

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

DISTRIBUCION, ABUNDANCIA RELATIVA Y DESARROLLO LARVARIO DE LAS LANGOSTAS <u>Panulirus argus</u> y <u>Scyllarus americanus</u>, EN LA ZONA ECONOMICA EXCLUSIVA DEL GOLFO DE MEXICO Y MAR CARIBE, 1980-1983.

> TESIS Que presenta: LAURA ORDOÑEZ ALCALA Para obtener el título de: LICENCIADO EN BIOLOGIA

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. INDICE GENERAL.

RESUMEN
INTRODUCCION2
DESCRIPCION DEL AREA DE ESTUDIO
SISTEMATICA DEL GRUPO11
OBJETIVOS14
MATERIAL Y METODOS15
RESULTADOS
1) Descripción del desarrollo larvario de P. argus22
2) Ciclo de vida de <u>P. argus</u> 39
3) Descripción del desarrollo larvario de <u>S</u> . <u>americanus</u> 42
4) Abundancia
5) Análisis estadístico71
DISCUSION
CONCLUSIONES Y SUGERENCIAS
RECONOCIMIENTOS85
INDICE DE FIGURAS86
INDICE DE TABLAS Y GRAFICAS89
APENDICE
BIBLIQGRAFIA

RESUMEN.

Este trabajo incluye los resultados obtenidos para la<u>r</u> vas de langosta, en las nueve Prospecciones Ictioplanctónicas, realizadas en la ZONA ECONOMICA EXCLUSIVA DEL GOLFO DE MEXICO Y MAR CARIBE, como parte del convenio MEXUS-GOLFO, en los afios 1980-1983.

El área estudiada comprende desde los 85°30' a los 97°00' lon gitud oeste, y desde los 18°30' alos 25°00' latiud norte. Se trabajó con 329 filosomas ya separadas de las muestras planc tónicas; 286 pertenecientes a la especie <u>Panulirus argus</u>, y 43 a <u>Scyllarus americanus</u>. En esta investigación se identificaron los once estadíos larvarios de <u>P. argus</u> y los seis de S. americanus.

La distribución y abundancia se discute ampliamente, establ<u>e</u> ciéndose la región del Caribe como zona de mayor densidad de larvas en toda el área muestreada.

Finalmente se realizó un análisis comparativo de los registros, para medir el efecto que la zonificación y el tiempo de colecta, tuvieron en los valores de abundancia de larvas; así como la verificación de interacción entre aquellos parámetros.

INTRODUCCION.

La política mexicana en materia de Pesca, contemplada en el Programa Nacional de Prospección y Evaluación de los recursos pesqueros, tiene como uno de los principales objetivos, intensificar las investigaciones técnicobiológicas, a fin de lograr a corto plazo, un avance substancial sobre el conocimiento del rendimiento máximo sostenible de los recursos pesqueros, en aguas de la ZONA ECONOMICA EXCLUSIVA DEL GOLFO DE MEXICO Y MAR CARIBE, con el propósito de que su aprovechamiento se efectúe en forma integral y coordinada.

La importancia econômica que tiene la langosta en el desarrollo a<u>c</u>tual tual de la industria pesquera en México, lo sitúa como a uno de los recursos de mayor interés en la actividad extractiva nacional. De ahí que la evaluación para su aprovechamiento sea una actividad importante.

La langosta es una especie que habita sobre las plataformas, pero como muchas otras del bentos, sus fases iniciales transcurren como miembros del plancton.

Durante su período de vida larval planctónico, que dura entre seis y ocho meses, dependiendo de la temperatura y la alimentación, puede ser arras trada por las corrientes marinas existentes en la zona; pasando en éste período por once estadíos <u>Panulirus argus</u> y de seis a siete <u>Scyllarus america</u>. <u>nus</u>; más tarde antes de convertirse en puerulo ó juvenil, en un lapso que varía de seis a ocho meses, y posteriormente en otros ocho meses, en adulto.

Los adultos se encuentran en rocas y arrecifes a lo largo de la costa occidental del Atlántico, desde Carolina del Norte hasta Brasil.

El género Panulirus se localiza principalmente en el Golfo de México, Bah<u>a</u> mas y Cuba, y <u>Scyllarus</u> en éste último país y Florida (USA).

Existen trabajos en la literatura referentes al Golfo de México y Mar Caribe, donde se analiza la distribución, abundancia y algunos aspectos poblacionales de éstas dos especies, entre los que se pueden citar a Crawford y De Smith (1922), que son los primeros que describen la larva filosoma de Panulirus argus.

Lebour (1950), que detalla ampliamente éste estadío (filosoma), a partir de ejemplares críados en el acuario de Bermuda. Posteriormente Lewis (1951), efectúa la descrpción del desarrollo morfológico con larvas en el Caribe y Atlántico Occidental, siendo éste trabajo uno de los más im portantes acerca de cada uno de los once estadíos larvales.

Por otra parte, Lewis et al. (1952), realizan investigaciones sobre juveniles, pero es Gordon (1953), quien describe los puerulos de algunas especies del género <u>Panulirus</u>; Gourney (1956), continúa con éstos estudios.

Estos mismos aspectos fueron posteriormente analizados por Buesa (1969, 1970, 1972 y 1979); Austin (1972) y Baisre (1976, 1977 y 1978). Además de otros aspectos relacionados con la dinámica poblacional, genética y bioquímica que son discutidos en Eldred el al. (1972); Richards y Goulet (1972); Little (1977) y Menzies (1977).

Respecto al género Scyllarus es poco lo que se conoce, sin embar go es interesante citar los trabajos de Baisre (1960, 1976); Robertson -(1968, 1971 y 1979) y Johnson y Knight (1975), quienes describen las ca racterísticas morfológicas de éste género, en su fase larval.

No obstante ésta información, a nivel nacional, pocos estudios se han efectuado, a pesar de que la pesquería de la langosta espinosa (\underline{P} . <u>argus</u>) ocupa uno de los primeros lugares en importancia comercial en el Caribe Mexicano, no tanto por el volumen de captura, sino por representar una fuente de divisas para el país.

La langosta <u>P</u>. <u>argus</u>, sostiene una explotación importante en todo el mundo. Las capturas mundiales reportadas a la FAO por 32 países, consideran do doce especies diferentes, representan un volumen que ha alcanzado las 9.5 x 10⁴ TM ⁴en la década del 70.

En 1982 nuestro país, obtuvo una captura total de 2,323 TM, correspon diendo a la zona del Pacífico 1,812 TM y el resto (511 TM), a la zona del Golfo de México y Mar Caribe. De éste total, casi el 90% se exporta a los E<u>s</u> tados Unidos de Norteamérica.

En cuanto a la langosta de arena, <u>S. americanus</u>, a nivel nacional y mundial, ésta pesquería no alcanza cifras importantes.

Los métodos y artes de pesca para la langosta son muy variados, sin embargo, podemos señalar que las nasas cubana y australiana, son las artes más utilizadas por su eficiencia en la captura de éstas especies.

En nuestro país la relación entre el esfuerzo de pesca y la producción se ha mantenido estable, y aún cuando no se han logrado aumentos notables en la captura, ésta ha permitido una extracción constante.

* TM= toneladas métricas.

Al respecto se considera que el recurso se halla subexplotado, debido al bajo tonelaje de captura actual, (inferior a las 10 TM).

Infiriéndose que las migraciones hacia el Sur y hacia aguas más profundas sea lo que determine la cuantía de los volumenes de captura. DESCRIPCION DEL AREA DE ESTUDIO.

El área total cubierta por el Golfo de México, es de alrededor de 1.5 x 10^6 Km², con un volumen de agua de 2.3 x 10^6 Km³ y una profundidad promedio de 1500 mts (Emilsson 1976). Mientras que el Caribe, desde la zona que limita con nuestro país, posee una área de 4.3 x 10^6 Km² con una profundidad promedio de 2600 mts.

La cuenca del Golfo que se extiende desde el Canal de Yucatán, está conectada con el Mar de Caimán en el sureste, y con el Atlántico a tr<u>a</u> vés del Estrecho de Florida.

Esta cuenca está rodeada por tres áreas de plataforma continental ancha: la de Florida occidental en el este; la de Texas-Louisiana en el noroeste y el Banco de Campeche en el sureste.

En la zona del Golfo se consideran dos entradas; Sin embargo todo el flujo, tanto hacia adentro como hacia afuera , tienen que desplazarse a través del paso de cerca de 180 millas náuticas, que se encuentra entre el borde noreste del Banco de Campeche y la esquina suroccidental de Flor<u>i</u> da; lo cual constituye una entrada relativamente angosta, mientras que la zona del Caribe posee varias entradas.

Las aguas del Golfo a cualquier profundidad, son muy similares a las del Caribe, como lo demuestran sus caractefísticas de temperatura y sa linidad; así como el alto contenido de oxígeno en las aguas profundas, ind<u>i</u> cativo de un alto grado de intercambio de aguas.

Esta situación se debe a las condiciones cinemáticas de la entra

da, donde la Corriente de Yucatán fluyendo hacia el norte, es forzada hacia el oeste `en los estrechos de Florida.

En la figura 1 se observa éste flujo en varias direcciones : al Oeste sobre el Banco de Campeche, hacia el norte rumbo a Texas y hacia el Este, al estrecho de Florida.

En la parte oriental del centro del Golfo la corriente gira haciendo círculos a la derecha, y después fluyendo al este hacia el estrecho de Florida. Se observa en la zona, una corriente que se ha denominado Corriente del Lazo, ésta avanza hacia el norte durante la primavera, durante el verano y otoño se extiende hacia el Oeste para formar un remolino anticiclónico, antes de retroceder a una extensión mínima durante el I<u>n</u> vierno.

Sobre las tres amplias y poco profundas plataformas del Golfo, el impulso de los vientos es particularmente importante, y cerca de la costa, supera al efecto de la circulación general sobre las áreas profundas.

En lo que respecta a la mezcla vertical, en ambas zonas, tanto en el Golfo como en el Caribe permanece muy restringida. Los vientos fuertes como huracanes y nortes sí producen intercambio vertical, en part<u>i</u> cular cuando la estabilidad estática cerca de la superficie se ha reducido por enfriamiento. Por otro lado, los huracanes alteran las aguas superficiales, produciéndose una ascención de la termoclina.

Resulta entonces que el espesor de la capa superficial permanece practicamente inalterado, aunque con su temperatura reducida. El movimiento vertical también se ve reducido por la escasa dimensión en profund<u>i</u> dad.

Las corrientes de marea en la zona, son relativamente fuertes sobre las franjas exteriores de las plataformas, puesto que grandes cantidades de agua pasan a través de secciones transversales de poca profundidad, que originan los cambios en el nivel del mar cercano a la costa.

En la zona de estudios se trabajó exclusivamente a nivel de aguas superficiales, una capa que llega aproximadamente hasta los 200 mts. Son aguas de tipo tropical, con alta temperatura y salinidad, bajo conteni do de oxígeno y mínimas concentraciones de substancias orgánicas. Sin embargo, son las de mayor productividad biológica en cuanto a diversidad se refiere.

Los valores de temperatura en la superficie son relativamente esta bles durante todo el año, y estuvieron localizados uniformemente entre los $28^{\circ}y$ 30° centígrados, (Schroeder <u>et al</u>. 1974). El patrón de salinidad de la superficie presenta valores un poco más pequeños que 36% en las aguas del Caribe que penetran al Golfo; valores mayores a 36.5% en el Banco de Campeche y al oeste y sur de éste; y dos luenguetas de baja salinidad que se extienden hacia el sur desde las plataformas noroeste y central.

En la fig. 2 se observan las zonas de surgencias en el Golfo de Mé xico y Mar Caribe, que se presentan frente a las costas de Veracruz y al norte de la Península de Yucatán, desapareciendo éstas últimas durante el invierno y haciéndose más intensas en la costa occidental.

En la parte norte, frente a las costas de Florida y Louisiana se ob

servan también surgencias, sin embargo en la zona central, existen hundimientos, debidos probablemente a la influencia de la Corriente del Lazo que penetra la cuenca en los meses de verano.

Debido a las diferencias en las condiciones ambientales de la zona de estudio, aún cuando no se planeó la colecta por medio de un muestreo e<u>s</u> tratificado, y con el objeto de disminuir la varianza de los resultados, se manejaron dos estratos. Uno desde las costas de Tamaulipas hasta el estado de Veracruz, longitud 95°, y otro más rico en nutrientes e intercambio de aguas debido a las corrientes de Yucatán y del Lazo, que abarca las costas de Yucatán, Campeche t Quintana Roo, longitud 85°.

SISTEMATICA DEL GRUPO.

Phylum Arthropoda Superclase Mandibulata Clase Crustacea Superorden Eucarida (Calman 1904) Orden Decapoda (Latreille 1802) Sección Macrura

 Familia Palinuridae (Latreille 1803)
 Familia Scyllaridae (Latreille 1803)

 Rénero Panulirus
 Rénero Scyllarus

 Especie argus (Latreille 1804)
 Especie americanus (Smith 1904)

DIAGNOSIS DEL ORDEN.

En el orden Decápoda se encuentran los crustáceos más grandes. Se ca racterizan principalmente por llevar tres pares de maxilípedos, lo que hace que las patas torácicas queden reducidas a cinco pares libres. Presentan grandes corazas dorsales que se fusionan a los segmentos cefálicos y a los torácicos, cubriendo lateralmente la cavidad branquial, en donde el movimien to del apéndice laminar de las segundas maxilas, sostiene una circulación constante del agua.

La parte anterior del caparazón se encuentra generalmente marcada con depresiones y excrecencias que corresponden en parte a la inserción de los músculos. En la región límite entre la parte cefálica y la torácica, se encuentra el surco branquial, que indica la línea divisoria entre las porciones del caparazón que salen de los somitos antenal y mandibular, respe<u>c</u> tivamente.

Las anténulas son monorrâmeas y tienen por lo regular un pedúnculo de tres artejos y dos flagelos. En muchos casos el flagelo externo se bifu<u>r</u> ca cerca de la base y los tres flagelos parecen salir separadamente del e<u>x</u> tremo del pedúnculo.

Las antenas tienen un protopodito de dos artejos y un endopodito de tres, continúandose en un flagelo y en un exopodito transformado en escama. Los ojos son pedunculados y formados por dos δ tres artejos movibles. Las maxílulas son birrameas y tienen un palpo de un solo artejo que puede estar dividido en dos, tres o cuatro partes. Las maxilas tienen dos prolongaciones bifurcadas y un palpo con un solo artejo, además de un gran protopodito lameliforme que se extiende hacia adelante, donde sus movimientos rápidos y contínuos hacen circular el agua en la cavidad branquial.

En lo que respecta a los apéndices torácicos, están los maxilípedos, que aunque se encuentran localizados en la región cefálica, pertenecen a los apéndices del tórax. Son tres pares y su aspecto es diferente al de las patas torácicas.

Los otros cinco pares de apéndices torácicos están formados de siete artejos cada uno, son ambulatorios y sólo conservan el exopodito en las fo<u>r</u> mas primitivas. El primer par está provisto de pinzas ó quelas, en ocasiones también el segundo y el tercero; Los epipoditos de éstos apéndices están transformados en branquias que se desarrollan ya sea en los apéndices ó en la pared del cuerpo.

Los apéndices abdominales están representados por los pleópodos y los urópodos. Los dos primeros pares de pleópodos están modificados en los machos, pues intervienen en el acoplamiento.

Los urópodos en unión con el télson, constituyen en los tipos primi tivos una aleta natatoria. En los Macrura, grupo al que pertenecen ambas familias de este estudio, se observa el carácter típico caridoide de los <u>u</u> rópodos; tienen un protopodito corto y dos ramas laminares anchas que corresponden al endopodito y al exopodito, y que forman junto con el télson la aleta caudal.

Atendiendo a la información anterior, el presente trabajo de tesis tiene como fin los siguientes objetivos:

OBJETIVOS.

 1.- Identificar los estadíos larvales de las langostas de los géne_ ros <u>Panulirus</u> argus y Scyllarus americanus.

2.- Analizar la distribución y abundancia relativa de los estadíos larvales en la ZONA ECONOMICA EXCLUSIVA DEL GOLFO DE MEXICO Y MAR CARIBE.

3.- Determinar la abundancia larval de éstas especies, en base al <u>a</u> nálisis cuantitativo de sus estadíos, aplicando el método de Sette y Ahlstrom (1948, 1953).

4.- Determinar la influencia de las principales corrientes de la zona, en la distribución de los estadíos larvarios de éstas especies.

MATERIAL Y METODOS.

1) Muestreo.

El material a utilizar para la realización de este estudio, fué obt<u>e</u> nido en nueve cruceros de Investigación Oceanográfica, a bordo de los barcos: ONJUKU, BIP IX del Instituto Nacional de la Pesca, JUSTO SIERRA de la UNAM y el OREGON II del South Fisheries Center, of the National Marine -Fisheries Service of Miami, Fla., realizados en la ZONA ECONOMICA EXCLUSIVA DEL GOLFO DE MEXICO Y MAR CARIBE, durante los años 1980-1983, a través del Convenio Cooperativo entre México y Estados Unidos (MEXUS-GOLFO).

El área muestreada abarca desde las costas de Tamaulipas, a la alt<u>u</u> ra de la Laguna Madre, hasta las costas de Quintana Roo; área que comprende de las líneas 30 a 170 del Plan Básico de estaciones del Golfo de México y Mar Caribe. (Manual de Investigaciones Ictioplanctónicas)

Para la obtención de las muestras se utilizó una red tipo Bongo de 61 cm de diámetro, con una malla filtrante de 0.333 mm. Los lances fueron doble oblícuos desde la superficie hasta una profundidad máxima de 200 m, 6 hasta donde la profundidad de la estación lo permitió. En la boca de la red se colocó un flujómetro para estimar el volumen de agua filtrada.

Los arrastres consistieron en sumergir la red a una velocidad de 50 m/min, recuperándolas a una velocidad de 20 m/min, tratando de mantener •--siempre un ángulo de 45°; la velocidad de arrastre fué de 1.5 nudos, dichos arrastres fueron realizados tanto de día como de noche. Después de obtenidas las muestras se preservaron en formol al 5% y se neutralizaron con una solución saturada de borato de sodio.

2) Identificación y Determinación de los estadíos.

Para la determinación de los diferentes estadíos larvales y la iden tificación de la especie de cada filosoma, se tomaron en cuenta las siguien tes características, determinadas por Lewis (1952) y Johnson (1968):

A) El tamaño de la parte anterior del cefalotórax en relación con la parte posterior del mismo, así como la forma de ambos.

B) El grado de desarrollo de anténulas y antenas, y las diferencias en segmentación y tamaño entre ambas; así como la relación de los pedúnculos ouclares y los ojos combinados.

C) En lo que respecta a los maxilípedos se tomaron en cuenta las se das, espinas, el grado de desarrollo y forma de los mismos.

D) El número de pares de patas presentes, la prescencia ó ausencia de espinas coxales y la segmentación.

E) El desarrollo del abdomen, su forma en relación con el cefalotórax, segmentación, etc.

F) El crecimiento del télson y la diferenciación y desarrollo de pleo podos y urópodos.

3) Procesamiento de datos.

A) Cálculo de volumen de agua filtrada,

El volumen de agua filtrada requiere de un flujómetro calibrado en

la boca de la red, y de la ecuación básica para la estimación de la misma: $V = a \times b \times r$

402677621

Para los cruceros realizados en colaboración con el South Fisheries Center de Miami, la ecuación aplicada fué:

$$V = \frac{3.14 \text{ x d x L}}{4}$$

Donde

d = Diámetro de la red en m. L = Distancia en m.

de ahí

Donde À f = Diferencia de conteos inicial y final del flujómetro.

b = Factor de calibración.

B) Cálculo de la Profundidad de muestreo.

La profundidad real del lance, se calculó por medio de la siguiente expresión:

$$D = W \cos T$$

Donde D = Profundidad real del lance.

W = Longitud máxima del cable en m.

 \overline{T} = Tangente promedio; suma de las tangentes de los ángulos del cable tomados a intervalos de 30 seg durante la fase de arrastre de la red.

C) Factor estándar de captura.

$$FEC = \frac{100D}{V}$$

Donde D = Profundidad real del lance. V = Volumen de agua filtrada.

D) Abundancia relativa de Panulirus argus y Scyllarus americanus.

Los datos de abundancia para cada estación, se estimaron en número de larvas por unidad de superficie marina, y por 100 m², aplicando un programa basado en la ecuación de estandarización de Kramer <u>et al.(1972); in-</u> formación que se utilizó en el diseño de las cartas de distribución geogr<u>á</u> fica. La expresión que se empleó fué:

$$nj = \frac{cj \ x \ zj}{vj} \ x \ 100$$

Donde nj = Número de larvas en la estación j por cada 100 m de superficie marina. cj = Captura de larvas en la estación j. zj = Profundidad máxima del arrastre en la estación j
 vj = Volumen de agua filtrada por la red en m³, en la estación j.

E) Determinación del área mínima.

Se determinó una área mínima estandarizada con el objeto de tener una estimación de los datos de abundancia, no sólo en el punto específico de la colecta, sino también en una cierta área alrededor de ese punto. Para lograr ésto se utilizó el método de Sette y Ahlstrom (1948); por medio del cual se obtuvo una área mínima de 3.08 x 10 $9 m^2$.

F) Relación entre las dos especies.

Con el objeto de probar la independencia entre las dos especies encontradas en la zona, se utilizó la prueba de independencia de X^2 , por medio de una tabla de contingencia de 2 x 2 (Daniel 1982).

G) Análisis de varianza.

Se realizó un análisis de varianza con el objeto de comprobar si nu nuestra estratificación era pertinente. Por otro lado, éste tipo de anál<u>i</u> sis permitió observar el efecto de zona y de tiempo en los registros del número de larvas.

Finalmente se pudo establecer si existía una relación en la densidad de larvas, entre las diferentes zonas y el tiempo en que se llevaron a cabo las colectas (Daniel 1982). Este análisis se realizó con el programa ANOVA, del paquete SPSS ve<u>r</u> sión 8, (Statistical Package for the Social Science); en la computadora -Burroughs 7800 del Centro de Computo de la UNAM, con la terminal del Centro de Ciencias de la Atmósfera.

Las hipótesis que se plantearon con respecto a la densidad de larvas, fueron las siguientes:

- Ho = "Los tres años de colecta fueron iguales" 1981 = 1982 = 1983 Ha = "Al menos una igualdad es diferente"
- 2) Ho = "El estrato I y II son iguales entre sí" Ha = "El estrato I y II son diferentes".

4) Muestreo estadístico.

Aún cuando las colectas fueron realizadas sin un plan específico de muestreo, como ya se mencionó, el análisis de los resultados se hizo asumien do que se trabajo un muestreo estratificado. Para lo cual se utilizaron las siguientes expresiones (Cochran 1983):

Media del estrato

$$\frac{h}{Y_{h}} = \frac{\sum_{i=1}^{h} x Y_{hi}}{nh}$$
Varianza del estrato

$$sh^{2} = \sum_{i=1}^{h} (Y_{hi} - Y_{h}) \sum_{nh = 1}^{nh} (Y_{hi} - Y_{h})$$

Donde	h = estrato I y II (Golfo y Caribe)
	i = Unidad dentro del estrato.
	nh = Número de unidades dentro de la muestra
	Yhi = Valor obtenido para la fesima unidad.

A partir de estas expresiones se establecieron límites de confianza al \checkmark = 0.05, para cada estrato anualmente.

RESULTADOS.

1) Descripción del desarrollo larvario de Panulirus argus. (*)

Estadío I (1.6-1.9 mm)

El cuerpo anterior del cefalotórax tiene forma de pera, redondeado anteriormente y apuntado posteriormente. El cuerpo posterior es levemente elíptico en su forma, tan largo como el anterior pero un poco más ango<u>s</u> to. El abdomen no está segmentado, lo mismo que las antenas, las cuales p<u>o</u> seen cuatro sedas. Las anténulas son más largas que las antenas, no están segmentadas y tienen tres sedas.

Existen tres pares de patas presentes. Los dos primeros pares son birranceos, mientras que el tercero posee un muñón pequeño en el segmento del endopodito, que es el precursor del exopodito. Espinas coxales están presentes en todas las patas. Los ojos carecen de pedúnculos.

La mandíbula consta de una porción basal y una porción distal que termina en tres dentículos. La primera maxila consta de una pequeña parte basal insertada inmediatamente detrás de la mandíbula. Tiene dos ramas co<u>r</u> tas, cada una provista de dos sedas plumosas y un par de pequeñas sedas. La forma y arreglo de la mandíbulas y maxilas no se alteran marcadamente en los estadíos posteriores.

Presentan una segunda maxila plana y en forma de navaja con dos segmentos; el exopodito de la maxila posee cuatro sedas y la base tres. El primer maxilípedo presenta una pequeña espina y es como una proyección inmediatamente detrás de la base de la segunda maxila. El segundo maxilí-

(*) basado en Lewis (1951)

Fig. 3 Diagnosis larval de Panulirus argus.

23

Fig. 4 Estadío I de Panulirus argus.

pedo está puenteado con 3 sedas, carece de exopodito y posee cuatro seg mentos. El tercer maxilípedo es muy largo y se asemeja a las patas en ap<u>a</u> riencia, perorcarece de espina coxal.

Estadio II (2 a 2.5 mm)

El cuerpo anterior del cefalotórax tiene forma de pera, pero es más alargado que en el primer estadío. El cuerpo posterior está redondeado pero sigue siendo más angosto que el cuerpo anterior. Aparecen pequeños pedúnculos en los ojos; pero no hay cambios marcados en las antenas, anténulas y partes bucales, en relación al primer estadío. El exopodito del tercer par de patas ha aumentado en tamaño.

Estadío III (2.6 a 3.2 mm)

El cuerpo anterior es más largo que en el estadio 2 y ligeramen te más ancho que el cuerpo posterior. El abdomen es más angosto que en los estadios anteriores. El exopodito del tercer par de patas está ya bien formado. Las antenas siguen siendo más cortas que las antenúlas. El segmento coxal de los tres pares de patas, es más largo y angosto en relación al resto del cuerpo, que enlos estadios 1 y 2. Los pedúnculos oculares han aumentado en tamaño.

Estadio IV (3.5 a 4.6 mm)

El cuerpo anterior es tan ancho como el posterior y apuntado pos teriormente. Las antenas siguen siendo más cortas que las antenúlas. El cuerpo posterior presenta un pequeño par de miembros bifurcados en los extremos, representando la naturaleza birramea del que será el cuarto par

Fig. 5 Estadío II de <u>Panulirus argus</u>.

€£

Fig. 6 Estadío III de Panulirus argus.

27

de patas. Cercano al**e**bdomen existe otro par de miembros incipientes que representan el quinto par de patas. El abdomen es angosto y no posee se - das apicales.

Estadio V (4.7 a 6 mm)

El cuerpo anterior es más angosto que el posterior. Las anténulas tienen dos segmentos y las antenas son tan largas como el primer seg mento de las anténulas; los pedúnculos oculares son más largos que las anténulas. El cuarto par de patas posee exopoditos sedosos y pequeños endo poditos punteados con finas sedas. El quinto par de patas es aún incipiente. No hay evidencia de espinas coxales en el cuarto par de patas. El exopo dito de la segunda maxila y el primer maxilípedo han perdido sus sedas. Tres sedas permanecen en la base de la segunda maxila. Ya no hay rastros de segmentación en el abdomen.

Estadío VI (6.2 a 8.3)

El cuerpo anterior es más largo y más angosto que el posterior. Las anténulas poseen tres segmentos. Las antenas tienen dos segmentos y son tan largas como los dos primeros segmentos de las anténulas. El cua<u>r</u> to par de patas está completamente formado, mientrs que el quinto es aún rudimentario. No hay espinas coxales en ninguno de los pares de patas. El abdomen es todavía pequeño y angosto, no se observa aumento en el des<u>a</u> rrollo en relación al estadío anterior.

Fig. 7 Estadío IV de Panulirus argus.

Fig. 8 Estadío V de Panulirus argus.

Fig. 9 Estadio VI de Panulirus argus.

Estadío VII (8 a 10.1 mm)

Las anténulas tienen cuatro segmentos y están puntedas con cuatro sedas. La protuberancia del penúltimo segmento ha aumentado en largo y posee tres sedas a lo largo de su borde medio. Las antenas tienen tros segmentos y son tan largas como los tres primeros segmentos de las anténulas. El quinto par de patas no está pegado al abdomen y se encuentra más desarrrollado. El abdomen está segmentado y cada segmento posee un pequ<u>e</u> fio par de miembros (los pleópodos en desarrollo). El télson es todavía muy rudimentario.

Estadio VIII (10.9 a 14 mm)

Las anténulas tienen cinco segmentos y han perdido sus sedas apicales. Las antenas poseen tres segmentos y son tan largas como las anténulas, han perdido sus sedas apicales también. Los pedúnculos oculares son doblemente largos que las anténulas. Hay un pequeño y todavía malformado télson. El quinto par de patas está elongado ligeramente. La segunda max<u>i</u> la es muy larga y posee sedas en su parte distal.

El primer maxilípedo ha aumentado en tamaño y casi alcanza la base del exopodito de la segunda maxila.

Estadio IX (14 a 19 mm)

Las antenas poseen cuatro segmentos y son más largas que las anténulas, pero no más largas que los pedúnculos oculares y los ojos. Las anténulas tienen seis segmentos. El abdomen tiene cuatro pares de pleópodos bilobulados incipientes. El télson es pequeño pero se halla casi

Fig. 10 Estadío VII de Panulirus argus.

Fig. 11 Estadio VIII de Panulirus argus.

perfeectamente formado. Las patas del quinto par presentan dos segmentos y son más alargadas que en el estadío anterior. El exopodito de la segun da maxila ha aumentado en talla. El primer maxilípedo es más largo que la base de la segunda maxila. El segundo maxilípedo presenta un exopod<u>i</u> to incipiente.

Estadio X (17 a 23 mm)

Las antenas son tan largas como los ojos y los pedúnculos ocul<u>a</u> res. El segundo maxilípedo presenta un exopodito parcialmente formado. Las coxas de los primeros cuatro pares de patas presentan pequeñas branquias. El quinto par de patas posee tres segmentos. El abdomen presenta pleópodos bilobulados y un Télson bien formado. El exopodito de la segunda maxila es más largo que en el estadío anterior. El primer maxilípedo se ha diferenciado en un epipodito, un endopopodito alargado que no alcanza el borde de la maxila, y un pequeño exopodito en desarrollo.

Estadio XI (18 a 26 mm)

Las antenas son más largas que los ojos y los pedúnculos oculares combinados, y presentan trazas de segmentación en los flagelos apicales. Los endopoditos de las anténulas son casi tan largos como los exopoditos. Los exopoditos de los segundos maxilípedos están totalmente desarrollados y presentan sedas. Los primeros cuatro pares de patas presentan branquias bilobuladas en los segmentos coxales. El quinto par de patas posee cinco segmentos . El abdomen presenta un largo y completamente desarrollado té<u>1</u> son mientras que los pleópodos son pequeños pero ya bien formados.

Fig. 12 Estadío IX de Panulirus argus.

Fig. 13 Estadío X de Panulirus argus.

Fig. 14 Estadio XI de Panulirus argus.

2) Ciclo de vida de Panulirus argus

El ciclo de vida permite una visión más clara y amplia de las cara<u>c</u> terísticas de la especie. Buesa 1969 y Baisre 1977, proponen el ciclo biol<u>ó</u> gico de <u>P</u>. argus, desafortunadamente para Scyllaridos aún no se ha estudiado completo, ya que no se reportan poblaciones adultas de importancia.

En la reproducción de la langosta, intervienen machos y hembras. Los machos depositan en las hembras el semen, el cual se enegrece y endurece formando la masa espermatófora y que se conoce como chapa ó lacre. Este apareamiento se produce durante todo el año y generalmente después de una muda, con mayor frecuencia durante marzo y agosto.

En esta época las hembras presentan los ovarios aumentados de tama fio y de color rojizo, esta coloración se debe a un derivado proteíco de la xantofila; la cual será la substancia nutritiva que empleará el embrión co mo alimento. Hay langostas con hueva externa durante todos los meses del <u>a</u> fio, pero son más frecuentes durante mayo y agosto. Se localizan en zonas de mayor profundidad ó que posean temperaturas más bajas.

Aproximadamente se producen entre un cuarto y tres cuartos de millón de huevecillos por langosta, produciéndose más huevos, mientras mayor sea el tamaño.

Es en los huevecillos donde transcurren los estadíos característi cos de las larvas crustáceas, la nauplio, la protozoe y la zoea; finalmente eclosionan en el estado mysis el cual dura unicamente unas horas. De ahí las larvas se convierten en filosomas, las cuales son arrastradas por las co rrientes y forman parte del plancton durante un período aproximado de seis

Fig. 15 Ciclo de Vida de Panulirus argus.

a ocho meses.

En ésta fase las larvas mudan en once ocasiones, dando lugar a once estadíos larvarios. Después de éstos once estadíos se transforman en puerulos ó juveniles, y poseen ya la forma de una langosta transparente pero muy pequeña(18 mm); la cual se dirige al fondo donde permanece de 13 a 14 meses, pasando por otros once estadíos, Baisre (1977).

Cuando pasan más ó menos 21 meses desde la eclosión, las langostas miden aproximadamente 56 mm. A los tres años de edad alcanzan los 144 mm y son maduras sexualmente, en nuestro país hasta que se alcanzan los 270 mm de longitud cefalo-caudal son capturables comercialmente, pero para ésto pueden haber pasado de 4 a 8 años. Hasta esta etapa se han realizado aprox<u>i</u> madamente 35 mudas.

Llegado el momento del aprovechamiento comercial, las langostas sé lo mudan dos veces al año, creciendo cada vez menos por muda, y algo más los machos que las hembras.

El crecimiento sin embargo, varía de acuerdo a muchos factores, ta les como la alimentación, la temperatura y las corrientes de la zona.

3) Descripción del desarrollo larvario de Scyllarus americanus (*)

Estadío I

Las larvas en esta etapa oscilan entre los 1.4 y 1.6 mm. El cuer po anterior es ligeramente más ancho que largo y más ancho que el cuerpo posterior. Los ojos carecen de pedúnculos. Las antenas son mayores que los ojos y poseen en la parte anterior de su tercio distal una larga espina, en su extremo libre hay cuatro sedas. Las antenas alcanzan un tercio de la longitud de las anténulas, ambos apéndices son unisegmentados en éste esta dío. La segunda maxila posee dos segmentos, uno basal desnudo y uno distal muy reducido, en el que se insertan tres sedas plumosas. El primer maxilípedo no se observa aún. El segundo es un apéndice funcional con cinco segmentos y no experimenta cambios de consideración a través de todo el desarrollo, a excepción del último estadío. El tercer maxilípedo es similar a los pereiópodos, aunque más delgado y sin espinas coxales; no posee exopod<u>i</u> to y tampoco experimenta variaciones de consideración.

Existen tres pares de patas, el tercer par con un rudimento deexo exopodito y los dos primeros con un exopodito bien desarrollado con sedas natatorias. El cuarto par, es apenas un par de pequeñas protuberancias redondeadas localizadas en ambos lados del abdomen.

El abdomen es rudimentario con sus lados casi paralelos y final<u>i</u> za en dos proyecciones distales; en cada una de las cuales existen tres s<u>e</u> das.

(*) basado en Baisre (1966)

Fig.16 Estadío I de Scyllarus americanus.

Fig.16 Estadío I de Scyllarus americanus.

Estadío II

El tamaño de las larvas en este estadío varía entre los 2.2 y 2.6 mm. El cuerpo anterior es ligeramente más ancho que largo, aunque más ancho que el cuerpo posterior, (relación que se mantiene en los siguientes es tadíos). Los ojos poseen ya un pedúnculo diferenciado y en conjunto son mayores que las anténulas. Las sedas sensoriales del extremo distal de las anténulas son mantenidas y aparecen nuevas sedas en el margen interno de su porción distal, en la base de la espina aparece una protuberancia redonde<u>a</u> da precursora del endopodito. Las antenas no experimentan cambios de cons<u>i</u> deración. El rudimento del exopodito del tercer par de patasha aumentado visiblemente en tamaño. El cuarto par de patas se observa claramente como dos proyecciones unisegmentadas mayores que el abdomen. El abdomen no ca<u>m</u> bia considerablemente, aunque se encuentra ligeramente más ensanchado en su base. Ya se observan los rudimentos del quinto par de patas.

Estadío III

Las larvas en este estadio van de 3.0 a 3.75 mm. Los ojos con sus pedúnculos son mayores que las anténulas. La segunda maxila conserva su forma inicial y aún no hay trazas del primer maxilípedo. El tercer par de patas ha desarrollado totalmente su exopodito. El cuarto par presenta en es ta etapa cinco segmentos y un rudimento de exopodito. Los dos botones del quinto par de patas han aumentado de tamaño. El abdomen es más ensanchado y en su base ya presenta dos rudimentos lobulados, precursores de los urópodos.

18. Y

Fig. 17 Estadio II de Scyllarus americanus.

Fig. 18 Estadio III de Scyllarus americanus.

Estadío IV

En este estadío las larvas alcanzan un tamaño que varía entre los 4.2 y 5.1 mm. Las anténulas tienen dos segmentos y están bilobuladas, el lóbulo externo posee numerosas sedas en su margen interno, y es dos v<u>e</u> ces mayor que el lóbulo interno. Los ojos con sus pedúnculos son mayores que las anténulas y casi el triple que las antenas. Estas últimas son más aplastadas y ya se encuentran bilobuladas, aunque unisegmentadas. La segun da maxila va adquiriendo forma de hojuela y ha perdido sus sedas plumosas. El primer maxilípedo aparece por primera vez como un pequeño rudimento apl<u>i</u> cado detrás de la segunda maxila.

El exopodito del cuarto par de patas ha aumentado en tamaño y el endopodito ya se desarrollo⁻ completamente. El quinto par ha aumentado de tamaño y ya casi alcanza la longitud del abdomen aunque aparece unisegment<u>a</u> do. El télson y los urópodos aparecen diferenciados, aunque todavía rudime<u>n</u> tarios. Aparecen cuatro pares de rudimentos lobulados, ligeramente hendidos, precursores de los pleópodos. El abdomen es muy ancho en su base y se continúa con el cuerpo posterior.

Estadío V

Las larvas miden entre 5,9 y 7.3 mm. Las anténulas son ya triseg mentadas y el endopodito alcanza dos tercios de la longitud del exopodito. Los ojos con sus pedúnculos son mayores que las anténulas y aproximadamente dos veces mayores que las antenas, las cuales permanecen unisegmentadas. La segunda maxila se hace más ancha. El primer maxilípedo aparece como un rudimento , aunque ligeramente mayor que en la etapa anterior.

Fig. 19 Estadío IV de <u>Scyllarus</u> <u>americanus</u>.

Fig. 20 Estadío V de <u>Scyllarus</u> americanus.

El exopodito del cuarto par de patas, ya se encuentra segmentado y con sedas natatorias. El quinto par de patas es ligeramente mayor que el abdomen y posee tres segmentos . Los urópodos y el télson se encuentran bien dif<u>e</u> renciados y están más desarrollados que en el estadío anterior. Los rudime<u>n</u> tos de los pleópodos han aumentado en tamaño y sus hendiduras les dan apariencia bilobulada.

Estadío VI

Las larvas miden entre 9.0 y 10.8 mm. Las anténulas son triseg mentada y en esta etapa el endopodito y el exopodito son casi iguales en tamaño. Los ojos con sus pedúnculos son mayores que las anténulas y que las antenas, éstas últimas aparecen por primera vez segmentadas y con el margen interno tenuemente serrado. La segunda maxila posee ya un exopodito. El primer maxilípedo posee ahora un epipodito. El segundo maxilípedo posee un rudimento del futuro exopodito. El quinto par de patas tiene cinco segmentos y es del mismo tamaño que el abdomen. Los cuatro primeros pares de patas, poseen rudimentos bilobulados en su segmento coxal, precursores de las branquias. El abdomen está segmentado y los pleópodos son grandes y se encuentran completamente hendidos formando dos lóbulos. Los urópodos están articulados en su base y junto con el télson alcanzan un desarrollo notable en esta etapa.

Fig. 21 Estadío VI de Scyllarus americanus.

Fig. 22 Diagnosis larval de Scyllarus americanus.

4) Abundancia.

Los valores de abundancia se dan en valor absoluto, tablas 1 y 2; en ellas se separan las dos especies y los diferentes estadíos de las mismas. Aún cuando no tiene mucho sentido manejar valores absolutos, ésto pe<u>r</u> mite hacer una comparación con los valores estandarizados, como se observa en la tabla 3.

En el registro de abundancia para la obtención de nuestros límites de confianza, se manejó exclusivamente <u>P</u>. argus; ya que el porcentaje de <u>S</u>. <u>americanus</u> fué muy pequeño (13.06%), en comparación con el de <u>P</u>. argus --(86.93%).

CRUCERO	TOTAL DE	larvas de	LARVAS DE
CHOCHNO	ESTACIONES	P. argus	S. americanus
ORII105	38	2	1
ORII117	33	10	2
ON8104	56	1	1
ORII120	45	27	1
BIP098201	50	8	2
ON8204-I	66	79 ⁻	22
ON8204-II	44	28	7
ON8305	45	57	3
JS8305	33	74	4
TOTALES	410	286	43

Tabla 1 ABUNDANCIA ABSOLUTA DE LARVAS POR CRUCERO.

Tabla 2

ABUNDANCIA ABSOLUTA	DE	LARVAS	POR	ESTADIOS.
---------------------	----	--------	-----	-----------

	محصوب بالشاد والمتحد ويجزع والمحاد والم	and the second	والمراقبة المتقاف المتعاقب المتقافية المتحديد والمتحاد المحد	
Panulirus argus		Scyllarus americanus		
ESTADIO	LARVAS	ESTADIO	LARVAS	
I	65	I	8	
II	25	II	8	
III	26	III	5	
īv	54	IV	2	
v	47	v	13	
VI	22	VI	7	
VII	23			
VIII	8			
IX	8			
x	5			
XI	3			
TOTAL	286		43	

Las aguas de la ZONA ECONOMICA EXCLUSIVA DEL GOLFO DE MEXICO Y MAR CARIBE, son importantes para la industria pesquera mexicana, porque poseen una alta diversidad de especies comerciales. De ahí el interés de conocer la abundancia y la relación con las corrientes de la zona, ya que ésto pe<u>r</u> mite inferir la distribución espacial y temporal de las filosomas.

En la fig, 23 se puede observar la distribución de los estadíos lar varios de P. argus, donde es posible apreciar que los primeros ocho esta-

díos registran una distribución un poco más amplia que los últimos tres. En cuanto a <u>S</u>. <u>americanus</u> los seis estadíos se hallan en general distribuí dos homogeneamente, como lo muestra la fig. 24. Sin embargo no alcanzan a cubrir la zona de distribución de P. argus, que es un poco más extensa.

CHARLE T.

En el año de 1980, primer año de muestreo de éste estudio, la abundancia no fué muy relevante, ya que solamente se registraron dos estaciones con larvas y el número estandarizado, no alcanzó las 300 en un solo crucero, como lo observamos en la fig. 25.

En 1981, el número de filosomas aumentó notablemente aún cuando no se muestreó la parte del Caribe, zona que se registra como la de mayor abun dancia; los tres cruceros ORIII17, ORII120 y ON8104, cubren casi exclusiva mente la zona del Golfo. En las cartas de distribución, figs. 26, 27 y 28 se observan las estaciones con el número de larvas estandarizado.

Para el año de 1982 figs. 29, 30 y 31, se observa una mayor abunda<u>n</u> cia. En este año se cubre la totalidad de la zona de muestreo; observándose nuevamente una proporción mucho más alta en el estrato del Caribe.

En 1983, los dos cruceros ON8305 y JS8305, cubrieron casi exclusiva mente el estrato del Caribe, como se aprecia en las figs. 32 y 33, y por es ta causa en promedio su abundancia registró el pico.

Con el objeto de agrupar los datos obtenidos, se elaboraron tablas de registros de bitácora de cada crucero; son las tablas 7 a la 15 y se lo calizan en el apéndice.

Tabla 3 ABUNDANCIAS ABSOLUTA Y ESTANDARIZADA DE FILOSOMAS DURANTE LA PROSPECCION ICTIOPLANCTONICA 1980-1983				
Crucero	Estación	Abundancia abso- luta	Abundancia estan- darizada	Abundancia por área mínima _g estándar (10)
ORI 1105	30751 30737	2 1	126 55	389 170
ORII117	34462 34467 34474 34475 34478 34478 34480	3 2 2 4 1 1	108 151 120 262 76 66	333 466 370 809 335 204
ON8104	1 32	1 1	51 60	157 185
ORII120	34785 34786 34788 34792 34798 34800 34804 34830 34832 34832 34834 34836	2 1 5 4 7 2 2 1 2 1 2 1	93 30 40 346 156 267 33 204 45 86 40	297 93 123 1070 482 824 102 630 139 265 123
BIP098201	60-30 90-70 110-40 110-30 100-30 130-80 160-80	1 1 1 2 2 2	54 57 56 53 113 115 107	167 176 173 164 349 355 330

Tabla 3 con	tinuación			
Crucero	Estación	Abundancia absol <u>u</u> ta	Abundancia estan- darizada	Abundancia por área mínima gestándar
ON8204 - I	90-160 80-160 70-160 30-210 30-230 60-230 60-210	18 12 4 7 1 1	885 585 236 576 73 80	(10°) 2730 1810 729 178 225 247 448
	70-170 70-200 70-220 80-210 80-190	2 4 1 2 2	145 277 141 94 140	448 448 855 435 290 432
	90-170 90-180 90-210 90-230 90-240 100-250	1 4 1 2 1 3	734 249. 52 180 58 161	2270 769 161 556 179 497
	100-240 110-240 110-250 130-260 140-260	1 5 1 1 8	69 415 67 59 620	213 1280 207 182 1910
019204 11	150-230 150-260 160-260 140-230	2 1 2 1	158 75 160 74	488 232 494 228 262
0140204-11	130-90 90-90 30-110 50-150	2 1 1 1	83 84 78 77 74	259 241 238 228

Tabla 3	continuación.			
Crucero	Estación	Abundancia abso- luta	Abundancia estan-	Abundancia por área mínima estándar
		Idia	GETTERUU	(10^9)
ON8204-II	70-110	2	130	401
	70-130	3	298	920
	90-140	5	269	830
	90-150	1	41	127
	100-140	2	136	420
	100-130	4	280	864
	110-130	3	168	519
	110-140	1	72	222
	120-130	2	100	308
	120-110	1	68	210
	120-100	1	78	241
	130-110	1	70	216
	130-130	2	78	241
	140-130	1	40	123
ON8305	50- 230	2	136	420
	60-240	6	387	119
	70-240	1	74	228
	80-240	1	40	123
	90-240	3	238	735
	130-260	3	206	636
	140-260	1	72	222
	160-260	2	147	454
	150-250	1	54	167
	150-240	5	310	957
	160-240	1	58	179
	160-230	1	60	185
	150-230	1	64	· 198
	140-230	10	776	2400
	140-250	1	64	198
	130-250	1	73	225
	130-240	1	84	259
	130-230	4	265	818

· Tabla 3	continuación.			
Crucero	Estación	Abundancia abso- luta	Abundancia estan- darizada	Abundancia por área mínima gestándar
ON8305	12-40 120-250 110-250 50-210 50-190	1 3 2 8 1	71 221 141 449 62	219 682 435 1390 194
JS8305	80-130 80-150 90-130 120-130 130-130 110-110 130-100 110-90 120-70 140-70 120-50 130-120 110-130	11 3 12 8 2 11 6 4 5 1 1 1 4 6	815 196 797 402 75 593 379 293 282 378 73 76 200 378	2520 605 2460 1240 232 1830 1170 904 871 1170 225 235 617 1170

5) Estadística.

Con el objeto de probar la independencia entre las dos especies, se utilizó una prueba de X^2 , cuyos valores se obtuvieron de tablas de contingencia de $2x^2$. Se plantearon las siguientes hipótesis:

Ho = "Las dos especies son independientes entre sí" Ha = "Las dos especies están relacionadas entre sí"

1980 $x^2 = 0.0270$ 1981 $x^2 = 1.1809$ 1982 $x^2 = 1.6474$ 1983 $x^2 = 0.0448$

Para un grado de libertad, con un 95% de confiabilidad, el valor de X^2 es 3.841; todos los valores obtenidos son menores a éste. Por lo tan to no se puede rechazar la hipótesis nula.

Ya que se tomaron encuenta dos estratos, se obtuvieron las medias y varianzas de cada año, utilizando las expresiones de la sección 4) Muestreo. En la tabla 4 se observan estos valores. La tabla 5 registra los límites de confianza.

Gráfica 1. Promedio de abundancias de filosomas de <u>P</u>. <u>argus</u> y <u>S</u>. <u>americanus</u>, por estrato y anualmente.

Tabla 4

MEDIAS Y VARIANZAS ANUALES POR ESTRATO DE P. argus.

AÑO	Ϋ́Ι	s ² i	Ϋ́ΙΙ	s ² II
1980	-	-	58.1	91.8
1981	1.9	115.5	31.0	6 293.3
1982	8.3	471.4	77.5	20 111.5
1983	65.8	13 894.1	120.9	31 578.9

Tabla 5

LIMITES DE CONFIANZA DE P. argus.

AÑO	ESTRATO	VALOR
1980	II	(0, 61.34)
1981	I	(0, 4.55)
	II	(0, 50.27)
1982	I	(0, 14.85)
	11	(0, 85.84)
1983	I	(0, 164.63)
	II	(0, 163.46)

Nota: Los límites de confianza se dieron en rangos de 0 a números po sitivos, porque en dos casos se obtenían exclusivamente números

negativos.

Análisis de Varianza.

El modelo que se utilizó fué el siguiente:

Yijk = M + Ai + Zj + ZAji + Ek (ij)

Donde M = Media de mayor grado de generalidad Ai = Efecto del fesimo año i = 1,2,3 Zj = Efecto de la jésima zona i = 1,2 AZij = Efecto de interacción Ek(ij) = Efecto de la k-ésima estación dentro del fesimo año, de la j-ésima zona k = 1.....30, y en al año 83 de la zona 2 k = 1....8.

Nota: Se considera que éste análisis es incompleto ya que para la zona 2 del año 1983, no se tuvieron las 30 estaciones; de cual quier forma los datos fueron obtenidos por la computadora.

En la tabla 6 se observa el análisis obtenido por la computadora, mientras que en la tablas 6a se resumen los valores más importantes obteni dos de la misma.

Tabla 6 ANALISIS DE VARIANZA.

مست مست به در ده از مرز می می می ورد می مد مرد می ا			مە بە بە بە	at m
LARVAS FAT JOHN & SHO				
FILE NO HOLE CERTION DATE	e (04/23/35)			
* * * * 6 * * * * * * * * * * * * * * *	3 7 C - O F	VAREA	N C 6 * * *	* * * * * * *
2014 • • • • • • • • • • • • • • • • • • •	* :* * * * * * SU1 0F	* * * * * NE	* * * * * * Mein Sollafe	* * * * * * * SJGN1F F OF F
SOURCE F JARAAL9X	3403883	9F	00017 777	100 0 101
MA1 4-17FF してて 2012	274053 315 123726 695 12037 315	3 1	64163.342 72037.315	5 300 0 025 4 266 (041
2+ Any with a gran 3	13331:485	22	8425.733	1.333 6.373
EXPENDING.	330125, 934	5	67925.197	4.016 0.002
ALSI DULL	2566316-633	152	16436.952	
TUTAL 135 BACKE GLAN PROCESSING U CAS I (N.O. PCT) IL D	0005042,571 Nastus,	157	18569.183	

75

. .

FV	GL	SC	СМ	F
AÑO	-2	128 326.685	64 163.342	3.800
ZONA	1	72 037.816	72 037.816	4.266
AÑO-ZONA	2	18 851.465	9 425.733	0.558
RESIDUAL	152	2566 816.638	16 886.952	
TOTAL	157	2905 942.571		

(*)

Para tomar una decisión estadística, se consideraron los valores de significancia de F, ya que si éstos eran mayores de 0.05, la interacción δ el efecto medido carecían de significancia.

En nuestro análisis, se observó que el efecto de zona y el de año si fueron significantes, mientras que no se observó una interacción entre el tiempo y la zona.

(*) Ver Méndez (1981)

DISCUSION.

En la actualidad las investigaciones Ictioplanctónicas han adquiri do mayor importancia e interés, estos estudios tienen gran relevancia para determinar la biomasa de huevos y larvas de especies comerciales de peces. Sin embargo, en los últimos años, estas investigaciones han permitido obt<u>e</u> ner información sobre otros grupos, también de gran importancia comercial como son cefalópodos, langostas, etc.

El presente estudio permitió conocer la relación de la abundancia y distribución de las filosomas con las corrientes marinas más importantes de la zona. Aún cuando en la bibliografía se registran otras especies en esa área, como son <u>Panulirus guttatus y P. laevicauda</u>, se determinó que las filosomas eran de <u>P. argus</u> por el análisis de sus características morfológi cas en desarrollo. Además de la comparación de cada estadío, con los tipos enviados al Laboratorio de plancton, por los Dres. William Richards y Tho mas Pothoff del South Fisheries Center de Miami, Fla.

<u>P. argus</u> fue la especie más abundante, apareció en todos los cr<u>u</u> ceros, durante los 4 años de muestreo y su distribución alcanzó toda la z<u>o</u> na de colecta en la mayoría de sus estadíos.

Se observaron del 1er. al 8avo. estadío cubriendo casi la totalidad de la zona, mientras que los últimos estadíos (9-11), presentan una distribución un poco más limitada. En la tabla 2 se observa que la mayor abundancia se presenta en los primeros 7 estadíos, decreciendo notablemente hasta los úl timos estadíos. Una razón a ésto se puede encontrar en la Corriente del La

zo, que al retirarse en el invierno se lleva consigo los estadíos más avan zados, siete meses después; aunado ésto a la tendencia de migrar hacia aguas más profundas (Baisre 1966).

En <u>P. argus</u>, se observa un fenômeno que ha sido reportado también para <u>Scyllarus americanus</u>, la otra especie de éste estudio; la mortalidad siempre es mayor en las primeras mudas y decrece conforme avanza el desarro llo, ésto se observa claramente en el paso del 1er. al 2do. estadío, reduciéndose en un 40% para <u>P. argus</u>. Extrañamente para <u>S. americanus</u>, en este estudio no se registró tal suceso. La teoría del fototropismo negativo de las filosomas, como explicación a lo anterior , no puede justificarse; ya que las colectas se realizaron tanto de día como de noche, igualando así las condiciones de muestreo para las dos especies.

<u>S. americanus</u> no se presentó tan abundante, ni tan ampliamente localizada como <u>P. argus</u>. En la fig. 24 se observa que los seis estadíos de <u>S. americanus</u>, están restringidos casi exclusivamente al estrato del Ca ribe. En la tabla 2 se registran las abundancias absolutas para cada uno de los seis estadíos, y se observan valores aproximados.

<u>S. americanus</u> parece limitarse a aguas costeras y someras, ya que al ser <u>a</u> rrastradas por aguas oceánicas, perecen. Esto se ha reportado ya que no se encuentran en el Caribe poblaciones adultas de importancia (Baisre 1977).

En el año de 1980, se realizó un solo crucero en los principios de la primavera; no se valora a este año como un año de importancia comparable a los subsiguientes. Las causas son varias: primero, la zona muestre<u>a</u> da cubre los dos estratos someramente, y no se incluyen las costas del Car<u>i</u> be, región que es muy importante debido al flujo de la Corriente de Yucatán; aunado a ésto, está el pequeño número de estaciones colectadas, ya que se trata de un solo crucero. Por último las condiciones de corrientes en la zona no son de importancia, ya que se hallan adentradas en la cuenca del Go<u>1</u> fo, disminuyendo la fuerza y riqueza de la Corriente de Yucatán.

En 1981 se observaron algunos cambios, la abundancia se incremen tó en los valores promedio, para el estrato I noroeste del Golfo, de 0 a -1.91; En el estrato II aún cuando la media disminuye de un año a otro, co mo se observa en la tabla 4 , la abundancia que se registró fué mayor. Esto se explica porque se realizaron tres cruceros, dos más que el año anterior y por consiguiente, al aumentar el número de estaciones, disminuye la media. Desafortunadamente, como se observa en las cartas de distribución, tampoco en éste año se muestrearon las costas de la Península de Yucatán.

Para 1982 se cubrió toda la zona del Plan Básico de Estaciones del Golfo de México, ambos estratos estuvieron detalladamente muestreados. Se registra una vez más, el estrato del Caribe como el más rico. Emilsson 1976, propone que frente al Banco de Campeche y la costa de Yucatán, se observa una zona de surgencias. Estas áreas constituyen localidades de alta produc tividad biológica, lo cual propone condiciones favorables para una mayor densidad de larvas. En la tabla 4 se observa que las cifras aumentaron considerablemente, presentándose una mayor proporción en el estrato II.

En 1983 solamente se realizaron dos cruceros en el verano. El cs trato I, se muestreó en su área sur exclusivamente; sin embargo pese a esta deficiencia, la abundancia fué proporcional al año anterior con tres cruceros.

En lo que respecta a las condiciones oceanográficas que pudieran alt<u>e</u> rar la abundancia, podemos mencionar varias. El efecto de los vientos frente a las costas, acentúa las corrientes hacia el norte, dirigiéndolas hacia la plataforma Texas-Louisiana como se observa en la fig. 1; incrementando quizá el transporte de larvas hacia esa zona, acentuando con ésto las dif<u>e</u> rencias entre los dos estratos.

Aún cuando en términos generales las aguas del Golfo y del Caribe son muy similares, se observan diferencias que podrían determinar el cambio en nuestros valores. El Caribe posee aguas ligeramente más ricas en oxígeno, ya que es una área abierta y con más entradas, y por lo tanto el intercambio de aguas es más intenso, provocando un aumento en las concentraciones de <u>o</u> xígeno. Además es una zona que presenta un aumento en la salinidad, en la zona de aguas superficiales, con un valor hasta del 36.05%, mientras que en el Golfo se alcanzan valores del 33%, dependiendo la temporada del año (Scho<u>e</u> der 1974).

Briantsev y Gómez (1972), señalan la existencia de aguas relativamente frías en las costas de la Plataforma de Yucatán, debida principalmente al ascenso de aguas profundas, al talud de la plataforma. Incrementándose con ésto las condiciones de ventaja del estrato II en lo que respecta a la abundancia de filosomas.

Las larvas para la elaboración de éste estudio, se obtuvieron con re des no específicas para su captura; sin embargo, al utilizar éste arte se observó que cubre bastante bien, el área de distribución con respecto a la profundidad de localización. Ya que los lances llegaron hasta un poco más de 200 m en las estaciones que lo permitieron. Corroborándose lo reportado por Buesa (1972), quien reporta filosomas hasta profundidades de 150 y 200 m.

En lo relacionado a los límites de confianza obtenidos en la tabla 5, éstos permiten observar nuevamente que los valores de abundancia para el es trato I, son mucho menores que los del estrato II para casi todos los años, excepto en 1983 donde los valores son muy aproximados entre sí.

En la gráfica 1 se confirma lo anterior, el estrato del Caribe regis tra mayores densidades de larvas. Los resultados del análisis de varianza, corroboran por otra parte, que la estratificación de la zona fué convenien te; ya que el valor de significancia para medir éste efecto, fué de 0.041, lo cual determina el rechazo de la hipóteis nula que establece la igualdad de los estratos, por causas que ya se discutieron.

El efecto de tiempo también se comprobó claramente, su valor de sig nificancia fué de 0.025 como se observa en la tabla 6; y por lo tanto se acepta la hipótesis alternativa, que establece la diferencia de los 3 años utilizados en el análisis. De ahí que se deban buscar las causas de mayor densidad de larvas en los últimos dos años.

Una de ellas, puede ser las pequeñas variaciones en los parámetros ambientales como la temperatura promedio. Otra razón importante, es que en el año de 1981, no se analizaron las muestras completas; ya que se extravia ron algunas cajas de material de los cruceros del OREGON II, donde probabl<u>e</u> mente habría filosomas. Sin embargo no se quiso desaprovechar el material existente, y se incluyó en el estudio. Finalmente en el último año, el mues treo se realizó principalmente en el estrato II, el Caribe, región de mayor abundancia.

Por último, el análisis de varianza nos comprueba lo observado en la gráfica 1, ya que el valor de significancia para el efecto de interacción entre año y zona, fué de 0.57, mayor que 0.05 y por lo tanto carente de sig nificancia. De ahí que se observa como los dos estratos tienen una paralelis mo que se presenta en la gráfica 1, ya que no hay interacción entre los dos efectos medidos. (Méndez 1981).

CONCLUSIONES Y SUGERENCIAS.

1.- Se identificaron los once estadíos pertenecientes a <u>Panulirus</u> argus y los seis de <u>Scyllarus americanus</u>, en toda la zona muestreada; se re gistró que <u>P. argus</u> constituyó casi el 90% del total de la abundancia de las filosomas colectadas.

Las dos especies localizadas no están asociadas entre sí, y
argus observó una distribución más amplia que S. americanus.

3.- Se observó que la zona de mayor abundancia fué el estrato del Caribe, mientras que el noroeste del Golfo, registró valores menores en el número de filosomas. Aún cuando las condiciones generales de las dos zonas son similares, las pequeñas diferencias en términos de temperatura, salin<u>i</u> dad y corrientes, justifican que el Caribe sea una zona de importancia pote<u>n</u> cial en la extracción de un recurso tan importante como lo es la langosta espinosa.

4.- Debido principalmente alos hábitos planctónicos que observan las filosomas se registra un efecto marcado determinado por las corrientes oceanográficas de la zona; ya que como se mencionó anteriormente, la Corrien te del Lazo y la de Yucatán, tienen una influencia en el número de larvas colectadas.

5.- El tiempo fué un factor importante, ya que se observa un núme ro mucho mayor en los dos últimos años de crucero; las explicaciones a esto, son de naturaleza variada: leves decrementos en el promedio de las temperaturas en los dos últimos años; la predominancia de una cierta zona de muestreo en el año 1983, ocupando casi totalmente el Caribe; y finalme<u>n</u> te, en los primeros años de colecta, el extravío de algunas muestras.

Ya que la pesquería de la langosta del Caribe, constituye una ac tividad de interés regional y nacional, y considerando los hábitos migrato rios de esta especie que representan un elemento principal para su manejo y administración; se recomienda que se incrementen las actividades de investigación, que permitan conocer más a fondo, las zonas de distribución de las fases larvarias de las langostas, y su influencia en el comportamiento de las respectivas pesquerías.

Para lo cual se sugiere que se trabaje en colaboración con investigadores cubanos y australianos en pro de la ampliación de información e intercambio cultural en un Programa de interés mutuo.

RECONOCIMIENTOS.

Quiero expresar mi agradecimiento a las siguientes personas que de una forma u otra colaboraron en la realización de este estudio. Primera mente a la Bióloga Rosa Ma. Olvera Limas, por su incesante apoyo y valiosa colaboración en la dirección de ésta tesis. Al Biólogo Jaime González Cano, por su asesoramiento y constante estímulo durante la elaboración del traba jo. Al Dr. Antonio Martinez, Maestros en Ciencias Gabino García Lugo y Raúl García Acosta, y al Q.B.P. Ambrosio González por la revisión del manu<u>s</u> crito y la aportación de excelentes ideas.

A los Dres. William Richards y Thomas Pothoff del South Fisheries Center de Miami, por su cooperación y ayuda. Al técnico Guillermo Ortuño -Manzanares por la separación de la mayor parte de las filosomas y por su in cesante colaboración. Al P. de Biólogo Alberto Pérez Franco por su cooper<u>a</u> ción y ayuda.

En la separación de filosomas quiero agradecer a las P. de Biól. Asela Rodriguez y Patricia Hernández C., así como a los técnicos José Luis Cerecedo E. Y Ramón Sanchez R.

INDICE DE FIGURAS.

1.	Corrientes superficiales en el Golfo de México en el
	verano 1976 8
2.	Regiones con hundimientos y surgencias en los 200 m
	superficiales, en el Golfo de México. Verano 196710
3.	Diagnosis larval del estadío XI de P. argus
4.	Estadio I de P. argus
5.	Estadío II de P. argus 26
6.	Estadio III de P. argus 27
7.	Estadío IV de P. argus
8.	Estadio V de P. argus 30
9.	Estadio VI de <u>P argus</u> 31
10.	Estadio VII de P. argus 33
11.	Estadío VIII de P. argus 34
12.	Estadio IX de P. argus 36
13.	Estadio X de P. argus 37
14.	Estadio XI de P. argus 38
15.	Ciclo de vida de P. argus 40
16.	Estadio I de S. americanus 43
17.	Estadío II de S. americanus 45
18.	Estadio III de S. americanus 46
19.	Estadio IV de S. americanus 48
20.	Estadio V de S. americanus 49
21.	Estadio VI de S. americanus 51
22.	Diagnosis larval del estadío VI de S. americanus 52

23.	Distribución de los estadíos larvarios de <u>Panulirus</u>
	argus, en la ZONA ECONOMICA EXCLUSIVA DEL GOLFO DE
•	MEXICO Y MAR CARIBE 1980-198355
24.	Distribución de los estadíos larvarios de <u>Scyllarus</u>
	americanus, en la ZONA ECONOMICA EXCLUSIVA DEL GOLFO DE MEXICO
	MEXICO Y MAR CARIBE 1980-198361
25.	Distribución y abundancia de filosomas de P. argus
	y <u>S. americanus</u> , bajo 100 m ² de superficie marina
	Febrereo- Marzo 198062
26.	Distribución y abundancia de filosomas de <u>P</u> . <u>argus</u>
	y <u>S</u> . <u>americanus</u> , bajo 100 m ² de superficie marina
	Мауо 198163
27.	Distribución y abundancia de filosomas de <u>P</u> . <u>argus</u>
	y <u>S. americanus,</u> bajo 100m ² de superficie marina
	Mayo-Junio 198164
28.	Distribución y abundancia de filosomas de <u>P</u> . argus
	y <u>S. americanus</u> , bajo 100 m ² de superficie marina
	Agosto 198165
29.	Distribución y abundancia de filosomas de <u>P</u> . argus
	y S. americanus, bajo 100 m ² de superficie marina
	Mayo-Junio 198266
30.	Distribución y abundancia de filosomas de <u>P</u> . argus
	y <u>S</u> . <u>americanus</u> , bajo 100 m ² de superficie marina
	Mayo-Junio 198267
31.	Distribución y abundancia de filosomas de <u>P</u> . argus
	y S. americanus, bajo 100 m ² de superficie marina

•

	Junio-Julio 1982
32.	Distribución y abundancia de filosomas de <u>P</u> . <u>argus</u>
	y <u>S</u> . <u>americanus</u> , bajo 100 m ² de superficie marina
	Mayo-Junio 198369
33.	Distribución y abundancia de filosomas de <u>P. argus</u>
	y <u>S</u> . <u>americanus</u> , bajo 100 m ² de superficie marina
	Julio 198370

INDICE DE TABLAS Y GRAFICAS.

1.	Abundancia absoluta de larvas por crucero53
2.	Abundancia absoluta de larvas por estadío54
3.	Abundancias absoluta y estandarizada de filosomas duran
	te la Prospección Ictioplanctónica 1980-198357
4.	Medias y varianzas anuales por estrato de P. argus 73
5.	Límites de confianza de <u>P. argus</u> 73
6.	Análisis de Varianza75
ба.	Análisis de varianza (Resumen)76

Gráfica 1. Promedio de abundancias de filosomas de P. argus y

Tabla 7 DATOS BITACORA. ORII105 Febrero-Marzo								
Estación	Latitud	Longitud	Fecha	Hora	Agua filtra	Profundidad	FEC	# de Lar
	(Ŭ			da. m3	real.m		vas x 100m
50680	25-01-00	88-01-00	28	6:30	204.79	209.38	102.2	
30681	25-03-00	88-57-00	28	12:22	375.2	208.8	55.6	
30688	25-00-00	90-01-00	1	16:50	384.1	208,5	54.3	
30696	25-09-00	92-00-00	5	16:35	314.7	214.2	68.1	
30697	25-02-00	92-59-00	5	22:50	406.7	225.7	55.5	
30712	25-01-00	96-02-00	9	21:25	316.8	219.2	69.2	
30713	24-01-00	96-01-00	10	3:40	297.0	200.4	07.5	
30714	23-00-00	96-00-00	10	10:10	288.6	203.2	/0.4	
30715	22-00-00	96-00-00	10	16:15	322.6	206.9	64.1	
30716	21-04-00	96-00-00	11	0:11	305.2	204.4	0/.4	
30717	20-00-00	96-01-00	11	6:38	428.0	213.6	49.9	
30718	19-00-00	95-00-00	14	5:00	306.5	197.1	04.5	
30719	20-00-00	95-00-00	14	12:02	309.3	203.9	05.9	
30720	21-00-00	94-58-00	14	18:22	202.0	218.0	108.2	
30721	22-00-00	95-00-00	15	1:03	297.Z	201.9	72.3	
30722	23-01-00	95-00-00	15	8:00	291.7	212.9	/3.0	
30723	24-00-00	95-00-00	15	14:10	342.2	203.9	59.0	
30724	25-01-00	94-57-00	15	19:50	267.3	210.3	/8.8	
30725	25-00-00	94-00-00	16	1:23	338.3	199.3	58.9	
30726	23-59-00	94-00-00	16	7:05	364.0	203.7	50.0	
30727	23-00-00	94-00-00	16	1:03	356.7	219.3	01.5	
30728	22-00-00	94-02-00	16	19:10	287.7	216.4	15.4	
30729	21-00-00	94-00-00	17	1:35	338.0	207.9	01.4	
30730	21-01-03	92-59-03	17	6:45	226.1	200.9	88.8	
30731	22-00-00	93-00-00	17	12:29	299.4	194.3	04.9	
30732	23-00-00	92-59-05	17	18:30	312.1	185.9	59.5	
30733	24-00-00	93-00-00	18	1:33	365.3	197.7	54.1	
30734	24-01-00	92-00-00	18	7:30	329,0	209.0	03.5	
30735	23-00-00	92-01-05	18	15:55	303.9	193.8	03.7	
30736	23-01-05	91-02-00	18	23:00	241.9	200.9	83.0	
30737	23-59-05	90-58-05	19	6:00	401.4	220.3	54.9	55
30738	24-00-00	90-00-00	19	12:15	340.4	197.1	57.9	
30739	24-01-00	89-00-00	19	18:45	297.2	202.9	08.5	

	Concincation.	· · · · · · · · · · · · · · · · · · ·						
30740 30741 30742 30750 30751	24-21-00 24-00-00 23-56-00 25=00-00 25-01-00	87-59-00 87-00-00 86-00-00 86-00-00 87-00-00	20 20 20 23 23	1:05 13:37 21:00 0:03 6:10	316.7 281.4 342.1 330.0 326.7	239.7 193.7 209.1 202.0 206.0	75.7 68.8 61.1 61.2 63.0	126
							,	

tabla 7 continuación

Tabla 8	DATOS BIT/	CORA. ORIII	17 Mayo 1	981				
Estación	Latitud	Longitud	Fecha	Hora	Agua filtra	Profundidad	FEC	# de Larvas
		- 1			da.m3	real m		x 100 m2
34462	24-00-01	85-59-09	9	21:05	508.0	182.6	35.9	108
34463	23-59-08	86-59-06	10	3:43	367.6	192.6	52.4	
34464	24-29-09	87-02-00	10	7:56	290.5	202.9	69.8	{ }
34465	24-30-01	87-59-04	10	14:36	510.8	194.7	38.1	
34466	24-29-09	88-59-07	10	22:00	275.7	196.3	71.2	1
34467	23-59-08	88-59-07	11	1:26	253.2	191.2	75.5	1 151
34468	23-59-09	89-59-06	11	8:15	293.4	202.4	69.0	
34469	23-01-00	90-01-00	11	15:17	262.5	200.2	76.3	
34470	22-40-01	89-54-06	11	17:58	193.7	71.6	37.0	1 I
34471	22-31-05	89-49-02	11	19:15	224.9	48.3	21.5	{
34472	22-59-07	90-59-07	12	3:30	384.6	208.2	54.1	
34473	23-00-00	91-59-07	12	10:21	283.5	215.2	75.9	{
34474	22-59-07	92-59-08	12	16:40	348.3	208.6	59.9	120
34475	23-00-04	93-59-08	12	22:38	248.6	217.1	109.0	262
34477	20-59-09	94-00-08	13	13:50	281.1	231.4	82.3	
34478	20-00-00	94-10-00	13	21:11	247.3	188.4	76.2	76
34479	19-40-07	94-59-05	15	3:18	326.4	202.6	62.1	1
34480	19-59-05	96-00-09	16	4:13	323.8	214.2	66.1	66
34481	20-59-03	96-00-02	16	11:05	300.1	195.2	65.0	1 1
34483	21-32-01	97-14-04	16	20:27	137.6	40.9	29.7	1 1
34485	21-32-08	97-12-09	16	21:16	112.2	44.5	39.7	1 1
34486	21-35-03	97-07-00	16	22:14	294.1	119.6	40.7	
34487	21-59-09	96-00-02	17	6:37	377.6	207.5	54.9	1 1
34488	22-59-09	96-00-03	17	14:23	397.8	200.1	50.3	1 1
34489	24-00-03	96-59-08	17	22:46	303.3	210.8	69.5	1 1
34490	24-00-02	96-00-05	18	5:35	380.4	206.1	54.2	
34491	23-59-07	95-00-02	18	13:13	416.3	199.9	48.0	{
34492	24-59-09	94-59-07	18	20:55	307.1	198.5	64.6	1 1
34493	25-59-06	95-01-10	19	3:15	481.7	193.6	40.2	
34520	26-00-02	93-03-05	22	0:14	377.3	198.3	52.2	
34521	25-00-02	92-59-05	22	6:33	415.4	211.3	50.9	
34529	24-59-09	91-00-04	24	15:59	402.9	203.0	50.9	
34530	25-00-03	90-00-05	24	11:04	335.9	196.1	58.4	
1	1	1		1				ليستعمدهم

Tabla	9 DATOS BIT	ACORA. ON8	104 Mayo-Ji	unio 1981	1			1
Estación	Latitud	Longitud	Fecha	Hora	Agua filtra	Profundidad	FEC	# de Larvas
					da m3	real m		x 100 m2
160-80	18-29-00	94-30-01	19	11:07	90.4	46.4	51.3	51
150-80	18-50-05	94-30-01	19	16:18	295.5	207.1	70.1	
150-70	18-59-04	94-59-05	19	22:38	373.1	208.1	55.8	1
150-60	18-56-02	95-30-01	20	5:02	136.3	80.8	59.2	}
140-60	19-29-09	95-30-01	20	14:58	383.3	219.9	57.4	
130-50	19-59-09	96-00-09	21	4:34	311.8	209.5	67.2	1
130-60	20-00-02	95-30-06	21	10:13	271.2	210.0	77.4	
130-70	20-00-09	95-01-07	21	14:39	262.1	208.4	79.5	t
120-70	20-30-00	95-00-00	21	20:35	302.7	207.2	68.5	
120-60	20-30-06	95-31-09	22	2:20	305.2	206.6	67.7	1
120-50	20-30-00	96-00-01	22	6:53	384.6	210.8	54.8	1
120-40	20-19-04	96-30-00	22	11:33	265.9	207.9	78.2	
110-30	20-00-04	97-00-06	22	17:35	56.2	36.1	64.3	
110-40	21-00-00	96-30-01	22	22:32	291.4	211.2	72.5	
110-50	21-00-04	96-00-00	23	5:40	311.0	204.0	65.5	
100-50	21-30-00	96-00-00	23	10:36	287.4	212.3	73.9	
90-50	21-59-06	96-01-01	23	16:22	310.9	204.6	65.8	
90-40	22-00-01	96-30-05	23	20:27	311.7	205.1	65.8	
100-40	21-30-03	96-30-05	24	2:21	292.4	203.6	69.6	
100-30	21-30-09	97-00-02	24	6:34	74.4	48.7	65.4	
90-25	22-00-03	97-15-00	24	11:49	377.9	211.8	56.0	
80-25	22-30-03	97-15-00	27	13:15	259.1	210.7	81.3	ł
160-80	18-29-00	94-30-01	19	10:56	93.6	47.4	50.6	
150-80	18-50-05	94-30-01	19	16:43	279.5	212.8	76.1	
150-70	18-59-04	94-59-05	19	22:13	275.3	208.0	75.6	
140-50	19-31-00	96-00-03	20	22:34	185.8.	134.6	72.4	1
130-50	19-59-09	96-00-09	21	4:09	263.7	206.2	78.2	1
130-60	20-00-02	95-30-06	21	9:47	265.5	210.2	79.Z	
130-70	20-00-09	95-01-07	21	15:03	280.6	209.5	74.7	1
120-70	20-30-00	95-00-00	21	21:57	247.1	209.7	84.9	ļ
120-60	20-30-06	95-31-09	22	1:53	285.1	203.6	71.4	1
120-50	20-30-00	96-00-01	22	6:27	279.8	208.6	/4.5	1
120-40	20-19-04	96-30-00	22	11:57	260.9	211.5	81.1	

tabla 9 Estación	continuación Latitud	Longitud	Fecha	Hora	Agua filtra	Profundidad	FEC	# de Larvas
Estación 110-30 110-40 110-50 90-50 90-40 100-40 100-40 100-30 90-25 80-25 90-70 80-50 80-40 80-30 70-25 70-30 70-40 70-50 60-40 60-25 50-25 50-40	Latitud 21-00-04 21-00-00 21-00-04 21-30-00 21-59-06 22-00-01 21-30-03 22-00-03 22-00-09 22-30-00 22-30-00 22-30-00 23-00-04 23-00-04 23-00-04 23-30-04 23-30-05 23-32-06 24-00-05 24-00-07	Longitud 97-00-06 96-30-01 96-00-00 96-01-01 96-30-05 97-00-02 97-15-00 97-15-00 97-15-00 96-06-00 96-30-06 97-00-06 97-00-07 96-30-00 96-28-09 97-15-00 97-15-02 96-30-01	Fecha 22 23 23 23 24 24 24 24 27 10 11 11 11 11 12 12 12 12 13	Hora 17:25 23:00 5:17 11:02 15:26 20:53 1:57 6:42 12:13 12:50 16:45 12:43 4:55 9:25 14:40 16:11 23:24 5:18 11:06 15-01 17:55 22:08 8:20	Agua filtra da m3 55.6 244.1 276.5 257.3 325.9 378.8 383.3 87.5 360.0 257.5 305.5 323.3 305.4 317.4 317.4 317.4 317.4 325.6 275.7 334.5 305.6 335.1 296.3 335.1 296.3 343.3 138.4 322.5	Profundidad rea1 m 33.7 212.6 208.9 212.4 208.2 208.2 208.2 208.2 208.2 208.2 208.2 206.1 200.3 208.0 212.1 210.2 213.9 206.5 206.3 201.2 212.7 208.6 83.6 205.1	FEC 60.6 87.1 75.5 82.5 62.4 55.0 54.4 54.7 56.8 8.11 67.5 61.9 69.1 66.8 64.5 77.6 61.6 67.5 60.0 71.8 60.8 60.4 63.1	# de Larvas x 100 m2 60

Tabla	10 DATOS I	BITACORA. ORI	II120 Agost	o 1981				
Estación	Latitud	Longitud	Fecha	Hora	Agua filtra	Profundidad	FEC	# de Larvas
Laturi		Bring	}		da m3	real m		x 100 m2
34783	27-39-07	89-47-08	15	19:35	521.8	208.4	39.9	
34785	20-01-01	94-30-00	22	13:57	429.4	199.6	46.5	93
34786	19-59-05	94-00-01	22	17:36	630.8	190.5	30.1	30
34788	20-30-02	94-00-05	22	21:33	557.6	221.7	39.7	40
34790	20-31-01	94-30-01	23	13:09	419.1	205.3	49.0	
34792	20-59-03	94-30-03	23	5:12	294.9	204.2	69.2	346
34794	20-59-04	94-00-00	23	9:05	322.8	201.9	62.5	
34796	20-59-06	93-30-00	23	12:41	373.1	206.5	55.3	
34798	20-58-09	93-29-02	23	16:29	468.0	182.3	38.9	156
34800	20-59-06	92-30-02	23	20:11	485.9	185.6	38.2	267
34802	21-00-07	92-00-02	23	23:45	103.6	44.0	42.5	
34804	20-30-00	91-59-09	23	5:36	223.4	37.3	16.7	33
34806	20-29-01	92-30-01	24	7:59	491.8	179.5	36.5	
34808	20-30-00	92-59-09	24	11:48	398.2	197.5	49.6	
34810	20-29-06	93-29-08	24	15:15	477.9	197.6	41.3	
34812	20-00-00	93-30-04	24	19:04	573.4	219.7	38.4	
34814	20-00-03	93-00-03	24	23:15	309.8	228.8	73.8	
34816	20-00-02	92-44-08	25	1:00	221.9	202.4	41.2	
34818	20-00-00	92-30-01	25	3:18	454.3	198.3	43.6	
34820	19-59-07	92-02-05	25	7:02	343.6	115.3	33.5	
34822	19-45-04	92-15-01	25	9:19	161.4	83.0	51.4	
34924	19-45-02	92-30-02	25	11:04	311.8	240.8	77.2	
34826	19-44-04	92-44-05	25	13:18	404.6	197.7	48.9	
34828	19-29-05	92-59-02	25	16:15	282.0	190.2	09.0	204
34830	19-29-06	92-45-05	25	18:31	180.5	184.5	102.2	204
34832	19-29-05	92-30-06	25	20:32	317.0	142.0	45.0	43
34834	19-30-02	92-15-03	25	22:5/	155.8	00.1	43.0	40
34836	19-28-00	92-10-04	25	23:35	110.2	44.5	40.4	40
34838	19-00-04	92-00-00	26	5:00	440.0	22.1	4.9	
34840	19-45-00	92-14-05	26	0:01	491.0	23.0	4.0	
34842	19-14-08	92-30-03	20	8:1/	400./	50.5	14.)	
34844	19-15-03	92-45-05	20	10:35	942.2	140.0	27.9	
54846	19-00-02	92-50-00	20	15:40	150.2	33.1	44.0	JI

Estación	Latitud	Longitud	Fecha	Hora	Agua filtra da m3	Profundidad	FEC	# de Larvas x 100 m2
34848 34850 34852 34854 34856 34858 34860 34862 34864 34866 34868 34870	18-59-08 18-45-02 18-30-04 19-10-04 19-28-09 18-59-07 18-30-05 18-30-05 18-59-09 19-29-09 19-29-08 19-30-06	92-45-03 92-45-06 92-59-04 92-59-05 93-30-00 93-30-02 94-00-02 94-00-00 93-59-08 94-30-07 95-00-01	26 26 26 27 27 27 27 27 27 28 28 28	15:35 17:39 20:07 23:27 4:42 8:25 12:05 16:46 19:01 22:30 2:09 5:31	237.3 89.0 125.5 343.1 405.8 116.2 96.6 161.1 136.1 472.3 421.3 402.9	57.5 17.9 16.5 110.1 187.7 200.6 17.2 48.5 190.5 201.5 197.2 208.5	24.2 20.1 13.1 32.1 46.2 17.2 17.8 30.1 14.0 42.7 46.8 51.7	

٢	Tabla	11 DATOS BI	TACORA. BIP)98201 May	o-Junio 1982				
	Fetación	latitud	Longitud	Fecha	Hora	Agua filtra	Profundidad	FEC	# de Larvas
	Lacton	Increase	2			da m3	real m		x 100 m2
1	70-30	23-00-01	97-00-01	30	14:37	379.2	209.6	55.3	
- [60-30	23-30-22	97-00-02	30	20:50	375.6	205.6	55.8	54
	50-30	24-02-00	96-59-07	31	13:13	378.1	211.1	55.9	
1	40-30	24-29-50	97-00-00	31	17:39	218.2	122.2	56.0	
	30-30	25-00-00	97-00-00	31	22:20	68.1	61.7	01.2	
	40-40	24-30-20	96-30-00	1	6:09	301.5	213.3	55.9	
1	50-40	24-00-00	96-29-08	1	13:09	379.7	210.7	55.5	
	60-40	23-30-00	96-30-00	1	19:07	379.9	215.3	50.7	
	70-40	23-00-00	96-30-00	2	0:53	380.3	212.7	55.9	
	80-40	22-30-00	96-30-00	2	6:55	381.2	209.1	54.9	
1	80-50	22-30-00	95-59-07	2	12:58	379.9	213.4	50.1	
	70-50	23-00-00	96-00-00	2	21:13	380.3	215.0	50.5 57.4	
1	60-50	23-30-00	96-00-00	3	1:35	379.7	218.0	57.4 tt 7	
	50-50	24-00-00	96-00-00	3	15:15	381.9	212.0	55.7	
	40-50	24-30-00	95-60-00	3	21:08	3/9./	211.7	53.8	
	30-50	25-00-20	95-59-70	4	2:20	343.9	203.4	58 1	
	30-70	23-59-00	95-00-00	4	11:15	30/.1	213.3	67 A	
	50-70	24-00-00	95-00-00	4	20:47	341.4	213.1	50.0	
	70-70	23-00-00	95-00-10	5	0:21	35/.0	213,5	57 3	57
	90-70	22-00-00	95-00-00	5	10:11	302.1	217 0	55 2	57
	90-50	22-00-20	96-00-00	5	0:45	305.0	212.3	56.4	
- 1	90-40	22-00-00	96-30-00	0	0:21	300.3	217.8	56.2	
1	90-30	22-00-00	97-00-00	0	10.27	270 4	2124 4	56.4	
	80-30	22-30-00	97-00-10	0	18:22	319.4	58 4	54.1	
	120-40	22-30-04	96-30-00	15	5:00	707 0	215 3	56 1	56
	110-40	21-00-00	96-30-00	15	10:02	820	44 0	53.3	53
	110-3-	21-00-00	97-00-00	15	7.14	370 0	213 9	56.4	113
	100-30	21-30-10	97-00-10	10	3:14	377.7	213.5	57.0	
- 1	100-40	21-30-05	90-50-04	10	20:06	301 2	214.0	54.7	
ł	100-50	21-30-40	90-00-00	10	20.00	347 7	211.2	60.7	
I	100-60	21-30-00	95-30-00	17	0.40	347 6	217.7	62.6	
ł	110-70	23-00-00	95-00-00	17	15.14	336.7	214.6	60.2	
	110-60	20-59-08	95-30-07	17	13,19	22017		~ ~ • •	L

tabla 11	continuació	n						
Estación	Latitud	Longitud	Fecha	Hora	Agua filtra	Profundidad	FEC	# de Larvas
		Ũ			da m3	real m		x 100 m2
110-50	21-00-03	96-00-20	17	20:10	372.4	215.1	57.8	
120-50	20-30-30	96-00-00	18	2:21	348.7	212.0	62'7	
120-60	20-30-00	95-30-00	18	8:40	314.2	214.0	54.0	
120-70	20-30-00	95-00-00	10	14:03	386.7	717 8	59.0	
120-80	20-30-00	94-30-00	10	0.51	377.6	217.3	57.9	115
130-20	20-00-00	95-00-00	19	7:51	377.4	214.7	56.9	
130-60	20-00-00	95-30-00	19	11:49	379.4	212.6	56.0	
130-50	26-00-00	96-00-00	19	16:45	381.9	213.2	55.8	
140-50	19-30-60	96-00-30	20	5:01	282.0	155.2	55.0	
140-60	19-30-00	95-29-09	20	11:28	377.2	214.9	57.0	
140-70	19-29-09	95-00-00	20	17:40	361.0	212.4	55.8	
140-80	19-30-00	94-30-30	20	23:30	380.6	214.5	50.3	
150-80	19-00-00	94-30-00	21	6:04	579.2	214.5	50.0	107
160-80	18-30-00	94-30-00	21	11:05	80.0	42.7	55.5	307
150-70	19-00-00	94-59-90	21	10:32	227 6	132.2	58.1	
150-00	19-00-10	93-30-00	46	0.02	221,0	,50.0		
· ·			1					
1			ł	1				
1			[
1			1					
				ł				
			1					
]		1					
l			1					
{			ł					
i			ł					
	1		1	1				
			1	1				

	Tabla	12 DATOS I	HTACORA. ON8	204-I Ma	yo Junio 1	982			
	Estación	Latitud	Longitud	Fecha	Hora	Agua filtra	Profundidad	FEC	# de Larvas
			-			da m3 –	real m3		x 100 m2
	999.1	26-03-81	87-00-01	25	7:58	241.7	213.2	88.2	
	999.2	25-54-45	87-02-01	25	8:37	284.5	216.1	76.0	
	999.3	25-53-43	87-02-01	25	9:14	250.7	211.6	64.4	
	999.4	25-53-11	87-02-21	25	9:50	261.6	214.0	81.8	
	999.5	25-51-27	87-04-69	25	10:27	253.6	214.9	84.7	
	999.6	25-51-26	87-04-71	25	10:55	247.5	216.8	87.6	
1	999.7	25-50-12	87-04-34	25	11:29	262.0	211.4	80.7	
	999.8	25-47-43	87-05-66	25	12:02	269.6	213.4	79.2	
	999.9	25-49-16	87-06-19	25	12:40	261.4	210.3	60.5	
	999.10	25-48-60	87-07-26	25	13:12	264.4	121.1	60.2	
	90-160	22-00-19	90-30-33	22	14:45	71.7	33.4	46.6	885
	80-160	22-30-05	90-30-01	22	19:54	162.6	79.3	48.6	585
Ì	70-160	22-59-87	90-30-48	23	0:51	353.9	209.0	59.0	236
	60-160	23-30-26	90-30-33	23	5:49	359.6	207.8	57.8	
1	50-170	23-59-45	90-00-22	23	12:40	350.8	209.6	59.7	
	30-170	25-00-12	90-00-22	23	21:08	260.3	202.5	77.6	
	30-190	25-00-00	89-00-99	24	5:42	378.8	206.8	54.6	
	30-210	25-05-42	88-00-56	24	14:39	257.8	212.0	82.2 576	576
	30-230	25-00-92	87-00-00	25	21:20	283.7	206.6	73.5	73
	50-230	24-00-11	87-00-98	26	5:55	258.6	211.5	81.8	[{
	60-240	23-30-54	86-30-52	26	13:45	261.1	212.6	81.4	
	60-230	23-30-13	87-00-56	26	18:05	261.4	209.6	80.2	80
	60-220	23-30-28	87-30-01	3	10:34	88.6	71.6	80.8	
	60-210	23-30-00	88-00-00	4	2:58	85.1	41.1	48.4	145
	60-200	23-30-26	88-30-31	4	10:20	87.6	63.2	72.2	
	60-190	23-30-15	89-00-14	4	14:28	63.0	42.3	65.1	
	60-180	23-30-07	89-29-96	4	20:14	187.0	140.4	75.1	
	60-170	23-30-16	90-00-23	5	0;43	273.4	209.6	76.7	
	70-170	22-59-49	90-00-39	5	5:08	142.6	103.3	72.4	145
	70-180	23-00-23	89-31-50	5	9:43	91.1	71.3	78.3]
	70-190	23-00-24	89-00-26	5	13:53	71.2	40.6	68.3	
	70-200	22-59-97	85-30-21	5	18:06	60.9	42.2	69.3	277
	70-210	23-00-03	87-59-89	5	2:30	58.8	35.3	60.0	
			1 1		l	1	أستعد مستعد مستعد مستعد المستعد		

tabla	12 continu	ación			1			
Estación	Latitud	Longitud	Fecha	Hora	Aqua filtra	Profundidad	FFC	# de lamas
					da m3	real m	I LO	x 100 m2
70-220	23-00-00	87-30-18	3	17:33	50.2	35.4	70.5	141
70-230	23-00-71	87-0081	3	13:34	319.0	176.9	55.5	
70-240	23-00-31	86-30-02	3	9:22	375.4	214.3	57.1	
80-240	22-31-38	86-31-04	3	4:53	235.9	210.9	89.4	
80-230	22-30-08	87-00-10	6	14:50	70.0	52.6	75.2	
80-220	22-30-11	87-30-04	6	11:10	40.7	14.1	34.8	
80-210	22-29-92	87-59-93	6	7:11	43.6	20.6	65.6	94
80-200	22-30-98	88-29-98	7	9:02	39.4	28.4	72.1	
80-190	22-30-00	89-00-00	7	12:20	40.7	28.4	69.0	140
80-180	22-30-11	89-30-06	7	22:15	37.9	27.9	73.5	
90-170	22-00-25	89-59-09	8	4:59	35.3	21.6	61.1	734
90-180	21-59-89	89-30-00	8	1:43	33.2	20.7	62.3	249
90~190	21-59-69	38-59-99	7	16:20	25.3	14.4	56.9	
90-210	22-00-24	98-00-13	7	1:33	26.9	14.1	54.1	52
90-220	21-59-78	87-29-60	6	22:04	21.8	15.2	60.8	
90-230	21-59-80	87-00-10	6	18:29	15.7	14.1	69.9	180
90-240	22-00-58	86-30-70	3	1:05	181.0	105.1	58.1	58
100-250	21-30-12	86-00-35	2	15:43	324.1	174.5	53.8	161
100-240	21-30-43	86-30-41	2	21:16	60.4	41.5	68.7	69
110-240	21-00-49	86-30-33	29	12:39	250.6	208.0	83.0	415
110-250	21-00-41	86-00-25	2	11:25	304.3	203.8	65.8	67
120-240	20-29-80	86-30-01	29	20:25	265.4	209.3	73.3	
130-230	19-59-71	87-0091	30	4:24	279.6	203.0	74.4	
130-260	20-00-93	85-30-45	1	16:22	355.1	209.9	59.1	59
140-260	19-33-82	85-32-67	1	11:26	272.8	211,5	77.5	620
140-250	19-30-00	86-00-22	1	5;41	205,2	203.2	71.3	
140-230	19-29-87	87-00-62	30	9:54	282.9	209.1	73.9	74
150-230	19-08-60	87-04-10	30	14:28	262.9	207.8	79.1	158
150-250	18-59-84	86-00-86	1	0:44	295.1	204.1	69.2	
150-260	19-00-00	85-29-96	31	19:47	280.1	210.3	75.1	75
160-260	19-30-27	85-30-30	31	14:53	260.4	208.4	80,0	160
160-250	18-29-89	85-59-91	31	7:15	283.5	210.2	74.1	
160-240	18-29-89	85-59-91	31	21:14	273.0	207.9	76.2	

			82	nio-Julio 19	8204-11 Ju	ITACORA. ON	13 DATOS B	Tabla
# de Larva	FEC	Profundidad	Agua filtra	Hora	Fecha	Longitud	Latitud	Estación
x 100 m2		real m	da m3					
85	42.5	26.6	62.6	15:10	6	93-59-99	18-29-97	160-90
	36.7	143.8	392.2	10:37	6	94-00-15	18-59-98	150-90
	69.5	203.6	293.0	21:14	3	94-00-13	19-29-90	140-90
84	84.1	205.8	244.7	15:40	20	94-01-72	19-59-82	130-90
	72,8	211.8	290.9	21:10	20	93-59-95	20-30-15	120-90
	79.3	206.9	261.1	3:00	21	94-00-00	21-00-10	110-90
78	76.3	208.3	266.2	11:55	21	93-59-00	22-00-00	90-90
	75.4	245.0	271.8	20:30	21	93-59-98	23-00-14	70-90
1	75,7	200.4	264.8	5:36	22	94-00-06	24-00-40	50-90
1	66.0	199.3	301.9	14:00	22	94-00-90	25-00-10	30-90
77	77.3	212.3	274.8	22:55	22	93-00-70	24-59-90	30-110
· ·	71.5	205.1	286.9	22:53	22	93-00-70	24-59-90	30-130
	75.1	193.7	246.6	16:00	23	91-00-83	25-00-21	30-150
74	72.0	207.9	280.6	0:35	24	91-00-00	23-59-01	50-150
	75.3	206.6	273.7	8:57	24	92-00-00	24-00-10	50-130
1	75.6	207.8	272.9	16:42	24	93-00-19	24-00-00	50-110
130	64.0	195.9	302.2	1:19	25	92-59-44	23-00-19	70-110
298	71.6	205.2	206.5	9;27	25	92-00-00	23-00-00	70-130
	69.0	203.4	294.7	17:47	25	90-59-80	25-59-90	70-150
ł	68.6	201.5	293.5	19:25	26	93-00-10	21-59-90	90-110
ł	61.4	35.2	57.3	12:03	26	91-59-90	21-59-90	90-130
269	53.7	25.6	47.6	5:59	26	91-30-05	22-00-00	90-140
41	40.9	20.9	65.5	2:14	26	90-59-97	22-00-19	90-150
ł	63.5	20.7	31.7	13:24	27	91-00-40	21-30-40	100-150
136	68.0	20.1	29.5	8:45	27	91-29-90	21-30-01	100-140
280	70.01	28.3	40.4	4:05	29	92-00-16	21-29-96	100-130
Į.	61,4	205.2	334.3	0:43	1	93-00-20	21-00-00	110-110
168	60.3	26.1	46.7	17:16	30	92-00-10	20-59-97	110-130
72	56.9	21.7	30.1	11:51	30	91-30-16	20-59-87	110-140
ł	62.8	14.7	23.5	9:00	2	91-29-72	20-30-04	120-140
100	41.0	20.4	40.8	0:15	2	91-59-40	20-29-92	120-130
1	71.2	205.4	280.6	18:51	1	92-30-26	20-30-03	120-120
68	68.2	206.9	303.3	13:31	1	92-59-91	20-30-01	120-110

tabla 13	continuaci	ón						
Estación	Latitud	Longitud	Fecha	Hora	Agua filtra	Profundidad	FEC	# de Larvas
100 100					da m3	real m		x 100 m2
120-100	20-29-90	93-29-90	Ţ	6:45	272.6	212.5	77.9	78
130-100	20-00-00	93-30-13	5	15:00	330.0	194.0	58.9	70
130-110	20-00-02	93-00-18	3	10:43	291.3	203.2	09.0	/0
130-120	20-00-01	92-30-01	3	0:43	289.7	207.9	71.8	70
130-130	20-00-00	92-01-00	2	3:33	49.0	19.5	59.0	/*
140-140	10-30-01	91-30-14		15.05	67 7	13,4 27 A	10 1	40
140-120	10-30-00	92-00-00		10.57	95 /	69.3	80.0	40
140-110	19-30-00	92-29-90	4	6+23	276.9	246.6	74 6	1
140-100	19-29-98	93-29-80	Å	1.40	200 7	102 5	64 2	
150-110	19-00-00	93-00-33	5	14.55	77.6	31.6	40 7	
			ţ,					
					1			
					1			
					}			
								1 1
)			
								1
					}			
]			
					1			1
								ł ł
					[(l		1
					1	1 1		
				l.	I i			
					1	} }		
						1 1		
]		} [
1] [
						1		j (
			L		<u></u>	L.,		L

Tabla 1	4 DATOS B	ITACORA. ON8:	305 Mayo-J	unio 1983				
Fstación	Latitud	Longitud	Fecha	Hora	Agua filtra	Profundidad	FEC	# de Larvas
Listacion	mertua				da m3	real m		x 100 m2
999.1	26-00-00	87-00-00	22	8:00	327.7	207.7	63.4	
999.2	26-00-00	87-00-00	22	8:59	268.5	207.8	77.4	1
999.3	26-00-00	87-00-00	22	9:28	262.3	210.3	80.0	1 1
999.4	26-00-00	87-00-00	22	9:59	311.7	207.8	68.9	}
999.5	26-00-00	87-00-00	22	10:30	315.7	207.4	65.7	1
999.6	26-00-00	87-00-00	22	11:00	317.1	205.9	64.9	1
999.7	26-00-00	87-00-00	22	11:30	320.9	199.5	62.2	
999.8	26-00-00	87-00-00	22	12:00	322.5	201.4	62.4	{
999.9	26-00-00	87-00-00	22	12:32	330.2	198.5	62.1	1 (
999.10	26-00-00	87-00-00	22	13:00	321.0	193.2	60.2	} }
30-230	25-00-00	87-00-00	23	1:55	315.8	196.1	62.1	1.7
50-230	24-00-00	87-00-00	23	11:31	312.8	212.4	67.9	130
60-230	23-30-00	87-00-00	23	18:08	278.1	208.5	75.0	707
60-240	23-30-00	86-30-00	23	12:24	308.1	198.8	64.5	58/
70-240	23-00-00	86-30-00	24	7:14	280.0	208.4	74.4	14
80-240	22-30-00	86-30-00	24	14:53	425.2	171.2	40.3	40
100-250	21-30-00	86-00-00	25	8:09	261.7	207.6	/9.3	} }
120-260	20-30-00	85-30-00	25	20:28	327.0	209.4	64	206
130-260	20-00-00	85-30-00	26	1:46	298.4	205.4	08./	200
140-260	19-30-00	85-30-00	26	7:50	278.0	201.3	72.0	12
150-260	19-00-00	86-00-00	26	5:10	306.7	211.1	08.8	1 1 47
160-260	18-30-00	85-30-00	26	19:49	290.6	213.5	/5.5	{ 14/ }
160-250	18-30-00	86-00-00	27	0:13	329.0	207.1	03.0	L CA
150-250	19-00-00	86-00-00	27	5:10	386.9	207.6	55.7	210
150-240	19-00-00	87-30-00	27	9:44	339.9	211.1	02.1	
160-240	18-30-00	86-30-00	27	14:25	366.6	215.5	59.5	50
160-230	18-30-00	87-00-00	27	20:01	353.1	212.7	60.2	60
150-230	19-00-00	87-00-00	28	1:00	334.2	214.9	04.3	04
140-230	19-30-00	86-00-00	28	6:05	273.3	212.1	//.0	//0
140-240	19-30-00	86-30-00	28	11:13	298.0	207.7	09./	
140-250	19-30-00	86-00-00	28	16:32	317.6	203.6	04.1	77
130-250	20-00-00	86-00-00	28	21:28	293.6	213.5	12.1	
130-240	21-00-00	86-30-00	29	2:00	251.4	212.1	84.4	265
130-230	20-00-00	87-00-00	29	7:18	313.8	208.5	00.4	<u> </u>
tabla 14 Estación	continua Latitud	ción Longitud	Fecha	Hora	Agua filtra	Profundidad	FEC	# de Larvas
------------------------------	----------------------------------	----------------------------------	----------------	------------------------	------------------------	------------------------	----------------------	-------------
12-40 120-250	20-30-00 20-30-00	86-30-00 86-00-00	29 29	12:48 17:23	302.0 289.9	214.0 214.1	70.8 73.8	71 221
110-250 100-240 70-230	21-00-00 21-30-00 23-00-00	86-00-00 86-30-00 87-00-00	29 30 31	21:30 5:46 5:49	304.4 55.2 284.3	214.2 27.3 155.0	70.4 49.5 54.4	141
70-210 50-210	23-00-00 24-00-00	88-00-00 88-00-00	31 31	13:35 21:20	68,8 87,9	35.9 49.3	52.1 56.1	449
70-190 90-190	23-00-00 23-00-00 22-00-00	89-00-00 89-00-00 89-00-00	1 1	4:21 13:01 20:00	328,7 77.9 32.1	207.8 40.6 14.3	63.2 52.1 44.4	63

Estación Latitud Longitud Fecha Hora Agua filtra Fecha Fecha Hora Agua filtra Fecha Fecha Hora Agua filtra Fecha Fecha Fech	E Larvas 100 m2 815 196 797 402 378 75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 m2 815 196 797 402 378 75
80-130 22-30-00 92-00-00 8 16:26 300.7 204.2 67.9 70-150 23-00-00 91-00-00 9 1;22 277.1 214.4 77.4 80-150 22-30-02 91-07-05 9 15:39 265.3 173.3 65.2 90-150 21-55-02 91-01-00 9 19:48 61.6 26.9 43.7 90-130 22-00-00 92-00-00 10 4:43 68.0 41.7 61.4 100-130 21-30-00 91-59-09 10 8:44 56.5 28.4 50.3 110-130 20-59-09 92-00-01 11 3:34 45.1 28.4 63.0 120-130 20-30-00 92-00-01 11 7:52 45.3 17.0 37.6	815 196 797 402 378 75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	196 797 402 378 75
80-15022-30-0291-07-05915:39265.3173.365.290-15021-55-0291-01-00919:4861.626.943.790-13022-00-0092-00-00104:4368.041.761.4100-13021-30-0091-59-09108:4456.528.450.3110-13020-59-0992-00-01113:3445.128.463.0120-13020-30-0092-00-01117:5245.317.037.6	196 797 402 378 75
90-150 21-55-02 91-01-00 9 19:48 61.6 26.9 43.7 90-130 22-00-00 92-00-00 10 4:43 68.0 41.7 61.4 100-130 21-30-00 91-59-09 10 8:44 56.5 28.4 50.3 110-130 20-59-09 92-00-01 11 3:34 45.1 28.4 63.0 120-130 20-30-00 92-00-01 11 7:52 45.3 17.0 37.6	797 402 378 75
90-13022-00-0092-00-00104:4368.041.761.4100-13021-30-0091-59-09108:4456.528.450.3110-13020-59-0992-00-01113:3445.128.463.0120-13020-30-0092-00-01117:5245.317.037.6	797 402 378 75
100-13021-30-0091-59-09108:4456.528.450.3110-13020-59-0992-00-01113:3445.128.463.0120-13020-30-0092-00-01117:5245.317.037.6	402 378 75
110-130 20-59-09 92-00-01 11 3:34 45.1 28.4 63.0 120-130 20-30-00 92-00-01 11 7:52 45.3 17.0 37.6	378 75
120-130 20-30-00 92-00-01 11 7:52 45.3 17.0 37.6	75
130-130 19-59-04 92-00-00 11 1:09 97.2 52.4 54.0	593
130-120 20-01-04 92-31-03 13 7:28 392.3 196.4 50.1	200
120-120 20-30-00 92-30-00 13 12:34 299.3 205.5 68.6	
110-110 21-00-07 93-00-03 13 18:54 329.2 208.3 63.3	379
130-110 20-00-00 93-00-01 14 644 319.4 215.8 67.6	1
140-110 19-26-00 93-00-04 14 11:58 308.5 202.4 65.6	
140-100 19-32-06 92-29-08 14 3:08 312.7 220.9 70.6	
130-100 20-00-04 93-30-03 15 9:03 293.1 214.4 73.1	293
120-100 20-29-01 93-29-08 15 14:25 295.6 215.1 72.8	
110-90 21-00-00 94-00-00 15 20:10 299.4 211.4 70.6	282
120-90 20-28-01 94-00-07 16 2:07 276.1 216.2 78.3	
130-90 20-00-07 94-00-01 16 7:13 316.1 208.0 65.8	
140-90 19-30-09 94-00-01 16 12:18 310.7 211.8 68.2	
140-80 19-29-06 94-31-02 16 16:39 306.5 212.4 69.3	
130-80 20-03-03 94-33-04 16 21:35 208.8 216.3 77.0	
120-80 20-29-02 94-30-06 17 6:07 299.6 194.9 65.1	
110-70 21-01-05 95-01-04 17 11:37 292.7 207.9 71.1	
120-70 20-29-05 94-59-06 17 17:02 276.5 208.8 75.5	378
130-70 20-02-00 95-01-00 17 22:40 287.4 212.7 74.0	
140-70 19-34-08 94-59-07 18 4:10 286.2 209.5 73.2	73
140-60 20-16-03 95-46-09 18 8:46 297.9 215.1 72.2	
130-60 19-57-05 95-29-00 18 17:45 295.3 215.4 73.0	
130-50 20-00-04 95-59-07 18 20:00 296.1 214.7 72.5	
120-50 20-30-00 96-00-00 19 9:45 281.2 212.7 75.7	76

BIBLIOGRAFIA.

- AUSTIN, H. M. 1972. Notes on the distribution of Phyllosoma of the spiny lobster <u>Panulirus</u> sp. in the Gulf of Mexico. <u>Proc. Nat. Shellfish</u> Assoc. 62: 26-30
- BAISRE, J. A. 1966. Desarrollo larval en <u>Scyllarus</u> sp. con notas sobre la abundancia y distribución de sus estadíos. Estudios 1(1): 5-34
- BAISRE, J.A. 1977. Una breve historia acerca de las langostas. <u>Mar y Pesca</u> 140: 40-43.
- BAISRE, J. A. 1976. Distribución de las larvas de P. argus y Scyllarus americanus, en aguas alrededor de Cuba. <u>Rev. Invest., Centr. Invest.</u> Pesq. (Cuba) 2(3): 277-297
- BAISRE, J. A. et al. 1978. Distribución y abundancia de las larvas de langos ta (Panulirus argus), en el Mar Caribe y Bahamas. <u>Rev. Cubana In-</u> vest. Pesq. 3(1): 1-20
- BUESA, R. J. 1969. Langosta común <u>Panulirus argus</u>, Hacia nuevos objetivos en su investigación. Mar y Pesca 46:4-11
- BESA, R. J. 1970. Migraciones de la langosta <u>Panulirus argus</u>. <u>Mar y Pesca</u>. 60: 22-27
- BUESA, R.J. 1972. Nuestro recurso pesquero más importante. <u>Mar y Pesca</u> 80: 13-19
- BUESA, R. J. 1979. Oxygen consumptin of two tropical spiny lobsters, <u>Panuli</u>rus argus y P. guttatus. <u>Crustaceana</u>. 36(1): 99-107
- BRIANTSEV, V.A. y J.A. GOMEZ . 1972. Circulación atmosférica y afloramiento de las aguas profundas a lo largo de los taludes de la plataforma

de Yucatán. I.N.P. Centr. de Invest. Pesqueras. Reunión de Trabajo (3): 1-6

¥.

- CHEKUNOVA, V. I. 1972. Geographical distribution of spiny lobsters and ecological factors determining their commercial concentrations. VNIRO 77(2): 110-119
- COCHRAN, W. G. 1984. <u>Técnicas de muestreo</u>. C.E.C.S.A., México. 513 pp DANIEL, W. M. 1982. Bioestadística. LIMUSA, México. 485 pp
- GENERAL OCEANICS. 1983. Digital Floumeter Manual. South Fisheries Center, Miami Fla., 13 pp
- ELDRED, B. <u>et al</u>. 1972. Studies of juvenile spiny lobsters <u>Panulirus argus</u>, in Biscayne Bay, Fla. Special Scientific Report (35) <u>Contr</u>. (194): 15 pp
- EMILSSON, I. 1976. La Oceanograffa regional con respecto a los problemas ac tuales y futuros de la contaminación, y de los recursos vivos. Reunión Internacional de Trabajo COI/OAA/PNUMA, sobre la contami nación marina en el Caribe y regiones adyacentes: 19 pp
- HERRKIND, W. et al. 1974. Descriptive characterization of mass autumnal mi grations of spiny lobster; <u>Panulirus argus</u>. <u>Contr</u>. (21) from the Tallahassee Sep. Choppy and Gulf COast Marine Biological Assoc. (21): 79-97
- HUTCHINSON, G. E. 1953. The concept of pattern inEcology. <u>Proced. of the</u> Academy of Natural Sciences. 105: 1-12
- JOHNSON, M. W. & M. KNIGHT. 1875. A supplementary note on the larvae of Scyllarides astorii. Crustaceana 28(1): 109-112
- KRAMER, D. <u>et al</u>. 1972. Collecting and processing data on fish eggs and lar vae in the California current region. U.S. <u>NOAA Tech. Circ.</u> 370;

38 pp

- LEWIS, J. B. 1951. The phyllosoma larvae of the spiny lobster, <u>Panulirus</u> argus. <u>Bull. Mar. Sci. Gulf & Caribbean 1(2): 89-103</u>
- LEWIS, J. B. <u>et al</u> 1952. The postlarval stages of the spiny lobster <u>Panulirus</u> <u>argus. Bull. Mar. Sci. Gulf & Caribbean</u> 2(1): 324-337
- LITTLE, E. J. Jr 1977. Observations on recruitment of postlarval spiny lobs ters, <u>Panulirus argus</u> to the south Florida Coast. <u>Fla. Mar. Res.</u> <u>Publ.</u> (29): 35 pp
- MALKOV, A.S. 1978. Abundancia del stock comercial de langosta <u>Panulirus argus</u>, en la región suroccidental de la plataforma cubana. <u>Rev. Cub</u>. <u>Invest. Pesq. 3(4): 1-10</u>
- MANUAL DE INVESTIGACIONES ICTIOPLANCTONICAS. Compilaciones Biól. R. M. Olvera Inst. Nal. de la Pesca.
- MENDEZ, R. I. 1981. Modelos estadísticos lineales. CONACYT, México. 133pp
- MENZIES, R. A. & J. M. KERRIGAN 1976. Implications of spiny lobster recruit ment patterns of the Caribbean. <u>Academy of Marine Sciences Lab.</u>, Nova University : 164-178
- MENZIES, R. A. & J. M. KERRIGAN 1977. Spiny lobster <u>Panulirus argus</u>, Larval recruitment in the Florida Keys: Fla. SEa GRant project <u>R/Frio.</u> Interin report 16 pp
- NELEPO, B. A. <u>et al</u>. 1974 Soviet investigations of the dynamics and properties of the waters of the Caribbean sea and Gulf of México. <u>Inves-</u> tigaciones del CICAR pp 119-131
- ROBERTSON, P. B. 1968 The complete larval development of the sand lobster <u>Scyllarus americanus</u>, in the laboratory with notes on larvae from the plankton. <u>Bull. Mar. Sci</u>. 18; 294-342

ROBERTSON, P. B. 1971. The larvae and postlarvae of the scyllarid lobster Scyllarus depressus. Bull. Mar. Sci. 21(4): 841-865

- ROBERTSON, P. B. 1979. Larval development of the scyllarid lobster <u>Scyllarus</u> <u>planorbis</u> Holthuis, reared in the laboratory. <u>Bull. Mar Sci</u>. 29 (3): 320-328
- SCHROEDER, W. W.<u>et al</u>. 1974. The oceanic waters of the Gulf of Mexico and Yucatan strait during July 1969. Bull. Mar. Sci. 24(1): 1-19
- SETTE, O. E. & E. H. AHLSTROM. 1948. Estimations of the eggs of the Pacific pilchard <u>Sardinops caerulea</u> off southern California during 1940 and 1941. <u>Jour. of Mar. Research</u> 7(3): 511-542

VAZQUEZ, L. y A. VILLALOBOS, 1971. <u>Arthropoda</u>. Tomo II UNAM. México pp WITHAM, R. <u>et al</u>. 1964. Notes on postlarvae of <u>Panulirus argus</u>, <u>Quarterly</u> Journal of the Fla. Acad. Of Sci. 27(4); 289-297