

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE CIENCIAS

DESCOMPOSICION FOLIAR DE CUATRO ESPECIES ARBOREAS EN UNA SELVA HUMEDA TROPICAL.

T E S I S
QUE PARA OBTENER EL TITULO DE
B I O L O G O
P R E S E N T A:
ROSALBA BECERRA ENRIQUEZ

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

Pág.

		•
ı.	- Introducción	1,
	1 - El proceso de descomposición y su importancia	1
	2 - La problemática actual de las selvas	4
		AMERICA Ngjara
II -	- Antecedentes	7
III -	- La zona de estudio	13
IV -	· Metodol og la	17
	1 - Trabajo de campo	19
	2 - Análisis	23
v -	- Resultados	26
VI -	Discusion y conclusiones	56
	1 - Problemas metodológicos	56
	2 - El modelo	58
	3 - La descomposición	60
	Dell'account for	73

- I INTRODUCCION
- 1 El proceso de descomposición y su importancia.

La materia orgánica muerta proveniente de las plantas, junto con el aporte atmosférico, constituyen la fuente más grande de nutrientes de los ecosistemas. En la atmósfera ocurren continuamente una serie de fenóme-nos físicos y químicos que se encargan de llevar dichos nutrientes de un lugar a otro y de un estado a otro. De esta manera, se han establecido ciclos biogeoquímicos bien definidos dentro de los cuales los minerales -fluyen a través de un sistema circulando constantemente entre mundo vivo y el no vivo. Esta dinámica de los nutrientes (ganancias, pérdidas y -distribución) constituye un aspecto de particular importancia en el enten dimiento de la productividad de los sistemas, así como en el análisis de las causas de la distribución y abundancia de las poblaciones vegetales. Los cambios climáticos, edáficos y bióticos ocurridos en los ecosistemas, modifican la distribución espacial y temporal de los nutriente a nivel -local, reciprocamente la disponibilidad de Estos puede alterar la producción, estructura y composición de los sistemas. (Borman, F.H. y G.E. Likens, 1967). Los nutrientes contenidos en la materia orgánica muerta son liberados al suelo a través del proceso de descomposición, de manera que este regula la disponibilidad relativa de los nutrientes contenidos en el suelo, ejerciendo así una fuerte influencia en su formación y en la nutrición vegetal.

El proceso de descomposición implica el cambio de estado de la materia orgánica bajo la influencia de diferentes factores bióticos y abióticos.

Swift, M.J, W. Heal y M. Anderson (1979), dividen el proceso en tres cambios físicos escenciales:

- 1 Lixiviación proceso abiótico por el cual el material soluble es removido a otro sitio. Ocasiona una pérdida de peso y alteraciones químicas en el material vegetal.
- 2 Catabolismo En este proceso el recurso cambia de estado a -formas inorgánicas. En esta etapa interviene la comunidad desintegradora, existiendo pérdida de material por transformación a formas volátiles o solubles.
- 3 Trituración proceso físico que implica la reducción del tamaño de las partículas. No existe pérdida de material.

Mo obstante la obvia diferencia antre los tres cambios ocurridos - durante el proceso, su acción simultánea, y la constante convergencia de las diferentes etapas, hace dificil el estudio del proceso de descomposición en su forma global.

El sistema de descomposición está regulado fundamentalmente por tres variables: a) la comunidad desintegradora, b) los factores ambientales -- (físicos, químicos, climáticos y edáficos) y c) la calidad del recurso, (Anderson y Swift, 1983).

Basándose en un estudio comparativo de diferentes trabajos de descomposición en varias regiones del mundo, Anderson y Swift (1983) dan a estas -- tres variables un orden de importancia y establecen que las condiciones - ambientales, y particularmente la precipitación, resultan ser el factor más limitante. El agua es escencial tanto para la mayoría de los fenómenos químicos ocurridos como en la regulación de las poblaciones de micro-

organismos desintegradores. Las diferencias observadas en los ecosistemas con diferente regimen pluviométrico y la marcada estacionalidad observada en la acumulación de hojarasca en la época seca y su disminución con el inició de la lluvia, evidencía la estrecha relación del fenómeno de descomposición con el ciclo del agua, y particularmente con la distribu-ción de la precipitación a lo largo del año.

La calidad del recurso es el segundo factor limitante. La resisten cia que el material vegetativo ofrece a la descomposición está determinado por su dureza, contenido de nutrientes y de compuestos resistentes (lignina, celulosa, sustancias tóxicas, etc.) grosor, tamaño, etc. La --actividad de la comunidad desintegradora estará determinada en gran medida por éstas características intrinsecas de cada especie.

Finalmente tenemos a las poblaciones de desintegradores, que en última instancia son los que realizan el proceso de transformación de la materia orgânica muerta. Estos organismos del suelo se clasifican regularmente en dos grandes grupos de acuerdo a su tamaño: los microorganismos, que solo pueden observarse bajo el microscopio y que incluyen bacterias, actinomicetos, protozoos, hongos y algas, y los microorganismos que incluyen moluscos, oliquetos, nemátodos y artrópodos, entre los que podemos — mencionar a los quilópodos, diplódos e insectos. (Jackson, R.M y F. Raw. 1981). Algunos de estos organismos pasan todo su ciclo vital en el suelo, mientras que otros habitan en este medio solo parte de su tiempo o durante etapas específicas de su ciclo de vida. La actividad de estos organis-

mos, así como la dinámica de sus poblaciones responde a cambios ambientales como la temperatura, humedad, incidencia de luz, interacción con ---otros organismos, etc., pudiéndose establecer ciclos diurnos y estacionales, así como diferentes niveles tróficos y etapas sucesionales (Jackson
y Raw op. cit; Anderson, 1975). Sin embargo, a pesar de jugar un papel
fundamental en el proceso de descomposicón, los desintegradores parecen
tener una capacidad funcional equivalente en los diferentes ecosistemas.
es decir, en ausencia de ciertos grupos de organismos, otros adquieren -una capacidad compensatoria, de manera que la velocidad del proceso no se
ve fuertemente influenciada (Anderson y Swift, op. cit.)

2 - La problemática actual de las selvas.

Uno de los fenómenos más alarmantes en la actualidad y que ha llama do la atención de varios investigadores, es el grave deterioro en que se encuentran las áreas tropicales de todo el mundo, y particularmente los --bosques húmedos tropicales. Estos ecosistemas son las zonas biológicamente más ricas del planeta por lo cual se pensó que serían altamente productivas si se sometian a un uso y explotación intensiva. Sin embargo los --modelos de explotación aplicados hasta la fecha no han resultado ser los más adecuados, pues se han introducido sistemas y tecnologías modernas apropiados a ecosistemas templados o fríos, pero no para las zonas tropicales. La utilización de estos sistemas inapropiados se ha pretendido justificar con la idea de aumentar la productividad a través del cambio en el uso del suelo, mediante la introducción de otros cultivos o ganadería. Los resultados obtenidos han sido, sin embargo, muy desalentadores en tanto que la alta productividad se limita a períodos de tiempo muy cortos, o bien, se -

observan niveles de productividad bajos a largo plazo. Las consecuencias manifiestas por el cambio de uso del suelo y por la utilización de técnologías no específicas para la explotación de los bosques tropicales han sido irremediablemente la degradación y desaparición de las selvas.

Cualquier sistema de explotación debe considerar la diversidad biológica existente, ya que el grado de sensibilidad y respuesta de los diferentes ecosistemas a la intervención y a las modificaciones producidas por el hombre no es igual en todas la regiones.

Las investigaciones más recientes realizadas por ecólogos en diferen tes partes del mundo, demuestran que los ciclos de los nutrientes y los -flujos de energía revisten gran importancia para estimar la productividad de los ecosistemas, su sensibilidad a la perturbación y su capacidad de re generación. Se ha sugerido, por ejemplo, que en los bosques tropicales de suelos pobres (oligotróficos) se presentan una serie de mecanismos estruc-turales y funcionales que permiten una mayor eficiencia en la retención de nutrientes, como respuesta al bajo contenido de éstos en el suelo y a la -gran potencialidad del medio para extraerlos. (Herrera, R., C.F. Jordan, H. Klinge y E. Medina, 1978). Estos mecanismos pueden ser: la formación de una densa capa de raices con una elevada capacidad de retención de nutrientes, el paso directo de los nutrientes de la hojarasca a las raices de los árboles a través de sistemas microrrísicos (Cuevas E. y E. Medina, 1983), recuperación de nutrientes antes de la absición foliar (Edwards, 1977, Jordan, C. R. Herrera, 1981), adaptación fisiológica de los árboles, formación de hojas con mayor contenido de compuestos resistentes a la descomposición

No obtante la exhuberante vegetación y la rica fauna encontrada en - los bosques tropicales, estos ecosistemas son en realidad muy frágiles como resultado del delicado equilibrio establecido entre el gran número de - especies y su medio físico.

Asi pues, este estudio, como parte de una investigación más amplia - sobre el ciclo de nutrientes en la selva, pretende contribuir a una mejor planeación del uso y conservación de los bosques tropicales en México y en el mundo tropical en general.

II - ANTECEDENTES.

Existen tres maneras comunmente utilizadas para estudiar el fenómeno de descomposición; (Anderson y Swift, 1983). La primera de ellas consiste en medir la respiración del suelo, la cual incluye la respiración de los organismos heterótrofos más la de las raices. Este método puede ser el indicador de los flujos de carbono a través del sistema, dando información sobre todo de la influencia de los cambios ambientales sobre el metabolismo del mismo.

Otra forma de cuantificar la velocidad de descomposición de la hojarasca es por medio del coeficiente de descomposición anual denominado k -- (Jenny, H., S. Gessel y F., T. Bingham, 1949), el cual se obtiene relacionando la acumulación de hojarasca en el suelo con la caída de la misma.

Los valores de k mayores de uno sugieren que la tasa de cambio de materia orgánica ocurre en menos de un año. Por otro lado, el recíproco de k (1/k) refleja el tiempo que tarda en descomponerse el 100% de la hojarasca, (Hopkins, 1966).

Considerando que los resultados obtenidos utilizando el coeficiente de descomposición son muy generales, dado que la caída, acumulación y ---- desintegración de la hojarasca se encuentran en gran medida determinados - por una serie de características diferenciales a nivel de especies, se ha derivado una tercera metodología para el estudio de la descomposición, la

cual consiste en introducir un peso conocido de hojas de ciertas especies en bolsas de malla plásticas y colocarlas en el suelo. Periodicamente se recogen las bolsas y se determina el peso perdido del material vegetal en un intervalo de tiempo también conocido. Los trabajos realizados con este método permiten llevar a cabo el estudio con ciertas especies o bajo de-terminadas condiciones, de acuerdo al interés del investigador. A menudo se utilizan diferentes medidas en la abertura de la malla con el fin de excluir ciertos grupos de desintegradores, determinando así el papel que desempeña cada uno de ellos en la descomposición. (Crossley y Hoglund, 1962).

Algunos resultados obtenidos con la utilización de estas dos últimas metodo logías para diferentes selvas del mundo aparecen en la tabla l.

En México son pocos los trabajos que se han realizado para comprender más a fondo el proceso de descomposición en nuestros ecosistemas. Podemos citar los realizados por Martínez (1984) en Selva Mediana y Baja Caducifolia en Jalisco, Bracho y Sosa (19) en Bosque Mesófilo de Montaña, García Aldrete, con un estudio de microartrópodos de la hojarasca en los Tuxtlas, y Alvarez (1984 y 1985) también en la región de los Tuxtlas, trabajo que dió origen a esta investigación y del cual se citan a continuación alqunos resultados importantes.

Si bien la caída de horajasca en la selva de los Tuxtlas ocurre durante todo el año, el patrón de producción es estacional, asociado a la efpoca seca. La caída total fué de 7.26 t/ha/año, correspondiendo 5.46 t

Tabla 1. Velocidades de descomposición de restos vegetales frescos en bosques tropicales y subtropicales (modificado de UNESCO, CIEFCA, 1980). El asterisco marca los experimentos realizados con ma-llas plásticas.

			DESPARACION COMPLETA	
LOCALIDAD	TIPO DE BOSQUE	К	(MESES)	AUTORES
Kade, Ghana	Húmedo siempreverde	4.7	2.5	Nye, 1961
Yangambi, Zaire	Húmedo siempreverde		4	Laudelot y Meyes,1954.
Los Tuxtlas, México	Hűmedo siempreverde	2.9		Alvarez, 1984.
Olokemeji, Nigeria	Hűmedo semicaducifolio		4 00 grad	Hapkins, 1966.
Omo, Nigeria	Hűmedo siempreverde		5	Hopkins, 1966.
Ibadan, Nigeria	Humedo semicaducifolio	2.2*	5*	Madge, 1965.
Banco, Costa de Mar-			The property of the second of	
fil	Húmedo siempreverde (valle)	4.2	5*	Bernhard, 1970.
Banco, Costa de Mar-				
fil	Hűmedo siempreverde (planici	e)3.3	9*	Bernhard, 1972.
Yapo, Costa de Marfil	Húmedo siempreverde	3.6*	11*	
Santa Fe, Panamá	Premontano húmedo		5.5	Golley et. al, 1975.
	Tropical húmedo		6.5	Golley <u>et.al</u> , 1975.
	Bosque de galerfa		13	Golley <u>et.al</u> , 1975.
Pa namá	Secundario		17	Tropical test Center,1966
Murcielagos, Guatemala	Humedo caducifolio		. 2,5*	Ewel, 1976.
Colima, Colombia	Muy hűmedo		7	Jenny <u>et.al</u> , 1949.
Chinchina	Subtropical		19	Jenny <u>et.al</u> . 1949.

a las hojas (75.21%). Los períodos con mayor caída de hojarasca ocurrieron uno en febrero, de 1.13 t/ha, y otro mayor en abril, de 1.94 t/ha.
El valor mínimo se registró en diciembre, con 0.27 t/ha. (Alvarez, 1985).

El coeficiente de descomposición (k) para 1982, fué de 2.9, y el reciproco de k (1/k) indica que para esta región la tasa de recambio de materia orgánica ocurre en un período de aproximadamente tres meses. lo cual se ajusta a los estimados en otras selvas del mundo. (Alvarez, 1984). En este trabajo se calcularon también los coeficientes k, con los que se denota la descomposición sobre bases mensuales. Esto último fué realizado entre diciembre de 1981 y mayo de 1983. En general, los coeficientes de menor descomposición coincidieron con los meses más secos, cuando la acumulación de hojarasca en el suelo fué mayor. (Alvarez, op. cit.).

Si bien se presenta un patrón de caída de hojarasca general para toda la selva, se econtraron grandes diferencias en el aporte de cada especie tanto en cantidad como en su distribución a lo largo del año. Aten--diendo a esto, dentro de las especies más importantes se encuentran ---Nectandra ambigens, Pseudolmedia oxyphyllaria, Ficus insipida y Poulsenia
armata. Los valores para cada una de estas se señalan en la tabla 2.

La cantidad total de hojarasca aportada por estas cuatro especies suma 2.100 ton/ha/año, lo que representa el 46.46% del total calculado para la selva de los Tuxtlas. (Alvarez, op. cit.)

Tabla 2. Producción de hojarasca de las cuatro especies obtenido durante dos años en los terrenos de la Estación de Biología ---Tropical "Los Tuxtlas", y su porcentaje con respecto al total anual. (tomado de Alvarez, 1984.)

	kg/ha. Año 1 (1983)	%
Nectandra ambigens	1,274.40	28 18
Pseudolmedia oxyphyllaria	363.60	8.04
Poulsenia armata	268.93	5.95
Ficus insipida	194.00	4.29
	Año 2 (1984)	%
Nectandra ambigens	1,345.72	28.63
Pseudolmedia oxyphyllaria	489.13	10.37
Poulsenia armata	260.63	5.54
Ficus insipida	147.07	3.13

Los resultados obtenidos por Alvarez, reflejan que los procesos de producción y descomposición de hojarasca están definidos por comportamientos diferentes a nivel de especies, sin embargo los coeficientes de descom posición calculados engloban a la hojarasca de todas las especies bajo un mismo tratamiento, sin permitirnos conocer sus diferencias.

El presente trabajo se realizó utilizando la tercera metodología des crita con el propósito de estudiar más en detalle la descomposición foliar de cuatro especies importantes, bajo condiciones topográficas contrastantes, relacionando estos comportamienton con la producción de hojarasca y con las condiciones ambientales en el sitio. El estudio forma parte del del proyecto de investigación "Regeneración de Ecosistemas Tropicales: Selva Alta Perennifolia" del Laboratorio de Ecología de la Facultad de Ciencias de la UNAM.

III - LA ZONA DE ESTUDIO.

El estudio se realizó en los terrenos de la Estación de Biología -Tropical "Los Tuxtias" del Instituto de Biología de la UNAM, que cuenta con una extención de 700 has. ubicadas dentro de la zona montañosa cono-cida como "Los Tuxtias" al Sureste de Veracruz. La estación se localiza
a 33.5 km. de Catemaco, rumbo a la costa, aproximadamente entre los 18°
34' y 18° 36' de latitud norte y los 95°04' y 91°09' de longitud oeste.
La altitud ya desde los 150 hasta los 530 m.s.n.m. (Lot-Helgueras, 1976).

Tomando como base los datos de la estación meteorológica de Coyame, que se encuentra a 25 km. de la estación, el clima de la región es cálido-húmedo del tipo Af (m)w'(i') g (Köppen modificado por García, 1964,)caracterizado por presentar una precipitación media anual de 4746 mm, con un mínimo en abril y mayo y un máximo en julio, la canícula se presenta en el mes de agosto. La temperatura media anual es mayor a los 22°C, registrándose la máxima en julio, de 27.1°C y la mínima en enero, de 21.1°C. La oscilación térmica es de alrededor de 6°C. (Figura 1)

Es importante señalar la influencia de los vientos conocidos como - "nortes" durante los meses de invierno. Estos vientos son masas de aire provenientes del norte, que atraviesan el Golfo de México cargándose de - humedad y al chocar con la barrera montañosa continental se precipitan, - ocasionando una considerable disminución en la temperatura y un aumento - en la precipitación durante esta época del año. Este régimen de vientos modifica fuertemente las condiciones climáticas de la región, reflejándose en la fenología de la vegetación. Los datos de precipitación total -

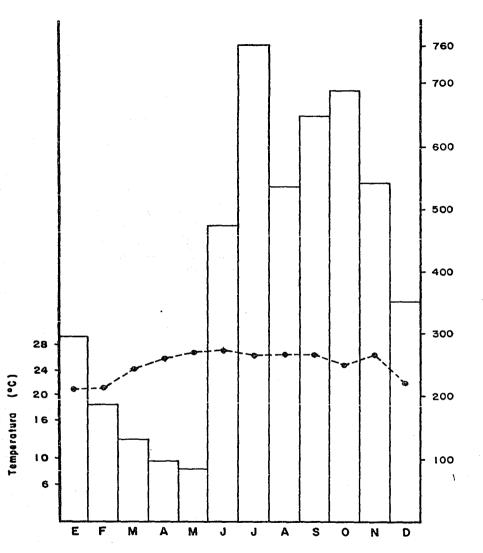


Figura 1.- Climograma de la región de los Tuxtias, los datos corresponden a promedios mensuales de 18 años - registrados por la Estación Climatológica de -- Coyame, Voracruz.

mensual y anual registrados dentro de la Estación de los Tuxtlas se --muestran en la tabla 3.

El estrato geológico de la región es de origen volcánico, formado principalmente por rocas basálticas, andesíticas y cenizas volcánicas, mezcladas con rocas de origen sedimentario como calizas, arcillas y areniscas (Flores, 1971, en Estrada et.al. 1985).

Los suelos de la estación son jóvenes y poco desarrollados, debido a la intensa erosión ocasionada sobre todo por la lluvia que aumenta la lixiviación y acarreo de grandes cantidades de materia orgánica producidos por la vegetación (Chizón, 1984, Estrada et al.1985)

La vegetación corresponde al tipo Selva Alta Perennifolia, según la clasificación de Miranda y Hernández X. (1963). Diversos estudios sobre la vegetación realizados en los terrenos de la estación (Carabias, 1979, Martinez-Ramos 1980) coinciden en señalar la existencia de los siguientes estratos: un estrato inferior, de 0 a 10 m. de altura con Astrocarium mexicanum, Faramea occidentalis y Psycotrias sp, como sus principales --representantes, un estrato medio de 10.5 a 20 m. con Pseudolmedia oxyphy-llaria, Quararibea funebris, Croton nitens, Guarea glabra y Stemmadenia donnell-smithii como representantes y un estato superior, mayor de 20 m. Nectandra ambigens, Poulsenia armata, Dendropanax arboreus, Pterocarpus rohrii, Omphalea oleifera, Platymiscium pinnatum, Ampelocera hottlei y Pithe celobium arboreum. (Bongers, F., J. Popma, J. Meave y J. Carabias, en preparación).

Tabla 3. Datos de precipitación total mensual y anual para la Estación de Biología "Los Tuxtlas". (tomado

	de Estarada, A., R. Coates-Estrada y M. Martinez - Ramos, 1985).												
•	Enero	Feb.	Marzo	Abril	Mayo	junio	Julio	Agost.	Sept.	Oct.	Noviembre	Diciembre	total
1972	376	269	0	204	83	373	1 040	823	539	620	979	346	5 6 52
1973	302	470	6	. 227	197	294	382	1121	450	7 98	318	338	4903

450 798 547 1023

TOTAL 4 904 MEDIA 97.2

D.E. - = No existen datos disponibles.

70.9

76.7

D.E.= Desviación stándard.

IV - METODOLOGIA

Para la realización de este trabajo se eligieron cuatro de las especies más importantes en cuanto a su aporte de materia orgánica al sue10. Estas especies son: Nectandra ambigens, Pseudomedia oxyphyllaria,
Ficus insipida y Poulsenia armata que, como se mencionó antes, aportan el 46.46 % del total de hojarasca anual.

Considerando que las características propias de cada especie juegan un papel importante en su descomposición a continuación se da la descripción morfológica de las hojas de cada una (tomado de Ibarra, 1985).

Nectandra ambigens Blake. Fam: Lauraceae.

Hojas simples, en espiral, peciolo de 9-15 mm. de largo y de 1-2 mm. de ancho, plano por el haz, verde rojizo, glabrescente. Lámina de 9-15 cm. de largo y de 3-6 cm. de ancho, elíptica, base y ápice agudo. margen entero, haz obscuro, brillante glabro, envés mas pálido glabro con excepción de la costa, que es glabrescente, de 7-8 venas secundarias prominentes en el envés. Produce hojas jövenes rojizas de marzo a julio.

Pseudolmedia oxyphyllaria Donn. Fam: Moraceae

Hojas simples alternas. Peciolo de 5-10 mm. de largo y de 0.8 a 1.2 mm.

de ancho, supracanalado o rollizo, glabrescente y exudado pardo pálido al

desprenderlo del tallo. Lámina de 5.5-10 cm. de largo y de 3-6 cm. de -
ancho, elíptico ovada o elíptico lanceolada, base obtusa o cuneada, ápice

cuspidado, margen entero, haz obcuro, envés más pálido y con ambas super

ficies glabras excepto en la costa por el lado del envés, venación pinna

da de 12-18 venas secundarias, más prominentes por el envês, raramente con agallas cônicas en la lâmina de 2-3 mm. de ancho. Yema terminal de 6-15 mm. de largo, con el âpice agudo, verde grisâceo y cubiertas con pelos simples sedosos. Produce hojas verde pálidas cuando florece de --febrero a abril.

Ficus insipida Willd. Fam: Moraceae.

Hojas simples en espiral, raramente alternas. Peciolo de 10-30 mm. de largo y de 2-4 mm. de ancho, supracanalado glabro y exudado blanquecino al desprenderlo del tallo. Lámina de 10-17 cm. de largo y de 3-7 cm. de ancho, elíptica u ovada, base aguda y ápice agudo amucronado, también glabro, venación pinnada de 16 a 24 venas secundarias relativamente conspicuas, costa amarillenta. Yema terminal de 3-5 cm. de largo, lanceolada, con su porción basal más ancha. Produce hojas jóvenes verde pálidas durante el período de marzo a mayo.

Poulsenia armata. (Mig) Standl. Fam: Moraceae.

Hojas simples alternas o en espiral. Peciolo de 1-5 cm. de largo y de

0.3 a 0.6 cm. de ancho, supracanalado, glabro, con espinas cortas, verdosas y exudado blanco al desprenderlo del tallo. Lámina de 8-30 cm. de -largo y de 4.5 -15 cm. de ancho, elíptica o casi orbicular, base redon-deada o raramente truncada, asimétrica y con el ápice obtuso con un corto
acumen, margen entrero ligeramente ondulado, haz obscuro a brillante, envés más pálido y con ambas superficies glabras, venación pinnadade 8-14
venas secundarias, con pequeñas espinas a lo largo de las venas y la costa
por el largo del envés. Yema terminal de 2.5-6 cm. de largo y de 0.7 a

1.5 de ancho, acuminado lanceolada, armada. Caducifolia durante un corto tiempo a principio de la época seca.

1 - Trabajo de Campo.

En diciembre de 1983 se recogieron de la selva aproximadamente ---2000 hojas de cada una de las especies mencionadas, procurando que fueran hojas recientemente caídas. Después de ser secadas al aire durante dos días, se agruparon en muestras de 20 hojas cada una para N. ambigens, P. oxyp<u>hyllaria</u> y <u>F. insipida</u> y de 10 para P. armata, debido a su gran tamaño. De la colecta inicial se realizó un análisis preliminar para determi nar la media (\tilde{x}) y la desviación estandar (s) de su tamaño, lo cual sir vió como referencia para desechar aquellas hojas que fueran muy grandes o muy pequeñas. Posteriormente las muestras fueron pesadas y colocadas en bolsas de malla de plástico de 20 x 20 cm., con una abertura de 2.5 mm. Una vez marcadas las bolsas se colocaron en el suelo de la selva. tribución se hizo de acuerdo a un diseño factorial, en el cual se contemplan cuatro sitios, dos en pendientes de 17ºa 25º, y dos en zonas planas (0°). En los trabajos de producción de hojarasca realizados por Alvarez (1984, 1985) se observó que existe una mayor acumulación de hojarasca en zonas con pendiente, lo cual podía ser consecuencia de la diferencia en la velocidad con que corre el aqua, afectando principalmente la lixivia-ción, o del mantenimiento de la humedad en estas zonas, influyendo inclu- . so en las poblaciones de desintegradores. Esto nos hizo suponer que el proceso de descomposición sería diferente bajo estas dos condiciones. En cada uno de estos sitios se colocaron sobre una linea, amarrados a una -cuerda, dos bolsas de cada especie, distribuyéndose en forma paralela 12 lineas, de manera que recobiendo una linea mensualmente se abarca un ci-clo anual. (Figura 2).

Plano 1	Plano 2	
N1 N3 N23	N25 N27	N47
N2 N4	N26 N28	N48
S1 S3 \$23	S25 S27	S47
S2 S4 S24	\$26 \$28	\$48
F1 F3 F23	F25 F27	F47
F2 F4 F24	F26 F28	F48
P1 P3 P23	P25 P27	P47
P2 P4	P26 P28	
ler.mes 20. mes 120.mes	. ler.mes. 2o. mes.	12o. mes
Inclinado 1	Incl fnado 2	
N49 N51	N73 N75	N95
N50 N52	N74 N76	N96
S49 S51 S71	S73 S75	S95
The state of the control of the cont	\$73 \$75 \$74 \$76	
S49 S51 S71		S96
\$49 \$51 \$71 \$50 \$52 \$72	S74 S76	S96 F95
\$49 \$51 \$71 \$50 \$52 \$72 \$49 \$51 \$71	S74 S76	S96 F95 F96
\$49 \$51 \$71 \$50 \$52 \$72 \$49 \$51 \$71 \$50 \$52 \$72 \$71 \$71 \$72	S74 S76 F73 F75 F74 F76	S96 F95 F96 P95

Fig. 2. Distribución de las bolsas en los diferentes ciclos.

N= Nectandra ambigens, S= Pseudolmedia <u>oxyphyllaria</u>, F= <u>Ficus</u> insipida.

y P= <u>Poulsenia armata</u>. Cada muestra tiene un número progresivo con el cual se encuentra su localización.

Considerando que la humedad es el principal factor que desencadena el proceso de descomposición y que las características de las hojas que caen en diferente época del año no son iguales, se realizó el mismo experimento durante dos ciclos, iniciando el primero en diciembre de 1983, durante los nortes y utilizando las hojas que cayeron en la época de lluvias, y el segundo que comenzó en mayo de 1984, al inicio de la época de lluvias y con hojas que cayeron durante la estación seca. Debido a que el intervalo de tiempo entre una colecta y otra no fué de 30 días, en el primer ciclo se abarcó un período mayor de un año con las doce colectas y en el segundo se cubrió un cíclo anual con sólo ocho colectas.

El intervalo entre una colecta y otra fué en promedio de 44 días - (Tabla 4).

Una de las mayores dificultades en el trabajo de campo fué la limpieza del material. Al retirarse las muestras del suelo, el material remanente se encuentra a menudo triturado, mezclado con tierra e invadido por hongos o raicillas que resultan difíciles de separar. Esta limpieza se llevó a cabo en el laboratorio y después se secó el material recuperado en un horno a una temperatura de 80°C, durante 48 horas, obteniendo finalmente el peso seco. Con el peso inicial y con el obtenido una vez retiradas las hojas de la selva se obtuvo la proporción de peso perdido (ppp) para cada una de las muestras.

Tabla 4. Fechas de colecta e intervalos de tiempo entre una colecta y otra. La l'inea punteada marca el inicio del segundo ciclo.

	MES	DIA	INTERVALO EN DIAS	DIAS ACUMULA CICLO 1	DOS CICLO 2
1983	Diciembre	10	0	0	
	Enero	<u>.2</u> 4	44	44	
	Marzo	10.	36	80	
	Abril	4	35	115	
1984	Mayo	9 .	36	151	0
	Junio	17	39	190	39
	Agosto	4	48	238	87
	Septiembre	14	41	279	128
	Octubre 27		43	322	171 .
	Diciembre	12	46	368	217
985	Marzo	2	79	447	296
	Abril	. 10	39	486	335
-	Ма уо	25	45		380
			- X= 44.25		

De esta manera se generó una gráfica para cada combinación especiesitio-ciclo, utilizando el promedio de la proporción de peso perdido ----(ppp) de las dos muestras mensuales correspondientes a cada especie.

2 - Análisis de datos.

Actualmente el establecimiento de modelos matemáticos aplicados a procesos biológicos es una de las herramientas mas fuertes de la biología. Su valor radica tanto en la posibilidad de hacer predicciones acerca de un proceso como la de llegar a elaborar generalizaciones que permitan extrapolar un comportamiento bajo determinadas condiciones. La formulación de modelos matemáticos que simulan el proceso de descomposición ha comenzado a ser utilizado en los últimos años profusamente. El primer modelo propuesto fué el exponencial negativo, presentado por Jenny et.al.en ----1949. A partir de entonces encontramos varias publicaciones en las que se proponen muevos modelos discutiendo sus ventajas y desventajas. Becerra (1984), realizó una revisión detallada de los modelos más comunmente utilizados para describir dicho proceso. En este trabajo se intentó el ajuste de las curvas obtenidas con los modelos lineal, utilizado por ---Edwards, (1977), y al exponencial negativo, inicialmente propuesto por Jenny et.al. (1949) y que ha sido utilizado y discutido por varios inves-tigadores. (Nye,1961; Olson, 1963; Minderman, 1968; Becerra, 1984).

Los datos obtenidos se sometieron a un análisis de varianza multi-factorial con el objeto de evaluar las diferencias existentes en el pro-ceso de descomposición entre las diferentes especies, las diferentes zo-nas (plano e inclinado) y los dos ciclos (Sokal y Rohlf, 1969). Asimismo
se realizaron análisis de varianza mensuales para comparar la ppp entre

las especies y las zonas. Después de transcurridos los primeros meses de cada ciclo (4 para el primer ciclo y 3 para el segundo) el material vegetal de algunas especies se desintegró por completo; por tal razón no fué posible realizar los análisis de varianza para los meses restantes, aplicando únicamente pruebas de t de Student (Sokal y Rohlf, op. cit.)

Se realizarón también comparaciones múltiples de medias para probar la diferencia entre especies, zonas y ciclos, utilizando los métodos de -Tukey, Bonferroni y Scheefe. (Steele y Torrie, 1980).

Las proporciones de peso perdido a través del tiempo de cada especie se correlacionaron con los datos de precipitación, registrados en la Estación durante los meses que duró el experimento, así como con el patrón de producción de hojarasca observado para cada especie por Alvarez (1985).

Todas las pruebas estadisticas, así como los ajustes de modelos se realizaron con el paquete de rutinas estadísticas S A S (Statistical ---- Analysis System) en el equipo de cómputo IBM 4341 del Centro Científico de IBM de México.

la muestra. El Ca y Mg se determinaron por el método de absorción atómica previa acenización de la muestra.

V - RESULTADOS

De los resultados obtenidos a lo largo de todo el experimento resal ta la gran diferencia encontrada en la descomposición entre las cuatro es pecies. En la tabla 5 se muestra un promedio de los porcentajes de pérdi da de peso para cada una de ellas a los 3, 6, 9 y 12 meses. No obstante que la pérdida de peso observada durante los tres primeros meses es más elevada que el resto de tiempo en las cuatro especies, se observó que mien tras N. ambigens perdió solo de 30 a 45% de su peso original durante este tiempo, F. insipida perdió de 88 a 95 %. A los seis meses, N. ----ambigens y P. oxyphyllaria habian desaparecido aproximadamente en un 50%, mientras que F. insipida y P. armata casi se perdian por completo en el -primer ciclo y en el segundo no quedaron restos de ellas para este. Al -concluirse un ciclo anual solo quedaron restos de las hojas de N. ambigens (aprox. el 10% de su peso inicial), mientras que P. oxyphyllaria desapare ció por completo entre los ocho y diez meses. En la table 6 se encuentran el número de meses que tardó en desaparecer por completo el tejido vegetal de cada especie. Los períodos más altos correspondieron a F. insipida, 37 % en promedio mengres a los de N. ambigens, la especie con períodos de descomposición más largos. Además el periodo de descomposición se redujo durante el segundo ciclo un 32% en promedio.

Se realizaron análisis de varianza para probar la bondad de los - ajustes con los modelos lineal y exponencial negativo, obteniendo valores de F altamente significativos en el caso del segundo modelo, por lo cual se decidió utilizarlo para explicar el proceso de descomposición de las -- cuatro especies. Las curvas ajustadas con este modelo se muestran en las figuras 3 a 10.

Tabla 5. Porcentaje de pérdida de peso de las hojas de las cuatro especies a lo largo del tiempo. El número de arriba corresponde al primer ciclo y el de abajo al 20.

Meses	3	6	9	12
Especie			• *	•
				:
	30	50	65	90
Nectandra ambigens	45	50	65	90
Pseudolmedia oxiphyllaria	35	40	75	100
	50	75	90	100
Ficus insipida	88	98		
ricas maipida	45	100	•	
	65	85		
Poulsenia armata	. 65	. 65		
	75	100		

Tabla 6. Número de meses en que desapareció por completo el material vegetal de las cuatro especies para cada sitio y ciclo.

•	Plano 1	Plano 2	Inclinado l	Inclinado 2
Nectandra ambigens	12	12	. 12	12
Pseudolmedia oxyphyllaria	10	10	10	8
Ficus insipida	5	5	5	5
Poulsenia armata	7	7.	7	. 7

	<u>Ciclo 2</u>			
Nectandra ambigens	9	9	9	9
Pseudolmedia Oxyphyllaria	8	7	8	8
Ficus insipida	3	3	3	3
Poulsenia armata	4	4	4	4

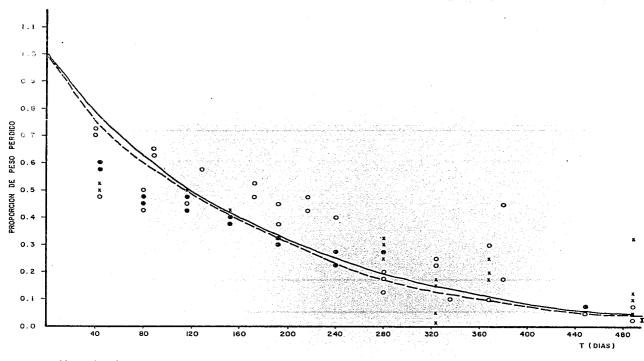


Figura 3. Curso de descomposición de <u>Nectandra ambigens</u>, durante el ciclo 1. El signo o corresponde a los vavalores observados en el plano (P), y el x a los valores observados en el sitio inclinado (I).

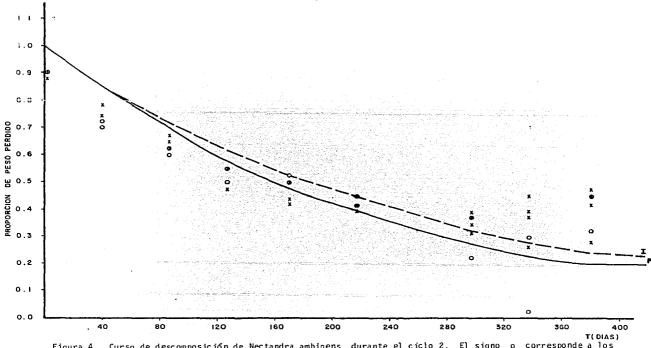


Figura 4. Curso de descomposición de <u>Nectandra ambigens</u> durante el ciclo 2. El signo o corresponde a los valores observados en el sitio plano y el x a los valores observados en el sitio inclinado I.

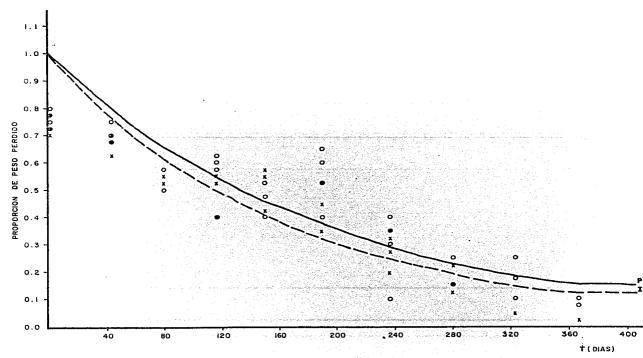


Figura 5. Curso de descomposición de <u>Pseudolmedia oxyphyllaria</u> durante el ciclo 1. El signo o corresponde a los valores observados en el plano (<u>P</u>), <u>y el x a los</u> valores observados en el sitio inclinado (<u>I</u>).

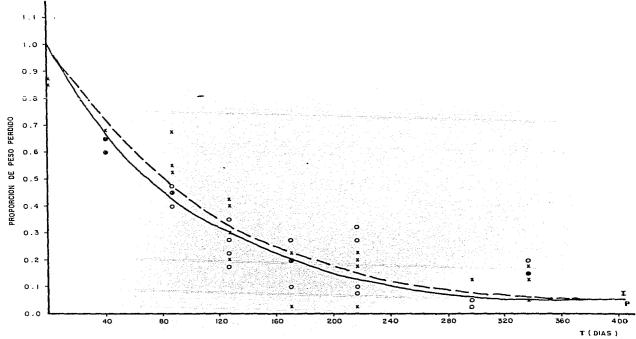


Figura 6. Curso de descomposición de <u>Pseudolmedia oxyphyllaria</u> durantante el ciclo 2. El signo corresponde a los valores observados en el <u>plano (P)</u>, <u>y el x a los</u> valores observados en el sitio inclinado (I).

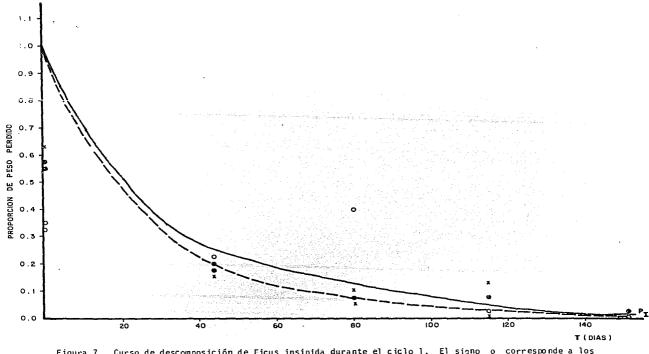


Figura 7. Curso de descomposición de <u>Ficus insipida</u> durante el ciclo l. El signo o corresponde a los valores observados en el plano (P), y el x a los valores observados en el sitio inclinado (I)

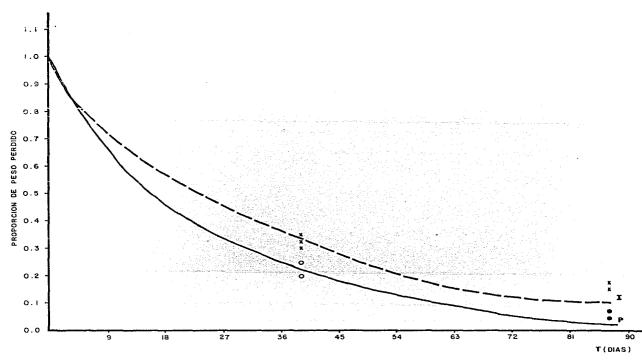


Figura 8. Curso de descomposición de <u>Ficus insipida</u> durante el ciclo 2. El signo o corresponde a los valores observados en el plano (P), y el x a los valores observados en el sitio inclinado (1).

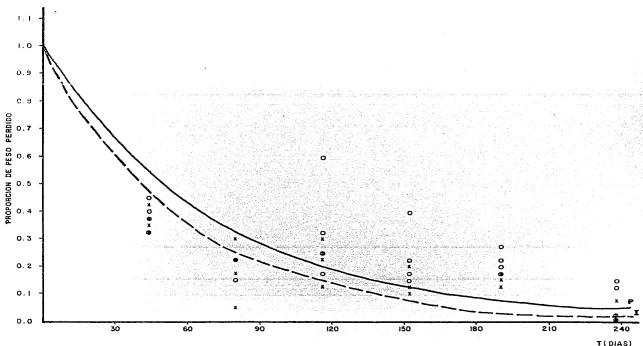


Figura 9. Curso de descomposición de <u>Poulsenia armata</u> durante el ciclo l. El signo o corresponde a los valores observados en el plano (P), y el x a los valores observados en el sitio inclinado (I).

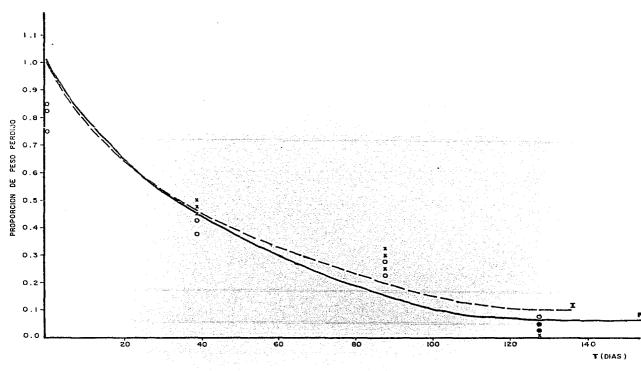


Figura 10. Curso de descomposición de <u>Poulsenia</u> ar<u>mata</u> duarante el ciclo 2. El signo o corresponde a los valores observados en el plano (P), y el x a los valores observados en el sitio inclinado (I).

X_t= Xo e^{-kt} en donde:

X_t= cantidad de material presente al tiempo t.
Xo= cantidad inicial de materia orgánica
e= base de log. naturales.
k= constante de descomposición
t= tiempo.

En la tabla 7 se muestran los valores de la constante de descomposición (k) para cada especie, así como los valores de F y P derivados - del análisis de varianza. Los valores de F y p nos denotan un buen -- ajuste del modelo con 95% de probabilidad.

Por otra parte, los valore de la constante de descomposición (k) presentaron valores que van de 0.0037 a 0.038, lo cual representa una rápida pérdida de peso. Los valores más altos de k correspondieron a F. - insipida, según éstos, las hojas de esta especie pierden en promedio el 3.4 % de su peso diariamente durante el primer ciclo y el 3.2 % durante el segundo. P. armata, presenta una constante de 1.5 % de pérdida de -- peso diario para el primer ciclo y de 1.9 % para el segundo. Los valo-- res para P. oxyphyllaria denotan una pérdida de peso diaria de 0.51 % du rante el primer ciclo y de 0.91% para el segundo ciclo. Los valores de k más bajos corresponden a N. ambigens, con una pérdida de peso diario - 0.57 en el primer ciclo y de 0.39 para el segundo ciclo.

El análisis de varianza general demostró diferencias significativas, con 99% de confiabilidad entre las especies y entre los dos ciclos, así como en la interacción especie-ciclo. No se encontró diferencia significativa entre las dos zonas probadas (tabla 8).

Tabla 7. Valores del coeficiente de descomposición (k) obtenidos con el modelo exponencial negativo.

		<u>C i</u>	clol	<u>C i</u>	c 1 o 2
Especie	Parámetro	Plano	Inclinado	Plano	Inclinado
<u>Nectandra</u>	. K	0.0058	0.0057	0.0042	0.0037
ambigens	F	646.75	365.75	41.19	402.67
	r ²	0.9190	89.70	0.5969	0.9221
	р	0.0001	0.0001	0.0001	0.0001
	n	59.	51	38	37
Pseudo1media	<u>a</u> k	0.00051	0.0058	0.0097	0.0085
oxyphyllaria		396.80	314.08	201.88	147.36
	r ²	0.4211	0.9049	0.8859	0.8403
	р	0.0001	0.0001	0.0001	0.0001
	n	31	36	30	30
Ficus	k	0.031	0.037	0.038	0.027
insipida	F	367.63	279.69	347.17	222.51
	r ²	0.9509	0.9364	0.9693	0.9529
	p	0.0001	0.0001	0.0001	0.0001
	n	25	24	13	14
<u>Poulsenia</u>	k	0.013	0.017	0.021	0.017
armata	F	125.89	221.49	192.05	144.09
	r ²	0.8232	0.8918	0.9276	0.4057
	р	0.0001	0.0001	0.0001	0.0001
	n	24	27	19	18

Tabla 8. Valores de F y p derivados del análisis de varianza global en el que se probó la significación de los efectos de especie, zona y ciclo.

Fuente de variación	<u>Valor de F</u> .	<u>P</u>
especie	10.82	0.0001**
zona	0.02	0.8847
especie-zona	0.29	0.8336
ciclo	16.91	0.0001**
especie-ciclo	7.30	0.0001**
zona-ciclo	1.42	0.2334
especie-zona-ciclo	0.08	0.9693

Con las comparaciones múltiples de medias se pudieron detectar con mayor detalle en donde se encontraban las diferencias arrojadas por el -- análisis de varianza. Utilizando los métodos de Tukey, Banferroni y --- Scheefe se encontraron diferencias significativas con una probabilidad - de 95% en la descomposición entre \underline{N} . $\underline{ambigens} - \underline{P}.\underline{oxyphyllaria}$ y $\underline{F}.$ $\underline{-insipida} - \underline{P}.$ \underline{armata} (tabla 9).

Asimismo la comparación múltiple de medias entre las zonas no mostró diferencia significativa, con un 95% de probabilidad, entre plano e - inclinado (tabla 10), pero resultó altamente significativa entre los dos ciclos (tabla 11).

Por lo que respecta a los análisis de varianza mensuales para detectar la diferencia entre especies y sitios, la prueba de F demostró que en el primer ciclo existieron diferencias significativas con 99% de confiabilidad para la descomposición entre especies, no existiendo diferencia entre las zonas (tabla 12). Con las pruebas de t, realizadas únicamente para los últimos meses de cada ciclo, las comparaciones entre especies resultaron significativas, con excepción de dos casos de N. ambigens - P. oxyphyllaria, los cuales pueden deberse a que estas dos especies muestran un comportamiento temporal muy parecido. Por otro lado, con esta prueba tampoco se encontraron diferencias entre las zonas (tabla 13).

Para el segundo ciclo nuevamente resultaron altamente significativas las diferencias entre especies, no las hubo para la interacción y so-

Especie	No. de observaciones	media_
Nectandra ambigens	158	0.4162*
Pseudolmedia oxiyphyllaria	126	0.4271*
Ficus insipida	64	0.2457**
Poulsenia armata	88	0.3165**

Tabla 10 - Diferencias encontradas en la descomposición entre las dos zonas (plano e inclinado) con las comparaciones múltiples de medías. Se utilizaron los métodos de Tukey, Bonferroni y Scheefe. (Steele y Torrie, 1980. Medias con el nismo número de asteriscos indican que no existen diferencias → significativas a un nivel ≪ = 0.05.

Zona	No. de observaciones	<u>media</u>
Plano	217	0.3724*
Incl inado	219	0.3760*

	No. de observaciones	<u>media</u>	
Ciclo 1	270	0.3404*	
Ciclo 2	166	0.4292**	

Tabla 12. Diferencias mensuales en la descomposición entre especie, zona y su interacción encontradas por medio de análisis de varianza realizados para cada mes. ** significativo al 99% de probabil<u>i</u> dad.

Cic	1 0	- 1

Mes	<u>Especie</u>	Zona	Especie-Zona
Enero	315 **	1.58	1.50
Marzo	66.37 **	1.43	1.05
Abril	64.75 **	0.36	2.10
Mayo	124.6	0.20	1.37
	Ciclo	2	
Ma yo	15.48 **	2.45	0.70
Junio	637.0 **	26.6 **	3.20
Agosto	68.46 **	1.26	0.47

Tabla 13. Diferencias entre especies y sitios detectadas con pruebas de t, realizadas para el primer ciclo.

** = significativo al 99% de probabilidad

N = Nectandra ambigens, S = Pseudolmedia oxyphyllaria.

P = Poulseni armata, Pl = plano, Inc.= inclinada.

	Mes	Especies	Probadas	t	
	Junio	N -	s	4.039	**
	Junio	N -	P	6.107	**
& 4.	Junio	s -	P	8.057	**
σ ₁	Agosto	N -	s	0.449	
_	Agosto	· . · N -	P	7.040	**
	Agosto	s -	P	5.932	**
	Septiembre	N -	s	1.579	

	Mes	Zonas Probadas	t
4	Junio	Pl - Inc.	1.21
98	Agosto	P1 - Inc.	0.46
•	Septiembre	Pl - Inc.	1.25

Tabla 14. Diferencias entre especies y sitios detectados con pruebas de t realizadas para el segundo ciclo.

* = significativo al 99% de probabilidad

N = Nectandra ambigens, S= Pseudolmedia oxyphyllaria,

P = Poulsenia armata, Pl = Plano, Inc. = Inclinado.

	MES	ESPECIES PROBADAS		t
	Septiembre	N - S		6.57 **
	Septiembre	N - P	•	29.08 **
8	Septiembre	S - P		7.85 **
- 0	Octubre -	N - S		5.77 **
	Diciembre	N - S		6.66 **
	MES	ZONAS PROBADAS		t
4	Septiembre	Pl - Inc.	•	0.24
ъ С	Octubre	Pl - Inc.		0.44
	Diciembre	Pl - Inc.		0.30

Tabla 15. Valores de los coeficientes de correlación (r) de la descomposición de las cuatro especies con la precipitación y con la caída para los dos sitios y los dos ciclos. El nivel de significancia (p) aparece entre paréntesis.

		Cic1	<u>o∙ 1</u>			Ciclo	2 .	
	Pla	no	Incl	inado	Pla	no	Incl	inado
	pp	calda	РP	ca ida	рр	caida	pp	caida
Nectandra ambigens	0.5013	0.1024	0.4442	-0.0175	0.7189	-0.1593	0.6999	-9.3927
	(0.0001)	(0.5464)	(0.0025)	(0.9294)	(0.0005)	(0.6398)	(0.0001)	(0.0962)
Pseudolme oxyphyllaria	0.4302	-0.0615	0.3173	0.1170	0.6900	-0.3327	0.6362	-0.1274
	(0.0099)	(0.7804)	(0.0632)	(0.6039)	(0.0001)	(0.1918)	(0.0002)	(0.6032)
Ficus insipida	0.7554	-0.4454	0.7385	-0.5230	0.6732	-0.9693	0.7449	-0.9816
	(0.0001)	0.0838	(0.0002)	(0.0376)	(0.0164)	(0.0164)	(0.0005)	(0.0001)
Poulsenia armata	0.4702	-0.3689	0.609	-0.4542	0.8427	-0.8370	0.8931	-0.8790
	(0.0116)	(0.1095)	(0.0006)	(0.00442)	0.0001)	(0.0007)	(0.0001)	(0.0002)

lo en el mes de junio resultó una diferencia significativa entre las zonas, resultando dificil asociarlo a alguna causa biológica (tabla 12). En este caso las pruebas de t resultaron igualmente todas significativas entre especies, no así entre zonas (tabla 14).

Así pues, los resultados indican que las especies presentan modalidades de descomposición propias que no se ven modificadas por la pendiente del terreno.

Por otro lado observamos que existe una notable diferencia entre los dos ciclos, sugiriendo que la época de inicio de la descomposición de la hojarasca detrmina la velocidad del proceso mismo, así éste será más corto durante el ciclo que se inicia en la temporada de lluvias.

Las pruebas de correlación realizadas entre la pérdida de peso y la precipitación denotan la estrecha relación que mantienen estos dos fenómenos, Los coeficientes de correlación demostraron todos un buen ajuste, y sus valores son más altos en el segundo ciclo, en el que coincide el inicio de la descomposición con el de la época de lluvias. (tabla 15).

Por lo que se refiere a la relación descomposición-caída de hojarasca, la correlación resultó ser significativa solo en el caso de <u>F</u>.

insipida y <u>P</u>. armata. La correlación descomposición-precipitación fué significativa para las cuatro especies. (Tabla 16).

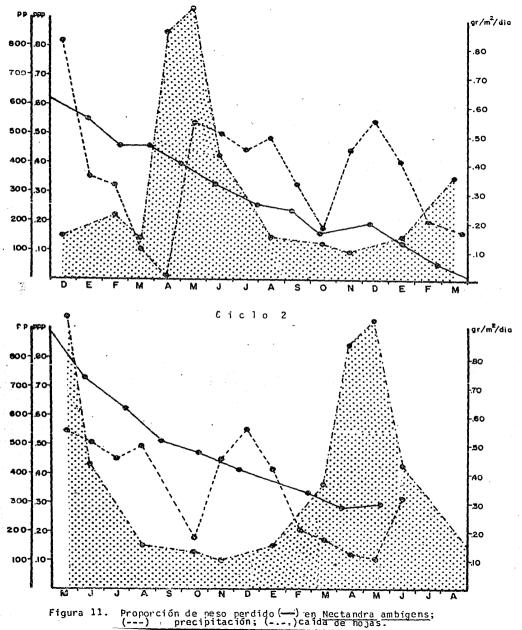
Tabla 16. Valores de los coeficientes de correlación (r) descomposición precipitación y descomposición-caída para las cuatro especies.

El nivel de significancia (p) está dado entre paréntesis.

	·	
	Precipitación	Caída
Nectandra ambigens	0.5558	0.0029
	(0.000.0)	(0.9776)
Pseudolmedia oxyphyllaria	0.4898	-0.1265
	(0.0001)	(0.2603)
Ficus insipida	0.7259	-0.5628
·	(0.0001)	(0.0001)
Poulsenia armata	0.6861	-0.6067
	(0.0001)	(0.0001)

En las figuras 11, 12, 13 y 14 se sobreponen las curvas de descom posición de cada especie con los datos de precipitación registrados en la Estación y con las curvas de caida de hojas observadas por Alvarez - (1985).

En estas figuras se observa la relación que existe entre la descom posición y la precipitación. Durante los meses en que los niveles de - presipitación se mantienen elevados la pérdida de material vegetal se ve acelerada. Esto es especialmente visible en el caso de P. oxyphyllaria y P. armata en su curso de descomposición durante los dos ciclos. La pérdida de peso de las hojas de F. insipida y su relación con la precipitación no alcanza a visualizarse en cada ciclo, debido a que el --- tiempo de desaparición de esta especie no alcanza a sobrepasar períodos de cambios cunatitativos en la cantidad de lluvia recibida. Sin embargo al comparar las gráficas de los dos ciclos observamos que su pérdida de peso se efectúa en un lapso de tiempo más corto durante el segundo - ciclo, coincidiendo con registro de precipitación más altos para los tres meses. En el caso de N. ambigens se encuentra una tasa de descomposición más constante a lo largo del tiempo, siendo menos evidente su relación con la precipitación.


Los resultados del contenido de nutrientes de las hojas para las cuatro especies se muestran en la tabla número 17. Haciendo un análisis comparativo entre las cuatro especies puede notarse que las hojas de <u>F. insipida</u> son las que presentan en general un mayor contenido de nutrientes, principalmente de potasio (3.03%), calcio (3.0%), magnesio (0.65%) y sodio (-.92%). Unicamente de fósforo se encontró un bajo contenido en esta especie (145 ppm). Las hojas de <u>P. armata</u> contienen mayor concen---

tración de fósforo (247.5 ppm) y nitrógeno (1.15%), así como valores altos de calcio (1.93%) y magnesio (0.48%), y relativamente poco potasio (1.04%) y sodio (0.054%), con respecto a las otras especies. N. ambigens presenta valores relativamente altos de nitrógeno (1.15%) --- fósforo (232 ppm), potasio (2.9%) y magnesio (0.22%).

Por su parte <u>P. oxyphyllaria</u> es la especie que presenta, en relación a las otras especies, el menor contenido de nutrientes, excepto de nitrógeno y magnesio, sin que sus valores lleguen a ser altos.

Con referencia al nitrógeno, se observa que son N. ambigens y P. armata las especies que lo contienen en mayor cantidad, sin embargo se considera que esta diferencia no es muy significativa, ya que las cuatro especies contienen un porcentaje de nitrógeno muy semejante ------(de 1.10% a 1.15%).

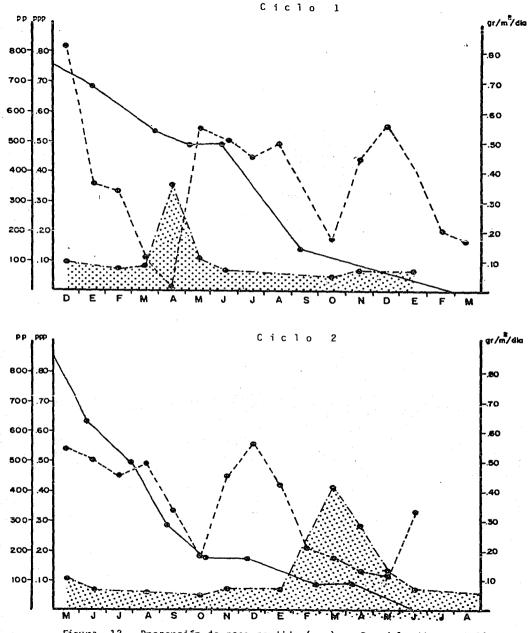
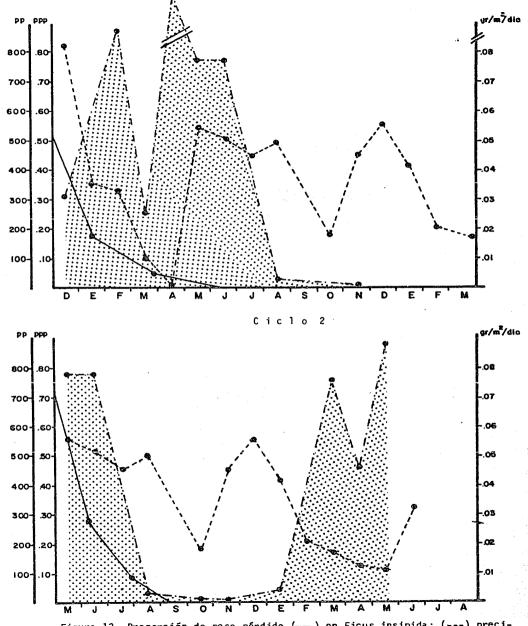



Figura 12. Proporción de peso perdido (——) en Pseudolmedia oxyphyllaria; (———) precipitación; (———) caida de hojas.

Ciclo 1

Figura 13. Proporción de peso pérdido (---) en <u>Ficus insipida</u>; (---) precipitación; (---) caída de hojas.

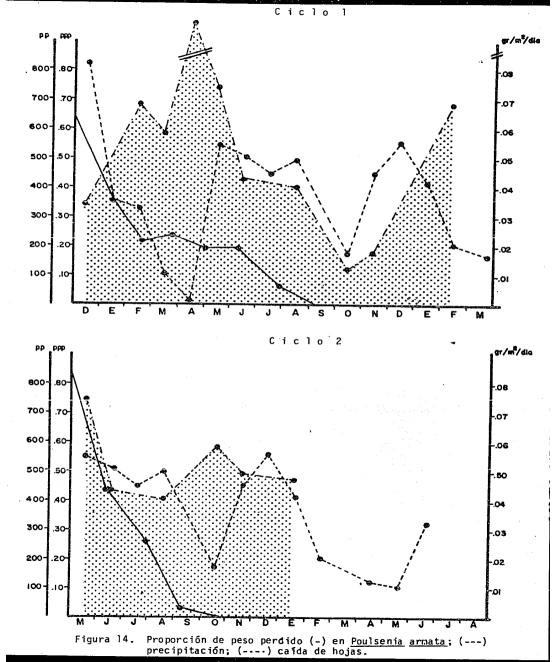


Tabla 17. Contenido de nutrientes de las cuatro especies. El número de asteriscos marca el contenido diferencial entre las --- cuatro especies para cada elemento.

	N%	P(ppm)	К%	Ca%	Mg%	Na %
Nectandra ambigens	1.15	232	2.9	0.84	0.22	0.66
	****	***	***	**	*	***
Pseud o lmedia	1.14	67.5	0.40	0.80	0.27	0.017
oxyphyllaria	***	*	*	. *	**	*
Ficus	1.10	145	3.03	3.0	0.65	0.92
insipida	*	**	***	***	****	****
Poulsenia	1.15	247.5	1.04	1.93	0.48	0.054
armata	****	***	**	* ***	***	**

VI - DISCUSION Y CONCLUSIONES

1 - Problemas metodológicos.

Dada la dificultad para mantener la hojarasca bajo condiciones -naturales, resulta complicado diseñar una metodología que no altere --las características bajo las que se desarrolla el proceso de descompos<u>i</u>
ción en estado natural (Bockoc, 1957).

En los experimentos realizados con mallas plásticas el problema — fundamental es que el material vegetal se aisla parcialmente de las condiciones ambientales en que se descompone. (Edwards, 1977; Tanner, 1981; Anderson and Swift, 1983). Este semiaislamiento consiste en que las — condiciones de humedad son diferentes dentro y fuera de la bolsa, ya que ésta detiene parcialmente la entrada y salida del agua, alterando su influencia tante en cantidad como en calidad. Lo anterior afecta primor dialmente el proceso de solubilización y lixiviación de los nutrientes. La malla también excluye la entrada de algunos grupos de animales (sobre todo la macrofauna del suelo), de manera que se alteran las interacciones tanto entre los diversos grupos de desintegradores como entre éstos y el material vegetal.

La acumulación de las hojas confinadas dentro de la misma bolsa y fijas en un solo sitio durante todo su proceso de descomposición impide en cierta medida la trituración del recurso, ya sea por pisoteo o por -- otro tipo de movimientos bruscos. Asimismo, en condiciones naturales las hojas de las diferentes especies se encuentran mezcladas en el suelo, y no se conoce que influencia pueda tener la sobreacumulación de hojas de

una misma especie en la descomposición. Por otro lado, el seguimiento del material fragmentado es muy laborioso y su control puede ser -- alterado ya sea por la pérdida de pequeñas partículas en el momento de limpiarlas o por la mezcla con otro material difícil de reconocer y se parar. Edwards, (1977) menciona que los experimentos realizados con este método subestiman el proceso de descomposición, primero por que - el material colectado tiene que ser retirado del suelo inicialmente para homogenizar las condiciones del experimento, lo caual detiene el -- proceso y altera las características de las hojas y, segundo, por que se realiza en condiciones seminaturales, lo que disminuye el efecto de los factores que intervienen en la descomposición. Sin embargo este - autor no considera las pérdidas de material no descompuesto que se -- pierden a través de la malla o en el proceso de limpieza en el laboratorio. Tampoco toma en cuenta que la acumulación de hojas de una misma especie puede influir en una mayor velecidad de descomposición.

No obstante todas las dificultades mencionadas, esta metodología nos permite tener un mejor control de las variables que los otros métodos propuestos. Primeramente nos es posible calcular el tiempo en que se desintegra el material vegetal por completo, y también la proporción de peso que va perdiendo en los diferentes intervalos de tiempo. Por otro lado este método permite el seguimiento de un material cuyas características conocemos, como son la especie de que se trata, en que época cayó, su peso inicial, su forma, textura, composición química, etc. Asimismo la ubicación del material queda a elección del investigador, lo cual permite determinar el efecto de ciertas variables externas.

2 - El modelo

Los ajustes logrados con el modelo exponencial negativo fueron - buenos para las cuatro especies. Sin embargo se considera que para obte ner mayor confiabilidad se requiere realizar un muestreo más continuo, - sobre todo para la hojarasca de <u>F. insipida y P. armata</u>, ya que al desin tegrarse sus hojas en un lapso de tiempo muy corto solo se contaba con 3 ó 4 datos para el ajuste de algunas curvas.

El valor de la constante de descomposición (k) calculado con el -modelo exponencial negativo, en el caso de F. insipida marca una pérdida de peso diaria del 3% de su peso original, esto implicaria que el tejido vegetal de esta especie se desintegrería por completo en un tiempo aproximado de 33 días (1 mes). Para P. armata la constante k indica una pérdida de peso de 1.7% diario, es decir, las hojas de esta especie, según el modelo, desaparecen en un tiempo aproximado de 59 días (2 meses). El valor de k obtenido para el caso de estas dos especies es sumamente elevado, considerando que el promedio calculado para este tipo de ecosis temas es de 1%. El valor de k de P. oxyphyllaria determinó una pérdida de peso de 0.72% por día, lo que equivaldría a una desaparición total en 139 días (4.5 meses). Finalmente, en el caso de N. ambigens la constante indica un promedio de pérdida de peso diario de 0.53 % de su peso inicial, lo que representa una desaparición total del material en un período de 188 días (6.3 meses).

Aqui es importante señalar que las constantes de descomposición obtenidas no puden ser consideradas estrictamente. Contraponiendo los da--

tos expuestos anteriormente con lo que en la realidad se observó tenemos que los valores de k calculados son sumamente elevados para las -cuatro especies. Es decir, la constante calculada para F. insipida predice la desaparición del material en un tiempo de un mes, cuando en realidad las hojas de F. insipida se desintegraron en un período de 3 a 5 meses. Para P. armata la constante supone una desaparición total en aproximadamente 2 meses. El desgaste completo de las hojas de esta especie ocurrió en un período de 4 a 7 meses. Asimismo la descomposi-ción de P. oxyphyllaria y de N. ambigens se prevee según la constante de descomposición en un tiempo de cuatro meses y medio para la primera y de seis para la segunda, cuando la observación directa demostró que esto ocurría en un lapso de 9 a 10 meses y de 12, respectivamente. Asi pues, el tiempo de descomposición calculado con la constante se incrementó en relación a lo que en realidad ocurrió. Lo anterior puede explicarse si se toma en cuenta que el modelo exponencial negativo considera que la tasa k permanece constante a través del tiempo cuando el pro ceso biológico real se caracteriza por observar en sus inicios una pérdida de peso más rápida, debido a que el material vegetal al caer ----contiene gran cantidad de nutrientes y compuestos de rápida descomposición que son atacados por los microorganismo o liberados al suelo por medio de la lixiviación. A medida que estos compuestos son retirados de las hojas el proceso se vuelve más lento, ya que los compuestos que van quedando son más resistentes y requieren un mayor tiempo para ser libera dos (Madge, 1965). Con el modelo exponencial negativo la velocidad de pérdida de peso correspondiente a la primera etapa del proceso tiene una notable influencia en la determinación del valor de la constante k, por

lo que su valor resulta sobreestimado para el resto del proceso. Es precisamente esta objeción la que con mayor frecuencia se ha hecho al - modelo exponencial negativo (Mindermann, 1968; Bunnell y Tait, 1974; Ewel, 1976; Becerra, 1984). Partiendo de este modelo, algunos investigadores han propuesto nuevos modelos considerando principalmente este problema de la constante. Bunnell y Tait (1974), por ejemplo, proponen el modelo de la doble exponencial negativa, en donde se considera una k para materiales labiles y otra para materiales más resistentes. Becerra (1984) propone un modelo en el que la constante se considera como una función -- del material remanente.

Sin embargo en este trabajo decidió utilizarce el modelo exponencial negativo debido a su uso generalizado, elcual es motivado por que diversos autores: han encontrado con éste una buena aproximación con el fenómeno real. En el caso de las cuatro especies estudiadas las pruebas de F resultaron significativas, indicando que existe una buen ajuste del modelo.

3 - La descomposición

El proceso de descomposición de la materia orgánica se encuentra estrechamente relacionado con los factores ambientales, y de éstos la humedad resulta ser el más determinante. (UNESCO/CIFCA, 1980).

En los resultados obtenidos en este trabajo llama la atención el hecho de que a pesar de que cada una de las cuatro especies estudiadas presenta un patrón de descomposición muy semejante para los dos ciclos,

(ver figuras 3 a 10) en el segundo ciclo, cuando la hojarasca es colectada durante la época seca y empieza a descomponerse con el inicio de las lluvias el proceso se acorta aproximadamente entre un 20 y 40% en relación al primer ciclo, en el cual las hojas se colectaron a finales de las lluvias, durante la época de nortes, y estuvieron sujetas inicialmente a la descomposición durante los meses secos.

A través de los coeficientes de correlación entre la precipitación y la descomposición y con la observación del curso de descomposición a lo lar go del año (Figuras 11 a 14), se corroboró la estrecha relación que --- existe entre el fenómeno de descomposición y el ciclo de lluvía. Esta - marcada influencia es debida a que el agua inside no solo de manera di-- recta sobre el proceso solubilizando y lavando (lixiviación) los compues tos inorgánicos del material vegetal, sino también indirectamente formando las condiciones adecuadas que permiten el aumento de las poblaciones de desintegradores (Jackson y Raw, 1981). Asimismo el agua es el soluto en que se divuelven muchas sustancias y es esencial para el desarrollo de - procesos que aceleran el metabolismo vegetal (intercambio de iones, oxidoreducción, hidrólisis, difusión, absorción, dilatación, etc) (Bormann y Likens, 1967; Stucliffe, 1979).

Esto explica por que en las selvas húmedad tropicales, ecosistemas que mantienen un alto grado de humedad durante caso todo el año, la tasa de descomposición de hojarasca para la mayoría de las especies es más -- rápida en relación a otros tipos de vegetación (Swift, et. al., 1979).

A pesar del alto grado de humedad que se mantiene durante casi todo el año, en la selva de los Tuxtlas se define claramente una época de seguia durante los meses de marzo, abril y mayo, seguida por un fuerte incremento en la precipitación durante los meses de junio y julio. Esta periodicidad en el régimen de lluvias desencadena una serie de fenómenos que influyen de manera determinante en la dinámica de la selva. Estu--dios de fenología de árboles realizados en el área de la Estación demues tran que "la floración ocurre con mayor intensidad en los meses en que la lluvía es menor y disminuye a medida en que esta se incrementa. La producción de frutos, por el contrario, aumenta en la medida en que las lluvias se intensifican" (Carabias y Guevara, 1985). Paralelamente el proceso de descomposición ocurre siguiendo el régimen anual de lluvias. La hojarasca que cae y se acumula en el suelo principalmente durante la época de seguía (Alvarez, 1984) sufre un rápido proceso de deterioro --con el inicio de las lluvias, que se ve atenuado durante los meses de -menos precipitación. Así, la gran cantidad de nutrientes contenidos en esta materia orgánica son liberados al suelo en el momento en que se --inicia la maduración de los frutos de la mayoría de las especies y por tanto su requerimiento de nutrientes es mayor (Devlin, 1980).

Tanto los análisis de varianza como las pruebas de t y las comparaciones entre medias realizadas para probar la diferencia entre los -- dos sitios, demostraron que no existe diferencia entre ellos. Esto pareciera indicar que los factores que afectan el proceso de descomposi-ción, como la humedad, los desintegradores, la temperatura, etc., se -- mantienen homogéneos, al menos entre estas dos zonas constrastantes.

Debe hacerse notar sin embargo que en la región existen zonas con pen-dientes mayores de 25°, que fueron las que se analizaron en este traba-No obstante las diferencias provocadas por factores físicos externos, como el desplazamiento superficial del agua provocada por la pen-diente y el cual se supone influye de manera determinante en el proceso de descomposición, aparentemente existen mecanismos que contrarrestan este efecto. Uno de ellos puede ser la mayor acumulación de hojarasca observada en zonas con pendiente (Alvarez, 1984) lo que influiría para mantener con mayor eficacia la humead en estas zonas. Sin embargo, el no encontrar diferencias en la descomposición entre estos dos sitios -puede deberse a que el diseño del experimento no permite detectar diferencias de esta magnitud, ya que se está hablando de un nivel microecológico, el cual es necesario analizar con medidas consideradas a nivel del suelo. Witkamp y Dr-Drift (1961) y Tanner (1981) por ejemplo, en-contraron que la actividad biológica y por tanto la descomposición de la materia orgánica es diferente según sustratos, dependiendo de las -concentraciones de CO, y la cantidad de sustancias de fácil descomposición, como carbohidratos y proteinas. Para poder afirmar que no hay diferencia en la descomposición entre zonas planas y zonas con pendiente es necesario aun responder varias interrogantes: ¿cómo se mantiene la humedad y temperatura del suelo en estos dos sitios?, ¿cómo se dis-tribuyen espacialmente las poblaciones de microorganismos?, ¿qué dife-rencias existen en la composición química del suelo entre los dos sitios?, etc. Asismismo se considera que el muestreo realizado no es lo suficie<u>n</u> temente amplio como para detectar variaciones mínimas que pueden estar ocurriendo entre las dos zonas. Se propone, para ello, aumentar el número de repeticiones en cada sitio.

No obstantes la marcada estacionalidad que se observa en el proceso de desintegración de las hojas, los factores externos (humedad, temperatura, microfauna, etc.) influyen de diferente manera, o con diferente intensidad en el proceso dependiendo de las características intrinsecas de las hojas de cada especie. (Edwards, 1977; Jordan y Herrera, 1981).

Las pruebas estadísticas realizadas indican que existe gran diferencia en la pérdida de peso a través del tiempo entre las cuatro especies estudiadas. Así pues a continuación se realizará un análisis comparativo entre las cuatro especies estudiadas, considerando los resultados obtenidos para cada una de ellas.

A partir de las comparaciones múltiples de medías de la pérdida de peso entre especies, estas se pudieron asociar en dos bloques: N. ambigens y P. oxyphyllaria por un lado, y F. insipida y P. armata por otro. Asimismo las hojas de estas últimas se ven desingradas por completo en un lapso de tres a seis meses, mientras que las de las primeras se incorporan al suelo durante un período que abarca aproximadamente un ciclo --anual.

Es interesante hacer notar también que los coeficientes de correlación entre la descomposición y la caída de hojas respectiva resultaron -- significativos solo para F. insipida y P. armata, especies que aportan solo el 10.24% de la caída total de hojarasca y con dos picos de caída máxima al año. Con estas mismas pruebas no se encontró relación con N. ambigens y P. oxyphyllaria, especies que únicamente presentan un pico de caída durante las secas, pero con el mayor porcentaje de caída total ---

(36.22%). Anteriormente se discutió la importancia que tiene la época en que caen las hojas, ya que de ésta dependen las condiciones iniciales a las que se enfrentan en su descomposición. Aunque en la selva de los Tuxtlas, la caída de hojas ocurre durante todo el año, existen dos máximos, uno en abril y mayo (de secas) y otro menor en febrero --(de nortes) (Alvarez, 1984). Los patrones de caída de F. insipida y P. armata corresponden a este comportamiento general. Es pues notorio que se presentan dos épocas de gran movilización de nutrientes en la selva. La primera, en febrero, puede responder a los requerimientos de nutrientes que tienen las plantas para la floración y la formación de un nuevo follaje. En este momento muchas plantas se desprenden de sus hojas viejas retomando los nutrientes contenidos en ellas para la formación de nuevas estructuras, (Edwards, 1977; Herrera, et. al. 1978) lo cual ocurre principalmente, durante los meses secos (Carabias J. S. Guevara, 1985). El segundo máximo de caída, que es más marcado, quizá proporcione los nutrientes necesarios para la maduración de los frutos.

Edwards (1977 y 1982), Ewell (1976), Tanner (1981) y Cuevas y Medina (1983), mencionan que la velocidad de descomposición se encuentra directamente relacionadas con el contenido de nutrientes del material vegetal, mientras mayor sea el contenido de nutrientes de las hojas, más rápida - será su descomposición. Coincide con esta hipótesis el hecho de que -- sea F. insipida la especie con mayor contenido de nutrientes (K, Ca, Mg y Na) la que se integra al suelo con mayor rapidez (de 3 a 5 meses). - P. armata, que ocupa el segundo lugar en tiempo de descomposición (de 4 a 7 meses), también lo tiene por su contenido en nutrientes, principalmente de P, N, Ca y Mg. En el caso de N. ambigens, aunque no son los --

valores más altos, si contiene cantidades considerables principalmente de N, P y K. y es, sin embargo, la especie que más tarda en descomponerse (12 meses). Obviamente, no es posible considerar esta relación de - manera aislada, en este caso pueden existirtir otros factores (sustan-cias más resistentes, dureza, aislamiento, etc.) que contrarresten este efecto provocando una liberación más lenta.

P. oxyphyllaria es una especie de lenta descomposición (8 a 10 meses) y que en terminos generales presentó un bajo contenido de nutrientes.

Multiplicando el contenido de nutrientes de cada especie, por su aporte total de hojarasca al suelo (utilizando los datos de Alvarez en 1983) puede obtenerse una idea general del flujo de dichos nutrientes (Vitousae, 1982), sin dejar de considerar que sus concentraciones en las hojas varian a lo largo del año. En la tabla 18 se observa que en térmi nos globales el aporte total de nutrientes de N. ambigens es mucho mas elevado que el de las otras tres especies. La descomposición de esta especie, sin embargo, se realiza lentamente, lo cual no implica que los elementos que contiene se libereen con la misma velocidad. Minderman, (1968) y Lousier y Parkinson (1978) han encontrado que, la liberación de nutrientes generalmente sigue un curso exponencial, aunque la tasa de pérdida es diferente para cada uno. La cantidad total de nutrientes aportada por F. insipida resulta también elevada, excepto para el nitrógeno. Vale la pena recordar que esta especie presenta dos picos de caída anuales, por lo que los nutrientes que contiene se liberan principalmente en

Tabla 18. Aporte de nutrientes total por especie de acuerdo a su producción anual.

	N(kg/ha)	P(ppm/ha)	K(kg/ha)	Ca(Kg/ha)	Mg(Kg/ha)	Na (Kg/ha)
Nectandra ambigens	14.65	2956.6	36.95	10.70	2.80	8.41
Pseudolmedia oxyphyllaria	4.14	245 : 43	1.45	2.90	0.98	0.061
Ficus insipida	2.13	281.30	5.87	5.82	1.26	1.78
Poulsenia armata	3.09	665.60	2.79	5.19	1.29	0.14

dos épocas del año. En el caso de <u>P. oxyphyllaria y P. armata</u> su aporte total de nutrientes al suelo es semejante. La primera contribuye con mayor cantidad de N, Mg. y Na, mientras que la segunda arroja más P, K y Ca.

Cuevas, E. y Medina E. (1983) encontraron que la descomposición - del material vegetal se realiza con mayor velocidad cuando éste presenta mayor contenido de Mg y P, debido a que los suelos del lugar del experimento son pobres en dichos elementos. En la presente investigación el caso del fosforo resulta interesante.

Este elemento se encuentra en bajas concentraciones en las hojas de las cuatro especies, sin embargo se presenta en mayor cantidad en - las hojas de las especies cuya tasa de descomposición es más rápida y su distribución a lo largo del año se reparte principalmente en dos épocas. Es probable que el fósforo sea un elemento limitante para la región, por lo que su distribución es más homogenea y su concentración en las hojas influye grandemente en la velocidad de descomposición. Sin embargo no se cuenta con estudios de la composición química de los suelos ni con la tasa de pérdida de dicho elemento, por lo que hacer esta aseveración resulta muy arriesgado.

Elaborando una tabla concentradora (19) de los resultados obtenidos para las cuatro especies, pueden definirse dos patronos de descomposición. El primero, para N. ambigens y P. oxyphyllaria, que son especies de "lenta" descomposición cuyas hojas contienen menor cantidad de nutrien

Tabla 19. Características generales de las cuatro especies. En la comparación entre medias número igual de asteriscos es igual a medias no significativamente diferentes. En el contenido y aporte de nutrientes se pone un número progresivo de mayor a menor, de acuerdo a los seis elementos analizados.

	Nectandra ambigens	Pseudolmedia oxyphyllaria	<u>Ficus</u> insipida	Poulsenia armata
Tipo de descomposición (meses)	12	8 - 10	3 - 5	4 - 7
Correlación descomposición-pr <u>e</u> cipitación	significa- tiva	significativa	significativa	significativa
Correlación descomposición-ca <u>í</u> da	no signif <u>i</u> cativa	no significa- tiva	significativa	significativa
Caida de hojarasca:				
Distribución-temporal	l máximo en secas	l māximo en se- cas	2 māximos, en secas y en nortes	2 máximos, en secas y en nortes.
Distribución espacial	amplia	amplia	local	local
Porcentaje	28.63	10.37	5.54	3.13
Comparación de X entre especies	**	**************************************	* a og Mog a og det en	
Contenido de nutrientes	3	4	$1_{\mathcal{S}} = \left(\left(\frac{1}{2} + \lambda_{\mathcal{S}}^{2} \right) \right)$	2
Aporte total de nutrientes	1	4	•2	3

tes, que solo presentan un máximo de caída al año pero con una amplia distribución espacial y con el mayor aporte total de hojarasca al suelo. Estas características nos hacen pensar que además del aporte de nutrien tes al ecosistema durante la época de mayor requerimiento, las hojas de éstas especies proporcionan al suelo una protección a manera de mantenerlo siempre cubierto de materia orgánica y formando un microambiente adecuado que permite el desarrollo de las poblaciones de los organismos del suelo y la germinación de semillas, entre otros. La resistencia que estas especies presentan a la descomposición (determinada por sus características intrínsecas) y su distribución espacial amplia permite igualmente que la liberación de nutrientes se realice de manera paula—tina a lo largo del año.

El segundo patrón, para <u>F. insipida y P. armata</u>, que son especies de rápida descomposición, que sus hojas contienen mayor cantidad de nutrientes y, que presentan dos máximos de caída al año pero con una distribución local y con un menor aporte total en relación a las otras dos especies. La estrategia de estas especies asegura la liberación de nutrientes durante las épocas de mayor requerimiento.

En el entendimiento de los procesos ligados al ciclo de nutrientes en la selva tropical aún existen serias interrogantes que responder: ¿Varía la composición del suelo bajo condiciones contrastantes?, ¿qué otros patrones de descomposición se presentan?, ¿existe relación entre la distribución de especies y la de nutrientes?, ¿que variación espacial - existe en la distribución y abundancia de nutrientes?, ¿cómo está conti-

tuída, y cuál es la dinámica de la fauna del suelo?, etc.

Sin embargo se considera que en la actualidad se cuenta con información muy valiosa que es necesario considerar para manejar adecuadamente estas regiones. En la selva de Los Tuxtlas, y en las zonas tropicales en general, la elevada precipitación y las altas temperaturas registradas contituyen factores adversos para el mantenimiento de los nutrientes dentro del ecosistema. Los organismos y las comunidades que en estas zonas se establecen han evolucionado desarrollando mecanismos que permiten el mantenimiento y reciclaje de dichos nutrientes dentro del sistema. Anderson y Swift (1984), por ejemplo, hablan de la importancia que tienen dentro de estos ecosistemas los materiales de período corto de descomposición y los de período largo. Los primeros proporcionan gran cantidad de nutrientes para la nutrición vegetal, mientras que los sequindos mantienen un ambiente estabilizador del proceso de descomposi--- ción.

En este trabajo se ha visto que entre las diferentes especies - que conforman la selva se encuentra una compleja combinación de patrones de caída y descomposición que conforman una cubierta de hojarasca en -- donde se contienen los nutrientes necesarios para el metabolismo vege-- tal al mismo tiempo que presenta mecanismos de resistencia que permite liberar dichos nutrientes paulatinamente. Asimismo la hojarasca forma un micro-ambiente en el suelo que contrarrestalas fluctuaciones provoca das por los cambios ambientales así como le da al suelo una estructura más estable.

Al desmontar un campo que sostiene una selva húmeda tropical para introducir otro tipo de cultivos, se producen alteraciones que inciden de manera directa sobre el ciclo de los nutrientes y que después no resulta fácil reconstituir de manera artificial. Primeramente se le quita a la selva parte importante de su biomasa, llevando con ella grandes cantidades de nutrientes y la posibilidad de que éstos sean nuevamente incorporados al sistema. Los pocos nutrientes que se mantienen en el suelo se pierden rapidamente debido al fuerte lavado y acarreo continuo que produce la caída directa del agua de lluvia. Las mayores fluctua-ciones de temperatura provocados por la incidencia directa de los rayos solares sobre el suelo van a ocasionar, tambien, cambios en la densidad y diversidad de la microfauna. Por otra parte los nutrientes que se ---han perdido no pueden ser sustituidos facilmente por aplicación de fertilizantes, ya que se han alterado los mecanismos que permiten absorver los y mantenerlos en constante circulación.

Para una adecuada explotación de los ecosistemas tropicales es necesario dedicar esfuerzos a idear modelos de explotación respetando los ciclos de nutrientes establecidos y las características propias de estos ecosistemas.

VII - BIBLIOGRAFIA

- Alvarez, J. 1984. Dinámica de la Hojarasca en una Selva Alta-Perennifolia: Los Tuxtlas, Veracruz. Tesis de Maestría. Fac. Ciencias UNAM. México, D. F. 147 pp.
- Alvarez, J. 1985. Cafda de hojarasca en la selva. En: <u>Investigaciones sobre la regeneración de selvas altas en Veracruz, México.</u>

 Vol. II Gómez-Pompa, A. S. del Amo (Eds.) INIREB-Alhambra.

 Xalapa, Ver. pp. 171-189.
- Anderson, J. 1975. Succession, Diversity and Trophic Relation-ships of some soil animals in decomposing leaf litter. Animal Ecology 44 (2): 475-495.
- Anderson, Jand Swift, M. 1983. Decomposition in tropical forest. In:

 Tropical rain forest: ecology and management. S.L. Sutton, T.C.

 Whitmore, and A.C. Chadwick. (Eds.) Blackwell Scientific Publications. Great Britain. pp. 287-309.
- Atiwill, P. 1967. The lost of elements from descomposing litter.

 <u>Ecology</u> 49 (1): 142-145.
- Becerra, J. 1984. Volver a la tierra: un enfoque matemático sobre la descomposición de los restos vegetales. Tesis Profesional. ENEP-Ixtacala. México, D. F., 55 pp.
- Bernhard, F. 1970. Etude de la littière et de sa contribution au cycle des éléments minéraux en forêt ombrophile de Cote-d'Ivoire. Ecol.

 Plant. 5: 247-266.

- Bocock, Ky J. Gilbert 1957. The disa ppearance of leaf litter under different woodland conditions. Plant and Soil. 9 (2). 179-185.
- Bormann, F.H. and G.E. Likens. 1967. Nutrient Cycling. <u>Science</u> 155 (3761): 424-429.
- Bunnell, F. and D.E.M.Tait. 1974. Mathematical simulation models of decomposition processes. In: Soil Organisms and Decomposition in Tundra. Holding, O.W., S.F. Heal, S. Maclean Jr. y P.W. Flanagan. (Eds.) Tundra Biome Steering Commite. Stockholm.
- Carabias, J. 1979. Análisis de la vegetación de la selva alta perennifolia y comunidades derivadas de ésta en una zona cálido-húmeda de México. Los Tuxtlas, Veracruz. Tesis Profesional. Fac. Ciencias. UNAM. México, D. F. 68 pp.
- Carabias, J. y S. Guevara. 1985. Fenología en una selva tropical húmeda y en una comunidad derivada. Los Tuxtlas, Veracruz. En: <u>Investigaciones sobre la regeneración de selvas altas en Veracruz, México</u>.

 Vol. II. Gómez-Pompa, A. y S. del Amo. (Eds.)

 INIREB-Alhambra. Xalapa, Ver. pp. 27-66.
- Crossley, D. Jr. and Hoglund, M. 1962. A litter-bag method for the study of microarthropods inhabiting leaf litter. <u>Ecology</u>. 43 (3): 571-573.
- Cuevas, E. y Medina. E. 1983. Root Production and Organic Matter Decomposition in a Tierra Firme. Eorest of Uper Rio Negro Basin. Wurzelö-

- kilogie und the Nutzanwendung/Int. Symp. Gumpenstein, Bundesanstalt. Irdning. 653-666.
- Chizón, 1984. Relación suelo vegetación de la Estación de Biología Tropical Los Tuxtlas, Ver. (Un análisis de la distribución de los diferentes tipos de suelo en relación con la cubierta vegetal que soporta) Tesis ENEP-Zaragoza UNAM, México. 66 p.
- Dickinson, G.H. and Pugh, G. J.F. (Eds.) 1975. Biology of Plant Litter

 Decomposition. Academic Press. London and New York 775 pp.
- Edwards, P.J. 1977. Studies of mineral cycling in a montane rain forest in New Guinea. II. The production and disappearance of litter. J. Ecol. 65: 971-992.
- Edwards, P.J. 1982. Studies of mineral cycling in a montane rain forest in New Guinea. V.Rates of cycling in throughtall and litter fall.

 <u>J. Ecol.</u> 70:807-827.
- Estrada, A, Coates-Estrada, R y Martínez Ramos. M. 1985. La Estación de Biología Tropical Los Tuxtlas: Un recurso para el estudio y conservación de las selvas del trópico húmedo. En: <u>Investigaciones sobre la regeneración de las selvas altas en Veracruz, México.</u>

 Vol. II Gómez-Pompa, A. y S. del Amo. (Eds). INIREB-Alhambra.

 Xalapa, Ver pp. 279 393.
- Ewel, J.J. 1976. Litter fall and leaf decomposition in a tropical forest succession in Estern Guatemala. J. Ecol. 64: 293-308.

- Flanagan, P.W. and Bunnell, F.L. 1976. Decomposition models based on climatic variables, substrate variables, microbial respiration and production. Anderson, J. M. y Macfadyen.
- Flores, J. S. 1971. Estudio de la vegetación del cerro El Vigia de la Estación de Biología Tropical los Tuxtlas, Veracruz, Tesis Profesional. Fac. Ciencias. UNAM. México, D. F.
- García, E. 1964. Modificaciones al sistema de clasificación de Köppen (para adaptarlo a las condiciones de la República Méxicana). --OFFSET-LA. Rios. México, D. F. 71 pp.
- Grigal, D. F. and Mc. Coll, J. G. 1977, Litter decomposition following forest fire in northeastern Minnesota. <u>Ecol</u>. <u>14</u>: 531-538.
- Herrera, R., C.F. Jordan, H.K. Tinge and E. Medina. 1978. Amazon ecosystems.

 Their structure and funtioning with particular emphasis on nutrients.

 Interciencia 3(4): 223-232.
- Herrera, R., E.Medina. C. Jordan y H. Klinge. 1981. How human activities disturb the nutrient cycles of a tropical rain forest in Amazonia.

 Ambio 10: 109-114.
- Hopkins, B. 1966. Vegetation of the Olokemeji Forest Reserve, Nigeria. IV.

 The litter and soil with special reference to their seasonal changes.

 J. Ecol. 54:687-703.

- Ibarra, G. 1985. Estudios preliminares sobre la flora leñosa de la Estación de Biología Tropical Los Tuxtlas Veracruz, Méx. Tesis profesional Fac. Ciencias. UNAM. Méx. D. F. 264 p.
- Jackson, R.M. y F. Raw. 1981. <u>La vida en el suelo. Omega. 2a. ed. Bar</u>celona, España.
- Jenny, H., S. Gessel and F.T. Bingham. 1949. Comparative study of organic matter in temperate and tropical regions. <u>Soil Sci.</u> 68:417: 432.
- Jordan, C.F. y R. Herrera. 1981. Tropical rain forests: are nutrient really critical? Am. Nat. 117 (2):
- Jordan, C.F. 1982. The nutrient balance of an Amazonian Rain Forest. Ecol. 63 (3): 647-654.

11.31.1

- Lot-Helgueras, A. 1976. La Estación de Biología Tropical "Los Tuxtlas", pasado, presente y futuro. En: Regeneración de Selvas. Gómez-Pompa, A. (Vazquez-Yañez, S. del Amo y A. Butanda. (Eds) INEREB-CECSA. Xalapa, Veracruz, México, 31-69.
- Lousier, J. D. and D. Parkinson. 1978. Chemical element, dinamics in decomposing leaf litter. <u>Can.</u> J. <u>Bot</u>. 56:2795-28 h.
- Madge, 1965. How leaf litter dissapears. (manuscrito)
- Martinez, V. A. 1984. Procesos de producción y descomposición de hojarasca en selvas estacionales. Tesis de maestria. Fac. Ciencias.

- UNAM. México, D. F. 98 pp.
- Martinez-Ramos, M. 1980. Aspectos sinecológicos del proceso de renovación natural de una selva alta perennifolia. Tesis profesional. Fac. Ciencias UNAM. México, D. F., 181 pp.
- Meentemeyer, V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecol. 59 (3): 465-472.
- Minderman, G. 1968. Addition, decomposition and accumulation of organic matter in forests. J. Ecol. 104: 181-195.
- Miranda, F. y E. Hernández. 1963. Los tipos de vegetación de México y su clasificación. Bol. Soc. Bot. Méx. 28.29 72
- Nye, P.H. 1961. Organic matter and nutrient cycles under moist *tropical forest. Plant and Soil 13 (4): 333-345.
- Olson, J. S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecol. 44 (2):322-331
- Singh, J. S. and S.R. Gupta. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. The botanical review. 43 (4): 449-511.
- Sokal, R.R. and F. J. Rohlf. 1969. Brometry. W.H. Freeman & Co. Sn. Francisco, USA.
- Steel, R.G. and J. H. Torrie. 1980. Principles and procedures of statistics abiometrical approach. 2th ed. MC. Graw-Hill Tokyo. Japan. 633 pp.

- Sutcliffe, J. 1979. <u>Las plantas y el agua</u>. Omega. 2a. ed. Barcelona, España.
- Swift, M. J., A. Russell-Smith y T.J. Perfect. 1981. Decomposition and mineral-nutrient dynamics of plant litter in a regenerating bush-fallow in sub-humid tropical Nigeria J. Ecol. 69:981-995.
- Tanner, E. V.J. 1981. The decomposition of leaf litter in Jamaican Montane Rain Forest. J. Ecol. 69: 263-275.
- UNESCO/PNUMA/FAO. 1980. Ecosistemas de los bosques tropicales. UNESCO/CIFCA. Madrid. 771 pp.
- Vitousek, P.M. 1982. Nutrient Cycing and nutrient use efficiency.
 Am. Nat. 119: 553-572.
- Witkamp, M. and J. S. Olson, 1963. Breakdown of confined and non confined oak litter. Oikos. 14 (2):138 165.
- Witkamp, M. and. Dear Drift, V. 1961. Breakdown of forest litter in relation to environmental factores. Plant. and Soil XV no. 4.
- Witkamp, M. 1966. Decomposition of leaf litter in relation to environment, micro flora and microbial respiration. <u>Ecol</u>. 47 (2): 143-201