•1180	16.5	76.3	51,90	0.40	14.40	17.5	11.9	16.3
- 14	+ 28	-1180	+ 600	15.4	39.4	50.60	0.40	14.80	15.6	10.8	15.2
- 28	• 35	- 600	+ 420	6.5	44.0	51.00	0.60	15.50	7.0	7.3	2.1
- 35	+ 48	- 420	1 300	6.3	37.1	51.40	0.40	14.30	4.5	4.4	6.0
- 48	1 65	- 300	+ 210	7.1	30.8	50.80	0.30	13.60	7.2	10.0	٤.5
- 65	+100	- 210	+ 150	4.2	23.7	51.60	4.80	12.00	4,3	5,9	3.6
-100	+150	- 150	+ 105	2.5	18.5	51.40	0.40	13.20	3.6	3.7	3.1
-150	+200	- 105	ŧ 25	2.9	16.0	51.10	1.75	12.70	7.0	4.2	1.7
-200	+270	- 75	• 53	3.8	14.0	59.70	1.40	13.10	3,8	10.7	3.3
- 270	+325	- 53	+ 45	1.3	10.2	47.50	1.80	15,00	1.2	4.1	1.3
-325		- 45		6.9	8.9	32,80	0,60	27.10	5.8	17.6	16.2
				165.0					100.0	100.0	100.0

165.0

LEY CALCULADA

50.08 0.57 15.00

CUADRO No. 1 GRANULOMETRIA Y DISTRIBUCION METALURGICA DE LA CABEZA.

Ċ,

ö

EXPERIMENTAL

DESARROLLO

CAPITULO III

Varios métodos de beneficio, se han aplicado a los minerales de Fe para su concentración, los más utilizados van desde la simple trituración y cribado para los minerales en trozo de alta ley, hasta los que necesitan molienda fina para la liberación total de especies para concentrarlos por flotación, pasando por la separación en medio denso, concentración gravimétrica en espirales, pulsadoras y mesas concentradoras y la separación magnética seca y húmeda para minerales con tamaños menores a 5 cm (2 pulgadas).

La utilización de uno o la combinación de varios de estos métodos, depende de muchos factores; para este estudio los factores de interés son: mineralogia de la muestra, ley de Fe en cabeza, cantidad y tipo de las impurezas presentes, granulometría original y tamaño de liberación.

Como se determinó en el capitulo II, este mineral requiere de molienda fina para tener liberada la hematita de la apatita, de acuerdo con lo expuesto al principio de este capítulo, en esta tesis se emplearon los métodos de separación magnética en húmedo a baja intensidad y flotación, el desarrollo de la misma se realizó de acuerdo a las siguientes etapas:

MOLIENDA.

Determinación del tiempo de molienda para lograr la liberación de los minerales de hierro de los de ganga, específicamente de los de apatita.

SEPARACION MAGNETICA.

Recuperación de los minerales ferromagnéticos presentes en la muestra, utilizando un separador magnético en húmedo de tambor de baja intensidad.

FLOTACION.

Realización de una serie de pruebas de flotación en las que se intenta obtener concentrados de impurezas, es decir, de apatita y de cuarzo, y/o un concentrado de fierro.

Estas pruebas de flotación se aplicaron tanto a las colas de la separación magnética (material no magnético), como al mineral sin separación magnética previa.

En esta etapa se usó como colector una amina grasa alifática de 18 carbonos soluble en agua (flotación catiónica) para flotar cuarzo, y colectores del tipo ácido carboxílico (ácido graso de 18 carbonos) para flotar apatita y fierro, y otro del tipo sulfonato de petróleo soluble en agua para flotar fierro (flotación aniónica).

Tomando en cuenta el análisis químico de la cabeza y ias especificaciones indicadas en la introducción, los elementos de control para los fines del estudio serán Fe, P y SiO₂, ya que la muestra no contiene azufre.

Todas las gráficas y los cuadros en donde se reportan las granulometrías, balances metalúrgicos y las condiciones de operación de cada una de las pruebas realizadas, se muestran en el punto III.5 de resultados experimentales localizado al final de este capítulo.

III.1. - MOLIENDA.

El mineral se trituró 100% a -14 mallas (-1180 micrómetros) para ser utilizado en las pruebas a realizar durante el estudio.

El análisis granulométrico de este material, así como las leyes y la distribución de Fe, $P > SiO_a$ en cada fracción, se muestran en el cuadro número 2.

El tamaño al 80% acumulado negativo es de 720 micrómetros (aproximadamente a -20 mallas) y se determinó de la gráfica de % acumulado negativo vs. abertura de la malla (fig. no. 2).

El equipo utilizado para realizar la molienda de 1 Kg. de mineral, fué un molino de bolas de laboratorio con las siguientes características:

DIANETRO	20.3 cm
LONGITUD	20.3 cm
CARGA DE BOLAS	12.2 Kg
VELOCIDAD	72 r.p.m.

La carga de bolas tiene la siguiente distribución:

DIAMETRO	DE	BOLA	No.	DE	BOLAS	PESO	DE	BOLAS
(cm)	(p	11g.)					(g))
3.175	1	1/4		31		4,	026	5
2.858	1	1/8		Э1		2,	946	3
2,540	1			31		2,	080)
2,223		7/8		31		i,	394	3
1.905		3/4		31			876	b
1.588		5/8		54			87 <i>6</i>	5
				9 pr 34 14	•	許動群	1 36 36 W	1 102 103
				209		12,	200)

La dilución empleada fue de 0.75:1 (57.14% sólidos).

El tamaño de liberación, determinado en el capítulo anterior, en base a observaciones realizadas al microscopio, es de -100 mallas (-14? micrómetros). Para alcanzar este tamaño se realizó una primera molienda a 25 minutos, su análisis granulométrico se muestra en el cuadro número 3.

El tamaño al 80% acumulado negativo, determinado a partir de la gráfica de % acumulado negativo vs. abertura de la malla (fig. no. 3) es de 58 micrómetros (aproximadamente -200 mallas).

Dada la finura alcanzada en esta molienda, se disminuy**ó el** tiempo a 20 minutos. Los resultados de esta molienda se muestran en el cuadro número 4.

La gráfica de % acumulado negativo vs. abertura de la malla (fig. no. 4) indica que el tamaño de partícula al 80% acumulado negativo es de 83 micrómetros (aproximadamente -150 mallas).

Este tiempo de molienda parece ser el adecuado. Para comprobarlo se realizó una tercera molienda a 18 minutos; los resultados de esta se reportan en el cuadro número 5.

El tamaño de partícula al 80% acumulado negativo es de 90 micrómetros (aproximadamente -150 mallas), el cual se obtuvo de la correspondiente gráfica de % acumulado negativo vs. abertura de la malla (fig. no. 5).

De los resultados obtenidos en las tres moliendas se concluye que el tiempo de molienda adecuado es de 20 minutos; las leyes y la distribución metalúrgica en cada una de las fracciones de esta molienda se reportan en el cuadro número 6.

La fracción -325 mailas (-44 micrómetros) representa más del 50% en peso, por lo cual esta fracción se sometió a otra etapa de separación granulométrica, efectuando el correspondiente análisis químico de los productos resultantes para conocer la distribución de valores en dichos productos. El equipo usado fué un clasificador hidráulico que utiliza el principio del hidrociclón, y que es conocido comercialmente como "Cyclosizer".

Los resultados de esta clasificación se reportan en el cuadro número 7, y en el número 8 se muestra la integración de los cuadros 6 y 7.

Del análisis de este cuadro, se hace aparente la necesidad de efectuar un deslame para tratar de eliminar las partículas menores a 10 micrómetros (punto de corte), ya que la ley de Fe

cae por debajo de 35%, lo cual significa una pérdida de Fe del orden del 12%, estas pérdidas van a reducir la recuperación de Fe, pero también se elimina aproximadamente el 25% tanto de F como de SiO₂ en la misma fracción.

Estas etapas de deslame se incluyen en las pruebas de concentración tanto en las de separación magnética como en las de flotación.

III.2. - SEPARACION MAGNETICA.

Basados en la susceptibilidad magnética los materiales se dividen en dos grupos: aquellos que son atraídos por un campo magnético (materiales paramagnéticos) y aquellos que son repelidos por un campo magnético (materiales diamagnéticos).

Al hierro y a la magnetita, que son materiales fuertemente paramagnéticos, se les acostumbra colocar en un grupo aparte denominado materiales ferromagnéticos.

Las operaciones de separación magnética, se realizan a altas y a bajas intensidades de campo magnético, dependiendo si los materiales a separar son paramagnéticos o ferromagnéticos respectivamente.

En las separaciones magnéticas a baja intensidad, se usan campos de hasta 2000 Gauss, considerándose separaciones magnéticas de alta intensidad las que requieran de campos magnéticos mayores a este valor.

Las separaciones magnéticas ya sean a alta o a baja intensidad, pueden realizarse en seco o en húmedo.

Para esta parte del estudio, se dispone de un separador magnético de tambor, de baja intensidad en húmedo tipo laboratorio, marca ERIEZ modelo L-8; que tiene las siguientes características :

> Diámetro del tambor 30.5 cm Longitud del tambor 19.0 cm Velocidad del tambor 52 r.p.m. Elemento magnético electroiman de 3 polos. Intensidad de campo generado 0-950 Gauss.

En este equipo, la separación magnética se puede llevar a cabo en forma concurrente o a contrarrotación.

La operación en forma concurrente (fig. 6), es más efectiva cuando se desea obtener un concentrado magnético limpio o de alta ley.

La operación a contrarrotación (fig. 7), es la utilizada cuando se desea aumentar la recuperación metalúrgica, obteniéndose un concentrado magnético más sucio o de menor ley (referencia no. 2, 7).

Se realizó una pruebe de separación con cada una de las dos formas, con el fin de determinar las condiciones en que se harán las separaciones magnéticas durante el estudio.

FIGURA NO. 6 Separador Magnetico de Tambor Operando en forma concurrente

Las condiciones de operación para ambas pruebas fueron: 20 minutos de molienda con dilución de 0.7:1 (58.8% de sólidos), mientras que la dilución en separación magnética fué de 4:1 (20% de sólidos) y flujo de 3.3 l/min. a 950 Gauss.

Los resultados de ambas pruebas se muestran en los cuadros 9 y 10 para la separación a contrarrotación y en forma concurrente respectivamente.

Observando los resultados de ambas pruebas y bajo el criterio de obtener un concentrado magnético que sea un producto final, se elige la operación en forma concurrente.

A continuación se probó el efecto de la magnetización en la separación magnética, el objetivo da esto es aglomerar las partículas magnéticas finas, con el fin de disminuir la perdida de estas al realizar el paso de deslame efectuado para la eliminacion de finos de impurezas, este deslame permite desechar parte de las impurezas de una manera sencilla, aunque esto implica también la perdida de una parte del Fe no magnético, pero evita el efecto nocivo de las lamas en el consumo de reactivo para la etapa de flotación.

La magnetización se realizó en un separador magnético en húmedo de alta intensidad tipo laboratorio, marca ERIEZ serie L, modelo 4, como el mostrado en la figura no. 8.

Este equipo consta de dos bobinas electromagnéticas, cada una con un polo magnético que hace converger el flujo magnético hacía un ducto de paso o caja de polos. Las características de este separador son:

Elemento magnético	2 bobinas electromagnéticas
Intensidad del campo generado	0-8,000 Gauss
Longitud del ducto de paso	20.3 cm
Ancho del ducto de paso	5.1 cm
Espesor del ducto de paso	2.5 cm

Para la magnetización, la pulpa mineral se hace pasar por la caja de polos que es donde se efectua la aglomeración de los finos magnéticos. Las pruebas de magnetización se corrieron a las siguientes intensidades de campo: 500, 1000 y 2000 Gauss.

Las condiciones de operación de las tres pruebas de magnetización, con deslame y separación magnética se muestran en los cuadros 11, 12 y 13, y sus resultados en los cuadros 14, 15 y 16 respectivamente.

Los resuliados obtenidos muestran que la magnetización a 500 Gauss es la que proporciona el mejor concentrado magnético; por lo tanto las separaciones magnéticas se llevarán a cabo bajo las condiciones dadas para la prueba con 500 Gauss.

El balance metalúrgico de estas pruebas revela que la mayor parte del Fe (alrededor del 60%) se encuentra en el material no magnético, lo cual era previsible a partir de la reconstrucción mineralógica que indica que el mineral es de tipo hematítico, este se va a tratar de recuperar en las pruebas de flotación que a continuación se detallan.

FIGURA NO. 8 SEPARADOR MAGNETICO EN HUMEDO DE ALTA INTENSIDAD, UTILIZADO PARA LAS PRUEDAS DE MAGNETIZACION

III.3. - FLOTACION.

La literatura consultada (referencias nos. 4, 5, 6, 9, 10, 11) con respecto a las condiciones generales de flotación de apatita, cuarzo y óxidos de Fe, refieren que la apatita se puede flotar a pH alcalino utilizando ácidos grasos como colectores (p. ej. ácidos oleico, linoleico y linolénico), en este estudio se uso ácido oleico.

El cuarzo puede flotarse a pH alcalino utilizando colectores catiónicos del tipo de las amines, para estas pruebas se usó como colector una amina grasa alifática de 18 carbonos soluble en agua (reactivo HERCOMIN C-03, designado como "amina" en esta tesis). El ion FT es un depresor de cuarzo.

Las condiciones de flotación para los óxidos de Fe, se refieren principalmente a la hematita, debido a que la magnetita se acostumbra separar magnéticamente.

La hematita se flota con pH ácido a neutro y se han usado

tres tipos diferentes de colectores aniónicos: acidos grasos, sulfonatos de petróleo y jabones alcalinos.

En las pruebas de flotación realizadas dentro de esta tesis, se va a utilizar el mismo ácido graso usado para la flotación de apatita, y un sulfonato de petróleo soluble en agua (reactivo QUIPIRONATO 30, designado como "OP-30" en esta tesis). Para deprimir los óxidos de Fe se usan almidones y dextrinas, en este trabajo se utilizó almidón caustificado, pues en las referencias consultadas mencionan que es mejor depresor que la dextrina para los óxidos de Fe.

Con base en esta información, se planearon 8 pruebas de flotación, las cuales después de analizar los resultados obtenidos en las mismas, estos proporcionen los criterios que definan las condiciones a las cuales deban realizarse las siguientes pruebas de flotación.

Los objetivos en estas primeras 8 pruebas fueron obtener concentrados de apatita, de cuarzo y de óxidos de Fe (flotación diferencial), o solamente el concentrado de Fe (flotación directa), esto se intenta llevar a cabo de dos formas, en la
primera, las flotaciones se efectuaron a mineral sin separación magnética / en la segunda, se utilizaron las colas de la separación magnética o material no magnético.

También se observo el efecto del colector en la flotación de Fe, los colectores que se compararon fueron ácido graso contra una solución de sulfonato de petroleo en agua.

Los objetivos de cada una de estas 8 pruebas se enlistan a continuación: las condiciones de molienda utilizadas en todas las pruebas de flotación, fueron las determinadas en la etapa de molienda, así como las condiciones de separación magnética utilizadas, fueron las determinadas en la etapa respectiva, esto es para las pruebas que incluyen esta separación:

- PRUEBA 1 : Flotación de apatita con ácido graso, flotación de cuarzo con amina y flotación de Fe con ácido graso sin separación magnética previa.
- PRUEBA 2 ; Flotación de apatita con ácido graso, flotación de cuarzo con amina y flotación de Fe con sulfonato de petróleo; sin separación magnética previa.

- PRUEBA 3 : Flotación de Fel con ácido graso sin separación magnética previa.
- PRUEBA 4 : Flotación de Fe con sulfonato de petróleo sin separación magnética previa.
- PRUEBA 5 : Flotación de apatita con acido graso, flotación de cuarzo con amina y flotación de Fe con ácido graso después de separación magnética.
- PRUEBA 6 : Flotación de apatita con ácido graso, flotación de cuarzo con Amina y flotación de Fe con sulfonato de petróleo; despues de separación magnética.
- PRUEBA 7 : Flotación de Fe con ácido graso después de separación magnética.
- PRUEBA 8 : Flotación de Fe con sulfonato de petróleo después de separación magnética.

Todas las pruebas de flotación se llevaron a cabo en una celda de flotación de laboratorio marca WEMCO modelo 52254, a i,200 r.p.m.; para las pruebas sin separación magnética la dilución de la pulpa al inicio de la prueba de flotación fué de 2.6:1 (27.5% de sólidos) y para las pruebas con separación magnética, la dilución al inicio de la flotación fué de 3.7:1 (21.4% de sólidos).

Los resultados de cada una de las pruebas realizadas, así como sus condiciones de operación se muestran en los cuadros 17 a 32 del punto III.5 de resultados experimentales.

Despuée de analizar los resultados obtenidos en estas primeras 8 pruebas, se determinó continuar solamente con el procedimiento que proporcionó los mejores resultados, estos fueron los de la prueba número 51 con lo cual se procedió a realizar las modificaciones adecuadas que condujeron al planteamiento de las pruebas 9 y 10, los resultados de estas, así como sus condiciones de operación se muestran en los cuadros número 33 al 36.

Se hace la aclaración que en los productos de las primeras B pruebas no pudo efectuarse el análisis de P, razón por la cual este elemento no se reporta en los balances metalúrgicos correspondientes a dichas pruebas.

III.4.- REACTIVOS UTILIZADOS.

Los reactivos utilizados en el estudio, su forma de adición y preparación, así como su presentación y el fabricante de los mismos, se muestran en los cuadros 37 y 38 respectivamente.

Se hace la aclaración de que no se recomienda marca alguna en especial y su inclusión en estos cuadros debe considerarse solo como información complementaria.

REACTIVO	FORMA DE ANICION	PREPARACI,0 N
ACEITE DE PINO	607AS	ninguna
ACIDO GRASO	60TAS	FURBIR EN BASID MARIA
ACIDO SULFURICO	SOLUCION	SOLUCICA ACUOSA DE 50 g/1
ALNINGH CRUSTIFICANO	SOLUCION	A 452 PARTES DE ADUA AGREGAR 5 PARTES DE ALNIDON 4401 IBASE SECAI AGITANDO CONSTANTEMENTE, UNA VEZ ODTENIDA LA SUSPENSIUM DE ALNIDON EN AGUA, AGADIR UNA SOLUCION DE 4 PARTES DE NJOH EN 40 PARTES DE AGUA, NANTENIENDO LA AGITACION HASTA LA CONPLETA GELATINIZACION DE LA SOLUCION DE ALNIDON, ESTA SOLUCION CONTIEME APPOXIMADAMENTE 10 9 DE ALNIDON POR LITRO DE SOLUCIOM
ANINA	SIR UCION	SQLUCTON ACUOSA BE 50 g/1
CARBONATO DE SOBIO	GRANDLER	ni mana
FLUGRURG NE SONIO	SOLUCION	SILULION ACTORS DE 31 9/1
HIDROXIDO DE SODIO	Sauch	SCLUCIDA ACIDISA DE SO 9/1
WIFIRONATO 30 (SP-30)	salucion	selucion accusa de 100 g/1
SILICATO DE SORIO	如此间	SCLUCICAL ACCOSA PE 50 g/1

CUADRO NO. 37 Forma de adición y preparación de los reactivos.

REACTIVE PRESENTACION FABRICANTE

ACEITE DE PINO	LIQUIDA	CTAMANI
MING GRASO	PASTA	Proporcionado por CENESA
ACTINO SULFURICO CONC.	LIBUIR	J. T. BAKER
ALMIDON 4401	POLVO	PROSUCTOS DE MAIZ S.A.
ANIRA (HERCORIN C-03)	LIBVIDO VISCOSO	WINICA MERCILES S.A.
CARBONATO DE SOBIO	GRAFE AS	I. T. BAKER
FLUCRURO DE SONIO	推动	1. T. BAKER
NIMOXINO RE SONIO	LEATEJAS	J. T. BAKER
BUIPIRORATO 20 (07-30)	LIGUIDO VISCOSO	quinicos y benivados s.a.
SILICATO ME SODIO	碳酸化化	SILICATOS Y DERIVADOS S.A.

CUADRO No. 30 PRESENTACION Y FABRICANTE DE LOS REACTIVOS.

III.5. - RESULTADOS

EXPERIMENTALES.

Debido a la gran cantidad de gráficas y cuadros en donde se reportan los resultados obtenidos en las pruebas realizadas durante el desarrollo de esta tesis, se decidió mostrarlos en un inciso aparte. En los cuadros que contienen las condiciones de operación, la abreviatura "S/R" significa "SIN REACTIVO".

Aunque todos los cuadros y las figuras llevan un texto en el cual se explica el tipo de información contenida, para una rápida referencia se dá la siguiente relación por etapas:

HOLIENDA	:	Figuras	nos.	2	a	5.	
		Cuadros	nas,	2	a	ε.	

SEPARACION MAGNETICA : Cuadros nos. 9 a 16.

FLOTACION : Cuadros nos. 17 a 36.

PRO	NICTO	AJE	RTURA	PESO	1	LE	I E S	[3]	DI.	STRIBUCI	SN (\$)
(84	LLASI	INICR	gnetros)	(\$)	к ій.	Fe	•	\$i0 _z	Ft	P	SiB ₂
- 14	• 28	- 1160	+ 590	31.7	100.0	46.20	0.50	13.90	29.8	25.9	29.2
- 28	+ 35	- 590	+ 425	11.2	48.3	55.00	0.50	14.20	12.5	9.2	10.5
- 35	+ 48	- 425	+ 300	19.4	57.1	54,20	0.50	14.00	11.5	8.5	9.7
- 48	+ 45	- 300	+ 212	8.9	46.7	55,30	0.60	13,80	9.9	8.7	8. j
- 65	+100	- 212	+ 150	7.0	37.5	46.20	0.80	14,00	6,6	9.2	6.5
-100	+150	- 150	+ 106	ė.0	30.9	53.70	6.80	14.50	6.5	7.9	5.8
-150	+200	- 104	+ 74	3.7	24.9	\$5.E0	0,10	11.90	4.2	4,9	2.9
-700	256	- 74	1 63	4.2	21.2	55.60	1.20	13.19	4.7	8.3	3.6
-250	+325	- 63	+ 44	3,1	17.0	50.30	1.29	14.50	3, 2	6.1	3.0
-325		- 44		13.9	13.9	39.40	0.50	22.50	11,1	11.3	29.7
				104.0					100.0	103.0	100.0

49.20

0.41 15.00

CUADRO NG. 2 GRANULOMETRIA Y DISTRIBUCION METALURGICA DEL MINERAL. 100%-14 MALLAS

LEY CALCULADA

6) 02

PRODUCTO		ABE	RTURA	PESO	s Acun.	
		(MICR)	DMETROS)	(%)		
- 48	+100	-300	+149	0.2	100.0	
-100	+150	-149	+106	1.3	99.8	
-150	+200	-106	+ 74	7.5	99.5	
-200	+250	- 74	+ 63	6.7	91.0	
-250	+325	- 63	+ 44	14.2	84.3	
- 325		- 44		70.1	70.1	
				100.0		

CUADRO NO. 3 Granulometria de la molienda de 25 minutos.

PRODUCTO		ADE	RTURA	PEBO	¥2	
(MA)	LASI	(HICR)	ometros)	(紧)	ACUM.	
- 48	+100	-300	+149	1.5	100.0	
-100	+150	-149	+105	7.9	98.5	
-150	+200	~106	+ 74	15.1	90.6	
-200	+250	- 74	+ 63	8.4	75.5	
-230	+325	- 63	4 44	12.4	67.1	
-325		- 44		54.7	54.7	

100.0

CUADRO NO. 4 GRANULOMETRIA DE LA MOLIENDA DE 20 MINUTOS.

PRO	DUCTO	ABEI	RTURA	PESO	X	
(HAI	LLAS)	(MICR)	DMETRO8)	(%)	ACUM.	
- 28	+ 65	-590	+210	0.3	100.0	
- 65	+100	-210	+149	2.7	99.7	
-100	+150	-149	+10á	7.9	97.0	
-150	+200	-105	+ 75	19.4	87.1	
-200	+250	- 75	+ 63	7.7	69.7	
-250	+325	- 63	+ 44	11.5	62.0	
-325		- 44		50.5	50.5	

100.0

CUADRO NO. 5 GRANULOMETRIA DE LA MOLIENDA DE 18 MINUTO8.

PRO	SUCTO		AIE	11	RA	Piso	5	LEN	I E S	(\$)	1	STRIBUC	ECHE (%)
(84	LLAS)	(IICR		TROS)	(\$)	acun.	Fe	7	610 ₁	Fe	P	Sið,
48	+100		300	4	147	1.5	100.0	47.00	0.40	19.50	1.4	0.7	2.0
100	1150	•	149	•	104	7.9	78.5	56.00	6.80	14.90	8.6	7.0	8,0
150	+209	-	106	ŧ	74	15.1	90.6	57.00	0.40	15.10	16.7	6.7	15.4
200	+250	-	74	ę	63	9.4	75.5	56.00	0.60	13.50	9.1	5.4	7.7
250	+325	•	63	•	44	12.4	67.1	55.00	0,50	14.30	13.4	6.9	10.3
375		-	44			54.7	54,7	48.00	1.20	15.30	59.8	73. 1	36.6
						100.0					109.0	100.0	100.0
	LET	c	A L	¢	U L A	1 A		51.64	0.90	14.78			

CUADRO NO. 6 GRANULOMETRIA Y DISTRIBUCION METALURGICA DE LA MOLIENDA DE 20 MINUTOS.

	1100	ICI	¢	PE59	1	LEI	1 5 5	111	M	STRINCI	(X) \$K
(\$1	CIPON	ETR	0 5)	(5)	acun.	Fa	ŗ	518,	fe	۶	Siða
-	44	1	29	25.6	100.0	57.00	\$.8 0	3.70	35. ?	20. 2	5.2
•	29	,	22	13.9	24.2	41.00	1.20	15.40	13.8	16.3	14.1
•	22	ŧ	15	13,1	60.3	41.00	0.80	18.40	13.0	10.3	15.9
•	15	ŧ	10	12.3	47.2	37.00	1.20	20.10	11.6	14.4	16.2
•	10	ŧ	۲	5. ?	34.9	34.00	8.80	13.70	4. ?	4,5	7.0
•	7			29.2	29.2	30,60	1.20	21.30	21.2	34,3	10.7
				100.0					140.0	100.0	100.0

LEY CALCULARA (1.30 1.02 15.29

CUADRO NO. 7 GRANULOMETRIA Y DISTRIBUCION METALURGICA DE LA CLASIFICACION EN CYCLOSIZER DEL PRODUCTO -325 MALLAS DE LA MOLIENDA DE 20 MINUTOS.

Pto	KC11	PESO	۲	LEY	E I	(1)	33	DISTRIBUCIÓN	
() I CÉG	etros)	(\$)	acun.	F#	*	\$(ē,	Fe	₽	\$10,
-300	(147	1.5	100.0	42.00	0.40	19.50	1.5	0.7	2.0
司将	+104	7,9	98.5	56.00	0.80	14.90	9.2	7,9	8.0
-106	+ 74	15.1	90. 6	57.00	9,40	15.10	17.9	7.5	15.4
- 74	1.63	8.4	75.5	56, 00	0.60	13.50	9.5	4.3	7.8
- 63	1 44	12.4	67.1	56.00	0.50	12.30	14.5	، ,	18.3
- 44	1 29	14.1	54.2	57,00	0.60	3.70	16.8	14.1	3.5
- 29	1 22	7.6	40.6	41.00	1.20	15.40	4.5	11.1	2.9
- 72	1 15	2.2	33.0	41.00	0.80	18.60	6.2	7.2	9.1
- 15	+ 10	6.7	25.8	37.00	1.20	20.10	5.4	10.1	¥.1
- 10	1.2	1.1	19.1	34,00	0.50	18.70	2.2	3.1	3.9
• •		16.0	14.0	39.04	1.70	21,39	10.0	24.1	23.1
		100.0					100.0	100.0	100.0

LET CALCULADA 47.95 D.81 14.77

CUADRO NO. 8 GRANULOMETRIA Y DISTRIBUCION METALURGICA DE LA MOLIENDA. DE 20 MINUTOS (INTEGRACION DE LOS CUADROS NO. & Y 7)

PEOBUCTO	PESD R.C. LEYER (S)		(\$)	BISTRIBUCION (S)				
	(1)		Fa	۲	\$10,	Fe	,	Si0,
Concen. Mag.	39.1	2.6:1	63.0	9.52	6.60	47.7	21.8	16.9
Ko Nag.	60.9		44.3	1.20	71,00	52,3	78.2	83.2
	100.0					100.0	100.0	100.0
LEY CALCULAT	IA.		51.61	0.93	15.37			

CUADRO NO. 9 BALANCE METALURGICO DE LA Separacion Magnetica a Contrarrotacion.

Ptobic 10	Ħя	H.C.	LEY	E S	{\$})	B1	STAIRC	(31 (1)
	(5)		Fə	P	1101	fŧ	F	Sida
Coacea. Mag.	25,3	4.0:1	67.9	0.33	2.74	33.6	8.0	4.4
Ka Keg.	74.7		41 , 5	1.16	20.17	<u>65.4</u>	91.2	95 . á
	100.0					100.0	100.0	100.0
LEY CALCULA	HÀ		50,41	6.95	15.72			

CUADRO NO. 10 BALANCE METALURGICO DE LA Separacion magnetica Concurrente.

TIENPO	BILACION	FLWB	INTENSIMA K
(sistos)		f3/min1	CAMPS (GAUSS)
20.0	0.7:1		
1.3	5:1	4.0	500
3.0	6;1		
3.0	7:1	1.8	
6.5	6:1	2.1	950
5.0	20:1	2.1	95 0
	TIEBPO (siputos) 20.0 1.3 3.0 6.5 5.0	TIENPO BILUCION (minuton) 0.711 1.3 511 3.0 611 3.0 711 6.5 611 5.0 2011	TIEMPO BILUCION FLUJB (sisutos) (1/sis) 20.0 0.7:1 1.3 5:1 3.0 6:1 3.0 7:1 6.5 6:1 2.0 2.1

CUADRO NO. 11 CONDICIONES DE OPERACION PRUEBA DE SEPARACION MAGNETICA CON MAGNETIZACION A 500 GAUSS

EYAPA	116%0	niking	FLWO	INTENSIMU DE
	(pipetes)		(1/sis)	CARPO (BAU\$S)
NALTENDA	20.0	0.7:1		
NAGHET12ACIC#	1.3	5:1	4.0	1,000
ASERTANIENTO	3.0	6:1		
DESLANE	3.0	7:1	1.8	
SEPARACION INDUSTICA	6.5	é:1	2.1	950
LINPIA MORETICA	5.0	20:1	2.1	750

CUADRO NO. 12 CONDICIONES DE OPERACION PRUEBA DE SEPARACION MAGNETICA CON MAGNETIZACION A 1,000 GAUSS

ETAPA	TIENPO	BILUCION	FLUJO	INTENSIBAD DE
	(siautos)		(1/nin)	CAMPO (GAUSS)
HOL LENDA	20.0	0.7:1		
MAGNETIZACION	1,3	5:1	4.0	2,000
ASENTAMIENTO	3.0	6:1		
DESLAME	3.0	7:1	1.8	
SEPARACION NAGHETICA	6.5	6:1	2.1	950
LINPIA NAGNETICA	5.0	20:1	2.1	950

CUADRO NO. 13 CONDICIONES DE OPERACION PRUEBA DE SEPARACION MAGNETICA CON MAGNETIZACION A 2,000 GAUSS

PROPUCTO	托奶	R.C.	LE	YEE	(1)	BIS	TRIBUCI	QN (11)
	(5)		Fe	ŧ	\$10,	Fa	P	SiQ ₂
LAMAS	2.5		45.4	0.60	24.20	2.3	2.5	4.3
CONC. MAG.	25.2	4.0:1	67.4	0.05	1.12	33.3	2.6	2.0
NETTOS MAG.	3.7		55.0	0.40	9.32	4.22	2.6	2.6
NO HAG,	68.4		41.8	0.60	18.54	60.2	92.3	91.1
	100.0					100.0	100.0	100.0
LEY CALCULAD	A		50.93	0.57	13.93			

CUADRO NO.14 BALANCE METALURGICO PRUEBA DE SEPARACION CON MAGNETIZACION A 500 GAUSS.

PRODUCTS	ts peso	N PERO R.C.	LE	YES	(5)	BISTRIBUCION (S)		
	11)		Fe	۲	\$10,	ħ	P	Sida
LAMAS	5.4		36.\$	0.80	25.02	3.9	5.8	9. 9
CONC. MAS.	25.2	4.0:1	68.4	0.18	0.90	33.9	7.2	1.7
NEDIOS HAG.	6.3		38.6	6.60	14.76	4.8	6.0	6.8
NO HAG.	63.1		46.2	0.80	17.76	57.4	80.0	81.6
	100.0					100.0	100.0	100.0
LEY CALCULAD	4		50.81	0.63	(3.7)			

CUADRO NO.15 BALANCE METALURGICO PRUEBA DE SEPARACION CON MAGNETIZACION A 1,000 GAUSS.

Products	陀辞	R.C.	LEYES ((1)	PI PI	STR18XI	(1)		
	(%)		fe	P	6102	Fo	P	510,		
LARAS	4.4		33.7	0.61	25.88	3.0	4.5	8.0		
CONC. RAG.	75.6	3.9:1	67.4	0.20	0,94	33.4	8.3	1.7		
NEULOS MAG.	5.0		M.8	0.40	8,94	5.5	3.2	3.2		
NO MAG.	65.0		15.2	0.80	19,98	59.1	84.0	87.1		
	100.0					100.0	100.0	100.0		
LEY CALCULAD	k		51.47	0.62	14,16					

CUADRO NO.16 BALANCE METALURGICO PRUEBA DE SEPARACION CON MAGNETIZACION A 2,000 GAUSS.

PEOPUCTS	PESO	R.C.	LEY	E\$(\$)	DISTRIBUCION (S)		
	(1)		Fe	\$i0 ₂	Fe	\$i0z	
LANAS I	4.0		37.00	22.80	2.9	6. 3	
CONC. APAT.	3.5	28.6:1	56.60	11.00	1.8	2.7	
MEDIOS APAT.	15.8		41.50	14.90	12.7	16.1	
CONC. CUARZO	ð.8	250.0:1	36.00	21.00	0.3	0.6	
MEDIOS CUARZO	1.0		37.00	21,40	0.9	1.5	
LAKAS ALCALIHAS	5.0		56.00	35,00	5.5	12.1	
CONC. Fe 1	33.0	3.0:1	\$7.00	10.00	36.9	72.6	
NEDIOS Fe 1	9.5		50.90	19,90	9.6	13.2	
COMC. Fe 2	13.7	2.5:1	53.80	11.00	14.0	10.0	
MEDIOS Fe 2	11.3		54.00	15.00	12.1	11.8	
COLAS	3.1		53.00	14.50	3.2	3.1	
	100.0				100.0	100.0	

LEY CALCOLADA

50.91 14.52

CUADRO NO. 17 BALANCE METALURGICO PRUEDA No.1.

ETAPA	REACTIVE	CARTEBAD 974	LVAAR	TIEMPO Acond.	(MIN.) Floto.	płł
Nolienta	Na _a sio _a	200	saliso	20		7.2
feslame i			cuba			
Flotn. Apat.	XaaCO.	1,500	celda	13		9.0
	ainidon caust.	200	cel ta	10		9,3
	ac. graso	300	celfa	5		9,1
	a. se pino	30	celta	2	2.0	f.1
Flots. Cuarzo	KasSiQ.	100	cel#a	ό		8.9
	Na _a ce _a	1,000	Colta	3		9,5
	29122	2.4	cesta	1	1.5	7.4
Beslame Alcalino			celsa			8.3
Flots. Fr .	HaSOa	3,000	celda	18		3.0
	ac. 97850	658	celta	16		4.0
	HaSO.	1,009	celfa	13		2.5
	a. de pino	60	ceida	11		2.6
	2C. 97350	300	celda	8		7.8
	a, de pisa	ÉD	celea	6		3.0
	ar, graso	109	celds	3	3.6	5.4
Flats. Fe 2	ac. graso	300	celia	5		5.3
	s. de pino	63	celda	2	1.5	5.2
Liopia Apat.	Na ₂ CO ₂	500	cetta	ć		9.1
	almidon caust.	100	celéa	4	1.0	9.3
Limpia Cearzo	HogCO.	500	celéa	5		8.7
•	a. je pimo	19	celfa	3		8.8
	14/85	100	celda	1	1.5	8.7
Limpia Fe 1	S./R		cejsa		1.5	6.5
Liwia fe 2	H:SO.	250	celda	6	1.0	5.7

CUADRO NO. 18 CONDICIONES DE OPERACION PRUEBA No. 1

≂ 3

PECEUCIC	7E\$0	R.C.	LEY	E S (%)	DISTRIBUCION (S)		
	(\$)		Fa	\$i0 _x	fe	Si8,	
LAMAS 1	2.2		36.80	31.00	1.6	4.5	
CONC. Fe 1	27.0	3.2:1	48,80	13, 50	26.3	24.2	
CONC. Ft 2	1.1	92.3:1	50.49	6.00	3.1	1.2	
NEDIOS Fe I	23.6		62.50	8,00	29.4	12.5	
CONC. Fe 3	18,3	5,511	48,20	15.80	12.6	19.2	
NEDIOS Fe 3	13.2		35.90	27.00	7.4	23.6	
COLAS	12.4		\$9,20	17,70	12.6	14.8	
	100.0				100.0	190.0	
E FY 7 M CIS 434			\$0.17	15 68			

CUADRO NO. 19 Balance Metalurgico Prueba No.2.

ETAPA	REACTIVO	CARTIBAD LUGAR		TIENPO	TIENPO (MIN.)	
		g/t		Acess,	Flote,	
No]ienda	Na _a Si0a	200	salina	20		7.8
Jesiane i			cuba			
Flots. fe 1	K1F	204	celda	14		8.0
	H. 50.	7,000	celés	10		4.7
	X. 97350	600	relta	7		5.5
	a. 4e piso	60	celda	2	4.5	5.7
Flats. Fe Z	HaSO.	1,000	celás	10		5.0
	ac. er 250	600	celta	7		
	a, de pino	60	celda	2	2.5	5.9
Flota. F# 3	H.50.	600	celéa	10		4.8
	ac. grazo	600	cel fa	7		5.2
	s. de pizo	60	celda	2	2.5	
Limpia Fe 2	Hausi0*	100	celda	6		7.5
	Kaf	100	celta	3		
	Hasda	605	celda	2	2.0	4.5
Limpia Fe 3	H250.	600	celda	3	2.0	4.5

CUADRO NO. 20 CONDICIONES DE OPERACION PRUEBA NO. 2

PRODUCTO PESO		R.C.	LEY	E B (S)	DISTRIBUCIÓN (L)		
	(3)		Fe	\$102	Fe	\$i8 _x	
LANAS I	3.9		37,60	25.50	2.2	4.9	
CONC. Fe 1	2.6	35.711	41.00	20.50	2.3	3.7	
KENIOS Fe I	11.3		42.80	21.70	\$.5	16.0	
CONC. Fe 2	1.6	62.5:1	38,60	20.70	1.2	2.1	
MEDIOS Fe 2	6.8		42.60	21.20	5.7	9.3	
CONC. Fe 3	1.3	74,911	42.80	18.70	1.1	1.6	
KEDIOS Fa 3	5,9		44,30	17.50	4.4	6.3	
CBXC. Fe 4	1.1	98.9:1	46.30	15,90	1.0	1.1	
REDIOS Fe 4	4.6		打,前	15.50	4.5	4.8	
CONC. Fe 5	0.9	111.1:1	50.00	12.60	0.9	0.7	
NEPIOS Fe S	5.1		53.00	17.00	4.4	4.7	
COLAS	55.3		55.80	17,50	60,8	44.9	
	100.0				100.0	100.0	

.

LEY CALCULATA

59.76 13.45

CUADRO No. 21 Balance Metalurgico Prueba No.3.

ETAPA	REACTERS	CARTIDAD LOGAR		TIENPO (KIN,)		ji	
		g/t		keni.	Fleta.		
No]jenda	Na ₂ 510 ₀	200	seliso	20		7.9	
Peslate i			cuba				
Flots, Fe I	ħ.₽	200	celda	14			
	# . 58.	12,509	celds.	10		3.5	
	89-34	738	cel fa	7		3.0	
	a. de piso	30	celés.	2	3.0	3.1	
Flots, Fe 2	HaSO.	1,602	celda.	19		2.7	
	69 - 30	750	celfa	7		2.5	
	z. <i>le</i> piss	19	colda	2	2.0	2.9	
Flats, Fe 3	H1584	609	celds.	10		2.5	
	₿-10	750	calda	7		2.5	
	a. se pina	3\$	celta.	ž	2.0	2.5	
Flats. Fe 4	¥250.	\$00	celéa	10		2.5	
	67-30	750	celda	7		2.5	
	a. de pino	30	celés	2	2.8	2.6	
Flota, Fr 5	¥>58.	1,097	celés	10		2.2	
	67-30	750	cel da	7		2.3	
	a. de piev	30	celda	2	1.5	2.3	
Limpia Fe 1	5/ R		celia		2.9	5.7	
Limpia Fe Z	5/1		cei <i>la</i>		2.0	5,7	
Limpia Fe 3	5/R		celda		1.5	6.0	
Limpia Fe 4	S/R		celda		1.5	6.3	
Lingia Fe 5	S/R		celfa		1.0	5.9	

CUADRO NG. 22 Condiciones de operacion Prueba Ng. 3.

PROPUETS	7540	1 .C.	LET		81878	INCION (S)
	(1)		fe	\$18Z	Fø	\$18,
LANAS I	2.4		37.80	13,59	1.9	2.2
CONC. APAT.	2.5	40.0:1	30,20	11.80	1.5	2.0
REDIOS APAT.	16.2		24.20	13.20	11.3	14.8
CONC. CUARTS	0.9	111.1:1	39.60	22.00	0.7	1.4
MEDIOS CUARZO	3.1		41.20	22,40	2.5	4.8
LAMAS ALCALIKAS	6.2		41.20	24,40	1.9	10.5
CONC. Fe 1	1.1	\$Q.9:1	50.60	15.30	1.1	1.2
HEBIOS Fe 1	3.7		47.80	21.40	3.4	5.5
CONC. Fe 7	2.7	37.0;1	35.10	9,90	2,9	1.8
HEBIOS Fe 2	4.4		52.60	18.40	4.5	5.4
CONC. Fe 2	2.7	37.0()	58.40	13.59	3.1	2.5
WEB105 Fe 3	5.0		55.20	17.30	5.3	4.3
(01.45	47.1		69.09	12.80	57.0	43.4
	186.0				100.0	104.6

LEY CALCULADA

51.64 14.47

CUADRO NO. 23 BALANCE METALURGICO PRUEBA No.4.

ETAPA	REACTIVE	CANTING	LUSAR	TIENPO	(MIN.)	pit
		git		Acast.	Flota.	
Nolienta	Hassio,	208	antina	20		3.7
Beslame (cuba			
Flots. Apat.	NagCO.	1,504	cel 4a	13		9.4
	almidon caust.	200	cel da	10		7.6
	AC. SPASS	300	ceifa	6		9.4
	a. te pian	30	celda	1	2.0	9.4
Flots, Dearto	Na ₂ SiO ₂	100	celda	5.25		9.4
	a. de pino	30	coláz	2, 25		7.3
	328 i 0.2	100	Celda	0.75	1.5	
Jesiane Alcalino			celsa			
Flots, fr 1	H2504	2,500	celda	9		3.0
	19-13	750	celfa	7		4.5
	a. de pino	30	celéa	2	1.5	4.7
Flata, Fe 2	K.SO.	50 1	relis	9		3.2
	祭- 均	755	telfa	7		4.1
	a. 69 pito	14	celés	2	1.5	4.3
Flots. Fe 3	R: 504	409	celés	9		2.9
	B-11	750	celfa	7		3, 3
	a, de pisa	3 0	coldz	2	1.75	3.5
Limpia Apat.	albifon canatic	e 280	celta	4		9.4
	s, de piso	30	reida	2		7.4
	a, ie pino	14	celáa	i	1.0	7.4
Lingia in Cearro	H1 2CO2	5(5)	crita	4.73		9.3
	a. 1e piao	60	celéa	2.25		7.2
	28185	199	celta	0.75	1.5	
Limpia fe 1	Ham510 m	100	cel4a	4		7.1
	H.50.	800	celéa	2	1.5	2.7
Limpia Fe 2	ResSiC.	100	celéa	4		7.4
	N2SC4	500	celfe	2	1.5	3.2
Limpin Fe 3	Kassic.	100	celda	4		7.4
	H., SQ.,	500	celéa	ž	1.0	3.Z

CUADRO No. 24 Condiciones de operacion Prueba No. 4.

Prosucto	PESO	R.C.	LEY	E E (S)	PLSTRI	NUCION (S)
	(5)		Fe	\$10,	Fr	\$i0 ₂
LAMAS I	2.0		36.00	27.40	1.4	3.8
CONC. NAG.	25.0	3.3:1	63.70	2.10	32.6	3.8
LAMAS NO MAG.	5.8		34.70	21.00	4.0	8.6
CENC. APAT.	0.9	125.0:1	Б. Ю	9,40	9.6	0.5
NEDIOS APAT.	11.1		35.00	15.20	7.6	11.8
CONC. CUARZO	0.5	167.0:1	39.70	23.60	2. 1	4.5
HEDIOS CUARZO	7.7		38,78	23.60	2. 1	4.5
LAMAS ALCALINAS	1.6		35.60	21.10	1.1	2.4
COMC. Fe	27.9	3.6:1	67.00	19,10	34.4	35.6
REDIOS Fe	14.3		40.40	16.10	11.4	16.2
COLAS	7,2		30.49	24.59	4.3	12.3
	100.0				100.0	109.0
LEY CALCULADA			50.87	14.24		

CUADRO No. 25 BALANCE METALURGICO PRUEBA No.5.

ETAPA	REACTIVE	CARTIBAD	LUGAR	TIENPO	(KIM.)	pH
		g/t	Acast.	Flois		
Holienda	KazSiQ.	208	esiina	20		8.0
Magnetizacion	- • •		1-4	1		
Deslane 1			cuba	3		
Sepa. Nag.			L-8	3		
Limpia Mag.			L-8	2		
Beslame No-Rag.			cuba			
Flotm. Apst.	NaxCOa	1,500	celda	13		5.6
·	albiton caust.	150	relfa	10		9.8
	M. 97250	300	celéz	4		9.7
	3. te pipo	60	celda	2	2.5	7.6
Flota. Cearro	Na _s sio _s	100	ce]\$p	5.5		9.5
	a. se piso	30	telda	2.5		7.5
	25123	100	(elda	0,5	2.0	
Veslame Alcalino			C#1#8			8.2
Flotn. Fe	H2504	2,500	C#]48	14		3.5
	H. 97.110	1.50	celsa	17		4.5
	a. ir pirs	64	celez	7		4.7
	æ. graso	300	ce)\$a	5		5.7
	a, de pino	30	celda	2	3.0	5.7
Liopia Apat.	alwidon caust.	100	colia	4	1.0	9.2
Liepia Cearzo	MasCO ₂	500	celda	4.5		9.4
	a. te piro	9 0	reise	7.5		9.3
	6\$ i \$ 3	100	celéa	0.5	1.5	
Limpia Fe	RazSi Oz	100	celéa	4		7.9
	K#\$G.	100	celda	2	3,0	4.3

CUADRO NO. 26 Condiciones de operacion Prueba No. 5

PEOPUCTE	PE14	¥.C.	LET	E # (\$)	DISTRI	NACION (2)
	60		Fø	\$i0 _a	Fø	\$10.
LANAS I	4.1		36.90	34.04	4.6	14.6
CONC. MAG.	76.1	1.8:1	45.20	1.60	34.4	2.9
LANAS NO MAG.	2.9		34.20	25.60	2.0	5.2
CONC. Fe i	17.5	1.0:1	57.60	5.90	14.4	5.2
HENIOS Fo I	17,1		55.50	7.80	19.2	9.4
CONC. Fe 2	11.1	9.0:1	50.50	76.84	11.3	21.0
MENIOS Fe 2	15.0		37.50	9.60	11.4	10.2
COLAS	9,2		14.30	48.24	2.7	31.5
	100.0				103.0	100.0
LEY CALCULARA			49.42	14.19		

CUADRO NO. 27 Balance Metalurgico Prueba No.6.

ETAPA	REACTIVE	CANTING	LUGAR	TIENPO	(NIN.)	pil
		g/t		Acess.	Flota,	
Nolšenta	NaaSi Ou	200	asina	20		
Ragnetizacioa			L-4	i		
Beslame (ceba	3		
Sepa, Ray.			L-#	4		
Linpia Nog.			L-8	2		
les lane Ro-Rey.			cuba	3		7.7
Flots. Fe 1	Raf	200	celde	14		8.0
	H.SO.	6,600	cella	11		4.3
	M. 97850	100	celfa	8		5.0
	u, de pino	H	celéa	3	4.0	5.3
flats. Fe 2	Kaf	100	calda	15		6.9
	H2504	600	celéz	12		4.6
	x. 91250	430	celda	7		5.0
	a. le pisa	6 8	cella	4		5.1
	a. te plan	30	celda	2	2.9	
Livpla fe 1	Ka ₂ SiO ₂	100	celda	6		7.2
	H290.	600	celia	3	2.5	4.9
Liupia Fe 2	Na,SiO _n	100	celéa	6		7.4
	HaSO.	600	celda	3	2.5	4.5

CUADRO NO. 20 CONDICIONES DE OPERACION PRUEBA NO. 6

PRODUCTO	PE\$0	R.C.	LEY	E \$ (\$)	DIRTRI	WC104 (1)
	(5)		Fa	5182	Fe	Sið _a
LAKAS I	4.6		32.8\$	23.70	2.9	1.3
CONC. MAG.	26.8	3.7:1	66,40	1.50	34.5	2.6
LANAS NO HAG.	0.8		30.20	27.50	\$.5	1.5
CONC. APAT.	1.3	74.9:1	27.80	12.60	0.7	1.1
MEDIOS APAT.	12.4		36.90	15.80	8.5	13.7
CONC. CUARZO	1.1	90,9:1	37.40	24.69	0.1	1.9
MEDIOS CUARZO	3.3		39.00	25.50	2.6	3.9
LANKS ALCALINAS	4.6		36.50	29,60	3.3	9.5
CONC. Fe I	1.6	62.5:1	60.80	10,90	1.9	1.2
MEDIOS Fe 1	4.3		47.40	16.59	4.0	5.1
CONC. Fe 2	2.7	37.0:1	66.00	5.50	3.5	1.0
HEBIOS Fe 2	3,1		47.70	21. ≮ 0	2.6	4.6
CONC. Fe 3	1.2	45.5:i	63.30	3,70	2.0	\$.6
REDIOS Fe 3	7.2		45.80	27.90	7.9	4.3
COLAS	29.0		51.80	17.00	27.1	38.5
	100.0				103.9	100.0

LEY CALCULARA

51.51 14.32

CUADRO NG. 29 BALANCE METALURGICO PRUEBA NO.7.

S-1

ETAPA	REACTIVO	CARTIBAD	LUSAR	TIENPO	(N]N.)	pit
		9/t		Acost.	fista.	
Roliesta	WasSi0,	200	soling	20		
Hagnetizacioa			L-4	1		
Jeslawe			caba	3		
Sepo. Hag.			L-8	3		
Limpia Hag,			1-8	2.5		
Peslame No-Nag.			cros			8.0
Flots, Apat.	Essto,	1,500	celda	13		7.6
	aluiten caust.	150	celda	10		9.7
	acida graso	X 4	celéa	6		9.5
	a. de piac	34	celda	1	1.5	9.5
Flots. Cuarza	Ra _s SiO ₂	100	C4142	6.5		9.4
	s, is pina	32	tel 12	3,5		1.3
	25 I 1 2	159	Ce142	1.5	1.5	9.3
Beslame Alcalian			celta			8.2
Flats, Fe I	Hassa,	3,503	celda	10		4.8
	(P-3)	724	celda	7		3.0
	a. le piso	30	relfa	2	1.5	3.0
Flats. Fe 2	H.St.	4X4	celda	8		2.7
	(a) - 31	750	reits	5	2.9	2.7
Flata, fe 3	ep - 34	750	celiz	5	1.0	3.9
Limpia Apat.	albidoa caust.	100	celia	4	0.5	7.1
Limpin Cuarto	£22C03	500	celda	5		9.4
	3. le piso	60	ceita	3		7.3
	28 i 61	195	celts	t	1,5	
Limpia Fe 1	SIR		cel fa		1.5	4.6
Linșia Fe 2	5.'R		celda		1.0	6.5
Limpia Fe 3	H250.	450	celifa	2	0.5	3.0

CUADRO No. 30 Condiciones de operación Prueba No. 7
PROPUCTO	PE60 R.C.		LEY	E\$(\$)	DISTRIBUCION (S)		
	(5)		Fe	\$10.	Fo	\$iQ _x	
LANAS 1	5.2		35.60	26.20	3.6	9.3	
CONC. MAG.	26.4	3.8:1	66.00	1.00	34.7	1.8	
LAMAS NO HAG.	1.7		31.50	27.00	1.1	3.1	
CONC. Fe 1	2.6	38.5:1	40.20	20.90	2.1	3.7	
MEDIOS Fe I	9.2		37.80	22.90	7.2	14.5	
CONC. Fe 2	2.2	45.5:1	47.00	13.20	2.1	2.đ	
NEBIOS Fe 2	6.6		43.70	19.00	5.7	9.6	
CONC. Fe 3	2.1	47.6:1	51.20	9.34	2.1	1.3	
REBIOS Fr 3	6.5		50.80	17.00	6.5	5.8	
CONC. Fe 4	1.5	66.7:1	59.50	6.69	1.8	0.9	
IEDIOS Fe 4	7.4		55,64)	9.60	8.1	4,9	
CONC. Fe 3	1.2	83.3:1	55.60	5.20	1.3	0.5	
HEBIOS Fr 5	3.0		50.40	15.30	3.0	3.4	
COLAS	24.4		43.10	24.09	20.7	40.2	
	109.0				100.0	100.0	
LEV CHICK ARA			44 74	14 KQ			

CUADRO NO. 31 BALANCE METALURGICO PRUEBA NO.8.

ETAPA	REACTIVE	CANTEBAB LUGAR		TIENPS	(N3N.)	pit	
		y/L		Acost.	Flota,		
Nolienta	Na _z sie,	200	solise	20			
Ragmetizacioa			L-4	1			
Peslane 1			cuba	3			
Sepn. Nag.			L-8	3			
Limpia Kag.			1.8	2.5			
Beslaw No-Ray.			ceta			7.9	
Flots, fe 1	Kaf	100	celda	14		9.2	
	H2SU.	14,000	celda	10		2.4	
	QF - 34	75¢	celsa	7		2.4	
	a, de pisc	30	cel#a	2	3.0	2.4	
flota, fe 2	¥P-20	750	re}da	2	2.5	3.0	
Flats, Fe 3	HaSO.	1,050	celda	8		2.6	
	96. - 95	750	celda	5	2.0	2.4	
Flota. Fe 4	舒-30	750	celda	3	1.0	3.2	
Flats, Fe 5	Hasoa	500	celda	B		2.5	
	87-30	250	colda	5	1.0	2.5	
Limpia Fe 1	\$/\$		celda		1.5	2.8	
Limpia Fe Z	\$/#		celda		Z.0	5.8	
Limpia Fe 3	5/1		celda		1.0	5. 6	
Limpia Fe 4	5'R		celsa		1.0	7.0	
Limpia Fe 5	S/R		celda		0.5	7.0	

CUADRO No. 32 Condiciones de operacion Prueba No. 8

PRONUTS .	2520	MESO R.C.		LETES (S)		DISTRIBUCION (%)		
	(1)		Fø	P	Si0.	Fe	۲	\$10 ₂
LAMAS I	2.7		33.00	0.72	27.10	1.0	2.9	5.1
CONC. MAG.	75.0	3.8:1	66.00	0.04	1.20	34.0	i.i	2.2
LABAS NO MAG.	1.7		30.80	0.52	25.60	1.0	1,3	3.1
CONC. INP.	3.4	29.4:1	17.30	7.92	7.00	1.7	50.1	1.7
REDIOS 18P.	9.2		34.70	2.12	15.80	6.7	29.4	19.2
LANAS ALCALINAS	1.5		33,40	0.57	31.40	1.0	1.2	1.3
CONC. Fe I	6.6	15.2:1	63.1\$	3.32	4.50	8.5	3.2	2.1
HEBIOS Fe I	10.2		45.10	0.14	6.50	13.1	13.1	6.1
CONC. Fe 2	7.3	13.7:1	63.10	0.06	2.99	9.1	0.7	1.5
MEBIOS Fe 2	5.7		49.70	0.12	13.60	5.6	i.¢	5.4
COMC. Fe 3	4.0	25.0:1	62.20	0.04	3.70	5.0	0.2	1.0
NETIOS Fe 1	8.1		46.90	0.09	20.70	7.5	1.0	:1.8
COLAS	13.6		20.40	3 . 29	49, 66	3.5	4.1	44.5
	100.0					100.0	100.0	103.0
LEY CALCULABA			54.50	9.64	14.23			

14.23 9.64

CUADRO 33 NO. BALANCE METALURGICO PRUEBA No.9.

ETAPA	REACTIVO	CANTEBAD LUGAR		TIENPO	(#11.)	pii
		g/t		Acoat.	Flota,	
Nolienta	Na _z Si0 ₂	200	estino	29		
Magnetizacion			1-4	1.7		
Deslame 1			ceb a	3.5		
Seps. Hay.			L-8	4		
Limpia Mag.			1.8	4		
Beslame No-Mag.			ceba			7.8
Flota. Isp.	NaDH	508	celda	8		9.5
	alaidoa caust.	190	cel fa	6		9.6
	acido grasu	900	celda	2		9,5
	a, se pixo	30	celda	I	2.0	9.0
Desime Alcalino			reida			8.1
Flutn. Fe 1	HaSO.	500	cei 6±	4		6.7
	acido graso	300	cel≴a	2		6.9
	3. de pino	32	celda	L	7.0	6.9
Flata, Fe 2	N=90-	250	cel 4a	4		6.6
	aciso graso	300	CPI SA	2	2	6.9
Flota. Fe 3	Hasoa	250	celéa	4		6.4
	acito graso	300	cel 12	2	1.5	6.7
Limpia Isp.	Rack!	775	celda	ó		9.5
	almidon caest.	100	celta	4	1.0	9.7
Limpia Fe 1	KasSi0s	100	celda	3		8.1
	H2504	100	ceida	2	1.0	7.5
Limpia Fe 2	HaSO.	225	celda.	3		6.6
	KasSiD.	106	celéa	2	1.0	7.6
Limpla Fe 3	H=SU4	100	(5)\$8	3		6.9
	KazSi0.	100	celda	2	0.5	7.4

CUADRO NO. 34 Condiciones de operacion prueba No. 9

PRODUCTO	PERA	£.¢.	LEYES (S)		DISTRIBUCION (S)			
	(\$)		Fa	ŧ	\$18 ₂	Fe	*	si0 ₁
LAMAS 1	5.9		34.60	0.80	25.60	4.1	8.0	19,7
CONC. N/6.	25.6	3.5:1	65.10	0.10	0.01	33.3	4.4	0.0
LAMAS NO MAG.	1.9		32.10	0.60	24.00	1.2	1.9	3.2
CONC. INP. 1	0.3	333.3:1	19.40	7.10	8.90	0.1	3.7	0.2
NEDIOS INP. 1	5.2		21.90	6.49	9.60	2.3	54.7	3.5
CONC. INP. 2	¢. I	1,000:1	32.40	1.60	7.60	0.1	0.3	0.2
NET105 189.7	8.1		40.E0	1.20	15.30	6.6	16.4	8.0
LAMAS ALCALINAS	1.6		27.90	\$.20	34,50	0.9	0.5	3.7
COMC. Fe	25.0	4,0;i	63.60	0.10	5.20	31.4	4.3	9.2
HEBIOS 2 Fe	9.5		54.00	0.03	14.49	10.2	1.3	11.0
KENIDS I Fe	6.¢		45.00	0.10	23,70	5,9	1.1	11.1
COLAS	10.2		17.00	0.0	53.20	3.9	1.0	38,3
	109.0					100.0	199.0	109.0
LEY CALCULADA			59.09	0.59	14.14			

CUADRO No. 35 Balance Metalurgico Prueba No. 10.

ETAPA	REACTIVO	CANTIBAS LUGAR		TIENPO	(HIN.)	pil
		git		Acest.	Flats.	
					r	
Noliensa	Na _s sio,	200	selina	29		
Magnetizacion			1-4	1.7		
Desime 1			caba	3.5		
Sepn. Hag.			1-8	4.0		
Limpia May.			L-9	4.0		
Beslame Ho-Kag.			cuba			7.8
Flots. Isp. 1	#a0H	500	celda	8		9.6
	almíson caust.	100	celda	\$		9.7
	aC. 98450	150	celta	2		9.6
	a. in pino	30	cel\$a	1	1.5	9.3
flots, 189. 7	RICH	150	celés	4		9.2
	AC. 97350	150	celia	2		\$,7
	a. de pino	30	celds	I	1.5	9.7
Beglane Alcalino			celda			8.4
Flats, Fe	N.50.	500	celda	4		6.8
	MC. 97150	300	celda	2		7.0
	s. fe piev	30	celda	1	1.5	7,0
	H*20.	258	celda	4		6.5
	ec , 97853	340	(9)\$a	2	1.5	6.9
	H=50.	158	celfa	4		ó.7
	MC. 9/250	300	colta	2	1.2	6.9
Liegia Ing. i	東 a 倒	400	celda	7		9.7
	almiton caust.	100	celfa	5		9.7
	a. de pino	50	celáz	1	0.7	9.7
Lingin Ing. 2	HZOH	230	celda	6		7.5
• •	almidon caust.	100	celda	4	0.5	9.7
Limpia 1 Fe	H=50.	250	celés	4.5		á.5
F	Kassi0,	109	celda	2	1.5	7.0
Lippia 2 Fe	5/8		celda		1.2	7.6

-

CUADRO NO. 36 CONDICIONES DE OPERACION PRUEBA No. 10.

CAPITULO IV

CONCLUSIONES

Los resultados obtenidos en las pruebas que componen este estudio, bajo las condiciones ya indicadas, permiten llegar a las conclusiones miguientes:

1.- Durante la fase de molienda y debido al tamaño de liberación requerido, se generó una gran cantidad de finos, lo que hizo necesaria una etapa de deslame primario, para eliminar parto de las partículas menores a 10 micrómetros (punto de corte), aprovechando que las leyes de P y sílice en este producto son elevadas (ver cuadros 7 y 6), y aunque se pierde parte de fierro, esto sirve tombién para evitar el problema de un consumo excesivo de reactivos en la (ase de flotación.

2.- Al aumentar la intensidad de campo en la etapa de magnatización, aumenta el contenido de P en el concentrado magnético (ver cuadros 14, 13 y 16), esto puede deberse al atrapamiento de apatita en los finos aglomerados magnéticamente.

72

3.- La recuperación de magnetita se efectúa mejor con separación magnética que con flotación, ya que con aquella, en dos etapas (separación y limpia magnéticas) se obtiene un concentrado que reune las especificaciones y que además tiene un peso y una recuperación elevados, en tonto que en las pruebas de flotación de fierro sin separación magnética previa, se pierde magnetita en medios y en colas.

4.- La obtención de un concentrado de cuarzo utilizando amina como colector no dió ningún resultado positivo, ya que con el concentrado no ce logró recuperar (eliminar) una cantidad significativa de cuarzo, y se observó que este se distribuye entre el concentrado de apatita y los productos de fierro obtenidos por flatación, razón por la cual se suspendió esta etapa en las pruebas de flotación y se decidió obtener un concentrado global de impurezas que contenga preferentemente a la apatita.

5.- No es conveniente limpiar el concentrado de impurezas, ya que la ley y la distribución de flerro en el mismo son bajas y no ameritan su retorno al circuito.

6.- El ácido graso utilizado (ácido oleico) es un colector

73

más poderoso, pero menos selectivo para los óxidos de fierro que el sulfonato de petróleo soluble en agua (quipironato 30) empleado en este estudio.

7.- Las condiciones de acidéz requeridas para flotar fierro son más fácilmente alcanzadas y controladas cuando se utiliza ácido graso que cuando se utiliza sulfonato soluble.

8.- El presente estudio muestra que se puede obtener un concentrado siderúrgico comercial a partir de este terrero, ya que se logra formar un concentrado final de fierro que cumple con las especificaciones requeridas y con recuperaciones en peso y metalúrgicas mayores al 30% y al 64% respectivamente (ver cuadros 39 y 40). Alcanzando así al objetivo propuesto en la presente tesis.

Ptopucts	PESO	0 R.C. 1	LEYES		(\$)	DISTRIBUCION (S)		
	(1)		Fe	7	S10,	Fe	P	SiO,
CONC. NAG.	26.0	3.8:1	65.00	0.04	1.20	31.0	1.6	2.2
CONC. Fe i	6.0	15.2:1	65.10	0.37	4.50	8.5	3.2	2.4
HER. Fe 1	10.2		65.10	0.16	8.50	13.1	2,5	6.1
COMC. Fe 2	7.1	13,7:1	63.10	0.05	2.90	9.1	0.7	1.5
CONC. Fe 3	4.0	25.0:1	62.70	0.04	3.70	5.0	0.2	1.0
CONC. FINAL	54, 1	1.0:1	65.10	0.10	3.40	69.7	9.2	12.9

CUADRO NO. 39 Formacion del concentrado Final a partir de varios Productos de la prueba 9.

PRODUCTO	Pess	Ŧ.C.	LEYES		(1)	\$157\$1\$x\$104 (V)		
	(2)		Fø	P	\${9 ₈	ř.	p	sio,
CONC. NAS.	25.4	3.9:1	£5. 10	0.10	\$.01	33, 3	4.4	0.0
CONC. Fe	75.1	4.0:1	£3.00	9.10	5,20	31.4	4.3	9.2
CONC. FINAL	50.6	2.0:1	54.10	0.10	2.50	64.7	8.7	9.2

CUADRO NO. 40 FORMACION DEL CONCENTRADO FINAL A PARTIR DE LOS 2 CONCENTRADOS OBTENIDOS DE LA PRUEBA 10.

CAPITULO V

BIBLIOGRAFIA

1. - ANONINO.

HIGH INTENSITY WET MAGNETIC SERIES L MODEL 4 LABORATORY SEPARATOR. ERIEZ MAGNETICS, 1977.

2. - ANONIMO.

LABORATORY MODEL L-8 WET DRUM MAGNETIC SEPARATOR. ERIES MAGNETICS, 1976.

3.- FLOREG, IGAAK, VELAZQUEZ.

ESTUDIO METALURGICO COMPLETO "FINOS CERRO DE MERCADO". CENTRO EXPERIMENTAL DEL SURESTE COMISION DE FOMENTO MINERO, 1984.

4.- FUERSTENAU, D.W. EDITOR.

FROTH FLOTATION.

50TH. ANNIVERSARY VOLUME.

AMERICAN INSTITUTE OF MECHANICAL ENGINEERS, 1962.

CAP. 13, 17, 19.

5.- FUERSTENAU, H.C. EDITOR.

FLOTATION, A.H. GAUDIN MEMORIAL VOLUME. VOL. I-II. AMERICAN INSTITUTE OF MECHANICAL ENGINEERS, 1976. CAP. 5, 46, 47.

6.- GLEMBOTSKI, KLASSEN AND PLAKSIN.

FLOTATION.

PRINARY SOURCES. N.Y., 1972.

CAP. V. VI.

77 -

7. - KELLY AND SPOTTISWOOD.

INTRODUCTION TO MINERAL PROCESSING. WILEY AND SONS, 1982.

8.- PEGQUERA, CARBONELL, ALMANZA Y BUILLEN.

RESERVAS Y UBICACION DE LOS YACIMIENTOS DE MINERAL DE FIERRO EN MEXICO.

CONSEJO DE RECURSOS MINERALES, 1977.

9.- PRYOR, E.J.

MINERAL PROCESSING.

3RD. EDITION

ELSEVIER PUB. CO. LTD., 1965.

CAP, 23,

10.- STRASSBURGER, BROWN, DANCY AND STEPHENSON.

BLAST FURNACE THEORY AND PRACTICE, VOL. I. GORDON AND BREACH, N.Y. 1969. CAP. IV. V.

11. - SUTHERLAND AND WARK.

PRINCIPLES OF FLOTATION.

AUSTRALIAN INSTITUTE OF MINNING AND METALLURGY, 1955.

12. - TORON VILLEGAS, LUIS.

LA INDUSTRIA SIDERURGICA PESADA DEL NORTE DE MEXICO.

BANCO DE MEXICO, 1963

CAP. 3.