

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

Distribución de los Silicoflagelados en el Golfo de California durante la ocurrencia del Fenómeno Oceanográfico del "Niño"

> TESIS PROFESIONAL Que para obtener el Título de

BIOLOGO presenta

LIGIA LUCINA PEREZ CRUZ

México, D. F.

1985

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

	Pág
AGRADECIMIENTOS	i
RESUMEN	ii
INTRODUCCION	1
ANTECEDENTES	3
BIOLOGIA DE LOS SILICOFLAGELADOS	3
a) Descripción morfológica	3
b) Posición taxonómica	4
c) Ecologia	7
DESCRIPCION DEL AREA DE ESTUDIO	11
a) Localización geográfica	11
b) Características meteorológicas	13
FENOMENO "EL NIÑO"	15
METODOLOGIA	20
MUESTRE0	20
PROCESAMIENTO DEL MATERIAL EN EL LABORATORIO	25
CONTEO Y ANALISIS MICROSCOPICO	26
TRABAJO DE GABINETE	27
a) Estimación de porcentajes	27
b) Preparación de mapas	27
INFERENCIAS ESTADISTICAS	28
RESULTADOS Y DISCUSION	35
CONCLUSIONES	52
REFERENCIAS BIBLIOGRAFICAS	55
DESCRIPCIONES TAXONOMICAS	63

•

1997年後の大陸は後期間になった。 1997年の日本には、1997年の月本には

FIGURAS

Pág.

FIGURA	1.	Localización geográfica en el Golfo de Ca- lifornia de las estaciones de muestreo utilizadas en este estudio	22
FIGURA	2.	Distribución de temperatura superficial (°C) en el Golfo de California, durante el mes de marzo de 1983	36
FIGURA	3.	Distribución de temperatura superficial (°C) en el Golfo de California, durante el mes de marzo. Esta distribución es el re- sultado de promediar datos obtenidos dura <u>n</u> te 21 años (1949-1970; Robinson, 1973)	37
FIGURA	4.	Distribución de diferencias en temperatura superficial (°C) en el Golfo de California, entre las condiciones promedio (Fig. 3) y las condiciones durante el tiempo de estu- dio (Fig. 2)	38
FIGURA	5.	Modalidades de carácter diurno en el mues- treo de fitoplancton realizado para este - estudio. La región geográfica en el Golfo de California	40
FIGURA	6.	Distribución geográfica de la abundancia – relativa de <u>Dictyocha epiodon</u> en el Golfo de California, durante la ocurrencia del – fenómeno de "El Niño" 1983	41
FIGURA	7.	Distribución geográfica de la abundancia r <u>e</u> lativa de <u>Dictyocha calida</u> en el Golfo de California, durante la ocurrencia del fené- meno oceanográfico de "El Niño" 1983	43
FIGURA	8.	Distribución geográfica de la abundancia r <u>e</u> lativa de <u>Dictyocha messanensis</u> forma <u>mes</u> - <u>sanensis</u> en el Golfo de California, durante la ocurrencia del fenómeno oceanográfico de "El Niño" 1983	44
FIGURA	9.	Distribución geográfica de la abundancia r <u>e</u> lativa de <u>Dictyocha californica</u> en el Golfo de California, durante la ocurrencia del f <u>e</u> nómeno oceanográfico de "El Niño" 1983	46

FIGURA	10.	Distribución geográfica de la abundancia re- lativa de Dictyocha <u>fibula</u> var. <u>robusta</u> en - el Golfo de California, durante la ocurren- cia del fenómeno oceanográfico de "El Niño" 1983	47
FIGURA	11.	Distribución geográfica de la abundancia r <u>e</u> lativa de <u>Octatis pulchra</u> en el Golfo de C <u>a</u> lifornia, durante la ocurrencia del fenóm <u>e</u> no oceanográfico de "El Niño" 1983	49
FIGURA	12.	Distribución geográfica de abundancia de si licoflagelados en el Golfo de California, - durante la ocurrencia del fenómeno oceano- gráfico de "El Niño" 1983	51
FIGURA	13.	Principales estructuras morfológicas de Si- licoflagelados	51

TABLAS

TABLA -	1.	Muestras de fitoplancton superficial obte- nidas durante la expedición oceanográfica CICESE 83-03 en el Golfo de California	22
TABLA	2.	Porcentaje relativo de especies de silico- flagelados en plancton	29
TABLA	3.	Matriz de correlación	34

LAMINAS

LAMINA	1.	·	72
LAMINA	2	•••••••••••••••••	73

RESUMEN

Se analizaron 133 muestras de plancton superficial del Golfo de California, obtenidas del 10 al 23 de marzo de 1983, con el objeto de determinar la distribución geográfica de especies de silicoflagelados, durante la ocurrencia del fenómeno oceanográfico de "El Niño". Las variaciones en la composición del conjunto de silicoflagelados están relacionadas con la distribución de las masas de agua.

Se identificaron seis especies: <u>Dictyocha calida, Poelchau, 1976; Dic-</u> <u>tyocha californica</u> Schrader y Murray, 1984; <u>Dictyocha epiodon</u> Ehrenberg, 1854; <u>Dictyocha fibula var. robusta</u> Schrader y Murray, 1984; <u>Dictyocha</u> <u>messanensis</u> fomma <u>messanensis</u> Haeckel, 1887 y <u>Octatis pulchra</u> Schiller, 1925.

En el presente trabajo se corrobora la ocurrencia del fenómeno de "EL Niño", en el tiempo considerado, al comparar la distribución biogeográfica de los silicoflagelados en condiciones normales con las condiciones imperantes en dicho fenómeno. Asimismo, diferenciando las distribuciones de temperatura superficial en condiciones oceanográficas dominantes de las condiciones reinantes, se dedujo la circulación oceánica.

Con base en este estudio se puede asumir que durante "El Niño" 1983 entró agua tropical al Golfo de California, desplazando de esta región las masas de agua características de la boca del Golfo, principalmente a las de la Corriente de California. El conjunto de silicoflagelados se desplazó hacia la región norte del Golfo, manteniéndose principalmente en el área de Guaymas. Ahí ocurre una mayor abundancia de especies, ya que el proceso de intensas mezclas de masas de agua se mantiene. Este hecho propicia la presencia de nutrientes en la superficie y consecuentemente el florecimiento del plancton.

INTRODUCCION

La constitución principal del fitoplancton está dada por Diatomeas, con un componente mínimo de silicoflagelados que conforman menos del 2% del conjunto silíceo del fitoplancton (Round, 1967).

Muy poco se conoce acerca de la ecología de los silicoflagelados, aun cuando los trabajos de Gemeinhardt (1934), Yanagisawa (1943), Poelchau (1976) han demostrado que existe una dependencia entre la temperatura superficial del agua y la distribución de ciertas especies. Murray y Schrader (1983), examinando mue<u>s</u> tras de plancton superficial y de sedimentos, determinaron la actual distribución geográfica de especies de silicoflagelados en el Golfo de California, identificando ocho especies: <u>Dictyocha calida</u>, <u>Dictyocha californica</u>, <u>Dictyocha epiodon</u>, <u>Dictyocha fibula var. robusta</u>, <u>Dictyocha minima</u>, <u>Dictyocha messanensis</u>, <u>Distephanus speculum y Octatis pulchra</u>. Estos autores -consideran que <u>Octatis pulchra</u> está asociada con niveles altos de productividad primaria y es encontrada en mayor abundancia en la parte central del Golfo de California.

Dictyocha messanensis domina los conjuntos de silicoflagelados en estaciones fuera del Golfo de California, en el Océano Pacífico.

<u>Dictyocha calida, Dictyocha californica y Dictyocha fibula</u> var. <u>robusta</u>, estando asociadas con aguas ecuatoriales, tienen una abundancia relativa mayor cerca de la boca del Golfo de Califo<u>r</u> nia.

<u>Dictyocha epiodon</u> y <u>Distephanus speculum</u> están asociadas con las aguas frías de la Corriente de California.

<u>Dictyocha minima</u> muestra una distribución en manchones, con abundancia relativa baja.

El presente estudio tiene como objetivo principal, determinar la distribución geográfica de las especies de silicoflanelados durante la ocurrencia del fenómeno oceanográfico de "El Niño" (Schrader y Baymgartner, 1983; Chávez, 1984; Leyva, 1984); t<u>e</u> niendo como base muestras de plancton superficial del Golfo de California colectadas durante dicho evento y la información aportada por Murray y Schrader (1983). Tal acción, pretende corroborar la ocurrencia de dicho fenómeno en el tiempo considerado en este estudio, así como comparar la distribución biogeográfica de los silicoflagelados durante las condiciones cia de "El Niño"); en otras palabras: determinar los cambios en la circulación oceánica, la temperatura superficial del mar y los niveles de productividad en esta área durante la ocurre<u>n</u> cia del fenómeno oceanográfico de "El Niño".

Para cumplir con los objetivos planteados, además del análisis micropaleontológico y del análisis biogeográfico, se hicieron inferencias estadísticas, para conocer el grado de relación e<u>n</u> tre dichas especies.

ANTECEDENTES

BIOLOGIA DE LOS SILICOFLAGELADOS

a) Descripción morfológica

Los silicoflagelados son flagelados unicelulares que poseen un esqueleto de sílice opalino (Haq, 1978). Su tamaño varía co-⁺ múnmente desde 20 a 100 µm, pero algunas especies pueden llegar hasta 150 µm. El protoplasma, generalmente hialino y cl<u>a</u> ro, ocupa el espacio encerrado por el anillo basal y, si se -presentan, por el aparato ápical y las espinas de soporte. El protoplasma también se extiende como una fina película sobre el esqueleto.

Los cromatóforos se presentan en gran número, son amarillentos o café verdosos y presentan un núcleo sin color redondeado. -En algunos especímenes se han observado pseudópodos que se extienden desde las espinas del esqueleto; luego entonces, sugiriendo que estos organismos puedan capturar su alimento. Un flagelo se extiende desde una esquina, presentando una posición anterior con respecto a la dirección de movimiento (Martini, 1977).

Los esqueletos silíceos, típicamente tubulares, varían de forma: desde espículas simples tradicionales, hasta complejas estructuras semejantes a cúpulas. La mayoría de los géneros presentan un anillo basal poligonal del cual se origina una e<u>s</u> tructura apical que puede consistir de unas cuantas barras, apoyadas en el anillo basal, o bien, puede estar constituida por una red de barras formando una estructura hemisférica-esf<u>é</u> rica. El anillo basal, comúnmente, tiene espinas y en muchas especies se presentan adicionalmente "espinas de apoyo". En poblaciones grandes, el esqueleto de los silicoflagelados mue<u>s</u> tra un grado de variación muy marcado, así como algunas formas aberrantes.

Estudios del esqueleto, realizados con microscopía electrónica, muestran que las paredes de éste pueden ser lisas, rugosas o reticuladas. Las reticuladas están formadas por una fina -red de puentes y pequeñas protuberancias.

Reproducción.

La reproducción de los silicoflagelados ocurre a través de una división simple (Gemeinhardt, 1930). Primero a manera de imagen, se desarrolla un esqueleto "hijo" a partir de un esquel<u>e</u> to "madre". Esqueletos, dobles y triples, firmemente enlazados, han sido observados en muchas especies.

Tal hecho ha sido tomado por algunos autores como evidencia para apoyar el punto de vista de que el esqueleto de los silicoflagelados, al igual que el de las diatomeas, consisten en 2 partes iguales (Gremeinhardt, <u>op. cit</u>.), o bien que estos fueron observados en un estado de "copulación" (Schultz, 1928).

b) Posición taxonómica

Los silicoflagelados son protistas y son disputados tanto por zóologos (como protozoarios) como por botánicos (como algas).

4.

Sin embargo, apoyados en su naturaleza autotrófica la mayoría de la comunidad científica los considera como algas planctónicas. Los ficólogos los ubican de la siguiente manera.

Phylum	Chrysophycophyta				
Clase	Chrysophyceae				
Subclase	Silicoflagellato	pheidae	Borgert		
Orden	Siphonotestales	Lemmerma	nn		

(Poelchau, 1976; Haq, 1978; Bold, et al., 1980)

La mayoría de los autores consideran que la filogenia de los s<u>i</u> licoflagelados requiere de más estudios, no obstante, los sili coflagelados están subdivididos en tres familias, en las cuales se considera a nueve géneros. Tres géneros clasificados están considerados como "<u>incer</u>tae sedis".

Familia	Vallacertaceae Deflandre, 1950
Género	<u>Vallacerta</u> Hanna, 1928
Familia	Cornuaceae Gemeinhardt, 1930
Género	<u>Cornula</u> Schulz, 1928
Género	Lyramula Hanna, 1928
Familia	Dictvochaceae Lemmermonn, 1901
Género	<u>Corbisema</u> Hanna, 1928
Género	Naviculopsis Frenguelli, 1940
Género	Dictyocha Ehrenberg, 1837
Género	<u>Hannaites</u> Mandra, 1969
Género	Cannopilus Haeckel, 1887
Género [.]	Mesocena Ehrenberg, 1843

Incertae sedis

Género	<u>Phyllodictyocha</u>	Deflandre,	1947
Género	Pseudorocella D	eflandre, 1	938
Género	Clathropyxidella	Deflandre	1938

Los primeros silicoflagelados fueron descritos por Ehrenberg (1837), quien asignó dos especies fósiles al género <u>Dictyocha</u>. Ambas especies, sin embargo, fueron "<u>nomina nuda</u>". En los siguientes años Ehrenberg describió un alto número de nuevos taxa, tanto recientes como fósiles que le fueron enviados desde Rusia, California, Maryland, Grecia, Haiti y otros países. El discutió la distribución de los silicoflagelados modernos y re gistró datos geológicos y ecológicos. Desafortunadamente, la edad geológica de muchas muestras que recibió no fueron muy -, bien determinadas y algunos nombres de localidades no fueron ampliamente definidos. La mayor parte de la colección de Ehrenberg ha substituido en Berlín, por lo que ha podido ser reestudiado en muchas ocasiones.

Las expediciones geográficas de varios países han contribuido mucho al conocimiento de silicoflagelados actuales, que se e<u>n</u> cuentran en muestras de plancton y núcleos sedimentarios.

Lemmermann en 1901 y Gemeinhard en 1930, resumieron el conoc<u>i</u> miento de la distribución y sistemática de los silicoflagelados de aquellos días. Con el trabajo de Schulz (1928), interesado en los silicoflagelados fósiles, aumentó considerablemente el número de artículos en la materia, especialmente de las regiones de Francia, Alemania, Rusia, Austria, Japón y Y<u>u</u> goslavia. La mayoría de los autores de estos artículos, sin embargo, no intentaron utilízar a los silicoflagelados para e<u>s</u> tratigrafía. En los últimos años el valor estratigráfico de los silicoflagelados ha sido demostrado por Stradner (1961), Glezer (1966), Bachmann (1970) y Martini (1971). Un índice de silicoflagelados fósiles y recientes, con descripciones e ilustraciones de taxa válidamente propuestas y una bibliografía de todos los trabajos publicados hasta 1967, fue recooila do por Loeblich et al. (1968). La mayoría de las investigaciones actuales conciernen en el establecimiento de una biozo nación basada en la evolución del grupo y en la distribución paleogeográfica de ciertas especies.

c) <u>Ecología</u>

Los silicoflagelados son componentes del plancton marino, sien do la temperatura y la salinidad los factores físicos que más limitan su distribución geográfica. La salinidad óptima para estos organismos es de 30 6 $40^{\circ}/00$, aunque pueden tolerar una salinidad inferior a $10^{\circ}/00$.

Un alto porcentaje de especimenes aberrantes, en un conjunto de silicoflagelados, parece ocurrir en bahias o aquas cercanas a la playa; es decir, en condiciones no oceánicas y por lo ta<u>n</u> to "anormales". En depósitos del mar abierto, las formas aberrantes de silicoflagelados generalmente se estiman en menos del 3% del número total de especimenes.

Troncos aislados pueden evolucionar en "nuevos géneros" o "especies" locales. Tal como es el caso de los miembros del género <u>Deflandryocha</u> en la Samartiana de Yugoslavía (Jerkovic, 1969). Es interesante hacer notar que el nannoplancton calc<u>á</u> reo de dicha región es dominado por especies de "<u>Reticulofe-</u> <u>nestra</u>; las cuales son muy resistentes a condiciones "anorm<u>a</u> les". Las temperaturas del agua donde viven los silicoflagelados varía desde aproxímadamente O°C hasta 30°C, observándose rangos preferenciales por cada una de las especies.

Ehrenberg (1837), fue el primero que discutió la distribución de silicoflagelados en mares actuales considerando vagamente la influencia termal. Gemeinhard (1934), trabajando con mue<u>s</u> tras obtenidas durante la expedición "Meteor" en el océano --Atlántico, observó que el género <u>Dictyocha</u> (<u>D. fibula</u> y formas relativamente cercanas) se presentan en latitudes bajas y medias, donde el rango de temperatura es de 18°C a 20°C, mientras que <u>Distephanus (D. speculum</u>) está restringida a altas l<u>a</u> titudes, donde la temperatura es cercana a los 0°C.

Un estudio posterior de la distribución de estas especies y de la temperatura de agua, hecho por Yanagisawa (1943), estableció un esquema de dependencia entre la relación de las dos e<u>s</u> pecies y la temperatura del agua. Estas relaciones ligeramente modificadas por el autor son las siguientes:

<u>D</u> .	<u>fibula</u>	:	D. speculum	Temp. de agua (°C)
	1	:	12	0- 5
	1	:	4	5 -10
	1	:	2	10 -15
	1	:	1.5	15-20
	2	:	1	20 - 25
	21	:	1	25-30

Mandra (1969) utilizó la relación de dos géneros de silicofl<u>a</u> gelados: <u>Dictyocha</u> y <u>Distephanus</u> (formas con anillo apical) como un medio para determinar la temperatura del aqua de el Atlántico Sur durante el Eoceno. Como todos los organismos fototróficos, los silicoflagelados re<u>s</u> ponden a las características de la luz. En latitudes altas, en donde la intensidad de la luz es baja, los números máximos de s<u>i</u> licoflagelados ocurren cerca de la superficie, aunque un número apreciable de especímenes pueden encontrarse a una profundidad de 50 m. En las regiones ecuatoriales estos organismos se encuentran principalmente en profundidades entre 15 y 70 m. Se han observado fluctuaciones estacionales en la abundancia de los silicoflagelados, pero los datos cuantitativos aún son muy escasos.

En los océanos actuales, los silicoflagelados se encuentran comúnmente en áreas de altas concentraciones de diatomeas. Esta relación parece ser aplicable a los océanos antiguos, ya que la mayoría de los silicoflagelados fósiles se encuentran en sedimentos diatomíticos (Haq, 1978); luego entonces, podemos inferir que las fluctuaciones de abundancia de diatomeas están acom pañadas por cambios idénticos en la abundancia de silicoflagelados (Martini, 1971).

Las diatomitas se forman en áreas donde ocurren fenómenos oceanográficos, conocidos como surgencias. Estas surgencias se ca-• racterizan por aportar nutrientes en la zona eufótica. Este -factor, junto con la luz requerida para el procesos fotosintético determinan áreas de alta productividad primaria.

Las surgencias ocurren con más frecuencia en las regiones ecuatoríales y a lo largo de la parte occidental de los continentes (Lipps, 1970); por tanto, es ahí donde se observa una mayor ocurrencia de los silicoflagelados.

La presencia de silicoflagelados más antiqua que se conoce ha sido reportada en estratos del Cretácico Inferior (Martini, 1977; Haq, <u>op</u>. <u>cit</u>.), consistiendo de fragmentos de probables corbisémidos (Deflandre, 1950; Tynan, 1957).

En estratos del Cretácico Superior son muy abundantes los dictyoquidos, corbisémidos y el género <u>Vallacerta</u> (Martini, <u>op</u>. <u>cit</u>.).

La mayoría de los grupos de Silicoflagelados aparecen en el Terciario; los navicul δ psidos en el Paleoceano Inferior, los distefánidos en el Eoceno Medio y los cannopiloideos en el Oligo-ceno.

Todos los principales géneros (excepto <u>Vallacerta</u>, <u>Hannaties</u> y <u>Corbisema</u>) continuan hasta el Reciente (Haq, 1978).

Presencia de silicoflagelados en el Golfo de California

El número de especies de silicoflagelados conocidas en el Golfo de California no excede de 15 (Murray, 1982). No obstante, aparentemente sólo 8 de ellas ocurren con frecuencia significativa (Murray y Schrader, 1983).

Estas son:

Dictyocha	<u>calida</u>	Poelc	:hau		
Dictyocha	californ	ica	Schrader	y Hurray	
Dictyocha	epiodon	Ehrer	iberg		
Dictyocha	fibula	var.	robusta	Schrader	y Murray
Dictyocha	<u>minima</u>	Schra	ider y Mun	rray	
Dictyocha	messaner	sis	forma <u>me</u>	<u>kxanensis</u>	Haeckel
Distephan	is specul	um (Ehrenberd	q) Haecke	1
Octatis p	lchra S	ichill	er		

Estas ocho especies más una "categoría" en la que se incluyeron todas las especies no identificadas, fueron las que constituyeron el cuadro taxonómico de referencia en el conteo.

En los apéndices que se incluyeron al final de este trabajo se hace una descripción taxonómica de las especies.

DESCRIPCION DEL AREA DE ESTUDIO

a) Localización geográfica

El litoral mexicano en el Océano Pacífico mide 7,974 km de longitud (S.P.P., 1983), dentro de los cuales aproximadamente 3,200 km le corresponden a las costas del Golfo de California, es decir el 40%. Esta zona marítima ha recibido diversos nombres: Mar de Cortés, Mar Bermejo, Golfo de Cortés y Golfo de California.

El Golfo de California, localizado en la región nor-occidental de la República Mexicana, está delimitado al oeste por el estrecho brazo continental árido que constituye la península de Baja California. Hacia el norte y el este, colinda con los l<u>í</u> torales semidesérticos de los estados de Sonora y Sinaloa. El Golfo de California es una gran cuenca de evaporación, que se comunica ampliamente con el Océano Pacífico en su parte sur.

Esta alargada cuenca tiene una orientación N, NW-S, SE, siendo su longitud de 1,250 km y su anchura variada: desde 92 km al sur de la Isla Tiburón, hasta 222 km en la porción meridio - nal de la península de Baja California. Sus coordenadas son: 31° 41′ lat. norte, 115° long. oeste y 23° lat. norte, 107° long. oeste. La superficie de sus aguas se ha calculado en 181,000 km² y se cree que su volumen es de 145 billones de m³ (Tamayo, 1980).

La península de Baja California, ocupada por una larga cordillera, obstaculiza el efecto termoregulador del Océano Pacífico sobre el interior del Golfo. Consecuentemente, su clima -tiene un carácter continental; los rangos en los registros de temperatura, tanto diurnas como anuales, son grandes, relativos a los de otras regiones adyacentes (Roden, 1964).

De acuerdo a la nomenclatura de García (1978), las condiciones dominantes del Golfo de California son BS y BW (seco estepario y seco desértico) y en pequeñas porciones, como en el norte, Cs (templado con lluvias en invierno). En la parte sur de la península de Baja California el clima es CW (templado con lluvias).

Topográficamente, el Golfo de California puede ser dividido en una serie de cuencas y fallas separadas una de otra por "sillas" transversales (Shepard, 1950). La mayoría de las cuencas son profundas y tienen comunicación con el océano abierto, a excepción del Canal de Ballenas localizado entre Isla Angel de la Guarda, Isla San Lorenzo y Punta San Gabriel.

En el Golfo de California ocurren mareas semidiurnas y diurnas. Estas son de las más ámplias del mundo, ya que alcanzan alturas mayores a los 10 metros en algunas regiones, como la desembocadura del río Colorado (Filloux, 1973).

b) Características meteorológicas

En el Golfo de California durante el invierno, la temperatura atmosférica decrece hacia el interior del Golfo, observándose que las diferencias de temperatura entre las costas este y oes te de Baja California son mínimas. En las áreas terrestres ad yacentes al Golfo, las temperaturas dependen principalmente de la latitud; las heladas invernales son comunes en elevaciones altas y ocasionalmente pueden ocurrir cerca de la costa en las regiones del norte. Durante el verano dichas condiciones se invierten, la temperatura atmosférica se incrementa hacia el interior del Golfo y las diferencias de éste entre las costas este y oeste de Baja Californía son grandes, algunas veces exceden los 10°C.

La precipitación en el Golfo es más abundante sobre el lado es te que en el lado oeste. Sin embargo, debe observarse que de la mitad del Golfo hacia el norte, el clima es más bien desértico con una precipitación anual menor de 10 cm. En la parte sureste, la precipitación a lo largo de la costa es aproximad<u>a</u> mente de 100 cm por año. Las lluvias en el Golfo de California ocurren principalmente entre los meses de junio a octubre, aunque en la región del extremo norte generalmente se presentan durante el invierno. Sobre las áreas terrestres adyacentes al Golfo, la precipitación se incrementa en relación a la altitud.

Así, las montañas de Baja California tienen un promedio anual de precipitación de 25-75 cm, mientras que, en cualquier costa de la parte central de la península éste es de menos de 10 cm.

El rango de temperatura media anual se incrementa desde apro-

ximadamente 6°C en Cabo Corrientes hasta 18°C cerca de la boca del Río Colorado. El número de días lluviosos por año decrece aproximadamente a 60 días Cabo Corrientes hasta aproximadamente 5 días en la costa central de Baja California.

Mediciones directas de evaporación, realizadas en estaciones costeras, indican que el promedio anual de este fenómeno está entre 200 y 250 cm (Servicio Meteorológico Mexicano, 1928-1941). La mínima evaporación ocurre en invierno y la máxima en verano. Dado que las mediciones fueron llevadas a cabo en la vecindad inmediata de la costa, éstas no reflejan necesariamente las co<u>n</u> diciones en la parte abierta del Golfo.

Los vientos en el Golfo de California son extremadamente varia bles. En la costa, el sistema terrestre y la brisa prevalecen, observándose fluctuaciones diurnas más grandes que las anuales. La brisa marina alcanza velocidades de 5 m/seg a 7 m/seg, en la tarde y después de la puesta del sol. La brisa terrestre es mucho más débil y raramente alcanza velocidades que exceden de 2 m/seg. Cerca de la costa montañosa de Baja California, los vientos de montañas y valles pueden predominar localmente. En las regiones del Golfo fuera de la costa, prevalecen vientos del noroeste desde noviembre a mayo, y vientos de dirección sureste durante el resto del año.

Ventarrones moderados de dirección noroeste, que duran dos o tres días, son experimentados frecuentemente en la parte norte del Golfo, entre los meses de diciembre y febrero. Estos vie<u>n</u> tos son particularmente fuertes en el Canal de Ballenas, entre las costas montañosas de Baja California y la Isla Angel de la Guarda.

Durante el verano, vientos racheados y vientos cálidos desérti-

14.

cos soplan en el norte del Golfo, mientras que tormentas viole<u>n</u> tas de duración relativamente corta (2 a 4 días), llamados "ch<u>u</u> bascos", ocurren en la parte sur.

Las áreas costeras del Golfo de California suelen ser azotadas por huracanes entre fines de mayo y principios de noviembre; siendo más frecuentes en septiembre y octubre.

Estos huracanes se originan en la costa sur de México o América Central y siguen hacia el oeste y noroeste, con velocidades pr<u>o</u> medio entre 180 y 360 millas náuticas por día. Desplazándose hacia Cabo Corrientes, ellos pueden continuar su curso hacia el oeste (de mayo a agosto) o pueden curvarse hacia el norte o noroeste, cruzando cualquier parte del sur de Baja California o pr<u>o</u> cediendo directamente al Golfo. La mayoría de los huracanes se disipan antes de llegar a la Isla Tiburón y Angel de la Guarda.

FENOMENO "EL NIÑO"

El fenómeno oceanográfico denominado "El Niño", aunque tiene alcances de carácter global, ha sido observado y estudiado princ<u>i</u> palmente en el Pacífico Ecuatorial. Su presencia en las costas de América se manifiesta generalmente a través de descensos -drásticos en las pesquerías de ciertas especies, como la anchoveta peruana, y con la consecuente mortalidad de aves por hambre. Lluvias intensas, inundaciones (principalmente en las co<u>s</u> tas de Perú) y elevación de temperatura en los mares costeros son algunos cambios observados durante su aparición (Bjerknes, 1961; Quinn, 1974; Wyrtki, 1977).

El nombre de este fenómeno oceanográfico se originó en alusión

a la Navidad en la región del Perú, pues generalmente ocurre en la época que se conmemora el nacimiento del "Niño Jesús"; es de cir, durante los últimos meses del año. Sin embargo, su aparición y tiempo de duración son irregulares (Smith, 1968).

Hasta ahora se desconoce el origen exacto de este fenómeno. A<u>1</u> gunos geólogos y meteorólogos lo han relacionado con la erup-ción de volcanes: las "cenizas" lanzadas por los volcanes a la atmósfera, funcionan como una trampa para los rayos luminosos de onda larga, que al no poder escapar hacia el espacio pr<u>o</u> vocan un sobrecalentamiento de las aguas, tal como sucediera en la presencia del último "Niño" después de activarse al volcán "Chichonal".

Algunos oceanógrafos (Bjerknes, 1961; Wyrtki, 1977), explican que "El Niño" aparece cuando hay un debilitamiento de los vientos alisios, lo cual inhibe a su vez el afloramiento de aquas sub-superficiales frías, ricas en nutrientes (surgencias). Con secuentemente, decrece la producción de fitoplancton, zooplancton v demás niveles tróficos. Los vientos alisios al cambiar de dirección o disminuir su intensidad, permiten que aquas de temperatura mayores se acumulen en la costa pacífica de Sudamérica y formen una columna que evita el flujo entre las masas de aqua de la subsuperficie y las de la superficie. Las condiciones de temperatura y salinidad se modifican notoriamente, por lo que algunos investigadores las consideran "anomalías térmicas".

Otro cambio que se observa durante el fenómeno de "El Niño", es la elevación del nivel del mar, porque las aguas calientes al disminuir su densidad necesitan aumentar su tirante hidráulico (condición física; Weisberg y Howard, 1974). Las consecuencias ecológicas de este fenómeno oceanográfico, son generalmente, muy evidentes en los niveles tróficos superiores. Mientras que, en Perú hay reducción drástica en la captura de a<u>n</u> choveta, en otras regiones se capturan especies que no corresponden a sus climas; por ejemplo, cerca de Ensenada, Baja California, se encontraron algunos peces picudos muy apreciados por la pesquería deportiva. Estos habitan normalmente al sur de Cabo San Lucas y por lo regular no rebasan ese límite, pues al no<u>r</u> te las aguas son más frías. Sin embargo, al recorrerse los cinturones de temperaturas, las especies de zonas más tropicales se desplazan hacia otros menos cálidos.

Los autores que sugieren que "El Niño" es un evento de carácter global, anteponen los siguientes argumentos: "El Niño" es un evento que ha coincidido con fenómenos tan dispares, como sequías en Australia, al Sur del Sahara, México, al noroeste de Brasil y el Valle de Yang-tse; inundaciones en Perú, Ecuador y California; inviernos benignos en el oeste de Europa y el este de Norteamérica; y calentamiento y empobrecimiento biológico del océano pacífico oriental (Quinn, 1974).

El patrón de características que agruba a estos eventos se ha repetido con algunas variantes, once veces este siglo (1912, 1917, 1925-26, 1940-41, 1953, 1957-58, 1965, 1969, 1972-73, -1976, 1982-83). A este tipo de eventos se les ha dado el nombre de "Eventos de la oscilación del Sur El Niño (OSEN)". Este nombre es la combinación de los nombres de dos tipos de fenómenos que, hoy se sabe, corresponde a un mismo evento. El nombre de "oscilación del sur" se usó desde los años veintes para designar eventos atmosféricos interanuales que son más notorios en la parte occidental del Pacífico ecuatorial. El nombre de "El Niño" ha sido usado por los pescadores de la costa sudameriçana del Pacífico para designar eventos oceanográficos caracterizados por el anormal calentamiento del aqua superficial y el desplome de la pesca local.

Durante los últimos años ha habido grandes avances en la comprensión de la física de estos eventos. Hoy es claro que se -trata de perturbaciones del sistema oceánico-atmósfera en el Pa cífico tropical. Estas perturbaciones se propagan desde la zona inicial hasta afectar en mayor o menor grado a casi todo el planeta. Si bien hoy se comprende la evolución de estos eventos (e inclusive es posible reproducirlos en modelos de computadora), aún no ha sido posible identificar el mecanismo que inicia o dispara estas perturbaciones.

Como se mencionó anteriormente, este fenómeno no es esclusivo de América, aparece también con frecuencia en otros lugares, c<u>o</u> mo en las costas africanas; adquiriendo así un carácter mundial. En el Golfo de México no es tan notorio porque allí las surgencias no son tan frecuentes como en las costas pacíficas de Sudamérica o en el Golfo de California.

Lara (<u>En</u>: Leyva, 1984), señala que "El Niño" se presentó en el Golfo de California en 1982-1983, modificando el ecosistema en forma muy interesante. Durante su fase más intensa, de acuerdo a estudios preliminares de productividad primaria, biomasa de fitoplancton y biomasa de zooplancton, realizados en cuatro cam pañas oceanográficas, la producción orgánica se elevó. Probablemente porque las aguas tropicales traen consigo especies -que al ingresar al Golfo de California encuentran un medio ópti mo e incrementan su producción. A diferencia de otros lugares, se encontró primero una alza de productividad, luego un descenso y finalmente una recuperación de las condiciones habituales. Normalmente, la respuesta inmediata es un descenso brusco y enseguida una lenta recuperación de la riqueza orgánica. En el estudio antes mencionado, el análisis planctónico consideró tamaños preestablecidos (microplancton y nanoplancton), ya que se ha hecho la siguiente observación: las aquas costeras, ricas en nutrientes predominan el microplancton, en tanto que las aguas oceánicas escasas en nutrientes, están pobladas por el nanopláncton).

La mayor parte de la producción en biomasa en toda el área sur, frente a Guaymas y Cabo San Lucas, fue determinado por el nanoplancton. Se desconoce, por ser éste el primer estudio, si la conformación de estas aguas atienda a la presencia de "El Niño" o si es la correspondiente a esta zona.

No está lejos el día en que la combinación de esfuerzos de meteorólogos y oceanógrafos aclaren este problema. Con ello sería posible la predicción oportuna de eventos que, como el de 1982-1983 tienen importantes efectos en la agricultura y pesqu<u>e</u> rías mundiales.

METODOLOGIA

MUESTREO

Durante la expedición oceanográfica "CICESE 83-03" comprendida del 10 de marzo al 23 del mismo mes de 1983, a bordo del Buque Oceanográfico "El Puma" de la Universidad Nacional Autónoma de México, se obtuvieron ciento treinta y tres muestras de fitoplancton del Golfo de California (Fig. 1).

Para su colecta se utilizó una red de plancton, con una abertu ra de malla de 20 m, colocada en el desagüe del sensor contínuo de temperatura y salinidad superficial. La duración de -muestreo en cada estación varió; dependiendo de la abundancia observada visualmente en la red. En las estaciones en donde el fitoplancton fue muy abundante, el tiempo empleado varió entre 10 y 15 minutos; mientras que en las restantes, éste se extendió entre 20 y 25 minutos.

El material colectado se vació en botes de plástico agregándoles posteriormente 2 ml de formaldehído al 37.83% para preservarlos.

El derrotero del buque fue efectuado utilizando un sistema de satélites; por consiguiente, la localización de las estaciones (Fig. 1) está referida a dicho sistema.

Por medio del sensor electrónico colocado en la oroa del buque se obtuvieron los parámetros de temperatura (°) y salinidad – (°/oo) superficial (Tabla 1).

fig_.1

TABLA I. MUESTRAS DE FITOPLANCTON SUPERFICIAL OBTENIDAS DURANTE LA EXPEDICION OCEANOGRAFICA CICESE 83-03 EN EL GOLFO DE CALIFORNIA.

ESTACION	FECHA	HORA	LATITUD	LONGITUD	TEMPERATURA SUPERFICIE (°C)
1	10-03-83	11:12	23° 11.35	109° 22.877	23.56
2	10-03-83	13:12	23° 16.081	109° 12.993	23,585
3	10-03-83	15:12	23° 20.487	109° 6.61	23.265
4	10-03-83	17:12	23° 21.789	109° 3.655	23.245
5	10-03-83	19:07	23° 25.333	108.5° 30.384	22.64
6	10-03-83	22:10	23° 27,253	108° 54.9005	22,545
7	10-03-83	23:15	23° 32.734	108° 46.425	23,465
8	11-03-83	1:12	23° 36.061	108° 42.019	23,315
9	11 -03 -83	3:85	23° 39.786	108° 34.958	23.395
10	11-03-83	7:13	23° 48.797	108° 23.068	23.23
11	11-03-83	9:21	23° 57.501	108° 9.4385	22.916
12	11-03-83	11:11	23° 57.354	108° 9.9635	23.13
13	11-03-83	13:09	24° 3.9206	108° 1.353	23,805
14	11-03-83	15:15	24° 10.627	107° 52.188	23.815
15	11 -03 -83	17:11	24° 21.2475	107° 49.441	23.665
16	11-03-83	19:12	24° 38.2105	108° 10.4935	23.055
17	11 -03 -83	21:20	24° 54.078	108° 19.8915	22.835
18	11-03-83	23:10	24° 52.553	108° 22.79	22.895
19	12-03-83	1:09	24° 52.713	108° 24.333	22:6
20	12-03-83	4:07	24° 42.172	108° 36.52	22.605
21	12-03-83	7:31	24° 37.2765	108° 45.833	22.105
22	12 -03 - 83	9:15	24° 33.858	108° 43.4515	22.085
23	12-03-83	11:16	24° 31.6595	108° 49.4555	22.205
24	12-03-83	13:25	24° 27.265	108° 58.599	22.108
25	12-03-83	15:24	24° 22.253	108° 36.019	22.446
26	12-03-83	17:18	24° 17.164	109° 12.851	22,815
27	12-03-83	19:13	24° 9.175	109° 25.576	22.7
28	12-03-83	21:10	24° 8.673	109° 28.4015	22.595
29	12-03-83	23:10	24° 9.883	109° 28.985	22.6
30	13-03-83	1:16	23.5° 29.9775	109° 41.135	22.1
31	13-03-83	4:14	24 5.9985	109° 48.379	22.075
32	13-03-83	7:31	24° 34.832	110° 18.836	21.85
33	13-03-83	9:17	24° 41.1355	110° 13.765	21.79
34	13-03-83	11:12	24° 43.4/4	110° 8.796	21.//
35	13-03-83	13:11	24° 46.302	110° 5.762	22.065
35	13-03-83	15:21	24° 48.533	109.5° 29.363	21.995
37	13-03-83	1/:10	24° 54.257	109° 51.3115	21.925
38	13-03-83	19:07	25° 1.8/	109° 90./44	22.42
39	13-03-83	21:07	25° 3.892	109° 39.4685	22.2
40	13-03-83	23:12	25" 6.3/55	109° 35.779	22.28
41	14-03-83	1:35	25° 7.094	109° 35.082	22.10
42	14-03-03	4:12	25 13.001	109 19.299	22.145
43	14-03-03	/:0/	25- 20.919	103-11-830	22.000
44	14-03-03	9:17	20 JI.C	109 21 7015	22.42
45	14-03-83	11:12	20.0 20.01/5	109- 31./015	22.23

Tabla I.(continuación)

.(continuación)	
-----------------	--

ESTACION	FECHA	HORA	LATITUD	LONGITUD	TEMPERATURA SUPERFICIE(°C)
46	14-03-83	13:20	26° 8.741	109° 32.016	22.585
47	14-03-83	15:10	26° 3.666	109° 39.5695	22.45
48	14-03-83	17:07	25° 58,519	109° 46.8495	22.39
49	14-03-83	19:12	25° 53,2925	109° 56.599	22,225
50	14-03-83	21:12	25° 53,9295	102° 56.7355	22.055
51	14-03-83	23:14	25° 53.018	109° 56.9005	22.065
52	15-03-83	0:59	25° 44,495	110° 10,296	21.99
53	15-03-83	4 · 21	25° 35,7085	110° 23 2595	21 675
54	15-03-83	7.24	25° 28.0335	110° 38 351	21.71
55	15-03-83	9.12	25° 25.451	110° 36 9815	21.77
56	15-03-83	11:28	25° 22,959	110° 36.805	21.77
57	15-03-83	13.22	25° 16,9935	110° 53 053	21 59
58	15-03-83	15:25	25° 33.2775	110° 56 9705	21.78
59	15-03-83	17:47	25.5° 32.994	111° 2.269	21,395
60	15-03-83	19:40	26° 12.473	110.5° 30.5475	21.335
61	15-03-83	21:08	26° 16.7565	110° 57.212	21.345
62	15-03-83	23:08	26° 17.4105	110° 54.877	21.26
63	16-03-83	1:08	26° 19.741	110° 52,8195	21,145
64	16-03-83	3:48	26° 27.764	110° 36,485	21.175
65	16-03-83	7:16	26° 29.695	110° 30.0835	21.255
66	16-03-83	9:06	26° 29.024	110° 26.896	21.31
67	16-03-83	11:08	26° 35,895	110° 19.8205	20,985
68	16-03-83	13:13	26° 41.0415	110° 14.12	20.88
69	16-03-83	15:36	26° 42,908	110° 11.031	20,805
70	16-03-83	17:10	26° 45.897	110° 4.798	20.97
71	16-03-83	19:31	26° 47.243	110° 3.699	20.935
72	16-03-83	21:08	26° 50.7615	110° 7.688	20.86
73	16-03-83	23:18	27° 7.7265	110° 28.36	20.55
74	17-03-83	1:11	27° 25.2185	110° 41.4365	19.87
75	17-03-83	4:21	27° 22.5045	110° 46.3515	19.785
76	17-03-83	7:48	27° 17.6175	110° 54.497	19.97
77	17-03-83	9:14	27° 17.067	110° 53.685	19.995
78	17-03-83	11:21	27° 17.108	110° 53.23	20.24
79	17-03-83	13:06	27° 16.3605	110° 53.769	20.21
80	17 -03 -83	15:14	27° 10.2775	111° 4.421	21.31
81	17-03-83	17:12	27° 10.264	111° 4.4615	20.61
82	17-03-83	19:19	27° 3.297	111° 16.9665	20.72
83	17-03-83	21:37	27° 1.595	111° 20.158	20.66
84	17-03-83	23:32	26° 57.839	111° 27.566	20.37
85	18-03-83	1:16	26° 57.87	111° 27.283	20.385
86	18-03-83	4:23	26° 56.322	111° 33.6285	20.7
87	18-03-83	8:53	27° 12.128	111° 57.574	20.43
88	18-03-83	11:07	27° 12.0185	111° 56.309	20.375
89	18-03-83	13:08	27° 19.748	111° 43.6805	20.775
90	18-03-83	15:30	27° 21.505	111° 41.547	20.75
91	18-03-83	17:18	27° 23.1185	111° 39.6655	20.945
92	18 -03 -83	19:12	27° 31.255	111° 27.1705	.20.455
93	18-03-83	21:24	27° 29.8065	111° 29.136	20.385
94	18-03-83	23:26	27° 33.4675	111° 27.693	20.27

Tabla I. (continuación)

ESTACION	FECHA	HORA	LATITUD	LONGITUD	TEMPERATURA SUPERFICIE (°C)	
95	19-03-83	1:42	27° 39.9525	111° 15.373	20.175	
96	19-03-83	4:17	27° 37.452	111° 10.6755	20.085	
97		NO EXI	ISTE EN	EL MAPA		
98	19-03-83	10:20	27° 50.2115	110° 54.943	19.205	
99	19-03-83	10:20	27° 50.2115	110° 54.943	19.205	
100	19-03-83	13:21	27° 46.766	111° 5.3395	19.595	
101	19-03-83	15:41	27° 41.845	111° 5.163	20.11	
102	19-03-83	17:15	27° 41.167	111° 2.438	19.98	
103	19-03-83	18:53	27° 46.487	110° 59.7575	19.64	
104	19-03-83	20:56	27° 46.6285	110° 59.662	19.6	
105	19-03-83	23:16	28° 2.7745	111° 18.5095	19.436	
106	20-03-83	1:20	28° 7.7315	111° 23.0375	19.365	
107	20-03-83	4:32	28° 3.055	111° 26.4695	19.225	
108	20-03-83	15:13	27° 58.172	111° 38.083	20.586	
109	20-03-83	17:48	27° 56.8256	111° 34.543	20.58	
110	20-03-83	21.15	27° 50.388	111° 49.6109	20.305	
111	20-03-83	23.47	27° 47.043	111° 56.034	20.1	
112	21-03-83	1:09	27° 41.3085	112° 6.046	20.145	
113	21 -03 -83	3:26	27° 41.665	112° 5.013	20.09	
114	21-03-83	7:33	27° 35.261	112° 18.069	20.045	
115	21-03-83	9:26	27° 36.4806	112° 20.249	20.075	
116	21 -03 -83	11:33	27 55.8235	112° 40.3835	19.13	
117	21-03-83	13:27	27° 56.663	112° 37.701	19.39	
118	21-03-83	15:07	27° 57.198	112" 37.197	19.305	
119	21-03-83	17:18	28° 3.361	112° 27.629	19.605	
120	21 -03 -83	19:34	28° 8.138	112° 17.0555	19.77	
121	21-03-83	21:28	28° 7.5565	1120 15.599	19.62	
122	21-03-83	23:07	28° 9.082	112° 14.2435	19,445	
123	22-03-83	1:00	28° 13.422	112 6.038	18.88	
124	22-03-83	4:29	28° 20.2935	111° 57.597	18.8/5	
125	22-03-83	8:35	28° 38.4605	112° 5.83/	18.64	
126	22-03-83	11:01	28° 40.3885	112° 18.064	18.78	
127	22-03-83	13:10	28- 40.4585	112° 17.2305	18.985	
128	22-03-83	15:53	28- 37.040	112° 35.1115	17.74	
129	22-03-83	17:08	28° 35.4335	112° 35.18/5	17.83	
130	22-03-83	19:04	28- 28.9845	112 33.1825	17.505	
131	22-03-83	21:20	20 27.5285	112 35.203	17 206	
132	22-03-03	23:31	20 27.0845	112 33.203	17.300	
133	23-03-03	1:20	20 22.900	112 35.231	10.93	
134	23-03-03	3:01	20 21.0085	112 33.210	1/.043	

PROCESAMIENTO DEL MATERIAL EN EL LABORATORIO

Para facilitar la visualización de la población de silicoflagelados, el fitoplancton colectado se procesó de acuerdo a la téc nica utilizada por Murray (1982), haciendo modificaciones para eliminar la sal de las muestras: el material de cada estación se vació en tubos de ensave de 75 ml. Cada tubo se llenó has ta el tope con aqua dulce, agitando el contenido y posteriormen te, dejándolo sedimentar durante dos horas. Transcurrido este tiempo, 2/3 del líquido supernadante fueron cuidadosamente sifo neados, utilizando una bomba de vacío "doméstica". Se examinó el sobrenadante al microscopio, observándose que sólo una muy pe queña cantidad del material del plancton es extraído en la opera ción sifoneo. Al material que quedó en el tubo de ensave se le añadieron aproximadamente 2 ml de peróxido de hidrógeno al 30%, con el objeto de disolver la materia orgánica presente y disper sar el material. En algunos casos, en donde las muestras apare cían con mayor cantidad de materia orgánica, al tubo conteniendo la muestra y el peróxido de hidrógeno, se le agregaban unas cuantas gotas de ácido clorhídrico al 36.5% y se calentó lentamente para acelerar la reacción. Posteriormente, el tubo se lle nó nuevamente hasta el tope con agua corriente, se agitó y se de jó sedimentar durante una hora; despúés de la cual, se volvió a eliminar 2/3 del sobrenadante por medio del sifoneo. Este último paso se repitió una vez más. Se obtuvo finalmente una muestra concentrada y desalinizada de aproximadamente 20 ml.

En un vidrio de reloj sosteniendo a un cubreobjetos se vació la muestra desalinizada y concentrada, añadiendo un poco de goma de tragacanto. El vidrio de reloj con el cubreobjetos y la mue<u>s</u> tra se colocó bajo una lámpara de "luz térmica" de 150 W, para un secado más rápido y eficiente. El cubreobjetos conteniendo la muestra, se montó en un portaobjetos con bálsamo de canada. La muestra restante, adherida al vidrio de reloj, se vació en pequeños frascos de vidrio utilizando una piseta como preven ción ante la necesidad de elaborar más placas.

Las preparaciones se colocaron en charolillas metálicas y se introdujeron al horno durante 48 horas a una temperatura entre 45° y 60° C. Se sacaron del horno y se dejaron secar por un espacio de dos días para su posterior análisis al microscopio.

CONTEO Y ANALISIS MICROSCOPICO

Los silicoflagelados fueron observados por medio de un microscopio compuesto marca Zeiss, utilizando principalmente 2 obje tivos (6x y 40x) y un filtro verde para obtener mayor contraste de las estructuras de los organismos. El número de individuos contados en cada estación varió; cuando el número de individuos rebasó los 300 en un solo portaobjetos, el conteo se con sideró concluido; pero cuando este número no se alcanzó, en cada estación analizando una sola preparación, se elaboraron más con el siguiente criterio:

Para las estaciones en el que el portaobjetos representativo contuviese menos de 20 individuos, no se elaboró ninguna prep<u>a</u> ración adicional porque se consideró que sería necesario elab<u>o</u> rar muchos de estos para alcanzar un número significativo de individuos. Para aquéllas estaciones en las que en un solo po<u>r</u> taobjetos había más de 20 individuos pero menos de 29, se ela boraron 2 placas más. Por último, para aquellas estaciones en cuyos portaobjetos representativo había más de 30 individuos y menos de 45 se elaboró una placa más.

El número total de portaobjetos preparados fue de 175.

TRABAJO DE GABINETE

a) Estimación de porcentajes

La abundancia relativa de cada especie con respecto a la población total de cada una de las muestras de silicoflagelados, se efectuó mediante la estimación de porcentajes para aquellas estaciones en donde se hubiesen contado más de 20 individuos, --siendo éste el número que se consideró significativo.

b) Preparación de mapas

La distribución geográfica de cada una de las especies consideradas en el cuadro taxonómico se definió estableciendo isolíneas en mapas de localización, con los porcentajes referidos anterio<u>r</u> mente.

En aquellas estaciones en las cuales no se estimaron porcentajes porque el número de individuos no rebasaba a 20, se señaló con una cruz (x) la presencia "representativa" de la especie. Se e<u>n</u> tiende por "representativa" cuando del número total de individuos (menos de 20), el 60% estuviese representado por dicha especie. Adicionalmente a estos mapas, se hizo otro en el cual se representó el número total de individuos en cada estación. Asimismo, para deducir si hubo algún efecto en la abundancia de silicoflagelados debido a las colectas diurnas y nocturnas, se delinearon en un mapa de localización las estaciones muestreadas en el curso del día (6.00 - 17:5g hrs.) y las muestreadas por la noche (18:00 - 05:59 hrs.).

Con el registro de temperatura superficial efectuado en la campaña oceanográfica (Tabla I) se elaboró un mapa de isotermas el cual se comparó con otro donde se muestra el promedio de is<u>o</u> termas en condiciones dominantes (Robinson, 1973), para determinar las anomalías térmicas en el tiempo en el que se efectuó el muestreo.

Inferencias estadísticas

Con el fín de deducir afinidades ecológicas entre las especies de silicoflagelados, se calculó una Matriz de Correlación, utilizando la abundancia relativa de cada especie en cada estaciónlocalidad. Tal cálculo se hizo mediante un programa de comput<u>a</u> ción que incorpora la RCOEF (Davis, 1973) y es definido por la siguiente fórmula:

$$r = \frac{\sum i \underbrace{\mathbb{N}} 1 \times i Y1 - (\sum i \underbrace{\mathbb{N}} 1 \times p) (\sum i \underbrace{\mathbb{N}} 1 Y1) / N}{\left[\sum i \underbrace{\mathbb{N}} 1 \times i^{2} - (\sum i \underbrace{\mathbb{N}} 1 \times i)^{2} / N\right] \left[\sum i \underbrace{\mathbb{N}} 1 Yi^{2} - (\sum i \underbrace{\mathbb{N}} 1 Yi)^{2} / N\right]$$

Donde:

r = Coeficiente de correlación momento producto de Pearson Xi = n observación de la variable X Yi = n observación de la variable y N = número de observaciones $\overline{X} = \sum_{i=1}^{N} \sum_{i=1}^{N} Xi/N = media de la variable X$ $\overline{Y} = \sum_{i=1}^{N} \sum_{i=1}^{N} Yi/N = media de la variable Y$

Esta correlación confiere el grado de relación entre dos variables.

TABLA II. PORCENTAJE RELATIVO DE ESPECIES DE SILICOFLAGELADOS EN PLANCTON

1

•

No.	<u>D</u> . calida	<u>D</u> . californica	D. epiodon	<u>D</u> . <u>fibula</u> var. <u>robusta</u>	D. messanensis forma messanensis	<u>Octatis</u> pulchra	No. identificadas	No. de individuos
1	0	0	0	0	0	0	100	3
2	Ō	33,39	0	0	33.39	0	33.33	3
3	0	0	0	0	° 0	0	100	4
4	28,56	14.29	14.29	0	0	0	42.86	/
5	12.5	37.5	0	25	12.5	12.5	Ű	8
6	0	0	0	0	40	40	20	5
7	ο,	0	0	0	0	0	0	0
8	0	0 .	0	50	0	0	50	2
9	0	33.34	0	0	0	33.33	33.33	3
10	Ü	0	0	0	0	U		0
11	0	0	0	0	0	0	10 07	12
12	0	66.67	0	8.33	8.33	U	10.0/	12
13	0	0	0	0	0	U	0	0
14	0	0	0	0	0	U	0	0
15	0	0	0	0	0	U	0	1
16	0	100	0	0	0	0	U O	17
17	0	71.43	0	0	28.57	0	0	2
18	33.33	66.67	0	. 0	0	U .	12 5	8
19	0	62.5	0	25	0	0	14.0	2
20	0	33.34	0	0	33.33	U	33.33	Š
21	16.67	66.66	0	16.6/		0	0	ġ
22	0	66.66	0	22.22	11.11	0	0	ó
23	0	0	Ŭ	0	0	0	0	ĩ
24	0	100	0	0	U	0	100	2
25	0	0	U	0	U	0	100	Å
26	0	100	U	100	0	0	ň	ĩ
27	0	Ű	U	100	0	ň	0	î
28	0	100	U	Ŭ	0	ñ	õ	ī
29	0	100	0	U	0	ň	ñ	Ô N
30	U	U	U	U	U	0	v	- o

Tabla II. ... Jontinuación)

						D.			
					D.	messanensis			
		D.	D. '	D.	fibuTa var	foma	Octatis	No.	No. de
	No	calida	californica	epiodon	robusta	messanensis	pulchra	identificadas	individuos
	NU.	Currou							
	31	0	20	0	20	0	20	40	5
	32	100	0	õ	0	0	0	0	1
	33	0	50	õ	25	25	0	0	4
	34	õ	72.73	õ	9.09	0	0	18.18	11
	35	õ	100	Ō	0	0	0	0	8
*	36	õ	52.38	Ō	38.10	4.76	0	4.76	7
*	37	õ	26	Ō.	50	0	24	0	50
	38	õ	25	Ó	75	0	0	0	4
	39	ō	58.33	Ö	0	8.33	16.67	16.67	12
	40	ŏ	60	0	40	0	0	0	5
	41	ŏ	75	0	25	0	0	0	4
	42	õ	25	0	50	0	25	0	.4
	43	Ō	66.66	6.67	20	0	0	6.67	15
	44	Ō	40	0	60	0	0	0	5
	45	õ	52,95	23.53	11.76	0	0	11.76	17
*	46	2.36	17.14	2.86	5.71	20	0	51.43	35
*	47	Ō	41.03	0	25.64	10.26	7.69	15.38	39
*	48	ŏ	65.12	2.32	13.95	6.98	0	11.63	22
*	49	ō	45.72	0	28.57	8.57	0	17.14	35
	50	ŏ	60	0	13.33	6.67	0	20	15
	51	Õ	38,89	0	11.11	16.67	5.55	27.78	18
	52	Ō	20	10	20	30	0	20	10
	53	Ő	50	0	50	0	0	0	8
	54	0	25	0	26	0	0	50	4
	55	0	40	0	20	10	0	30	10
	56	0	40	0	50	10	0	0	10
*	57	0	13.75	0	60.78	7.89	9.81	7.89	51
*	58	0	14.29	0	77.65	2.04	2.04	4.08	49
*	59	2.78	0	2.78	72.23	5.55	11.11	5.55	30
*	60	1.11	17.78	5.56	3.33	31.11	28.89	12.22	90
*	61	0	6	2	2	4	82	4	5U 11
	62	0	18.18	9.0 9	9.09	0	54.55	9.09	11
	63	0	11.11	11.11	66.67	0	11.11	U	, 2

•
•

Tabla II.(continuación)

No.D. calidaD. celifornicaD. epidon $\frac{1}{robusta}$ $\frac{messanensis}{messanensis}$ $\frac{D}{pulchra}$ No. identificadasNo. individuos640100000000106504040000001066010107001001067024,3218.9221.6210.8116.228.113768000500500469018.7512.531.256.2518.7512.51670012.7318.1827.275.462016.36557102.8611.4351.438.57205.7112740.8921.4314.2940.186.2511.605.36112751.509.7710.5319.553.0148.876.77133760.573.4314.8613.147.4354.865.711757705.1311.288.724.1067.693.08195781.442.2713.2610.601.5268.942.27264* 790.863.1312.257.121.9971.233.423518005.2615.7943.865.2626.323.5129 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>D.</th><th></th><th></th><th></th></td<>							D.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						D.	messanensis			
No.californicaepi6donrobustaressanensispulchraidentificadasindividuos64010000000016504040000020566010107001001067024,3218.9221.6210.8116.228.113768000500500469018,7512.531.256.2518.7512.516*70012,7318.1827.275.462016.3655*710.643.826.3717.835.7357.338.28157*7207.694.6213.85067.694.1565*7302.8611.4351.438.57205.7112*751.509.7710.5319.553.0148.876.77133*760.573.4314.6613.147.4354.865.71175*781.142.2713.2610.601.5268.942.27264*7905.2615.7943.865.2626.323.5129*8005.2615.7943.865.2626.323.5129*8105.667.5532.07047.177			D.	D.	D.	fibula var.	forma	Octatis	No.	No. de
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		No.	calida	californica	epiodon	robusta /	messanensis	pulchra	identificadas	individuos
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
64 0 100 0 0 0 0 0 0 20 5 66 0 10 10 70 0 10 0 10 67 0 24,32 18,92 21,62 10,81 16,22 8.11 37 68 0 0 50 0 50 0 4 69 0 18,75 12.5 31.25 6.25 18.75 12.5 16 $*70$ 0 12,73 18.18 27.27 546 20 16.36 55 $*71$ 0,64 3.82 6.37 17.83 5.73 57.33 8.28 157 $*72$ 0 7.69 4.62 13.85 0 67.69 4.15 65 $*73$ 0 2.86 11.43 5.43 8.57 20 5.71 12 $*76$ 0.57 3.43 14.86 13.14 7.43		64	٥	1.00	0	0	n	́ О	0	1
		04	0	100	40	ñ	Ő	õ	20	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		03	. 0	10	10	70	ñ	10	0	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		67	0	24 32	18 92	21.62	10.81	16.22	8.11	37
	×	60	0	0	10.52	50	0	50	0	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		60	0	19 75	12 5	31 25	6 25	18.75	12.5	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		70	0	12 73	18 18	27 27	5 46	20	16.36	55
71 0.04 3.62 0.67 11.65 0.67 0.67 11.65 0.67 0.67 11.55 0.67 0.66 11.55 0.67 0.66 0.77 122 * 73 0 2.86 11.43 51.43 8.57 20 5.71 122 * 74 0.89 21.43 14.29 40.18 6.25 11.60 5.36 112 * 75 1.50 9.77 10.53 19.55 3.01 48.87 6.77 133 * 76 0.57 3.43 14.86 13.14 7.43 54.86 5.71 175 * 77 0 5.13 11.28 8.72 4.10 67.69 3.08 195 * 78 1.14 2.27 13.26 10.60 1.52 68.94 2.27 264 * 79 0.865 3.13 12.25 7.12 1.99 71.23 3.42 351 * 80 0 39.84 0.99 49.60 0.60 8.17 0.80 502 * 81 0 5.26 15.79 43.86 5.26 26.32 3.51 29 * 82 3.23 3.23 2.56 15.48 0 16.67 16.66 12 * 84 0 0 6.25 34.38 12.5 3.12 40.63 3.12 11 * 85 0 6.25 34.38 12.5 3.12 40.63 3.12 11 * 86 0 6.25	ж ж	70	0 64	2 92	6 37	17.83	5 73	57.33	8.28	157
7207.657.651.638.57205.7112*7302.8611.4351.438.57205.7112*740.8921.4314.2940.186.2511.605.36112*751.509.7710.5319.553.0148.876.77133*760.573.4314.8613.147.4354.865.71175*7705.1311.288.724.1067.693.08195*781.142.2713.2610.601.5268.942.27264*790.863.1312.257.121.9971.233.42351*80039.840.9949.600.608.170.80502*8105.2615.7943.865.2626.323.5129*823.233.2325.8035.48016.6111108302516.6725016.6716.6612*84006.2534.3812.53.1240.633.1211*8505.667.5532.07047.177.5553*872.339.306.9853.48025.582.3322*88025.582.3322	ж 	/1	0.04	7.60	4 62	13.85	0	67.69	4.15	65
	*	72	0	2.05	11 43	51 43	8 57	20	5.71	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ξ.	73	0 00	2.00	14 29	40 18	6.25	11.60	5.36	112
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	74	1 50	0 77	10.53	19 55	3 01	48.87	6.77	133
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*	73	1.50	2.12	14 86	13 14	7 43	54.86	5.71	175
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	70	0.57	5 1 3	11 28	8 72	4.10	67.69	3.08	195
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	70	1 14	2 27	13 26	10.60	1 52	68.94	2.27	264
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*	70	1.14	2 1 2	12 25	7.12	1.99	71.23	3.42	351
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	×.	75	0.00	20 84	n 99	49 60	0.60	8.17	0.80	502
* 81 0 3.23 25.80 35.48 0 16.13 16.13 10 * 82 3.23 25.80 35.48 0 16.67 16.66 12 * 84 0 0 8.16 4.08 0 87.76 0 49 * 85 0 6.25 34.38 12.5 3.12 40.63 3.12 11 * 86 0 5.66 7.55 32.07 0 47.17 7.55 53 * 87 2.33 9.30 6.98 53.48 0 25.58 2.33 22 * 87 2.33 9.30 6.98 53.48 0 25.58 2.33 22 * 87 2.33 9.30 6.98 53.48 0 25.58 2.33 22 * 89 1.89 5.67 11.32 24.53 3.77 43.39 9.43 27 * 90 2.78 13.89 22.22 25 2.78 27.78 5.55 12 * 91 0 4.54 3	×.	00	0	5 26	15 79	43.86	5.26	26.32	3.51	29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	02	2 22	3 23	25 80	35.48	0	16.13	16.13	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~	02 83	5.25	25	16 67	25	ŏ	16.67	16.66	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	0.0	0	0	8 16	4.08	õ	87.76	0	49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ĵ	04	0	6 25	34 38	12.5	3.12	40.63	3.12	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ĵ.	96	Ň	5.66	7 55	32.07	0	47.17	7,55	53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	00	2 2 2	0.30	6 98	53.48	ō	25.58	2.33	22
* 89 1.89 5.67 11.32 24.53 3.77 43.39 9.43 27 * 90 2.78 13.89 22.22 25 2.78 27.78 5.55 12 * 91 0 4.54 36.37 45.46 0 4.54 9.09 7 * 92 0 0 13.72 15.69 1.96 62.75 5.88 26 * 93 1.32 1.32 2.63 11.84 2.63 76.32 3.94 76 * 94 0 0 5.15 17.65 1.47 72.79 2.94 136 * 95 0 1.67 10 8.33 1.67 75 3.33 120 * 96 0 4.05 11.49 18.92 2.03 61.48 2.03 148	^	00	2.33	0	50	50	õ	0	0	2
* 90 2.78 1.09 1.09 1.09 1.10		80	1 89	5 67	11.32	24.53	3.77	43.39	9.43	27
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	03	2 78	13.89	22.22	25	2.78	27,78	5.55	12
* 92 0 0 13.72 15.69 1.96 62.75 5.88 26 * 93 1.32 1.32 2.63 11.84 2.63 76.32 3.94 76 * 94 0 0 5.15 17.65 1.47 72.79 2.94 136 * 95 0 1.67 10 8.33 1.67 75 3.33 120 * 95 0 4.05 11.49 18.92 2.03 61.48 2.03 148	Ĵ.	01	0	4 54	36.37	45.46	0	4,54	9.09	7
* 93 1.32 1.32 2.63 11.84 2.63 76.32 3.94 76 * 94 0 0 5.15 17.65 1.47 72.79 2.94 136 * 95 0 1.67 10 8.33 1.67 75 3.33 120 * 95 0 4.05 11.49 18.92 2.03 61.48 2.03 148	÷	02	Ň	0	13.72	15.69	1.96	62.75	5.88	26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*	03	1 32	1 32	2.63	11.84	2.63	76.32	3.94	76
* 95 0 1.67 10 8.33 1.67 75 3.33 120 * 96 0 4.05 11.49 18.92 2.03 61.48 2.03 148	-	93	0	0	5.15	17.65	1.47	72.79	2.94	136
* 96 0 4.05 11.49 18.92 2.03 61.48 2.03 148	*	97	- ŭ	1 67	10	8.33	1.67	75	3.33	120
	*	96	ň	4 05	11.49	18.92	2.03	61.48	2.03	148

F

Tabla	II	ontinuación)			n			
No.	D. calida	<u>D</u> . californica	<u>D</u> . epiodon	<u>D</u> . fibula var. robusta	messanensis forma messanensis	<u>Octatis</u> pulchra	No. identificadas	No. de individuos
* 97					<u>^</u>	or 60	0	116
* 98	0	0	1.72	2.59	0 69	95.69	2 03	148
* 99	0	0	7.43	2.03	0.00	07.03	1 23	163
* 100	0	1.84	20.24	3.08	1.23	69 55	2 42	124
* 101	0	2.42	15.32	10.48	0.01	80 00	0.98	307
* 102	0	1.30	3.91	2.93	0.50	09.90	1.29	310
* 103	0.32	0.97	5.10	1 20	0.32	86 1	0.46	216
* 104	0	0.40	10.05	1.39	0.55	93 79	1.63	306
* 105	ů,	1 22	4.20	1 84	0	93 25	0	163
* 106	0	1.23	5.00	0.50	ů	92.46	1.01	199
* 107	1.01	2 72	8.05	34 67	1.86	48.60	2.48	323
* 108	0.02	2.57	7 47	22.73	0.97	62.34	2.6	308
* 109	0.32	1 87	6.87	13.44	0.63	75	1.25	320
* 110	0.94	0.0	4 49	7.19	0	86.23	1.19	334
* 111 + 110	0	0.9	7.23	5.66	1.57	84.91	0.63	318
* 112	0 59	0.89	7.74	8.04	1.19	80.36	1.19	336
+ 110 + 110	0.53	1 27	9,28	2.95	0	85.65	0.85	237
* 114	0.38	1 62	7.14	2.92	Ő	87.66	0.33	308
+ 115	0.50	0.53	5.35	4.28	1.07	88.24	0.53	187
+ 117	0 65	0.97	6.49	2.92	0.33	87.67	0.97	308
* 118	0.64	1,60	7.03	2.55	0	86.26	1.92	313
* 119	0.85	2.55	6.33	2.13	0.43	84.68	2.98	235
* 120	0	1.82	8.76	5.47	0.37	83.21	0.37	274
* 121	ŏ	0.61	3.99	2.15	0.31	92.94	0	326
* 122	õ	0	1.90	0.95	0.32	96.83	0	315
* 123	õ	Ó	3.14	1.05	0	95.29	0.52	191
* 124	Õ	1.35	4.05	2.03	0	89.87	4.70	148
* 125	Ō	0	3.79	1.14	0	94.70	0.37	264
* 126	0.29	5.17	2.01	5.75	0	86.21	0.5/	340
* 127	0	4.40	2.56	1.46	0	91.21	0.3/	2/3
* 128	0.31	0	0.61	3.07	0	95.70	0.31	320
* 129	0	2.13	0.91	4.86	0	92.10	1 20	323
* 130	0	0	0.96	1.28	0.32	96.10	1.20	312
								- ω

Tabla II. (continuación)

No.	D. caTida	<u>D</u> . californica	<u>D</u> . epiodon	<u>D</u> . <u>fibula</u> var <u>robusta</u>	D. messanensis forma messanensis	<u>Octatis</u> pulchra	No. identificadas	No. de individuos
* 131 * 132 * 133 * 134	0 0 0 0	0.32 0 0.63 0	0.63 0.95 1.25 1.23	1.58 1.26 1.57 3.69	0 0.31 0.31	96.84 97.79 96.24 93.23	0.63 0 0 1.54	316 317 319 325

Las estaciones marcadas con un * son las que se incluyeron para obtener la matriz del coeficiente de correlación momento producto de Pearson.

TABLA III. MATRIZ DE CORRELACION

	<u>Dictyocha</u> <u>calida</u>	<u>Dictyocha</u> californica	<u>Dictyocha</u> <u>epiodon</u>	<u>Dictyocha</u> <u>fibula</u> var <u>robusta</u>	Dictyocha messanensis forma messanensis	<u>Octatis</u> pulchra	No. Identificadas
<u>Dictyocha</u> <u>calida</u>	- 1.000	- 0.021	0.205	0.253	0.255	- 0.333	0.458
<u>Dictyocha</u> californica	- 0.021	1.000	0.139	0.382	0.423	- 0.713	0.393
<u>Dictyocha</u> epiodon	0.205	- 0.139	1.000	0.143	0.018	- 0.279	0.116
<u>Dictyocha fibula</u> var.robusta	0.253	0.382	0.143	1.000	0.167	- 0.807	0.200
<u>Dictyocha</u> <u>messanensis</u> forma messanensis	0.255	0.423	0.018	0.167	1.000	- 0.548	0.665
Octatis pulchra	- 0.333	- 0.713	- 0.279	- 0.807	~ 0.548	1.000	- 0.603
No. identifi- cadas	0.458	0.393	0.116	0.200	0.665	- 0.603	1.000

RESULTADOS Y DISCUSION

Nurray y Schrader (1983), analizando la población de silicofl<u>a</u> gelados del Golfo de California, identificaron ocho especies: <u>Dictyocha calida</u> Poelchau, <u>Dictyocha californica</u> Schrader y Murray, <u>Dictyocha epiodon</u> Ehrenberg, <u>Dictyocha fibula</u> var. <u>robusta</u> Schrader y Murray, <u>Dictyocha messanensis</u> forma <u>messanensis</u> Haeckel, <u>Dictyocha minima</u> Schrader y Murray, <u>Distephanus speculum</u> (Ehrenberg) Haeckel y <u>Octatis pulchra</u> Schiller. En el presente estudio sólo se encontraron seis de dichas especjes; es decir, al efectuar el análisis de muestras no se enco<u>n</u> traron ni Dictyocha minima ni Distephanus speculum.

Comparando las condiciones de temperatura superficial dominantes (Fig. 3; Robinson, 1973) y las reinantes en el período considerado en el estudio -del 10 al 23 de marzo de 1983- (Fiq. 2) se observó un aumento termal significativo para este período (Fig. 4). En la boca del Golfo de California, hacia el Este, es donde se muestra la mayor variación de temperatura superficial, siendo el aumento de 3° a 3.5°C. En la parte media del Golfo la variación oscila entre los 2° y 2.5° C.

El aumento de temperatura superficial registrado, puede atri-buirse al hecho de que hubo entrada de aguas tropicales al Golfo de California, desplazando de su boca a las aguas caracterí<u>s</u> ticas de la Corriente de California y a las del propio Golfo.

Tal condición, sugiere la presencia del fenómeno de "El Niño"; el cual se caracteriza entre otros factores, por el acarreamie<u>n</u> to de aguas de mayor temperatura hacia latitudes mayores (Bierknes, 1961; Smith, 1968; Ouinn, 1974; Ramaoe, 1975; Chávez <u>et</u>. <u>al</u>., 1984).

fig. 2

37.

fig. 3

38.

fig. 4

Con el propósito de discernir si la abundancia de silicoflacelados es afectada por efectos de carácter diurno (día-noche), se analizó el desarrollo del muestreo a través de un mapa (Fic. 5) que expone a las estaciones abordadas durante la noche y en el transcurso del día. Comparando este mapa con el de abunda<u>n</u> cia de silicoflagelados (Fig. 12), aparentemente, el efecto -diurno no influye de manera evidente. A diferencia del trabajo de Murray y Schrader (1983), realizado durante condiciones "dominantes", las especies <u>Distephanus speculum</u> y <u>Dictyocha</u> minima no se presentaron en este estudio.

Para el caso particular de <u>Distephanus speculum</u>, una posible ex plicación es que ésta es una especie que habita en las anuas r<u>e</u> lativamente frías de la Corriente de California (Murray, 1982). Consecuentemente, el aumento de temperatura superficial ocasionado por el fenómeno de "El Niño", indujo al desplazamiento de dicha corriente de la región de la boca del Golfo y a la ausencia de D. speculum.

Siendo <u>Dictyocha minima</u> una especie "cosmopolita" (Murray y --Schrader, 1983), es difícil atribuirle una afinidad termal. No obstante, su ausencia en el tiempo considerado en este estudio, más sugiere que su presencia es afectada por las condiciones -prevalecientes durante el fenómeno de "El Niño".

La distribución geográfica de cada una de las especies se muestran desde la figura 6 a la figura 11.

La distribución de <u>Dictyocha epidon</u> (Fig. 6), aparentemente, es influenciada en la región de estudio, por la formación de fre<u>n</u> tes oceanográficos (Molina Cruz, 1984a), luego entonces, "normalmente" se distribuye a través de la boca del Golfo de California (Murray, 1982). Durante el período de muestreo, señalado

ļ

Dictyocha epiodon

para este estudio, es evidente que no se encuentra presente en la boca del Golfo. Esto podría explicarse de la siguiente manera: al penetrar la masa de agua del Pacífico tropical al i<u>n</u> terior del Golfo, se inhibió la influencia superficial de la -Corriente de California en dicho interior y consecuentemente, la formación de "frentes oceanográficos" en la boca del Golfo. Por otro lado, coherentemente, se observa la siguiente situación: la región Oriental de Guaymas es un gran centro de surgencias (Molina-Cruz, 1984b); por lo que se puede sugerir que en el tiempo de estudio hubo en esta región un encuentro de dos tipos de aguas: la tropical y la relativamente fría de las surgencias, provocando una mayor actividad de mezcla y con ello el medio favorable para que <u>Dictyocha epiodon</u> se desarrollara (Fig. 6). Su abundancia relativa en esta zona alcanzó el 5% con respecto a la población total de silicoflagelados.

Dictyocha calida es una especie que se ha reportado asociada con las aguas de la contracorriente ecuatorial (Poelchau, 1976). En condiciones "dominantes", ocurre con abundancia relativa alta en la boca del Golfo, aproximadamente en un 10%, pudiéndose encontrar aislada en áreas de la región norte (Murray y Schrader, 1983). Durante las condiciones de estudio (Fig. 7), esta especie se observó desplazada hacia la región central del -Golfo, con un porcentaje de abundancia relativa también de un 10%; además encontrándose en áreas aisladas de la zona norte y en pequeñas áreas cercanas a la costa oriente.

Dictyocha messanensis forma messanensis es una especie cosmopo lita (Poelchau, 1976) y se encuentra muy bien representada en la región de la costa occidental de la península de Baja California. Se encuentra también en la boca del Golfo con una abun dancia relativa mayor a un 25% (Murray y Schrader, 1983). D. messanensis forma messanensis (Fig. 8), bajo las condiciones reinantes , la encontramos distribuida hacia la parte central

del Golfo, manifestándose con mayor abundancia hacia las regiones costeras, donde adopta valores del 10%. Asimismo, aunque en menor abundancia, ocurre en la región central norte del Golfo, con valores de 3%.

<u>Dictyocha californica</u> (Fig. 9), en el periodo de estudio se presentó en algunas estaciones de la boca del Golfo, exhibiéndose particularmente, con mayor abundancia, en una pequeña área cercana a la costa oriental, donde representa un 40% de la abun dancia relativa. En la parte central del Golfo, esta especie ocurre con menor abundancia, de 3 al 5%. <u>D. californica</u>, en -condiciones dominantes, es característica de la región de la boca del Golfo, particularmente del lado continental en donde ésta representa más del 25% de abundancia relativa (Murray y Schrader, op. cit.).

<u>Dictyocha fibula</u> var. <u>robusta</u> ocurre en reciones tropicales y subtropicales, a través del margen continental del folfo de C<u>a</u> lifornia (Murray, 1982). En el tiempo de estudio se encuentra ampliamente distribuida en la región central del folfo de California, con un 10% de abundancia relativa. Esta especie se manifiesta principalmente, tanto en las regiones cercanas a la -costa oriente como a la costa este (Fig. 10), alcanzando su mayor abundancia relativa, en la costa oeste (50%). Presumible mente, su presencia dentro del Golfo se puede asociar con la e<u>n</u> trada de corrientes ecuatoriales provenientes de la costa de --América Central y vinculadas con la ocurrencia del fenómeno oce<u>a</u> nográfico de "El Niño".

En condiciones dominantes, <u>D. fibula</u> var. <u>robusta</u> se encuentra presente en la boca del Golfo al lado continental con una abundancia relativa del 10%, que disminuye hacia la región ce<u>n</u> tral.

Dictyocha fibula var. robusta

La mayor abundancia de <u>Octatis pulchra</u> en el tiempo considerado para este estudio, se encuentra en estaciones localizadas en la cuenca de Guaymas, región qu- es caracterizada por la ocurrencia de intensas mezclas de masas de agua (Molina-Cruz, 1984b; Alvarez-Arellano y Molina-Cruz, 1984). Tal fenómeno propicia el regeneramiento de nutrientes en la superficie y consecuente mente, el florecimiento del plancton (Roden y Groves, 1959; -Hasting y Turner, 1965; Round, 1967; Roden, 1972; Soutar <u>et al</u>., 1981; Molina-Cruz, 1984a; Schrader <u>et al</u>, 1984).

Al analizar la distribución geográfica de <u>Octatis pulchra</u> (Fig. 11) y compararla con la de <u>Dictyocha californica</u> (Fig. 9), se muestra que cuando aumenta la abundancia relativa de <u>O</u>. <u>pulchra</u> disminuye claramente la abundancia relativa de <u>D</u>. <u>californica</u>. Esta observación está apoyada por el coeficiente de correlación entre estas dos especies, que es negativo (-0.713; Tabla III). De la misma manera, cuando hay un incremento de <u>O</u>. <u>pulchra</u>, dis minuye notoriamente la abundancia de <u>D</u>. <u>fibula</u> var. <u>robusta</u> (-0.807; Tabla III).

Comparando la distribución de silicoflagelados existentes en -condiciones dominantes con las distribuciones en las condiciones de "El Niño", se puede asumir lo siguiente: durante "El Ni ño" 1983, hubo entrada de masas de aguas tropicales al Golfo de California principalmente por el lado Este. Tal hecho, trajo como consecuencia el desplazamiento de las masas de aqua características de la boca del Golfo, principalmente de la Corriente de California. Por consiguiente, los organismos que habitan dicha región, tal como el conjunto de silicoflagelados migraron o fueron desplazados hacia otras regiones.

No obstante el cambio en distribución geográfica, es interesante notar que, la abundancia relativa de las especies con respe<u>c</u> to a la población total de silicoflagelados no varió considera-

blemente.

La figura 12 muestra la mayor abundancia de silicoflagelados en el área norte de Guaymas; podemos concluir que la distribución dominante de silicoflagelados, durante "El Niño" 1983 se alteró como sigue: 1) en la zona de la boca del Golfo y la parte sur dentral, decreció la abundancia relativa de especies; 2) la zo na de transición fue desplazada hacia el norte; y, 3) la región de Guaymas casi se mantuvo estable, únicamente decreciendo su -"anchura" en forma moderada.

CONCLUSIONES

- 1. Durante el período de muestreo se presentó el fenómeno de "El Niño" en el Golfo de California. Por tal motivo. se registró un aumento significativo de temperatura en las aguas superficiales del Golfo, debido a la entrada de masas de agua tropicales provenientes de latitudes más ba-jas, principalmente por el lado Este del Golfo. La incur sión de dicha agua tropical desplazó a las masas de agua relativamente frías de la Corriente de California de la región de la boca del Golfo.
- La presencia del conjunto de silicoflagelados característica de la región del Golfo de California se modificó, ob servándose sólo la presencia de 6 esnecies de las 8 que comúnmente ocurren en condiciones "dominantes". Las espe cies que se observaron fueron: Dictyocha calida, Poelchau; Dictyocha californica, Schrader y Murray; Dictvocha epiodon, Ehrenberg; Dictyocha fibula var: robusta, Schrader y Murray; Dictyocha messanensis, Haeckel; y Actatis oulchra, Schiller; las ausentes fueron: Distephanus speculum y Dictyocha minima. La primera tiene afinidad a las aguas de la Corriente de California.
- 3. La mayor abundancia de silicoflagelados, tanto en condiciones dominantes como durante la ocurrencia de "El Niño", se encuentra en la Cuenca de Guaymas. Aunque nubo cambio en la distribución geográfica, aparentemente no se produjo una variación significativa en la abundancia relativa de cada una de las especies con respecto a la población to tal.

La distribución geográfica es afectada como sigue:

- a) En la región de la boca del Golfo y en la parte sur se observa una disminución considerable de la abundancia de silicoflagelados.
- La zona de transición entre las aguas del Pacífico y las propias del Golfo, se desplazó más al norte.
- c) La zona de la Cuenca de Guaymas se mantuvo casi estable, observándose solamente que ésta se redujo en área, con respecto al eje longitudinal del Golfo. Octatis pulchra es la especie que domina dicha cuen ca.

Especie	Murray v Schrader (1983)	Pérez-(ruz (1985)			
		Durante "El Niño" 1983			
<u>Dictyocha</u> <u>calida</u>	Se encuentra en la boca del Golfo de Cali- fornia con una abundancia relativa del 10%, disminuyendo hacia el interior del Golfo. Se presenta aislada en areas de la región norte.	Se encuentra en la región central del Gol fo de California con una abundancia rela- tiva del 10%. Se presenta también en áreas aisladas de la zona norte y en pe- queñas áreas cercanas a la costa oriental.			
<u>Dictyocha</u> <u>californica</u>	Es característica de la región de la bo- ca del Golfo, particularmente en las márg <u>e</u> nes continentales con más del 25% de abun- dancia relativa.	Se encuentra en la parte central del 601- fo de California con una abundancia rela- tiva del 3 al 5%. En una pequeña área cercana a la costa oriental alcanzando un 40% de abundancia.			
<u>Dictyocha</u> epiodon	Se encuentra presente a través de la boca del Golfo.	Se presenta en la región central del Gol- fo de California, alcanzando 5% de abun- dancia relativa.			
<u>Dictyocha fibula</u> var. <u>robusta</u>	Su mayor abundancia relativa se encuentra cerca de la boca del Golfo sobre los már- genes continentales alcanzando valores del 10%. Disminuye su abundancia hacia la re- gión norte del Golfo.	Se encuentra ampliamente distribuida en la región central del Golfo de Califor- nia, con un 10% de abundancia relativa. Su mayor abundancia se presenta en la co <u>s</u> ta oriental del Golfo (50%).			
<u>Dictyocha messanensis</u>	Se encuentra en la boca del Golfo con una abundancia relativa mayor al 25%.	D.m. fonna messanensis. Se encuentra en la región central del Golfo de California, presentándose con mayor abundancia hacia las regiones costeras, donde adopta valo- res del 10%. Asimismo, aunque en menor abundancia se presenta también en la re- gión central norte del Golfo con valores aproximados del 3%.			
<u>Octatis</u> pulchra	Se encuentra abundantemente en la región central del Golfo de California. Se en- cuentra también en la boca del Golfo. La abundancia mayor se localiza en las aquas superficiales de las Cuencas de Guaynas y del Cammen con un porcentaje mayor al 75%.	Se encuentra en la región central del Go <u>l</u> fo de California, con una abundancia rel <u>a</u> tiva mayor al 80%.			

REFERENCIAS BIBLIOGRAFICAS

- ALVAREZ ARELLANO, A. y A. MOLINA-CRUZ, 1984. Aspectos Paleoce<u>a</u> nográficos del Golfo de California, Evidenciados por Conjuntos de Radiolarios. <u>An. Inst. Cienc. del Mar y</u> Limnol. Univ. Nal. Autón. México. (en prensa).
- BACHMANN, A., 1970. Flagellata (Silicoflagellata). <u>Catalogus</u> <u>fossilíum Austriae, 15</u>: 1 - 28.
- BJERKNES, J., 1961. "El Niño" 1957-58 in its relation to tropical Pacific meteorology. <u>Inter-Amer. Trop. Tuna Comm.</u> <u>Bull.</u>, (12): 1-62.
- BOLD, H.C., ALEXOPOULOS and T. DELEVORYAS, 1980. Morphology of <u>Plants and Fungi</u>. Harper & Row Publishers, New York, 801 p.
- BUKRY, D. and J.H. FOSTER, 1973. Silicoflagellates and diatom Stratigraphy, Deep Sea Drilling Project, Leg 16. <u>Initial Reports Deep Sea Drilling Project, 16</u>: 815-871.
- BUKRY, D., 1975b. Silicoflagellate and cocolith stratigraphy, Deep Sea Drilling Project, Leg 29. <u>Initial Reports</u> Deep Sea Drilling Project, 29: 845-872.
- BUKRY, D., 1976. Silicoflagellate and coccolith stratioraphy, southeastern Pacific Ocean. Deep Sea Drilling Project, Leg 34. <u>Initial Reports Deep Sea Drilling Project</u>, <u>34</u>: 715-735.
- BUKRY, D., 1982. Neogene Silicoflagellates of the Eastern Equatorial Pacific, Deep Sea Drilling Project, Leg. 54.

Initial Reports Deep Sea Drilling Project, 54: 545-573.

- CHAVEZ, F.P. et al., 1984. Propagated temperature changes during onset and recovery of the 1982-83 "El Niño". <u>Mc-</u> <u>Millan Journals Ltd</u>.
- DAVIS, J.C., 1973. <u>Statics and Date in Geology</u>. John Wiley & Sons. New York, 550 p.
- DEFLANDRE, G., 1950. Contribution & l'étude des Silicoflagellidés actuals et fossils. Microscopie, <u>2</u>: 72-108.
- DUMITRICA, P., 1973a. Miocene y Quaternary Silicoflagellates in sediments from the Mediterranean Sea. <u>Initial Reports</u> Deep Sea Drilling Project, 13: 903-933.
- DUMITRICA, P., 1973 b. Paleocene, late Oligocene and post-Oligocene silicoflagellates in southwestern Pacific sediments cored on Deep Sea Drilling Project. Leg 21. Initial Reports Deep Sea Drilling Project, 21: 837-833.
- EHRENBERG, C.G., 1837. Eine briefliche Nachricht des Hrn. Agassis in Neuchatel über den ebenfalls aus mikroskopischen kiesel organismen bebideten polirschiefer vor oran in Afrika. <u>Ber. Verh. kgl. Preuss, Wiss, 1837</u>: 59-61.
- EHRENBERG, C.G., 1854. Das Enden und Felsen Schaffende wirken des unsichtbar kleinen selbständigen lebens auf der Erde. Mikiogedogie: 1-374.
- FRENGUELLI, J., 1951. Silicoflagelados del Tripoli de Mejillones (Chile). Physics (Buenos Aires), <u>20</u>: 272-284.

- FILLOUX, J.H., 1973. Tidal patterns and energy balance in the Gulf of California. Nature, p. 219.
- GARCIA, N.E., 1978. <u>Apuntes de Climatología</u>. Ed. Larios e Hijos. México. 153 p.
- GEMEINHARDT, K., 1930. Silicoflagellatae. <u>In</u>: L. Rabenhorst. <u>Kryptogamen-Flora</u> von Deutschland, <u>Oesterreich und der</u> <u>Shweiz</u>, <u>10</u>; 1-87.
- GEMEINHARDT, K., 1934. Die Silicoflagellaten des Südatantischen Ozeans. <u>Wiss Ergebnisse der Deutschen Atlantischen</u> Exped. "Meteor", 1925-27, 12: 274-312.
- GLEZER, Z. I., 1966. Silicoflagellatophyceae. Cryptogamic plants of the U.S.S.R., 7. 363 p.
- HAECKEL, E.H.P.E., 1887. Report on the Radiolaria collected by H.M.S. Chalenger during the years 1873-1876. <u>Repts</u>. Voy. Chalenger, <u>Zool</u>., <u>18</u>: i-clxxxviii.
- HAQ, N.W., 1978. Silicoflagellates and Ebridians. <u>In</u>: Haq, B.
 W. and Boersma, A. (Eds.). <u>Introduction to Marine Mi</u>cropaleontology. Elseveter, New York: 267-275.
- HASTING, J.R. and R.M. TURNER, 1965. Seasonal Precipitation Regines in Baja California, México. <u>Geografiska An-</u> naler, 47: 204-223.
- JERKOVIC, L., 1969. Les silicoflagelides fossiles des environs de Zagreb, de Bosanska Kostajnica et de Derventa (Yugoslavie). <u>Godisnjaka Biol</u>. <u>Inst</u>. <u>Univ. Sariev</u>, <u>22</u>: 21-127.

- LEMMERMANN, E., 1901. Silicoflagellatae. <u>Deutsche</u>, <u>Bot</u>. <u>Gesell</u>. <u>Ber., 19</u>: 247-271.
- LEYVA, J.A., 1984. El Niño Malo en Baja California. Información Científica y Tecnológica. CONACYT, 6 (67): 23-25.
- LING, H.Y., 1970. Silicoflagellates from central North Pacific core sediments. Bull. Am. Paleontol., 58: 85-129.

- 2

- LIPPS, J.H., 1970. Ecology and Evolution of Silicoflagellates. <u>Proc. North America Paleontol</u>. <u>Convent.</u>, <u>1969</u>, Part G: 965-993.
- LOEBLICH, A.R., 3rd. L.A. LOEBLICH, H. TAPPAN and A.R. LOEBLICH Jr., 1968. Annotated index of fossil and recent silicoflagellates and Ebridians with descriptions and illustrations of validly proposed Taxa. <u>Geological Society</u> of America Memoir 106: 317 p.
- MANDRA, Y.T., 1969. Silicoflagellates: A new tool for the study of Antartic Tertiary climates. J. Anatarct. Res., 4:172-174.
- MARTINI, E., 1971. Neogene silicoflagellates from the equatorial Pacific. <u>Initial Reports Deep Sea Drilling Project, 7</u> (2): 1695-1708.
 - MARTINI, E., 1977. Sistematics, Distribution and Stratigraphical Application of Silicoflagellates. <u>In</u>: Ramsay, A.T.S. (Ed.). <u>Oceanic Micropaleontology</u>. Academic Press, New York, <u>2</u>: 1327-1343.
 - MOLINA-CRUZ, A., 1984a. The Radiolarian Remains as Indicators of Upwelling Processes: The Peruvian connection.<u>Marine</u> <u>Micropal.</u>, 9: 53-75.

- MOLINA CRUZ, A., 1984b. Evolución oceanográfica de la "boca" del Golfo de California. <u>An. Inst. Cienc. del Mar</u> y <u>Limnol. Univ. Nal. Autón. México. (En prensa)</u>.
- MURRAY, D.W., 1982. Paleo-oceanography of the Gulf of California Based on Silicoflagellates from Marine Verbed Sediments, M.S. Thesis, Oregon State University. 129 p.
- MURRAY, D. and Schrader, H., 1983. Distribution of Silicofla gellates in Plankton and core top samples from the Gulf of California. Mar. Micropaleontol., 7: 517-539.
- POELCHAU, H.S., 1976. Distribution of Holocene Silicoflagellates in North Pacific sediments. <u>Hicropaleontology</u>, <u>22</u> (2):164-193.
- QUINN, W.H., 1974. Monitoring and predicting El Niño invasions. Journal of Aplied Meteorology, 13 (7): 825-830.
- RAMAGE, C.S., 1975. Preliminary discussion of the meteorology of the 1972-73 El Niño. <u>Bulletin American Meteorolo-</u> gical Society, 56: 234-242.
- ROBINSON, M.K., 1973. Atlas of monthly mean sea surface and sub-surface temperatures in the Gulf of California, México. San Diego Society of Natural History, Mem., 5, 97 p.
- RODEN, G.I. and Groves, G.W., 1959. Recent Aceanographic Investigations in the Gulf of California. <u>Journal of</u> <u>Marine</u> Res., 18 (1): 10-35.
- RODEN, G.I., 1964. Oceanographic Aspects of Gulf of California, In: Van Andel, T.H. and Shor, R. (Eds.). <u>Marine</u>

<u>geology of the Gulf of California, Amer. Assoc. Petrol.</u> Geol. Tulsa, Oklahoma. 30-58.

- RODEN, G. I., 1972a. Thermohaline and Baroclinic Flow across the Gulf of California Entrance and in the Revillagigedo Island Region. J. Phys. Oceanog., 2 (2): 177-183.
- RODEN, G. I., 1972b. Temperature and salinity fronts at the boundries of the subartic-subtropical transition zone in the Pacific. Jour. Geophys. Res. 77: 7175-7187.
- ROUND, R.E., 1967. The phytoplankton of the Gulf of California. Part I: Its composition, distribution and contribution to the sediments. <u>Jour. Esp. Mar. Biol. Ecol., 1</u>: 76-96.
- SCHRADER, H. and Baumgartner, T., 1983. Decadal variation of Upwelling in the Central Gulf of California. Thied J. and E. Suess (Eds.) <u>Coastal Upwelling</u>: <u>Its sediment</u> record: 247-276.
- SCHRADER, H., MAHOOD, R., CHENG, G., 1984. Gulf of California: Silicoflagellates in Plankton Samples Collected in June 1982, Part 2. Marine Micropaleontology. (En prensa).
- SCHRADER, H. and D. MURRAY, 1984. Silicoflagellate Assemblages in the Gulf of California During the Last Glacial Maximum and the Present: Oceanographic Implications. Marine Micropaleontology. (En prensa).
- SCHULZ, P., 1928. Beitrage zur Kenntnis fossiler und rezenter Silicoflagellaten. <u>Bot</u>. Archiv., 21: 225-292.

- SECRETARIA DE PROGRAMACION Y PRESUPUESTO, 1983. Agenda Estadística Básica. México, D. F., <u>Dirección Instituto Nacio-</u> nal de Estadística, <u>Geografía e Informática</u>, p. 461.
- SHEPARD, F.P., 1950. Submarine Topography of the Gulf of California. California U.S.A., 1940 E.W. Scripps Cruise to the Gulf of California. <u>Geol. Soc. American Memoir 43</u>, p. 32.
- SOUTAR, A., JOHNSON, S.K. and BAUNGARTNER, T.R., 1981. In Search of Modern Depositional Analogs to the Monterey Formation. In the Monterey Formation and Related Siliceos Rocks of California. Garrison, G.E. and R. G. Douglas (Eds.). <u>Society of Economic Paleontologist and Mineralogist</u>. 125-147.
- SMITH, R.L., 1968. Upwelling. <u>Oceanogr. Mar. Biol. Ann. Rev.</u>, 6: 11-46.
- STRADNER, H., 1961. Uber fossile silicoflagelliden und die Möglichkeit ihrer Verwendung in der Erdölstratigraphie. Erdöl u. Kohle, Erdas, Petrochemie, 14: 87-92.
- TAKAYO, L.J., 1980. <u>Geografía</u> <u>Moderna de México</u>. Ed. Trillas, México, 392 p.
- TYNAN, E. J., 1957. Silicoflagellates of the Calvert formation (Miocene) of Maryland. Micropaleontology, 3: 127-136.
- WEISBERG, J. and H. PARISH, 1974. Introductory Oceanography. Mc Graw Hill Kogakusha. Init. Student Edition, 320 p.

- WYRTKI, K., 1977. Advection in the Peru Current as Observed by Satellite. Jour. of <u>Geophysical Research</u>, <u>82</u> (27): 3939-3943.
- YANAGISAWA, T., 1943. Klishitsu-benmochu nitsute (Silicoflagellatae). <u>Umito sora 23</u>: 11-29.

DESCRIPCIONES TAXONOMICAS

Dictyocha calida. Poelchau, 1976 (Lámina 1; Figs. 5 a 10).

El anillo basal es rómbico y ligeramente alargado en paralelo a la barra apical. Las barras basales son argueadas y se hacen más delgadas en donde se originan las barras laterales, dando una apariencia redondeada a las ventanas basales. La estructura apical es relativamente delicada, comparada con el anillo ba sal. El puente apical es exactamente paralelo a el eje mayor de simetría y no tiene espina apical. La altura de la barra -apical sobre el anillo basal es más o menos pequeña (5-16% del diámetro del anillo basal). Las espinas están situadas directa mente debajo de las barras laterales o ligeramente desplazadas a la derecha (en el sentido de las manecillas del reloj). La longitud de las espinas radiales es en promedio 1/3 del diámetro del anillo basal. La microestructura superficial de las pa redes es lisa, presentando protuberancias distribuidas irregularmente. La apariencia general es delicada y de simetría fina.

<u>Dictyocha calida</u> n. sp. Poelchau, 1976 (Lámina 1; Figs. 5 a 10) se asemeja a algunas formas de <u>D</u>. <u>fibula</u> Ehrenberg, de la cual evolucionó (Poelchau, 1976); por consiguiente, está usualmente incluida bajo ese nombre en la literatura. Esta especie difiere de <u>D</u>. <u>fibula</u> por su perfecta simetría y su delicada estruct<u>u</u> ra apical; además de ser comparativamente más pequeña.

En algunos aspectos, <u>D</u>. <u>calida</u> n. sp. se parece a <u>D</u>. <u>ausonia</u> Deflandre y <u>D</u>. <u>lingi</u> Dumitrica (1973b). Sin embargo, estas e<u>s</u> pecies presentan la barra apical paralela al eje menor del anillo basal. También se ha observado que tiene un ligero parecido con <u>D</u>. <u>perlaevis</u> Frenguelli (Dumitricá, 1973b) y con <u>D</u>. <u>fibula</u> <u>perlaevis</u> Burki /1975), aunque la mayoría de estas formas, incluyendo la descripción original de Franquelli, son más "robustas"; aproximadamente 2 veces el tamaño de <u>D</u>. <u>calida</u>.

Poelchau (1976) sugiere que D. Calida probablemente evolucionó de los especímenes de D. perlaevis del Pleistoceno.

<u>Dictyocha californica</u> Schrader y Murray, 1984 (Lámina 1; Figs. 1 a 4). Dictyocha sp. A Murray y Schrader, 1983.

El anillo basal es elíptico de 60-90 μ m de largo y 35-50 μ m de ancho. El eje mayor tiene dos grandes espinas, mientras que el eje menor tiene dos pequeñas que algunas -eces están en el portal o ventana adyacente. La barra apical, de longitud muy varia ble, es paralela o inclinada al eje mayor. En las formas simétricas, las barras casi tienen la misma longitud, con inclinacio nes individuales ligeramente desiguales en forma. No hay espinas de soporte en el anillo basal. Todos los elementos estructurales tienen casi la misma silificación. La mayoría de las es tructuras presentan paredes sin nudosidades o ventricularidades. Algunos especímenes, con mayor silificación, presentan las paredes del anillo basal con algunos gránulos.

Esta especie es parecida a <u>Dictyocha</u> d<u>elicata</u> Burkry (1982); d<u>i</u> firiendo de ella, por el grosor de todos sus elementos estructurales. Dictyocha epiodon Ehrenberg, 1854 (Lámina 1; Figs. 11 a 16).

El anillo basal tiene apariencia subcuadrática, variando de róm bica a octagonal. D. epiodon tiene cuatro espinas principales v cuatro o más espinas radiales subordinadas, que se presentan alternamente. Las barras basales están ligeramente levantadas en la parte donde las barras laterales están articuladas, ligeramente hundidas en donde se ubican las espinas de soporte y -frecuentemente torcidas hacia afuera en los lugares de las espi nas radiales subordinadas. Las cuatro espinas de apovo están siempre desplazadas hacia la izquierda de las espinas radiales principales (en sentido contrario a las manecillas del reloj). La estructura apical está girada en sentido contrario a las manecillas del reloj, formando un ángulo con el eje mayor que es más grande que el formado por la estructura apical de D. messanensis (la diferencia es de 16°). La espina apical está casi siempre presente, y las espinas accesorias, en las barras laterales, por lo general están presentes.

Variabilidad del esqueleto.

El número de espinas radiales subordinadas puede variar de 2 a 9. La longitud de las espinas radiales varía, pero generalmente son más cortas que en <u>D. messanensis</u>.

La presente forma es completamente distinta a <u>D</u>. <u>messanensis</u> y <u>D</u>. <u>fibula</u> tanto en tamaño como en apariencia general, pudiéndose establecer una jerarquía de especies. Tal distinción fue o<u>b</u> servada por Ling (1970). Dumitricá (1973a, 1973b) y Burky y Foster (1973). El nombre de <u>D</u>. <u>aculeata</u> Lemmermann, utilizado por Dumitricá para describir a la especie en cuestión tendría prioridad, pero no es válido porque se utilizó anteriormente por Ehrenberg (1954) para una forma de <u>Distephanus speculum</u>. La única ilustración anterior, además de aquellas de <u>D</u>. <u>fibula</u> var <u>aculeata</u> Lemmermann (1901) que parece adecuada, es la que corresponde a <u>D</u>. <u>epiodon</u> de Ehrenberg. Aunque la descripción de él y la de Haeckel (1887) no se ajustan exactamente a la pr<u>e</u> sente especie.

Poelchau (1976) siguió el término binomial de Burky y Foster -(1973) disponible inicialmente. Los otros especímenes ilustrados por Ehrenberg (1854) bajo este nombre pueden ser fácilmente ubicados bajo el nombre de <u>D</u>. <u>fibula</u> y <u>D</u>. <u>messanensis</u> de uso reciente.

Como Dumitricá (1973a) puntulizó, la presente especie está cie<u>r</u> tamente relacionada a <u>D. messanensis</u>, particularmente a <u>Dictyo</u>-<u>cha messanensis</u> forma <u>spinosa</u> Lemmermann, 1901, por su tamaño y por la presencia de espinas accesorias sobre las barras laterales. El tamaño del anillo basal varía desde 30 hasta 35 µm, siendo algo más pequeño el de <u>Dictyocha messanensis</u> forma <u>spino</u>-<u>sa</u>.

Los especímenes grandes, que son mencionados por Gemeinhardt – (1930, 1934) y Dumitricá (1973a), son extremadamente raros en s<u>e</u> dimentos recientes del Pacífico Norte.

<u>Dictyocha fibula</u> var. <u>robusta</u> Schrader y Murray, 1984 (Lámina 2; Figs. 23 a 28). <u>Dictyocha</u> sp. B Murray y Schrader, 1983.

•

Esta variedad se distingue de <u>D</u>. <u>fibula</u> porque sus formas son más robustas y porque generalmente no es rómbica. Esta variedad tiene una relación de largo a ancho de 1.0 a 1.9. Las es
pinas del eje mayor son siempre más pronunciadas que las espinas del eje menor. Los portales colineales al eje menor siempre son más grandes que los portales colineales al eje mayor. La parte externa de los portales colineales al eje menor es va riable en forma; presentándose de convexo a triangular, pero casi nunca rectangular. Esta última forma se le considera ab<u>e</u> rrante. La pared de la estructura es generalmente lisa, aunque las superficies nudosas suelen ocurrir.

La barra apical es comprimida a alargada y puede ser paralela o inclinada con respecto al eje mayor. Las espinas de apoyo están siempre presentes. Dentro de esta variedad se han disti<u>n</u> guido dos formas: la forma <u>symmetrica</u> y la forma <u>rotunda</u>. La forma <u>symmetrica</u> tiene una relación de eje mayor a eje menor -cercana a 1.2 y las espinas radiales del eje menor describen un ángulo grande, con el anillo basal. La forma <u>rotunda</u> tiene una relación del eje mayor al menor, mayor a 1.2 y presenta formas más elípticas y convexas. Las espinas radiales del eje menor, al interceptar el anillo basal, describen ángulos más pequeños que las de la forma <u>robusta</u>. La diferenciación entre la forma <u>symmetrica</u> y <u>rotunda</u> no se efectuó en el conteo de este estudio.

Esta variedad difiere de <u>Dictyocha perlaevis</u> Frenquelli (1951) por la presencia de espinas de soporte y por la orientación de la barra apical paralela al eje mayor y no perpendicular a él.

<u>Dictyocha messanensis</u> forma <u>messanensis</u> Haeckel, 1887 (Láminas 1 y 2; Figs. 17 a 22).

El anillo basal es cuadrado o rómbico, con dimensiones que varían de 16 a 20 μm, ubicándose el promedio entre 20 y 29 μm. Su altura aproximada es de 10 μ m, Las barras basales son rectas, ligeramente cóncavas o convexas y las cuatro espinas de soporte están desplazadas hacia la izquierda de las espinas radiales. La estructura apical está girada en sentido contrario a -las manecillas del reloj, con respecto al eje mayor del anillo basal. Hay una espina apical.

<u>Dictyocha messanensis</u> forma <u>messanensis</u> Haeckel, 1887, es rela tivamente pequeña comparada con <u>Dictyocha messanensis</u> forma <u>spi-</u> <u>nosa</u>.

Este taxón probablemente incluye todas aquellas pequeñas formas que han sido llamadas <u>D</u>. <u>fibula</u> en la literatura reciente sobre fitoplancton. Estas formas son extremadamente raras en sedimentos recientes y pueden, de hecho, representar material retrabaj<u>a</u> do.

<u>Dictyocha messanensis</u> forma <u>messanensis</u>, tal como es mostrada por Haeckel, 1887, no posee espinas de soporte. Sin embargo, diagnosis posteriores, iniciadas por Gemeinhardt (1930), Dumi tricá (1973 a), y Poelchau (1976), han incluido especímenes en los cuales las espinas de apoyo están generalmente presentes.

Poelchau (1976), considera a <u>Dictyocha</u> s<u>tapedia</u> Haeckel como <u>D</u>. <u>messanensis</u> forma cuadrada y sugiere que las formas de <u>D</u>. <u>mes</u>-<u>sanensis</u> constituyen una forma transicional.

Siguiendo a Gemeinhardt (1930), <u>D</u>. <u>rhombus</u> Haeckel podría encuadrarse dentro del presente taxón así como <u>D</u>. <u>tenella</u> Ehrenberg.

Poelchau (1976) incluyó formas como <u>longispina, brevispina</u> y pentágona como parte inicial de la jerarquía normal del taxón.

<u>Dictyocha minima</u> Schrader y Murray, 1984. Dictyocha sp. Murray y Schrader, 1983.

Presenta formas elípticas pequeñas, de $30-55 \ \mu m$ de largo y $20-30 \ \mu m$ de ancho. El eje mayor presenta dos espinas radiales la<u>r</u> gas; las espinas en el eje menor son más cortas. La barra apical es siempre paralela al eje mayor pero de longitud variable. No presenta espina apical. Las espinas de apoyo están presentes distintivamente. Todos los elementos estructurales son de similar grosor y con paredes lisas. La relación del eje mayor al eje menor es siempre mayor de dos.

Esta especie fibuloide es distinguida de <u>D</u>. <u>fibula</u> por su relación largo a ancho, por su tamaño pequeño consistente y por su margen elíptico. Es también distinguible de <u>D</u>. <u>calida</u> por su relación largo-ancho.

Distephanus speculum (Ehrenberg) Haeckel, 1887.

El anillo basal es hexagonal, tiene seis espinas radiales cuyas longitudes varían ampliamente entre los especímenes. Sobre extremos opuestos del anillo, dos de-las espinas radiales, comúnmente son más largas. Seis espinas de apoyo, desplazadas hacia la izquierda de las espinas radiales. Generalmente están presentes un anillo apical, soportado por seis barras laterales y normalmente con un tamaño mayor al de la mitad del tamaño del anillo basal está presente. El diámetro mayor del anillo basal es de 15-25 µm y generalmente su altura es menor de 10 µm.

Variabilidad del esqueleto.

El número de lados y de espinas radiales puede variar desde cin

co a nueve, aunque este último número no es común. La longitud y forma de las espinas es bastante variable, observándose desde tubos cortos hasta delicadas agujas más largas que el diámetro del anillo basal. El anillo apical es generalmente amplio, pero ocasionalmente, llega a ser pequeño.

Aunque muy rara vez, cuando el anillo apical está parcialmente abierto, <u>D</u>. <u>speculum</u> semeja a la variedad <u>D</u>. <u>pseudofibula</u>. El número de espinas apicales varía desde ninguna hasta seis. Siendo lo más común dos sobre lados opuestos.

Se excluyen del presente taxón a formas grandes, como <u>D</u>. <u>boliviensis</u> (Burky y Foster, 1973), ya que éstas pertenecen al --Plioceno o edades anteriores. Estos difieren de <u>D</u>. <u>speculum</u> en su gran tamaño (más de 30 µm), el anillo apical más pequeño y, una tendencia de formación canopiloidea que hace que se presenten varias ventanas apicales.

Octatis pulchra Schiller, 1925 (Lámina 2; Figs. 29 a 33).

Anillo basal octagonal, ligeramente elongado y bastante reqular, con ocho espinas radiales, las cuales varían en longitud desde 1/2 a 1/4 del diámetro del anillo basal. Las espinas so bre el eje de elongación tienden a ser ligeramente más largas. No hay espinas de soporte. El anillo apical es muy delicado y casi tan amplio como el anillo basal. Este anillo ocasionalmente presenta espinas apicales y está sostenido por ocho barras laterales cortas, casi verticales, que se originan del anillo basal entre las espinas radiales. Frecuentemente, el anillo apical está incompleto o ausente, probablemente debido a fracturas. El diámetro mayor del anillo basal varía de 19 a 30 μm, la elongación del anillo basal es de 1.0 a 1.2 μm y la altura, desde la base hasta el anillo apical, es de 4 a 10 μm.

La presente especie de ninguna manera puede ser asociada con <u>Distephanus speculum</u>. De hecho, la diferencia en la estructura apical y la ausencia de las espinas de apoyo pueden justificar un género separado: este es <u>Octatis Schiller</u>. Poelchau (1976) y Burky y Foster (1973) refieren a la especie dentro del género Octatis Schiller.

<u>Octatis pulchra</u> Schiller difiere de <u>D</u>. <u>speculum</u> no sólo en la estructura apical muy delicada, sino también en el número constante de ocho espinas radiales. Aberraciones ocasionales de -siete a nueve espinas ocurren con frecuencias menores al 10%.

LAMINA 1

Figs. 1 a 3. Dictyocha californica Schrader y Murray, 1984 Estación 80. Fiq. 4. Dictyocha californica Schrader y Murray, 1984 Estación 126. 5 a 7. Figs. Dictyocha calida Poelchau, 1976 Estación 78. Fig. 8. Dictyocha calida Poelchau, 1976 Estación 79. Dictyocha calida Poelchau, 1976 Fiq. 9 y 10. Estación 119. Figs. 11 y 12. Dictyocha epiodon Ehrenberg, 1854 Estación 76. Dictyocha epiodon Ehrenberg, 1854 Fig. 13. Estación 77. Figs. 14 y 15. Dictyocha epiodon Ehrenberg, 1854 Estación 79. Fig. 16. Dictyocha epiodon Ehrenberg, 1854 Estación 119. Fig. 17. Dictyocha messanensis forma messanensis Haeckel, 1887 Estación 74. Figs. 18 y 19. Dictyocha messanensis forma messanensis Haeckel, 1887 Estación 77.

- Figs. 20 y 21. <u>Dictyocha messanensis</u> forma <u>messanensis</u> Haeckel, 1887 Estación 78.
- Fig. 22. <u>Dictyocha messanensis</u> forma <u>messanensis</u> Haeckel,1887 Estación 79.
- Fig. 23. <u>Dictyocha fibula</u> var. <u>robusta</u> Schrader y Hurray,1984 Estación 71.
- Fig. 24. <u>Dictyocha fibula</u> var. <u>robusta</u> Schrader y Hurray, 1984 Estación 77
- Figs. 25 y 26. <u>Dictyocha fibula</u> var. <u>robusta</u> Schrader y Murray, 1984 Estación 79.
- Fig. 27. <u>Dictyocha fibula</u> var. <u>robusta</u> Schrader y Hurray, 1984 Estación 50.
- Fig. 28. <u>Dictyocha fibula</u> var. <u>robusta</u> Schrader y Murray, 1984 Estación 126.

and the second second

- Fig. 29. Octatis pulchra Schiller, 1925 Estación 77.
- Fig. 30. <u>Octatis pulchra</u> Schiller,1925 Estación 79.
- Fig. 31. Octatis pulchra Schiller, 1925 Estación 126.
- Fig. 32. <u>Octatis pulchra</u> Schiller, 1925 Estación 79
- Fig. 33. <u>Octatis pulchra</u> Schiller, 1925 Estación 119.

	, the second		
an a	ange na saigig La saigige saigige	्रम् मुक्तान् । २३ व ११ - २ सन्दर्भ दुवै	• •
		n de la constance de la constan La constance de la constance de	
		para po 4 contrata de la fina	. 13
	يون - يو رو يو يو يو	algo Altano Antesia di Santa Santa Santa Antesia di Santa	9 <u>1</u>
Fig. 13. Principa coflagel	les estructuras mor ados.	fológicas de Sili-	, i

an an ann an All 1970 - An All 1980 - An An

> en en en forstation standard and an gest a na nasign standard an en standard an en standard an gest angeneration and standard a standard and standard ~ 22

POELCHAU, 1976

fig. 13

74