2 4

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

EDIFICIO CON ELEMENTOS ESTRUCTURALES PRECOLADOS

TESIS PROFESIONAL
QUE PARA OBTENER
EL TITULO DE
INGENIERO CIVIL
PRESENTA

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Al Pasante señor JOSE RAMIREZ NUNEZ, Presente.

En atención a su solicitud relativa, me es grato transcribir a usted a continuación el tema que aprobado por esta Dirección propuso el Profesor M. en I. Claudio C. Merrifield C., para que lo desarrolle como tesis en su Examen Profesional de Ingeniero CIVIL.

"EDIFICIO CON ELEMENTOS ESTRUCTURALES PRECOLADOS"

- 1) Estructuración
- 2) Estudio de cargas
- 3) Análisis por cargas verticales
- 4) Análisis por sismo
- 5) Revisión de elementos precolados
- 6) Proyecto de la cimentación

Ruego a usted se sirva tomar debida nota de que en cumplimiento de lo - especificado por la Ley de Profesiones, deberá prestar Servicio Social-durante un tiempo mínimo de seis meses como requisito indispensable para sustentar Examen Profesional; así como de la disposición de la Dirección General de Servicios Escolares en el sentido de que se imprima enlugar visible de los ejemplares de la tesis, el título del trabajo realizado.

Atentamente "POR MI RAZA HABLARA EL ESPIRITU"

Cd. Universitaria, 11 de febrero de 1980

11

ING. JAVIER JIMENEZ ESTELL

att But

1) ESTRUCTURACION

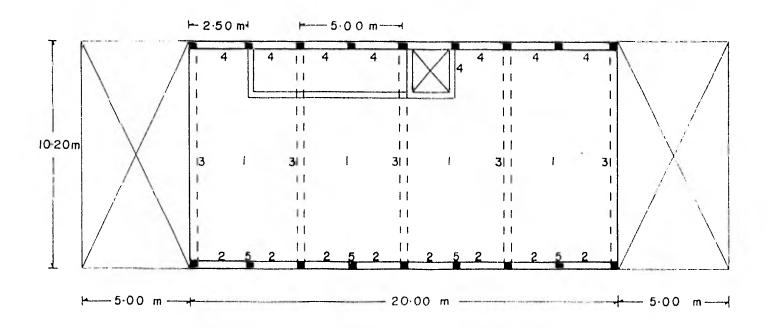
Se denomina con el nombre de estructura, a un conjunto de partes o componentes que se combinan en forma orde
nada para cumplir una función dada. La función puede ser:Salvar un claro, como en los puentes, encerrar un espacio,como sucede en los distintos tipos de edificios, o contener
un empuje, como en los muros de retensión, tanques silos, etc.

Nuestro problema se enfoca a estructuras que encierran un espacio, debido que el tema en estudio se trata de un edificio de cuatro niveles para oficinas, levantado a base de concreto reforzado.

La elección de una forma estructural es de acuerdo a la función que desempeñará la estructura ya en servicio, ya que esta afecta el costo del proyecto e implica el material con que se pienza realizar la estructura.

ESTRUCTURAS DE CONCRETO

Existen dos procedimientos principales para construir es tructuras de concreto. Una es, cuando los elementos es---tructurales se forman en su posición definitiva, la otra --cuando sus elementos se fabrican en un lugar distinto al de su posición definitiva en la estructura. En primer caso se dice que la estructura ha sido colada en el lugar y en el segundo caso el procedimiento recibe el nombre de prefabricación.


En la solución de la estructuración para éste edificio - en estudio, se usarán los dos procedimientos ya que las columnas y trabes serán elementos colados en el lugar, mientras, la azotea y los entrepisos serán formados con elementos prefabricados.

Para la elección de la estructuración de este edificio no se hizo un estudio exhaustivo, ya que se tendría que ver
con más detención las ventajas y desventajas de ambos proce
dimientos y conjuntarlas, para luego decidir por el tipo de
estructuración mas óptimo en el sentido económico, vamos a
decir que el elemento precolado se eligió porque nos propor
ciona grandes claros, áreas útiles sin columnas intermedias
y su rapidez de instalación en los diversos niveles del edi
ficio sobre los apoyos de concreto colados en el lugar, cuan
do estos ya están en condiciones de recibir la carga de dicho elemento.

La estructuración del edificio en estudio se mues-tra en la figura No. 1

Unas ventajas que ofrece el concreto, para que las - estructuras de este material sean muy generalizadas son:

- 1. El concreto es un material que trabaja a comprensión y cortante en óptimas condiciones, y mediante un diseño adecuado se puede lograr una economía en la construcción de éste tipo de estructuras.
- 2. Debido a su plasticidad, puede emplearse en lasformas que se requiera, siendo su moldeabilidaduna ventaja muy importante, de acuerdo con las condiciones de trabajo que se le imponga, resultando más durable y resistente.

ESTRUCTURACION

I- Elemento Precolado

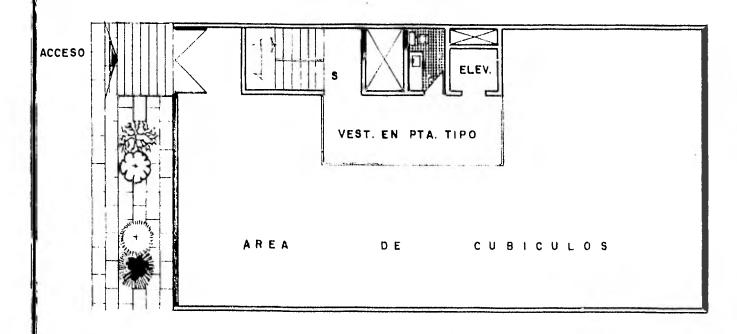
FIG. No. 1

3-Trabes de rigidez

4-Muros que dan rigidez a la estructura

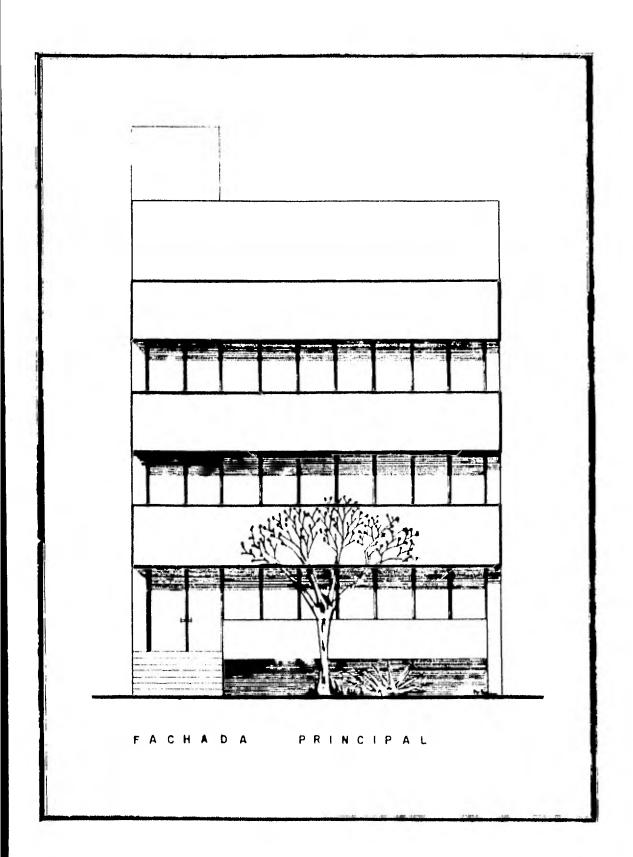
5-Columnas coladas en el lugar

GENERALIDADES


El edificio tema de este estudio será construído en la ciudad de México, D.F.

El edificio será destinado a oficinas, consta de un sotano que servirá de estacionamiento, y los tres restantes niveles serán áreas rentables.

El edificio en sus diferentes niveles, está comunicado por elevador y escaleras; interiormente por vestíbulos y pasillos de acceso al público.


La superficie total del terreno donde se levantaráel edificio es de 306 M2; utilizándose únicamente para la construcción de este 204 M2 y el restante para dar iluminación al inmueble.

En la figura No. 2 se muestra la planta arquitectónica tipo.

PLANTA ARQUITECTONICA

FIG. No 2

2) ESTUDIO DE CARGAS

Las acciones que actúan sobre una estructura, se -- clasifican de la siguiente manera:

- A) Acciones permanentes
- B) Acciones variables
- C) Accidentales.

Las acciones permanentes son las que obran en forma contínua sobre la estructura y su intensidad no varía con - el tiempo.

Las acciones permanentes se pueden clasificar en:

A-1) Cargas Muertas

Las cargas muertas son las debidas al peso propio - de los elementos estructurales, al peso de los elementos no estructurales que ocupen una posición fija y permanente en- la construcción; tales como: instalaciones, equipo, recu-brimientos, acabados diversos de la estructura, etc. y otros elementos no estructurales que puedan colocarse posterior--mente.

- A-2) Empuje estático de tierras y de Líquidos
- A-3) Las deformaciones y desplazamientos impuestosa la estructura.

Como los debidos a presfuerzo o a movimientos diferenciales permanentes de los apoyos.

Dentro de las cargas muertas que obran en la estructura del presente estudio debido al proyecto arquitectónico son:

<u>La Estructura en sus elementos</u> (Trabes, columnas y cimentación de concreto armado), losa de entrepiso y azotea de elementos precolados.

Los muros divisorios. Serán de cancel en el arearentable y de block hueco de concreto en baños con un espesor de 10 cm. estos muros no contribuirán a aumentar la ri
gidez de la estructura.

Los muros de exterior Y en escaleras serán de concreto armado o tabique rojo recocido de 7 x 14 x 28.

> Pisos de Loseta Vinílica Lambrines de azulejo en baños Aplanados de yeso en plafones

El reglamento de las construcciones en vigór espec \underline{i} fica los siguientes valores para los pesos volumétricos.

Concreto reforzado	2400	Kg/M3
Bloque hueco de concreto	1300	**
Mortero cemento-arena	2100	11
Mortero cal y arena	1500	11
Aplanado de yeso	1500	**
Tabique macizo prensado	2200	**
Tabique macizo hecho a mano	1500	***
Vidrio plano	2800	***
Azulejo	15	Kg/M2
Loseta vinílica	10	11

B) Acciones Variables

Las acciones variables son aquellas que obran sobre la estructura en un lapso considerable, pero con una intensidad variable.

B-I) La carga viva, que representa las fuerzas grav \underline{i} tacionales que obran en la construcción y que no tienen caracter permanente.

B-2) Los efectos de cambio de temperatura y de con-tracciones.

B-3) Las de formaciones impuestas y los hundimien-tos diferenciales que tengan una intensidad variable con el
tiempo.

Las carga viva para el diseño estructural se tomará en cuenta de acuerdo con el artículo 227 capitulo XXXVIdel reglamento de construcciones en vigor.

Pisos en lugares de comunicación pasillos, escaleras, rampas, vest<u>f</u> bulos y pasajes de acceso libre al público.

Cuando sirven a no mas de
200 M2 de área habitable ----150 + $\frac{200}{\sqrt{\Lambda}}$ "

cuando sirven a un área

habitables superior a 200M2

e inferior a 400 M2. -----150 + $\frac{400}{\sqrt{\Lambda}}$ "

Cubiertas y azoteas -----100

Atendiendo al destino del piso se fijará la carga - viva que corresponda a un área tributaria menor de 20 M2.

La carga viva será mayor de 350 Kg/M2 en todos loscasos.

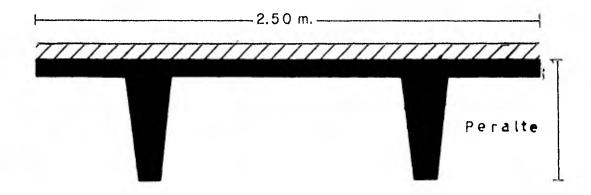
C) Acciones accidentales

Las acciones accidentales son las que actúan sobre la construcción en forma completamente irregular como son:

- C-1) Movimientos sísmicos
- C-2) Viento
- C-3) Explosiones, incendios, nieve, etc.

Para la obtención de los efectos dinámicos que produce el movimiento sísmico en la estructura en estudio, sehará de acuerdo a lo especificado en el capitulo XXXVII del reglamento; y que para el caso particular del edificio en estudio se empleará el método estático, según el artículo - 238.

En lo tocante a la presión producida por el vientola estructura queda comprendida en el tipo I: "Estructuraspoco sensibles a las rafagas y a los efectos dinámicos delviento como edificios de habitación u oficinas con altura menor de 60 M."


2-1) <u>Determinación de las cargas</u>

Como ya se dijo, el edificio estará formado por los siguientes elementos estructurales:

- Losas de entrepiso y azotea concreto presforzado
- Trabes de rigidez de concreto armado
- Trabes de apoyo de concreto armado
- Columnas de concreto armado
- Cimentación de concreto armado

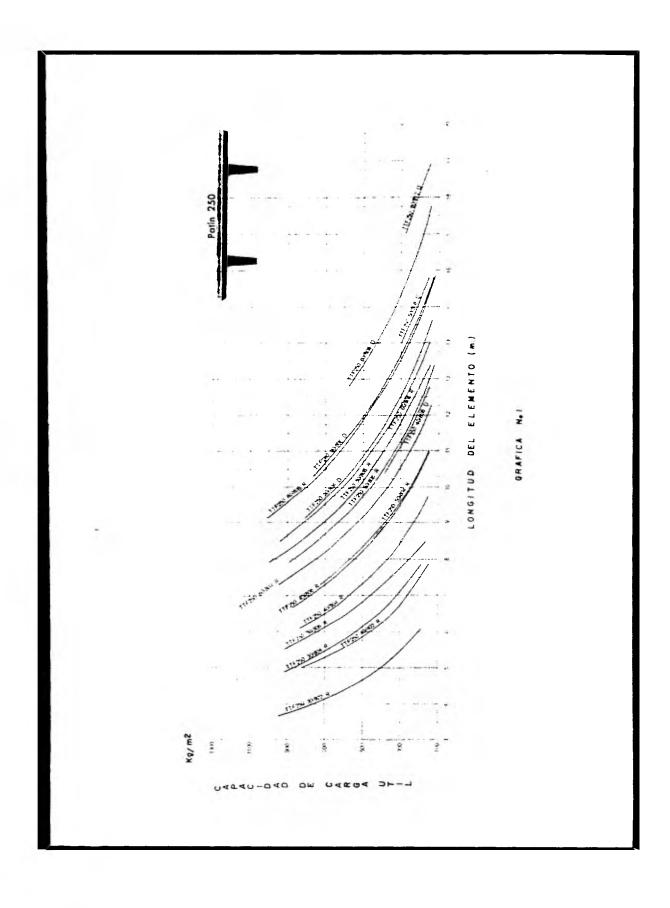
Se analizará la carga que actúa sobre la loza de -entrepiso, para dar las características geométricas de la sección del elemento precolado.

Se propuso en la estructuración que el elemento pr \underline{e} colado sea una losa nervurada tipo "TT", como se indica en-la figura No. 3

Se determinará la capacidad de cada elemento por separado, de acuerdo a las cargas que actúan en él.

Fino para colacación de loseta vinílica-0.02X200)=40	Kg/M2
Piso de loseta Vinílica	10	11
Plaf6n	30	
Canceles	40	- "
Carga muerta	120	11
Carga viva	360	11
Total Carga	480	**

Capacidad útil del elemento será: 480X1.4 ===672 Kg/M2.


Una vez determinada la capacidad útil del elemento, se procede a utilizar la gráfica que recomienda el fabricante.

"Descripción de la gráfica No. 1"

En la abscisa, parte izquierda de la gráfica, se encuentran las capacidades de carga útil del elemento; en la orde nada, parte de abajo de la gráfica, se encuentra las longitudes del elemento. Y en la intersección de ambas, se aprecian las curvas que definen el tipo de elemento para cada caso.

Para utilización de la gráfica, se procede de la siguien te forma:

En nuestra solución, el elemento que buscamos debe tener una capacidad útil de 672 Kg/M2 y una longitud de 10.20 m.; por lo que en el punto de la abscisa que corres - - - - - - -

ponda a 672 Kg/M2, se traza una horizontal, que se intercep ta, con una vertical, trazada en el punto 10.20 m. de la or denada; dando como resultado las características del elemen to.

La capacidad de carga útil de la losa nervurada tipo "TT", es independiente de su peso propio y del firme, -por lo que su peso no se incluyó en la carga muerta.

En seguida se presentan las características geomé-tricas del elemento precolado, requerido para la estructura cíon de el edificio en estudio, posteriormente se hará su revisión.

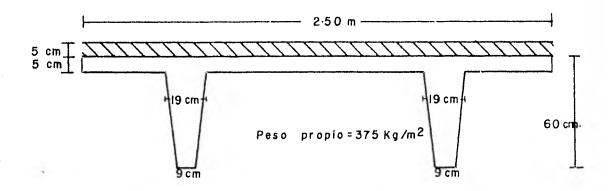
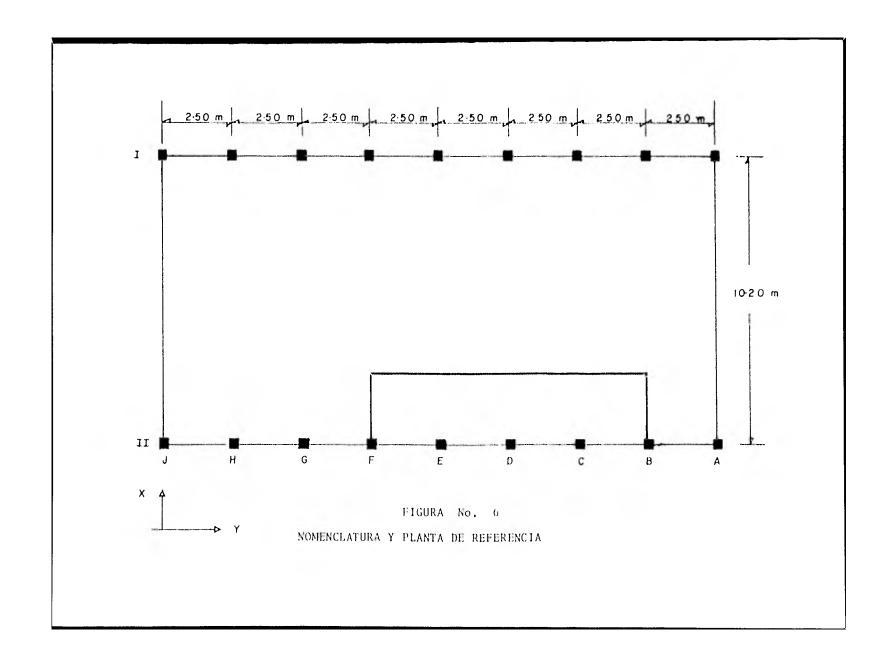


FIGURA No. 5

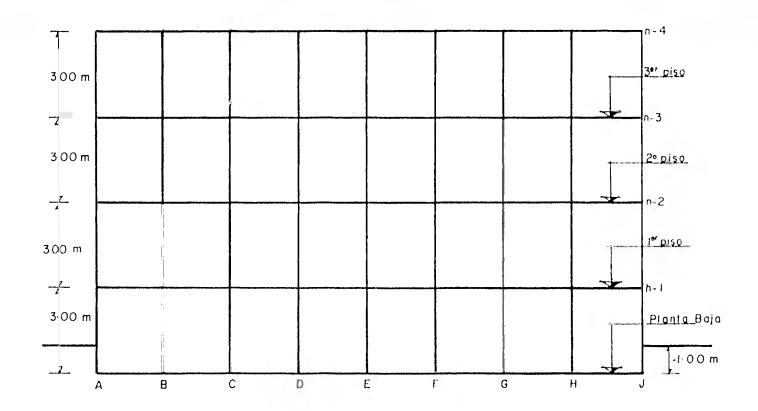
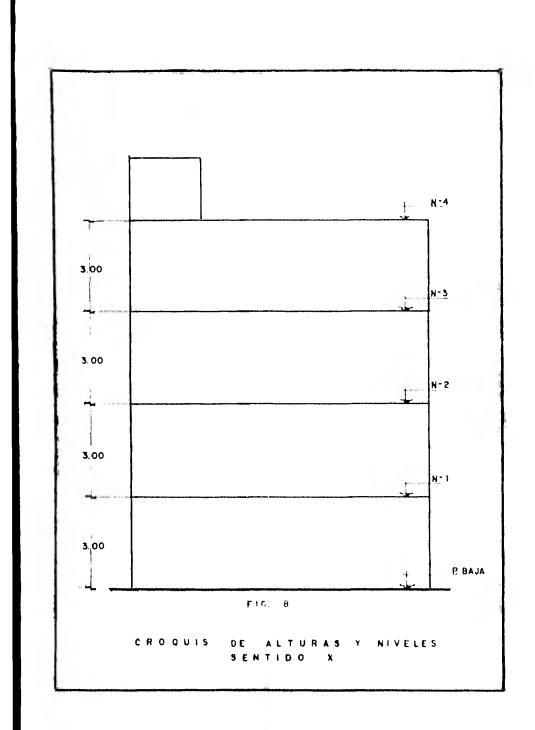

Canalización de las cargas

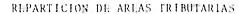
En la figura No. 6 se muestran los ejes de la estru \underline{c} tura en planta.

Los ejes longitudinales se han designado con los numeros romanos I y II, en cambio los ejes transversales se han designado con las primeras letras mayúsculas del alfabeto. Las columnas se designarán por medio de la combinación de un número romano y una letra de acuerdo a los ejes que se intersecten. Las trabes se nombrarán por combinaciones de letras y números de acuerdo al eje en que se encuentren y el tramo que se trate, así, una trabe en el eje uno (I) se nombrará I-D-E, si se trata del tramo comprendido entre los ejes D y E.

En las figuras Núm. 7 y 8 se indican en corte esque mático las alturas de los diferentes niveles del edificio - en ambos sentidos.

Para calcular la parte de carga que obra sobre loselementos a diseñar de concreto armado como son: trabes deapoyo, columnas y muros de carga, debida al tablero de losa correspondiente, se han multiplicado el área tributaria por la carga unitaria respectiva y que para la determinación de estas áreas tributarias se han dividido los tableros correspondientes,


FIGURA No. 7
CROQUIS DE ALTURAS Y NIVELES SENTIDO Y

Como se muestra en la figura No.9

Determinación delas cargas unitarias sobre las lo--sas (en Kg/M2.)

Area rentable		
Losa nervurada de 60 cm. de peralte	400	1
Fino para la colocación de loseta vinilica 0.02 x 200 =	: 40	
Piso de loseta vinílica	10	
Canceles	40	
Plafon	30	
Carga muerta	520	
Carga viva	360	
Carga total	880	Kg/M2
Entrepisos, en baños:		
Losa de concreto de 10 cm. de esp 0.10 x 2400	=240	
Fino para la colocación de loseta vinflica 0.02 x 200		
Piso de loseta vinílica	10	
Carga muerta	290	
Carga viva	300	
Carga total	590	Kg/M2
Azotea:		
Losa nervurada de 60 cm. de peralte	400	
Relleno para dar pendiente 0.07 x 700=	49	
Carga muerta	449	
Carga viva	100	
Carga total	549	Kg/M2

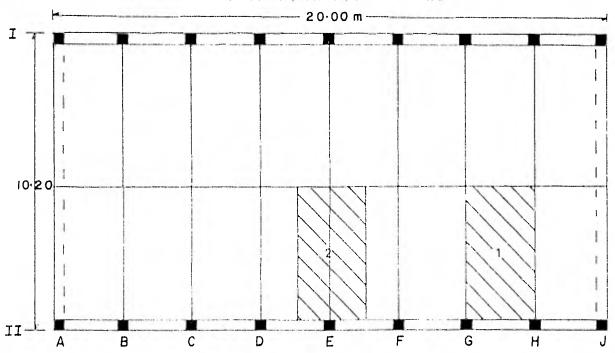


FIGURA No. 9

- 1.- Area tributaria para trabes de apoyo
- 2.- Area tributaria para columnas.

ESCALERAS:

RAMPA LOSA DE 10 cm.x 2400 = 240

ESCALONES 0.07 x 2400 = 168

CARGA MUERTA----- 408

CARGA VIVA ----- 360

CARGA TOTAL - 768 Kg/M2.

CARGAS SOBRE LAS TRABES DE APOYO

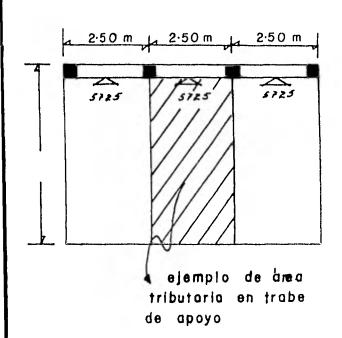
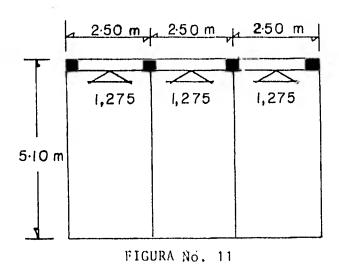
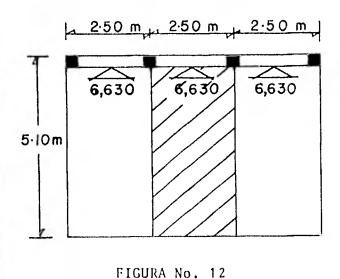



FIGURA No. 10

Croquis de repartición - de cargas.

AZOTEA a) Carga muerta - de losas.

Carga unitaria w=449Kg/M2 Calculo de área tributaria. 5.10 x 2.50 = 12.75 M2 Carga de la trabe debidoal tablero: 12.75X449 --5725 Kg.



Croquis de repartición decargas.

AZOTEA b) Carga viva.

Carga unitaria 100 Kg/M2.

100x12.75 M2 = 1275 Kg.

Croquis de repartición de cargas.

ENTREPISOS, LOSAS NIVELES
1,2 y 3

Carga muerta

Carga unitaria 520 Kg/M2. Area tributaria: 5.10x2.50 Carga en la trabe debido -

al tablero: 12.75x520

6630 Kg.

Peso del muro suponiendo un muro de 0.14 cm.espesor
2200 Kg/M3.x 0.14 x 2.50 x
2.70 = 2,079 Kg.
=====
Aplanado: 2,100x 0.02x 2.50

x = 2.60 = 273 Kg.

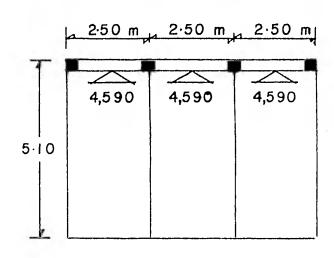


FIGURA No. 13

Croquis de repartición de cargas en los niveles 1,2, y 3 b) Carga viva.

Carga unitaria 360 Kg/M2.

Area tributaria 5.10x2.50 = 12.75

Carga en la trabe debidaal tablero: 12.75x360 = -4590 Kg.

CARGAS SOBRE COLUMNAS.

Las figuras que siguen muestran la canalización delas cargas de cada nivel hacia las columnas correspondientes. En esta forma se obtienen las cargas isostáticas queactúan sobre cada una de las columnas.

Cuando la carga que actúa sobre la trabe considerada es simétrica, como en nuestro caso, la carga trasmitida por cada uno de los extremos, es igual a la mitad de la carga total que actúa sobre la trabe. Figura No. 14

$$Ra = \frac{W}{2}$$

$$Rb = \frac{W}{2}$$

Es decir que, la reacción en un extremo se obtienemultiplicando la carga por la distancia al extremo opuestoy dividiendo el producto por el claro de la trabe, de acuer
do con las condiciones de equilibrio de estática, suma de fuerzas verticales = o. suma de momentos estáticos con respecto a cualquiera de los extremos = 0.

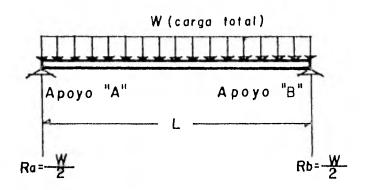


FIGURA No. 14

REACCIONES EN UNA TRABE SIMETRICAMENTE CARGADA

CONCENTRACIONES EN TRABES A COLUMNAS.

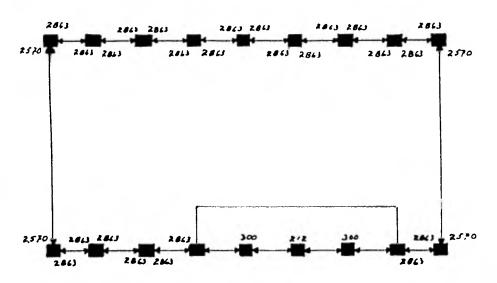
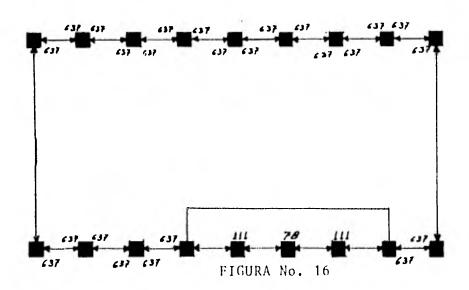



FIGURA No. 15

CROQUIS DE REPARTICION DE CARGAS LOSA AZOTEA A) CARGA MUERTA-PROVENIENTE DE LOSAS.

CROQUIS DE REPARTICION DE CARGAS LOSA AZOTEA B) CARGA VIVA

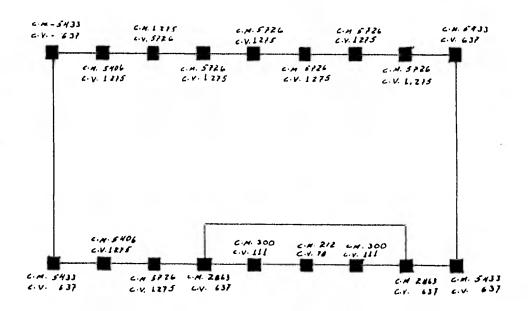
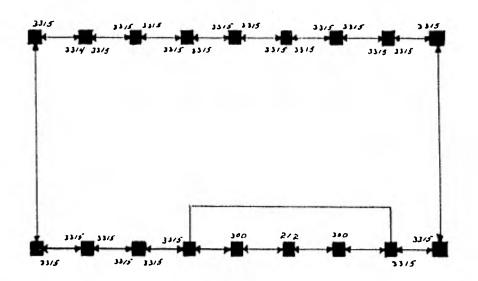



FIGURA No. 17
CARGAS SOBRE COLUMNAS

RESUMEN NIVEL 4 AZOTEA

CROQUIS DE REPARTICION DE CARGAS LOSA NIVEL 1, 2, 3, CARGA MUERTA PROVENIENTE DE LOSAS.

FIGURA No. 18

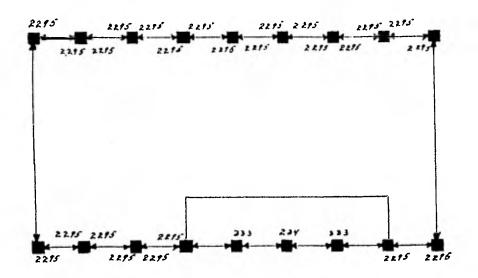
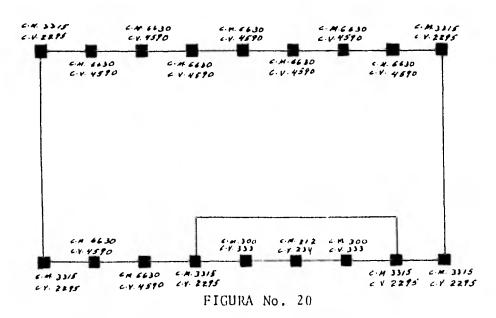
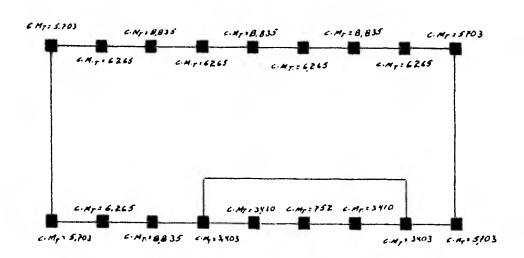
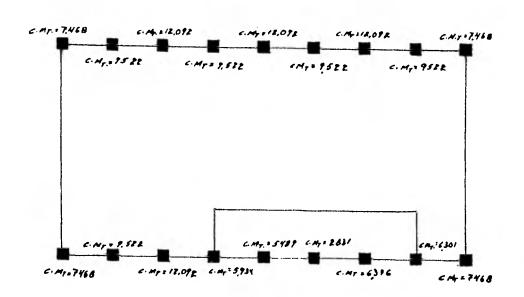




FIGURA No. 19
CROQUIS DE REPARTICION DE CARGAS.
CARGA VIVA LOSAS Niv. 1,2 y 3.



RESUMEN DE CARGAS SOBRE COLUMNAS NIVELES 1,2 y 3 (PROVENIENTE DE LOSAS)

En las figuras siguientes se muestra la carga totalque actúa sobre las columnas por nivel incluyendo el peso --propio de las trabes, muros, ventanería, losas y escaleras.

AZOTEA
FIGURA No. 21
CARGA MUERTA TOTAL EN COLUMNAS

PLANTA TIPO

FIGURA NO. 22

NIVEL 1,2 y 3 CARGA MUERTA TOTAL EN COLUMNAS

Tabla Nel

REF	Concepto	<u>A</u> - J	B - H	C - G	D - F	E
	C·M·	5,703	6,265	8.835	4265	8,835
NIVEL	C·Mac·	5,703	6,265	8,835	6,265	8,835
4	C· V·	637	1, 275	1.275	1,275	1,275
	C· Vac·	637	1,275	1,275	1,275	1,275
	C. NIV.	6.340	7.540	10.110	7.540	10,110
	C·NIV4	6340	7.540	10,110	7,540	10,110
ENTRE-	secc antepry	(30x30)	(30x30)	(30x30)	(30x30)	(30×30)
PISO.	Peso colum.	648	648	l	648	1
4	Peso Columac	648	648	648	648	648
	CARGA TOTAL	6.988	8 188	10,758	8.188	10 758
	C·M•	7,468	9,522	12,092	_	12,092
NIVEL	C·M·ac·	13, 171	15,787	20,927	15,789	20,927
3	C·V·	2,295	4.590	4.590	4.590	4,590
	C.V.ac.	2,932	5,865	5,865	5,865	5,865
	C-NIV-	9.763	14.112	16,682	14.112	16.682

REF	Concepto	A- J	В- Н	C - G	D - F	E
	C. Niv.3-4	[1	1	i	1
ENTRE -	secci anteproy					
PISO	peso columnas	882	882	882	882	882
3	pesocolum ac.	•	1,530	1,530	1,530	1,530
	CARGA TOTAL	17,633	23, 182	28.322	23,182	28,322
	C. M.				9,522	
NIVEL	C.M.ac.	1		4	25.309	
2	C.V.	2,295	4.590	4,590	4.590	4.590
	C.V.ac.	5,227	10,455	10,455	10.455	10,455
	C.NIV.	9,763	14.112	16.682	14.112	16,682
	C. NIv. 2-3-4			1	35,764	1
ENTRE -	secc, anteproy,	(35x35)	(35×35)	(35×35)	(3 <i>5 × 35</i>)	(35×35)
PISO	peso columnas				882	
2	peso.colum.ac.	2.412	2,412	2,412	2,4/2	2,412
	CARGA TOTAL	28,278	28,278	28,278	20,278	28,278

REE	Concepto	A - J	B - H	C - G	D - F	E
	C,M.	7,468	9,522	12,092	9.522	12,092
NIVEL	C.M.ac.	28,101	34,831	45,111	34,831	45,111
1	C.V.	2,295	4,590	4,590	4.590	4.590
	C.V.ac.	7,522	7,522	15,045	15,045	15,045
	C. NIV.	9,763	14.112	16,682	14,112	16,682
	C:NIv. 1-2-3-4	35,629	49,876	60,156	49,876	60.156
PLANTA	secc. antepro.	(40140)	(40140)	(40440)	(40×40)	(40×40)
BAJA	peso columna	1,152	1,152	1,152	1,152	1,152
	peso colum. ac	3,564	3,564	3,564	3,564	3,564
	CARGA TOT	39,193	53,440	63,720	53,440	63,720

Continuación....Tabla I

En la tabla 1 aparecen registrados los valores delas cargas en las columnas A,B, C, D, E, F, G, H, y J del marco 1, en los diferentes niveles y entrepisos del edificio.

Se han considerado los siguientes conceptos:

- C.M. Carga muerta proveniente de las losas
- C.Mac. Carga muerta acumulada de los niveles supe-riores de la estructura.
- C.V. Carga viva
- C.Vac. Carga viva acumulada de los niveles superiores.
- C. NIV. Carga total recibida por las columnas al nivel de las losas, y resulta de la suma de la carga muerta y carga viva de cada nivel.

Las cargas comprendidas entre dos niveles consecut<u>i</u>
vos, han sido tabuladas en la forma que sigue:

C.NIV. Carga total recibida por las columnas al nivel de las losas, y resulta de la suma de la carga muerta acumulada y de la carga viva.

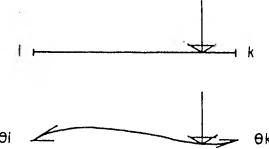
SECC.ANTEPROY. Sección de anteproyecto en cms. x cms.
PESO COLUMNAS. Peso propio de las columnas

PESO COLUM.AC. Peso propio de las columnas acumulado de los pisos superiores.

CARGA TOTAL Carga total en la base de las columnas, incluyendo su peso propio.

3) ANALISIS DE ESFUERZOS POR CARGAS VERTICALES.

METODO DE APROXIMACIONES SUCESIVAS DE G. KANI


El objeto del cálculo estático de una estructura -es obtener el equilibrio de la misma, cuando al cargar susdistintos elementos, giran y se desplazan los nudos de di-cha estructura.

Para el análisis de un marco por carga vertical, em pezaremos el cálculo suponiendo que al actuar las cargas -- exteriores los nudos son indesplazables.

Los nudos de la estructura se designarán con un -número de orden (1,2,3,4,5, etc.), en la exposición de la teoría con letras i,k,1,m, etc.

Consideremos a una barra de la estructura la cual tiene aplicadas cargas externas, sin suponer que existe rigidez en los nudos de la misma, cada uno de ellos gira en un determinado valor; por ejemplo, para una barra i-k el --

extremo i girară en un ângulo θ i y el extremo k en un ângulo θ k

El estado anterior puede ser escrito como superpos $\underline{\underline{i}}$ ción de las tres siguientes etapas.

1.- La barra i-k se deforma, flexando, bajo la ac-ción de la carga, sin girar los extremos de lamisma.

2.- El extremo i gira en un ángulo θ i, mientras elextremo k no gira.

3.- El extremo k gira en θk , mientras el extremo ino gira.

El valor total del momento en cada extremo será --igual a la suma de las tres etapas consideradas.

Por lo tanto, para el extremo i de la barra i-k secompondrá de:

Valor Mik debido a la carga exterior (momento de -- empotramiento perfecto en el extremo de la barra).

Valor 2Mik debido al giro del propio extremo i Valor 2Miki debido al giro del otro extremo K de la barra. El valor Mik se designará como influencia del girodel extremo i, es proporcional al ángulo 9i y a la-

El momento \tilde{M} ki es proporcional al fingulo de giro- θk y a la rigidez k de la barra, y se llama influencia delgiro del otro extremo k.

rigidez K de la barra.

Conocidos estos valores, podremos obtener el momento total Mik mediante la suma de los mismos, de esta manera el momento final que exíste en el extremo i de la barra i-k será:

$$Mik = Mik + 2Mik + Miki ----- (a)$$

Si consideramos ahora el equilibrio del nudo i toma \underline{n} do en cuenta todas las barras que conducen a el.

$$\Sigma Mik = \Sigma Mik + 2 S M'ik + 2 S M'ki----- (b)$$

Para que exista equilibrio el nudo de la suma debeser igual a cero.

$$\Sigma \overline{M}ik + 2\Sigma M ik + \Sigma M'ki = 0$$
 -----(c)

$$\overline{M}i + \Sigma M'ki = -2\Sigma M'ik$$
 -----(d)

La suma de las influencias del giro del extremo i puede ser repartida entre las diferentes barras que concurren al nudo i proporcionalmente a sus rigideces.

$$M^*ik = \mathcal{U}ik(\bar{M} + \Sigma M^*ki)$$
 -----(e)
 $\mathcal{U}ik = -1/2 \text{ rik/}\Sigma ri$ ----(f)

A la cantidad \mathcal{U} ik se le llama factor de rotación y es obvio que: $\Sigma\mathcal{H}$ ik = -1/2.

Una vez que se conocen los valores aproximados de las influencias de giro de ambos extremos se pueden conocer
los momentos finales con la aplicación de la fórmula:

$$Mik = Mik + Mik + (Mik + Mik)$$

Para llevar los cálculos se utiliza un cróquis de la estructura en la cual en sus nudos se presentan la suma delos momentos de empotramiento ($\bar{\rm Mi}$) y los factores de rota ción ${\cal U}$ ik dentro de los círculos concéntricos.

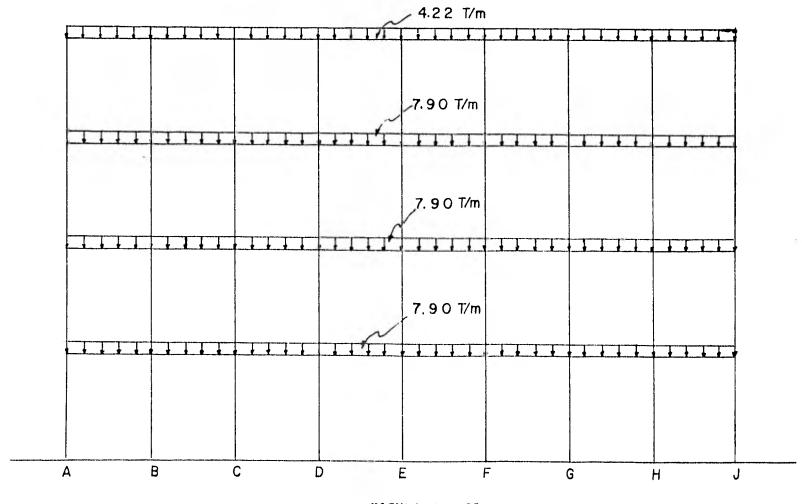


FIGURA No. 23

DISTRIBUCION DE LA CARGA EN LAS TRABES DE APOYO

MARCO QUE SE ANALIZA POR EL METODO DE G. KANI (SENTIDO Y)

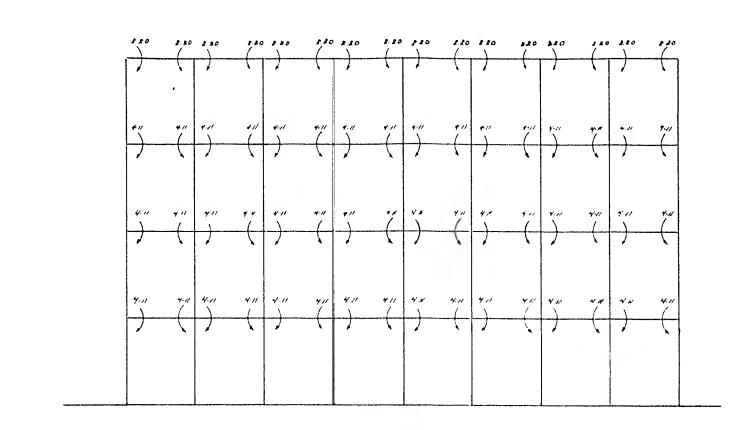
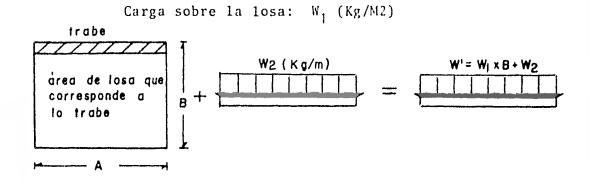



FIGURA No. 24 MOMENTOS DE EMPOTRAMIENTO (CARGA VERTICAL)

DISTRIBUCION DE CARGA EN LAS TRABES DE APOYO (Y)

Los valores de las cargas en la figura 23 fueron obtenidos de acuerdo a los cróquis de repartición de cargas, su explicación se da de la siguiente manera:

Como todas las trabes en los niveles, en el sentido (Y), cargan lo mismo en su respectivo nivel, la carga W'es-tá repartida a todo lo largo en dicho sentido.

Momentos de empotramiento: figura (24)

Son los que ocurren en los extremos de una viga, -cuando los apoyos son de tal naturaleza que impiden total-mente la rotación en esos puntos.

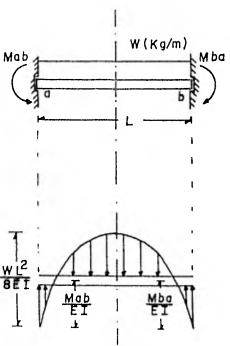
Sea un tramo A-B cuyos extremos estan empotrados y-

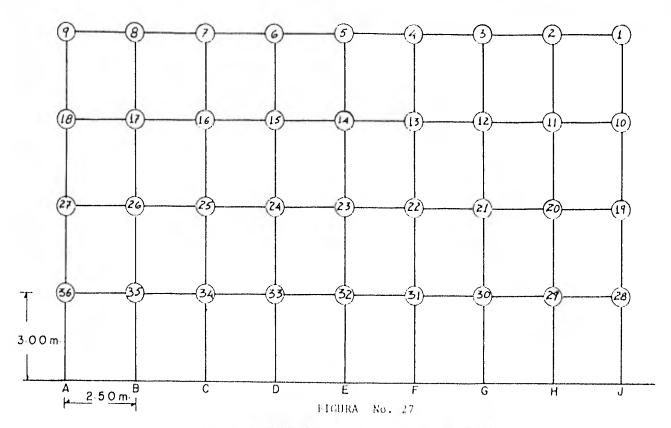
que está sujeto a una carga uniformemente repartida de in-tensidad W Figura 25

La viga conjugada se mues tra en la parte inferior de la figura. Las reacciones de la viga - conjugada representan las deforma ciones angulares en los extremos, de manera que θ a = θ b = $\frac{\text{W1}^2}{\text{8EI}} \cdot \frac{2\text{L}}{3}$

 $-\frac{Mqb}{EI} \cdot L = 0$ puesto que en los extremos la deformación angular debe ser nula entonces:

$$Mab = Mba = \frac{WL^2}{12}$$




FIGURA No. 25

Que son los momentos de empotramiento en los extr \underline{e} mos de un tramo sujeto a carga de intensidad uniforme W Kg/Ml como en nuestro caso.

	30x30	30x 30	3 0 x 30	30x30	30130	30×30	30x30	30×30
Ì								
Ì								
30,30	30x 3 O	30x30	30×30	30x30	30×30	30×30	30x30	30x30
}	30x30	30x30	30 x 30	30×30	30x30	30x30	30 x 30	3 0 x 30
35x35	35 x 35	35x35	35 x 35	35×35	3 5x35	35 x 35	35x 3 5	35x35
30,00	00,00	00,00	00,000	00,00	00,00	30,30	33,30	30.100
	30x30	30x30	30x30	30x30	30 x 30	30x 30	30x30	30×30
								Ì
35x35	35 x 3 5	35x35	35x35	35x35	35x35	35 x 3 5	35x 35	35x35
	30 x 30	30x30	30x30	30x30	30 x 30	30×30	30x30	30×30
40x40	40×40	40x 40	40x40	40x40	40x40	40x40	40x40	40x40
A	\ E	3 (;) E	. !	= (3 F	1 J

FIGURA No. 26

SECCIONES DE ANTEPROYECTO(cm)

LOCALIZAÇION DE NUDOS EN EL MARCO QUE SE ANALIZA POR CARGA VERTICAL.

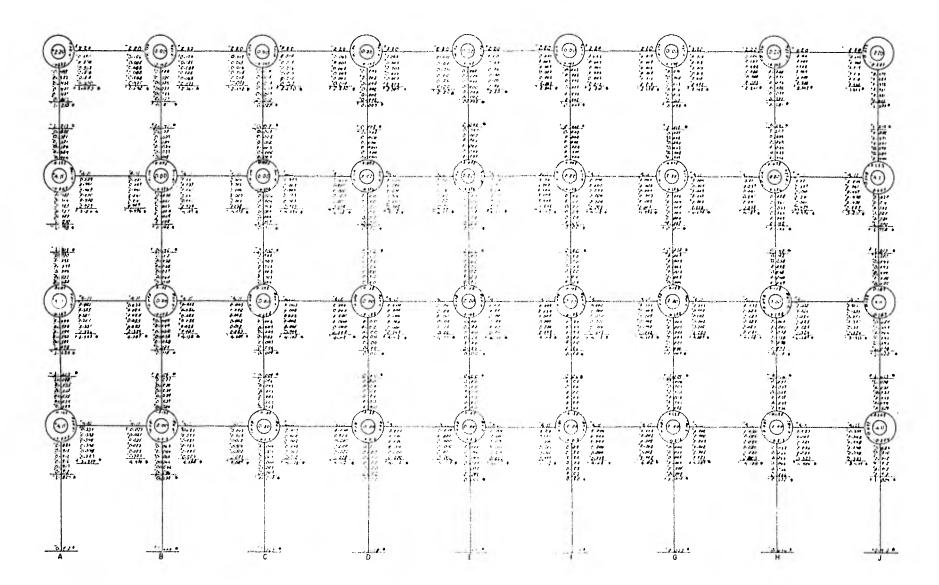


FIG N. 28

Nudo	Trobe	Momento de inercio I (cm4)	relodivo	Columna	Momento da inercio I (cny)	Rigida & raladivo	sumo de rifideces		Foctoria Distribu ción (columnos)
1	1-2	67.500	210	1-10	67.500	225	495	-0.273	- 0. 227
2	2-1	61,500	210	2-11	61,500	225	765	-0.176	-0.147
3	3-2	67.500	270	3-12	67, 300	225	765	-0.176	-0.147
4	4-3	67,500	270	4-13	67,500	225	765	-0.176	- 0.147
5 5	5-4	67,500	270	5-14	67,500	225	765	-0.176	- 0.147
6	6-5	67,500	270	6-15	61,500	225	765	-0.176	-0.147
7_7	7-6	67,500	270	7-16	61,500	225	765	-0.176	-0.147
8 8	8-7	67,500	270	8-17	67,500	225	765	-0.176	-0-147
9	!	67,500		9-18	67,500	225	495	-0.273	- 0.227

TALBIA No. 2
OBTENCION DE LOS FACTORES DE DISTRIBUCION

		Momento			Momento		Sumo da	Fortor da Distil	For for de Dis li
NUdo	Trobe	da inarcio I (cm4)	reloxivo	Columna	de inercio I (cm)	The (cg)	rigidaces	Bacron (trobes)	bucion (colomos
10	10-11	67.500	210	10-1	62,500	225	9/2	-0.148	-0.123
10				10-19	125.052	417			.0.229
//_	11-10	61,500	210	11-2	67.500	225	1,182	-0.114	-0.095
//	11-12	67,500	270	11-20	125,052	4/7		-0.114	-0.176
12	12-11	67. 500	210	/2-3	62,500	225	1,182	.0.//4	-0.095
12	12-13	67,500	270	12-21	125.052	417	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.114	.0.176
/3	13-12	67,500	270	13-4	62,500	225	1,182	.0./14	-0.095
/3	13.14	67.500	210	13-22	125.052	4/7	.,,	-0.114	.0.126
14	14-13	67,500	270	14-5	67.500	225	1.182	-0.//4	-0.085
14	14-15	61,500	270	14-23	125,052	417		-0.//4	-0.176
15	15-14	67,500	270	15-6	67,500	225	1,182	-0-114	-0.095
15	15-16	67.500	270	15-24	125 052	417	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.0.114	-0.176
16	16-15	61,500	270	16-7	67,500	225	1,182	. 0.//4	-0.015
16	16-17	67,500	270	16-25	125,052	413		.0.114	-0.176
17	17-16	61,500	270	17-8	61,500	225	1.182	.0.//4	-0.015
/7	17.18	67.500	270	17-26	125.052	4/7		-0.1/4	-0.176
18	18-17	67,500	270	18-19	62500	225	912	-0.148	.0.123
18				18-27	125052	4/7	1.4	0.,,0	-0.229

Continuación ----- Tabla 2

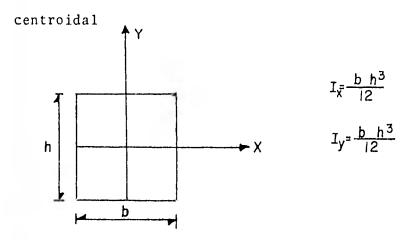
Nudo		Momento da incicio I (CHY)	Rigides relativa E/L (cm)	Columna	Monacko da inarcio I. (cm)	Regider re berva Ele (cg)	sumo da rigidaces	Forter da Diskri Borien (Fra Bas)	bu cien (column
19	19-20	61,500	210		125.052	1	1,104	-0.122	-0.189
19_		THE RESERVE AND ADDRESS OF THE PERSON.	A	19-28	125,052	417	e conseile francisco	0.72	-0.189
20	20-19	67,500	210	20-11	125,052	411	1,374	. 0.098	-0.152
20	20-21	61,500	270	20.29	125.052	417		-0.098	-0.152
21	21.20	67,500	270	21-12	125,052	417	1.374	-0.098	-0.152
21	21-22	61,500	270	21-30	125,052	417		-0.098	-0.152
22	22-21	67,500	270	22-13	125,052	411	1.374	-0.018	-0.152
22	22.23	67,500	270	22-31	125,052	417	7,57 7	-0.098	.0.152
23	23-22	67,500	270	1	125,052	417	1.374	-0.018	-0.152
23	23-24	67,500	270	23-32	125,052	411		-0.098	0.152
24	24-23	67,500	270	24-15	125.052	417	1,374	-0.098	.0.152
24	24-25	67,500	210	ł.	125.052	417		-0.018	-0.152
25	25.24	67,500	210	25-16	125,052	417	1, 374	-0.018	-0.152
25	25-26	67,500	270	25-34	125,052	417		-0.098	-0.152
26	26-25	67,500	270	26-17	125,052	417	1.374	-0.098	-0.152
26	26-27	67,500	270	26:35	125.052	417	Maritorina piakami Police	-0.098	-0.153
27	27-26	67,500	270	21-18	125,052	417	1,104	-0.018	.0.189
27		01,000		1	125.052	417	,,,,,,	-0.098	-0./89

Continuación ----- Tabla No. 2

Nudo		Momento de inercia I (cg1)	Rigidae rabbivo Ele (cm²)		Momento da inarcio Z (e.g.t)	Rigide 2 relokivo Elecari	Sums de rigidaces	Forder de Distit bución (dro bes)	Factor de Diskri bución (columno s.D. 1 File
28	28-29	67,500	270		125,052	417	1,398	-0.097	-0.149
28_	29.28	67,500	270	1	2/3,333	711		-0.081	-0.254
29	29.30		270	ļ.	2/3,333	7//	1.668	-0.081	-0.2/3
<u>30</u> 30	30-29		270		125,052		1.668	-0.081	-0.125
31	3/-30	1	270	;	125,333	1	1,668	-0.081	-0.213
31	31-32		270		2/3,333		- 10-210119-02-40	-0.081	-0.2/3
	32·3/ 32·33		270	1	125,052		1,668	-0.081	-0.125 -0.213
	33.32		210		125,052		1, 668	-0.081	-0.125
_	33-34 34-33		270 270		213,333 125,052			-0.081	-0.2/3
	3435		270	i i	2/3,333		1,668	-0.081	-0.125
	35-34		270		125,052		1.668	-0.081	-0.125
	35-36 36-35		270 270	1 :	213,333 125,058	I	1,398	-0.081	-0.2/3 -0./49
36	36.33	81,500		1	2/3,333		1,310	-0.097	-0.254

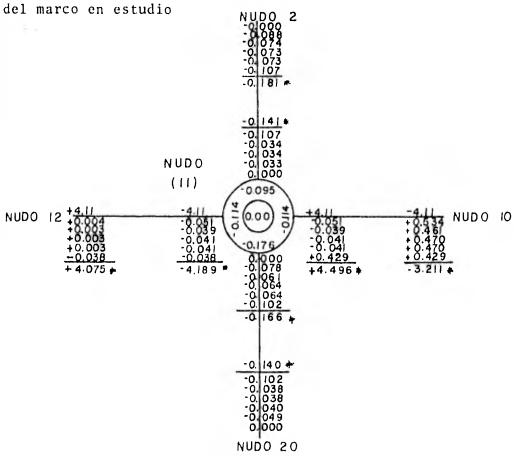
Continuación ----- Tabla No. 2

En la figura 26, se indican las secciones de ante-proyecto de trabes y columnas. Si la diferencia entre lassecciones supuestas y las finales es muy notable, se repet<u>i</u> rá el procedimiento hasta obtener la aproximación deseada.


La figura 27 ubica el nudo que tratemos en cuestión.

En la tabla No. 2 se encuentran los valores de losfactores de distribución, obtenidos, a partir de los eleme<u>n</u> tos que concurren a cada nudo del marco en estudio.

La aplicación de este factor de distribución, es $p\underline{a}$ ra distribuír el momento no equilibrado, entre los elementos que llegan a dicho nudo proporcionalmente a sus rigideces.


Las rigideces que aparecen en dicha tabla se determinaron, para cada uno de los elementos de la estructura, a partir de la condición, de que todas las trabes y columnasse encuentran empotrados en los extremos.

Como lo que nos interesa son los valores relativosde las rigideces, basta con calcular para cada miembro el valor de K=I/L donde: I es el momento de inercia del área de la sección transversal del elemento, respecto a un eje -

L Longitud del elemento en estudio,

Para explicar los detalles de la aplicación del método de G. Kani y sus resultados se analiza el nudo (11) --

Las cantidades +4.11 y -4.11, son los momentos de -empotramiento perfecto (\vec{M} ik) en los extremos de la trabe, debido a las cargas exteriores actuando en ella, trabes 11-10 y 11-12.

La suma de los momentos de empotramiento que afectan al nudo (11) es: +4.11 - 4.11 + 0.00 + 0.00 = 0.00 ($\Sigma Mik=Mi$), que es la cantidad que representa el centro del circulo pequeño (0.00). luego se obtiene el factor de rotación o de distribución, repartiendo el valor -1/2 proporcionalmente, en cada nudo, a los valores de las rigideces K de las barras que concurren en el.

Por ejemplo para el nudo 11 tenemos.

$$ik = -1/2 \frac{Kik}{\Sigma Kik}$$

$$Ic_{11-20} = \frac{35 \times 35^3}{12} = 125,052 \text{ Cm}^4; L = 300 \text{ Cm}.$$

$$Kc_{11-20} = \frac{125,052}{300} = 417 \text{ Cm}^3$$
.

$$1t_{11-10} = \frac{30\times30^3}{12} = 67,500 \text{ Cm}^4$$
; L = 250 Cm.

$$Kt_{11-10} = Kt_{11-12} = \frac{67,500}{250} = 270 \text{ Cm}^3$$

Ic₁₁₋₂ =
$$\frac{30 \times 30^3}{12}$$
 = 67,500 Cm⁴; L = 300 Cm.
Kc₁₁₋₂ = $\frac{67,500}{500}$ = 225 Cm³

$$\mathcal{L}_{C_{11-20}} = \frac{1}{2} \frac{K_{C_{11-20}}}{K_{C_{11-20}+K_{C_{11-2}}+K_{C_{11-10}+K_{C_{11-12}}}} = \frac{1}{2} \frac{417}{417+225+270+270} = 0.176$$

$$\mathcal{M}_{C_{11-2}} = -\frac{1}{2} \frac{K_{C_{11-2}}}{K_{C_{11-20}} + K_{C_{11-2}} + K_{t_{11-10}} + K_{t_{11-12}}} = -\frac{1}{2} \frac{225}{417 + 225 + 270 + 270} = -0.095$$

$$\mathcal{L}_{t_{11-10}} = \frac{1}{2} \frac{Kt \ 11-12}{Kc_{11-20}+Kc_{11-2} + Kt_{11-10} + Kt_{11-12}} = \frac{1}{2} \frac{270}{417+225+270+270} = -0.114$$

$$\mathcal{U}_{t_{1}} = \mathcal{U}_{t_{1}-1} = -0.114$$

En seguida los valores -0.176, -0.095 y-0.114 los anotamos en cada nudo frente a la barra correspondiente, dentro de la -superficie del circulo mayor, y comprobamos que su suma sea -1/2.

Ellik =
$$\mathcal{L}_{c_{11-20}}$$
 + $\mathcal{L}_{c_{11-2}}$ + $\mathcal{L}_{t_{11-10}}$ + $\mathcal{L}_{l_{11-12}}$ - 1/2
 (-0.176) + (-0.095) + (-0.114) + (-0.114) = - 1/2

Las sucesivas influencias del giro de los nudos a - los momentos MTk, las determinamos por .jteraciones de la - fórmula.

$$M'ik = Mik (Mi + \Sigma M'ki)$$

Así para el nudo (11), siendo su primera iteración tenemos:

$$\bar{M}i = \Sigma \bar{M}ii = 4.11 - 4.11 + 0.00 + 0.00 = 0.00$$

$$\Sigma M'ki = \vec{M}'_{10-11} + \vec{M}'_{2-11} + \vec{M}'_{12-11} + \vec{M}'_{20-11}$$

$$\Sigma \tilde{M}^{\dagger} ki = 0.534 + (0.088) + 0$$

$$\Sigma M^*ki = + 0.446$$

Para la trabe 11-10

$$M^{\dagger}ik = -0.114 (0+0.446) = -0.051$$

Para la trabe 11-12

$$M'ik = -0.114 (0 + 0.446) = -0.051$$

Para la columna 11-2

$$M'ik = -0.095 (0 + 0.446) = -0.042$$

Para la columna 11-20

$$M'ik = -0.176 (0 + 0.446) = -0.078$$

Las cantidades anteriores obtenidas así, son los valores anotados en dirección de cada barra que concurre al nudo 11, en orden con su momento de empotramiento correspondiente.

Seguimos así de un nudo a otro hasta obtener la --- aproximación deseada.

Para finalizar, se suman los momentos de empotra--miento en los extremos de cada barra con la influencia de giro correspondiente, obteniendo así los momentos definitivos de los extremos de cada elemento. Para el nudo 11 donde concurren las barras 11-12, 11-10, 11-12 y 11-20 tene-mos:

$$Mik = \overline{M}ik + 2M'ik + M'ki$$

Momento final en la barra 11-2

Tenemos que la aproximación deseada es (-0.034) - en el nudo 11

$$\overline{Mik} = 0.00$$

$$2M'ik = 2(-0.034)$$

M'ki =-0.073 (aprox. deseada en el nudo 2)

$$MF_{C_{11-2}} = 0.00 - 0.068 - 0.073 = -0.141 \text{ Ton - M}$$

$$MF_{c} = -0.141 \text{ TON-M}$$

Momento final para la barra 11-10

$$MF_{t_{11-10}} = +4.11 + 2 (-0.041) + 0.470$$

$$MFt_{11-10} = 4.496 \text{ TON-M}$$

Momento final para la barra 11-12

$$MF_{t_{11-12}} = -4.11 + 2 (-0.041) + 0.003$$

$$MF_{t_{11-12}} = -4.189 \text{ TON M}$$

Momento final para la barra 11-20

$$MF_{C_{11-20}} = 0.00 + 2 (-0.064) - 0.038$$

$$MF_{C_{11-20}} = -0.166 \text{ TON-M}$$

Estos son los valores que aparecen con asterisco en el nudo 11, y su suma debe ser igual a cero para que el nudo se encuentre en equilibrio.

$$\Sigma MF_{11} = 0.00$$
; - 4.189 + 4.496 - 0.141 - 0.166 = 0.00

MOMENTOS Y CORTANTES FINALES

Los momentos finales de cargas verticales se han in dicado en la figura No. 32

Las fuerzas cortantes que ocurren en los extremos de cada columna se obtuvieron de la siguiente manera.

En la figura 29 se muestran los momentos ya determi nados, que se encuentran en la figura 28.

ENTREPISO 4

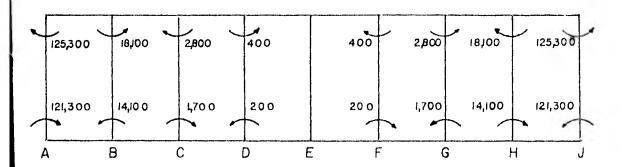


FIGURA No. 29

Estos momentos originan en los extremos de cada columna cortantes, que para satisfacer las condiciones de equi librio de la estática elemental deben valer:

$$V = \frac{\Sigma M \text{ en los extremos}}{I}$$

Los cortantes determinados así aparecen el la fig.31

Condiciones de equil<u>i</u>
brio de una pieza sujeta a momentos en los
extremos.

$$Mab + Mba = VL$$

$$: V = \frac{Mab + Mba}{L}$$

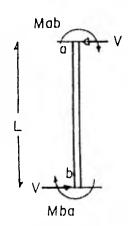


FIGURA 30

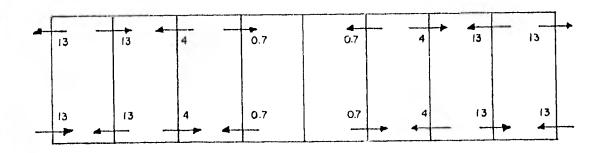


FIGURA No. 31

Para que la estructura sea incapaz de desplazarse - lateralmente la suma de los cortantes en un sentido deberá-ser igual a cero.

Sumando los cortantes en el nivel 4, efectivamenteresulta ΣV_4 = 0

En las trabes se presentan dos tipos de fuerzas co<u>r</u> tantes.

Isostáticas. - Determinadas por medio de las ecuaci<u>o</u>
nes generales de la estática.

Hiperestáticas. Determinadas de acuerdo con la ecuación $V = \frac{\Sigma M \text{ en los extremos}}{L}$

La suma algebráica de estas dos fuerzas produce -los cortantes finales que aparecen en la figura No. 34

En las figuras 33 y 35 se muestran los diagramas de momento fluxionante y fuerza cortante finales, debido a las --cargas verticales.

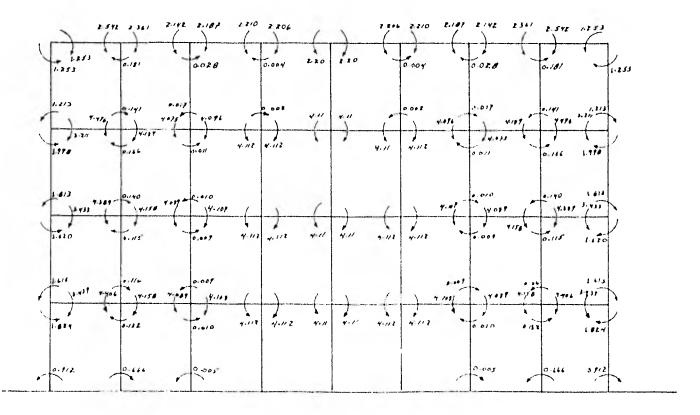


FIGURA NO. 32 RESUMEN DE MOMENTOS FINALES MOMENTOS DEBIDOS A LA CARGA VERTICAL.

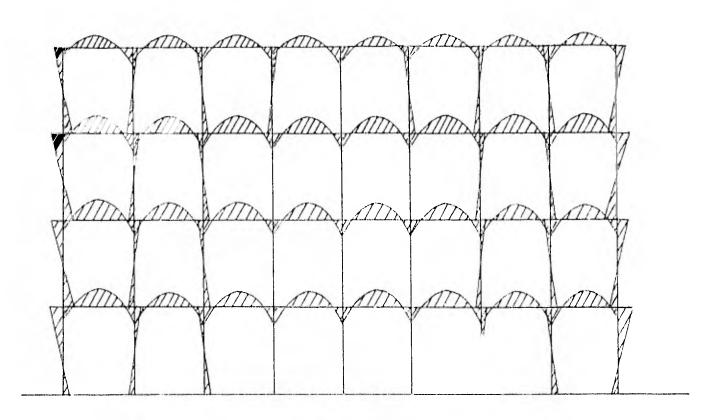


FIGURA No. 33 DIACRAMA DE MOMENTOS FINALES

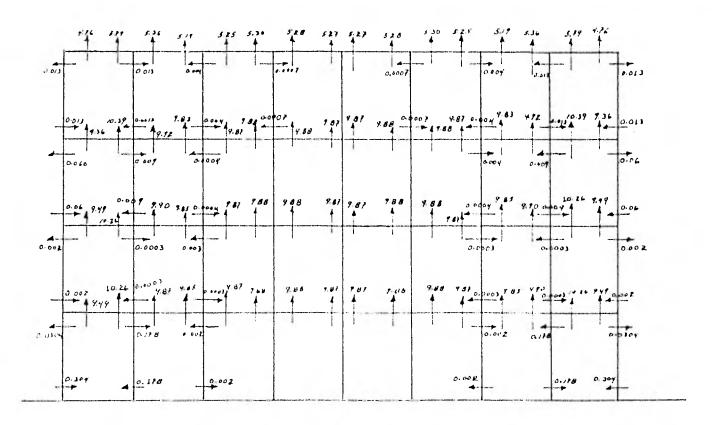


FIGURA No. 34

CORTANTES DEBIDOS A CARGA VERTICAL

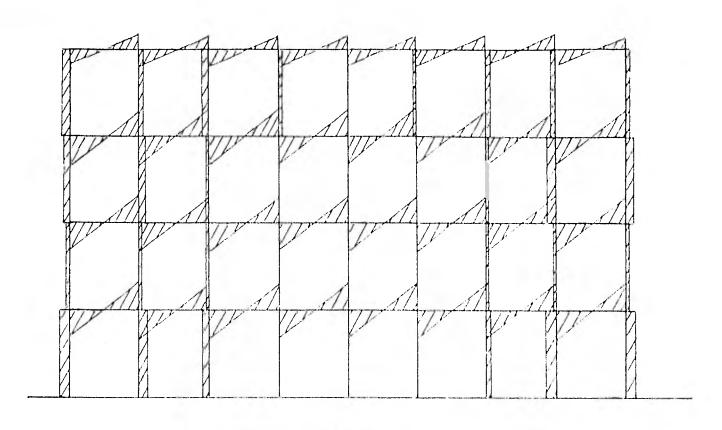


FIGURA No. 35 DIAGRAMA DE CORTANTES FINALES

4) ANALISIS DE ESFUERZOS POR SISMO

El método de análisis, que se usará para obtener - las fuerzas cortantes a diferentes niveles del edificio enestudio será el análisis estático.

Primera hipótesis.

Para estimar las fuerzas cortantes a diferentes niveles de un edificio, se supone una distribución lineal deaceleración con valor nulo en la base de la estructura y -- máximo en el extremo de la misma.

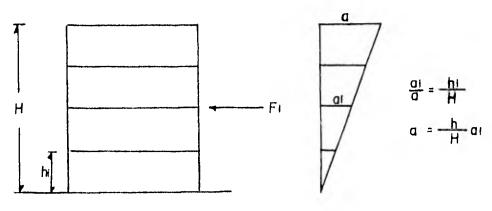


FIGURA No. 36

Segunda Hipótesis.

Que la fuerza cortante sísmica en la base (V $_{\rm base}$)-entre el peso total de la estructura (W $_{\rm T}$) sea igual, a un -coeficiente sísmico, especificado en el reglamento. (C $_{\rm s}$).

$$V_{base} = Cs Wt$$

$$Fi = mi \ ai = \frac{Wi}{g} \times \frac{hi}{H} \ a - \dots - 1$$

$$V_{base} = \Sigma Fi = a\Sigma \frac{Wi \ hi}{g \ h} - \dots - 2$$

$$V_{base} = Cs Wt - \dots - 3$$

$$de \ 2 \ Y \ 3$$

$$a\Sigma \frac{Wi hi}{g h} = Cs \ Wt - \dots - 4$$

$$a = Cs \frac{\Sigma Wi}{\Sigma Wi hi} \ gH - \dots - 5$$

$$Fi = \frac{Wi}{g} \frac{hi}{H} \times Cs \frac{\Sigma Wi}{\Sigma Wi hi} \ gH - \dots - 6$$

Eliminando terminos

Fi =
$$\frac{\text{Wihi}}{\Sigma \text{Wi hi}}$$
 Cs Σ Wt ----- 7

Donde:

Fi = Fuerza sísmica aplicada en el nivel i.

Wi = Peso del Nivel i.

hi = Altura del nivel i sobre el desplante

Cs = Coeficiente para diseño sísmico.

El coeficiente Cs dependerá de tres factores

- A) El uso que ha de darse a la construcción
- B) Las características estructurales del edificio
- C) El tipo de suelo sobre el que ha de levantarse el edificio.
- A) El uso que ha de darse al edificio cae dentro -del grupo "B" "Construcciones cuya falla ocasionaría pérdidas de magnitud intermedia, tales como bodegas ordinarias,gasolinerías, comercios, bancos, centros de reunión, edificios de habitación, hoteles, edificios de oficinas, bardas
 cuya altura exceda 2.5 M."
- B) De acuerdo a las características estructurales,el edificio pertenece a el tipo "1".
- "Se incluyen dentro de este tipo los edificios y naves industriales, salas de espectáculos, y construcciones
 semejantes, en que las fuerzas laterales se resisten en cada nivel por marcos contínuos contraventeados o no, por dia
 fragmas o muros o por combinación de diversos sistemas como-

los mencionados. Se incluyen también las chimeneas, torres, y barda, así como los péndulos invertidos, o estructuras en que el 50% por ciento o mas de su masa se halle en el extremo superior, y que tengan un sólo elemento resistente en la dirección de análisis."

C) Dado el lugar donde estará ubicado el edificio,cae dentro del suelo tipo "I" (Terreno firme.)

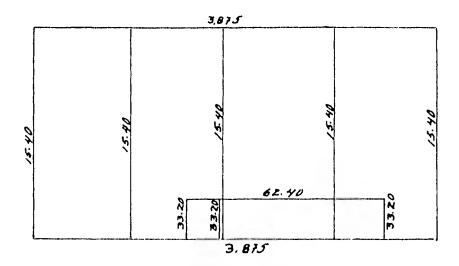


FIGURA No. 38
RIGIDECES 1° ENTREPISO
(Ton/cm)

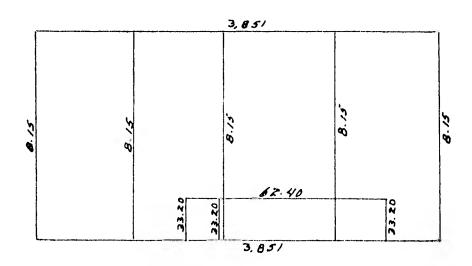


FIGURA No. 39
RIGIDECES 2° ENTREPISO
(ton/cm)

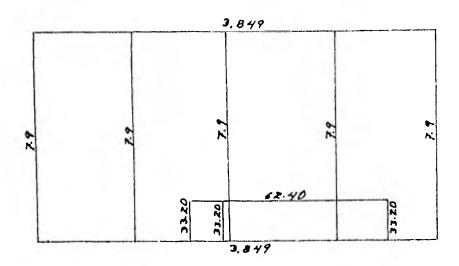


FIGURA No. 40
RIGIDECES 3° ENTREPISO
(ton/cm)

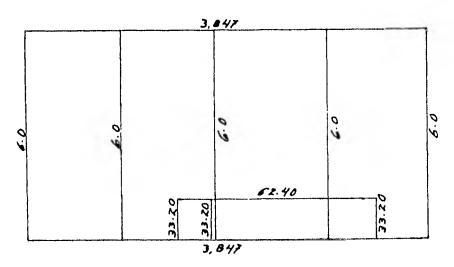
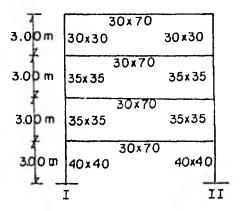



FIGURA No. 41
RIGIDECES 4° ENTREPISO
(ton/cm)

Para el análisis por sismo de la estructura, estase analizará en el sentido (X); ya que en el sentido (Y) el marco esta reforzado con muros diafragma que toman todala fuerza cortante que pudiera producir el sismo si actúa en este sentido.

Obtención de las rigideces de entrepiso en el sent \underline{i} do (X) del marco.

SECCIONES DE ANTEPROYECTO.

Formulas de Wilbur.

Las fórmulas de Wilbur son aplicables a marcos regulares formado por piezas de momento de inercia constante.

Se considera que las columnas estan empotradas en - la cimentación.

Rigidez para el primer entrepiso.

$$R_{1} = \frac{48 \text{ Ec}}{\frac{4h_{1} + h_{1} + h_{2}}{\Sigma Kc_{-}1}} h_{1}$$

Rigidez para el segundo entrepiso.

$$R_{2} = \frac{48 \text{ Ec}}{\frac{4h_{2}}{\Sigma kc_{-2}} + \frac{h_{1} + h_{2}}{\Sigma Kt_{1} + \frac{\Sigma Kc_{-1}}{12}} + \frac{h_{2} + h_{3}}{\Sigma Kt_{2}}} h_{2}$$

Para los pisos subsecuentes.

$$Rn = \frac{48 \text{ Ec}}{\frac{4 \text{ hn}}{\Sigma \text{Kc-n}} + \frac{\text{hin} + \text{hn}}{\Sigma \text{Ktm}} + \frac{\text{hn} + \text{ho}}{\Sigma \text{Ktn}}} \text{ hn}$$

En las ecuaciones anteriores.

Ec = Modulo de elasticidad del concreto (10 000 f'c)

Rn = Rigidez del entrepiso en cuestión

Ktn= Rigidez de trabes del nivel sobre el entrepiso n.

Kcn= Rigidez de columnas del entrepiso n.

m,n,o= Indices que identifican tres niveles consecut<u>i</u>
vos de abajo hacia arriba.

hn = Altura del entrepiso n.

$$E = 10,000 \sqrt{200} = 141,421 \text{ Kg/m2}.$$

$$\Sigma Kc_{1} = \frac{40x40^{3}}{12x300} \times 2 = 1,422$$

$$\Sigma Kt_1 = \frac{30x70^3}{12x1020} = 841$$

$$\Sigma Kc_{-2} = \frac{35x35^3}{12x300} \times 2 = 834$$

$$\Sigma Kc_{-3} = \frac{35x35^3}{12x300} \times 2 = 334$$

$$\Sigma Kc_{-4} = \frac{30 \times 30^{3}}{12 \times 300} \times 2 = 450$$

$$R_1 = \frac{48 (141,421)}{\left[\frac{1200}{1422} + \frac{600}{841 + 119}\right]} = 15,404 \text{ Kg/cm}.$$

$$R_2 = \frac{48 (141,421)}{\left[\frac{1200}{834} + \frac{600}{841 + 119} + \frac{600}{841}\right]} = 8,147 \text{ Kg/cm}.$$

$$R_3 = \frac{48 (141,421)}{\left[\frac{1200}{834} + \frac{600}{841} + \frac{600}{841}\right]} = 7,896 \text{ Kg/cm}.$$

$$R_4 = \frac{48 (141,421)}{\boxed{\frac{1200}{450} + \frac{600}{841} + \frac{300}{841}} = 6,055 \text{ Kg/cm}.$$

$$E = 10,000 \sqrt{200} = 141,421 \text{ Kg/m2}.$$

$$\Sigma Kc_{-1} = \frac{40 \times 40^3}{12 \times 300} \times 2 = 1,422$$

$$\Sigma Kt_1 = \frac{30x70^3}{12x1020} = 841$$

$$\Sigma KC_{2} = \frac{35 \times 35^{3}}{12 \times 300} \times 2 = 834$$

$$\Sigma KC_{-3} = \frac{35 \times 35^3}{12 \times 300} \times 2 = 834$$

$$\Sigma KC_{-4} = \frac{30 \times 30^{3}}{12 \times 300} \times 2 = 450$$

$$R_1 = \frac{48 (141,421)}{\left[\frac{1200}{1422} + \frac{600}{841 + 119}\right]} = 15,404 \text{ Kg/cm}.$$

$$R_2 = \frac{48 (141,421)}{\left[\frac{1200}{834} + \frac{600}{841 + 119} + \frac{600}{841}\right]} = 8,147 \text{ Kg/cm}.$$

$$R_3 = \frac{48 (141,421)}{\boxed{\frac{1200}{834} + \frac{600}{841} + \frac{600}{841}}} = 7,896 \text{ Kg/cm}.$$

$$R_4 = \frac{48 (141,421)}{\left[\frac{1200}{450} + \frac{600}{841} + \frac{300}{841}\right]} = 6,055 \text{ Kg/cm}.$$

Obtención de las rigideces de entrepiso en el sent<u>i</u> do (y) del marco.

$$\Sigma Kc_1 = \frac{40 \times 40^3}{12 \times 300} \times 9 = 6,400$$

$$\Sigma Kt_1 = \frac{20 \times 30^3}{12 \times 250} \times 8 = 1,440$$

$$\Sigma Kc_2 = \frac{35x35^3}{12x300} \times 9 = 3,751$$

$$\Sigma Kc_3 = \frac{35 \times 35^3}{12 \times 300} \times 9 = 3,751$$

$$\Sigma Kc_{-4} = \frac{30 \times 30^{3}}{12 \times 300} \times 9 = 2,025$$

$$R_1 = \frac{48 (141,421)}{\left[\frac{1200}{6400} + \frac{600}{1440+533}\right] 300} = 46,027 \text{ Kg/cm}.$$

$$R_2 = \frac{48 (141,421)}{\left[\frac{1200}{3751} + \frac{600}{1440+533} + \frac{600}{1440}\right] 300} = 21,743 \text{ Kg/cm}.$$

$$R_3 = \frac{48 (141,421)}{\left[\frac{1200}{3751} + \frac{600}{1440 + 533} + \frac{600}{1440}\right]} = 19,620 \text{ kg/cm}.$$

$$R_4 = \frac{48(141,421)}{1200} = 18,584 \text{ Kg/cm}.$$

$$\left[\frac{1200}{2025} + \frac{600}{1440} + \frac{300}{1440}\right] = 300$$

RIGIDEZ DE ENTREPISO DE MUROS

Las deflexiones de un muro sujeto a una fuerza lateral en su plano son debidas a efectos de cortante y de -- flexión. Las deformaciones de cortante se pueden calcularcomo $\Delta V = \frac{VH}{AG}$ y las de flexión como $\Delta F = \frac{VH^3}{\alpha \times EI}$, siendo -- un factor que depende de las condiciones de empotramiento -- del muro. La suposición de considerar que en cada nivel el muro es un voladizo lleva a que = 3. La rigidez se obtiene como $K = \frac{V}{\Lambda_{f} + \Lambda_{V}}$

Lo anterior es una forma sumamente burda de calcular las rigideces, ya que no toma en cuenta la liga que el sistema de piso proporciona a los distintos muros. Sin embargo, intentar tomar en cuenta este factor lleva a procedi---mientos de análisis cuya complejidad no parece justificarse en vista de las grandes incertidumbres que exísten en las -variables a considerar.

De lo anterior podemos expresar la rigidez de cualquier muro como:

$$K = \frac{3EI}{H^3} + \frac{AG}{H}$$

Siguiendo las instrucciones de las normas técnicas-

complementarias del reglamento de construcciones para el -Distrito Federal se tiene:

MODULO DE ELASTICIDAD

El módulo de elasticidad de la mampostería, E po-drá determinarse experimentalmente o calcularse en forma -aproximada como sigue:

Para mampostería de tabiques y bloques de concreto:

$$E = 600 \int m^*$$
 Para cargas de corta duración

$$E = 250 fm$$
 Para cargas sostenidas

Para mampsotería de tabique de barro y otras piezas excepto concreto.

$$E = 400 \int m^*$$
 Para cargas de corta duración

$$E = 250 \int m^*$$
 Para cargas sostenidas.

El valor de
$$\int_{-\infty}^{\infty}$$
 se tomará igual a 15 Kg/cm².

Modulo de cortante.

El módulo de cortante, de la mampostería se tomarácomo G = 0.3E.

Cálculo de rigidez para los muros en sentido (X)

$$K = \frac{3EI}{H^3} + \frac{AG}{H}$$

t = 14 cm.

L = 250 cm.

H = 300 cm.

 $A = 250 \times 14 = 3500 \text{ cm}^2$

 $E = 400 \times 15 = 6000 \text{ Kg/cm}^2$

 $G = 0.3 \times 600 = 1800 \text{ Kg/cm}^2$.

$$I = \frac{tL^3}{12} = \frac{14(250)^3}{12} = 18,229,166 \text{ Cm}^4$$

$$K = \frac{3(6,000) (18,229,166)}{(300)^3} + \frac{(3500)(1800)}{300}$$

K = 12,153 Kg/cm + 21,000 Kg/cm = 33,153 Kg/cm.

K = 33.2 ton/cm.

De la misma manera que se obtuvieron las rigidecespara los muros de la estructura en el sentido (Y). t = 14 cm.

L = 1680 cm.

H = 360 cm

 $A = 14 \times 1680 = 23,520 \text{ cm}^2$

 $E = 6,000 \text{ Kg/cm}^2$

 $G = 1800 \text{ Kg/cm}^2$

$$I = \frac{14x (1680)^3}{12} = 5.53190 \times 10^9 \text{ cm}^4$$

$$K = \frac{3(6000)(5.5319x19^{9})}{(300)^{3}} + \frac{23,520x1800}{300}$$

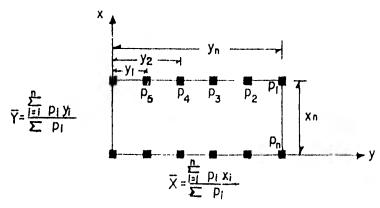
K = 3.687,933 Kg/cm + 141,120 Kg/cm.

K = 3,829 ton/cm.

En las figuras 38,39,40 y 41 se representan las rigideces, obtenidas anteriormente, en cantidades colocadas en el elemento que le corresponde, y que éste ayuda a rigidizar la estructura.

FUERZAS SISMICAS, CORTANTE Y POSICION DEL CORTANTE EN CADA PISO

La secuencia de cálculo de éstos conceptos está -concentrada en la tabla No. 3


Los valores de Wi son los pesos de las masas de cada

entrepiso, h; es la altura de cada nivel sobre el desplante.

Fix, Fiy son los valores de las fuerzas sísmicas -- aplicadas en el nivel correspondiete, y obtenidos a partir- de la fórmula Fi= $\frac{\text{Wi hi}}{\Sigma \text{Wihi}}$ Cs ΣWi . Cs coeficiente para diseño sísmico especificado en el reglamento, que para este caso - vale 0.04

Vx, Vy estos valores se obtienen acumulando las fuerzas sísmicas arriba de cada entrepiso, y reciben el nombrede fuerzas cortantes.

El centro de gravedad es obtenido a partir de la concentración de pesos en cada elemento resistente por carga vertical, tomando a la estructura en sus dos direcciones
y por cada nivel.

Los demás valores que aparecen en la tabla No. 3 se obtuvieron de los resultados anteriores ya descritos.

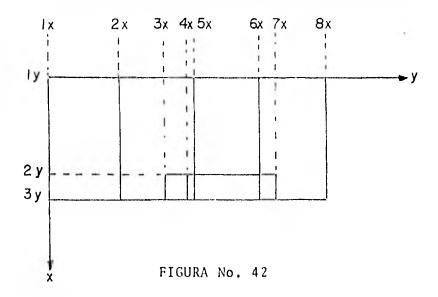
Determinación de las fuerzas sismicas.

	en-				Fix	Fiy	cortan	tos	c e n grav	l r o edod			Σ	Σ	posicio	n de le
vei	pi- 30.	Wi	hi	Wihi			Vx	Vy	X	Ÿ	Fix Y	Fly X	Fix Y	9.82 5.7 VII. 16 10.05 5.7	x Eix X	
4		173	12	2.076	11.40	11.40			5.74	182	111.25	65.44	111-75	65.44		
	4				100 7000		11.40	11.43		in many					9.82	5.74
3		212	9	L.908	10-48	10.48			5.71	10.30	107.94	57.04	2/1.01	125.20		
	3						21.88	2/88							10.05	5.73
2		212	6	1272	6.99	6.99			5.71	1030	7210	39.91	21/81	165.19		
	2						28.87	288		715.00					10.11	5.72
1		2/2	3	636	3.49	3.49			5.7/	10.30	35.75	19.93	3218	105.12		
	1						32.36	32.36							10.13	5.72

Σ 809 5,892

Tabla No3

<u>Distribución de cortantes entre los elementos re</u>sistentes en cada piso.


La tabla No. 4 sistematiza convenientemente las operaciones para la distribución del cortante sísmico y el --momento torsionante.

neral, en un nivel cualquiera, no coicidirá la resultante - de las fuerzas producidas por el sismo, con la resultante - de las fuerzas resistentes del entrepiso. La fuerza sísmica que actúa en el centro de gravedad de las masas de cadapiso. Esto produce un par de torsión de magnitud igual alproducto de la fuerza cortante por su distancia al centro - de torsión o punto por el que deba pasar la fuerza sísmica, con el objeto de que el movimiento relativo entre dos niveles sea de traslación exclusivamente.

El centro de torsión se puede obtener como el cen-troide de los elementos resistentes, teniendo así:

$$\bar{X}ct = \frac{\Sigma Kiy.Xi}{\Sigma Kiy}$$
; $\bar{Y}c.t = \frac{\Sigma Kix.Yi}{\Sigma Kix}$

En la figura 42 se muestra la planta de referenciaque se utilizó para la localización de los ejes que en ella aparecen, al tomar en cuenta los efectos de torsión.

Una vez obtenida la fuerza cortante por piso, es ne cesario distribuirla entre los distintos elementos resisten tes que forman parte de la estructura y en el sentido que - actúa la fuerza sísmica. Esta distribución se hace proporcionalmente a la rigidez de entrepiso de los marcos o elementos resistentes.

Distribuyendo la fuerza cortante con este criterioy teniendo en cuenta la acción del par de torsión, la fuerza que actúa finalmente en cada elemento resistente es:

$$Tx = \frac{Ki \times V}{\Sigma Kix} + \frac{Kix \cdot c, ti}{\Sigma (Kix \cdot \overline{\Psi}^2.ti + Kiy \cdot \overline{X}^2.ti)} M_{tx}$$

$$Ty = \frac{Kiy \cdot V}{\Sigma Kiy} + \frac{Kiy \cdot \overline{X}c.ti}{\Sigma (Kix \cdot \overline{\Psi}^2.ti \cdot \overline{X}^2c.ti)} M_{ty}$$

Para fines de diseño, el momento torsionante \mathbf{M}_{T} setomará igual a la fuerza cortante de entrepiso multiplica-

da por la excentricidad, que para cada marco resulte mas -- desfavorable de la siguiente:

$$e = 1.5e_s + 0.1b + 0.1b$$

 $\rm e_s$.- Es la excentricidad torsional calculada en elentrepiso considerado y $\rm b$ es la máxima dimensión en plantade dicho entrepiso medida perpendicularmente a la dirección del movimiento del terreno, así tenemos que $\rm M_T$ = V X e. -- Los demás valores que aparecen en las fórmulas anteriores - ya están determinados y representados en la tabla No. 4

En la figura 43, se pone en ejemplo el entrepiso 2 con los valores finales de los cortantes actuando en los d \underline{i} ferentes elementos resistentes.

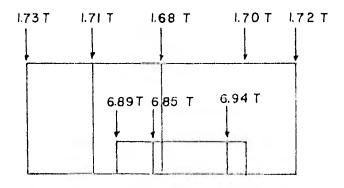


FIGURA No. 43

Distribución de cortantes entre los elementos resistentes, de cada plso.

Tabla No 4

Entrepiso I

												2130							
Eje	Kix	y:	Kix Yi	Yii	Klxv.	Kix v.2	Fie	K:	Χi	Kx:	Xie	K:.X:4	Kiu x?	e/c	clos	de Vx Total		ctos d	
																		torsion	
LX	15.40	0	0	-107	16874	185321	IX	3815	0	0	.5.12	17.840	101,581	2.82	0.09	2.91	1605	5.00	21.05
2X	15.10	5	77	-5.91	.9 1.94	548.88	2У	6240	7.70	4 8 0	.258	160.99	41536	2.82	0.05	2.87	0.26	0.04	0.30
3x	33 ₂ 0	7.50	249	3.41	-16894	397.74	3у	3 <i>81</i> 5	1020	38525	1508	19,685	99,99,80	6.08	0.06	6./4	16.05	4.97	21.02
4x	1540	10	332	0.97	-91.94	3/.23								6.08	0.02	6.10			
					I	6.9/	1							2.82	0.01	2.83		1	
						250/0								2.82	0.03	2.85		!	
			L		i	1415.70								6.08	0.11	6.19			
8x	15.10	20	308	+9.03	13206	1255.7/								2.82	0.01	2.81	l		
	1764		1936.47			5,761		13/24	1	40,005			201.996		1				

Entrepiso 2

												F	_						
E in	<u>ν</u> .		V			y2				V	L a	V	J2	efec	tos de	Vx	efect	os de	Vy
E10	VIX	Υī	YX YI	УII	1KXP1	rix XII	cje	riy	ХIУ	riyx	× //	riyxit	Cly XII	directa	torsion	Vx Total	directo	torsion	Total
12	8.15	0	0	-1420	7/28	1,022	17	3,831	0	0	.5/2	19,717	100,952	1.68	0.05	1.73	14.32	4.51	18.83
21	8.15	5	40.75	-620	5053	3/3.28	24	62.40	7.70	480	2.58	1160.99	9/5	1.68	0.03	1.7/	0.23	0.04	0.21
3χ	3320	7.50	241.15	370	-12784	454.50	3У	3,85/	10.20	39,280	508	19,563	99,380	6.83	0.06	6.89	14.32	4.47	18.79
4 X	33.20	10	332	1.20	-39.84	47-80								6.83	0.02	6.85			
5 X	8.15	10.30	83.94	-0.10	7.34	6.60								1.68	0.00	1.68			
6 X	8.15	15	122.25	13.80	3091	117.68								1.68	0.02	1.70			
7 X	33.20	17.50	581	16.30	201.16	1317.70								6.83	0.11	6.94			
8%	8.15	20	163	8.80	77.72	63113								1.68	0.04	1.72			
	14035		157269			3,9//		7.764		39,760	1		200,147						

Entrepiso 3

Fin	Kı	v:	K V	V: 4	K: V.	K: v.2	Fie	K:	Y:	K., Y.	YIA	Kr., Yes	K. x2	efec	tos de torsion	Vx	etect	os de	Vy
	XI	71	ול אויי	711	ות גףי	זול אויי	-,-	· y	^1	וי עויי	^11	ווי עוי	ווי עוי	directo	torsion	Total	direct o	forsion	Total
iχ	7.9	0	0	-//2/	-8848	991.86	14	3849	0	0	-512	19,707	100,899	1.24	0 04	1.28	10.85	3.44	14.29
2X	7.9	5	39.50	621	-4806	304.66	2 Y	62.40	7.70	480	1258	160.99	415	1.24	0.02	1.26	0.18	0.03	0.21
3 <i>X</i>	33.20	7.50	249	-37/	-123/7	456.97	37	3811	12.20	39,260	15.08	19,553	99,329	5.22	0.05	5.27	10.85	3.41	14.26
4X	33.20	10	332	-].21	40.17	48.61								5.22	0.02	5.24			
5X	7.9	10.30	81.37	0.10	. 7.19	6.54								1.24	0.00	1.24			
6X	7.9	15	118.5	13.79	29.94	113.48								1.24	0.01	1.25			
7X	3320	17.50	5.81	1629	20883	<i>[313.5</i>								5.22	0.09	5.31			
8X	7.9	20	158	1831	69.44	610.39								1.24	0.03	₫ 27			
	137.10		155937			3,846		1760		39,740			200,693						

Entrepiso 4

					_					90,0	•	•							
Eje	Κįχ	УI	K _{ix} y _i	Yit	K _{ix} y _i	Kix yfi	Eje	Kıy	Χİ	K _{iy} x _i	Xit	Kiy XI	Kiy Xii	et e c	tos de torsion	Vx Total	ete ct	os de	Vy Total
12		0			T	764.78	1						100,841	1	0.02	0.55	5.65	1.81	7.46
2X	6	5	30	-6-29	-37.74	237.38	27	6240	7.70	480	1258	160.99	115.36	053	0.01	0.54	009	0.01	0.10
32	33.20	7.50	249	-3.79	-125.83	4/3,97	37	3847	10.20	39,239	15.08	119.543	99,217	2.92	003	2.95	5.65	1.79	7.44
42	33.20	10	332	-1.21	-72.83	55.25								2.92	001	2.93			
5,X	6	103	61.80	-299	-5.94	5.88								0.53	0-00	0.53			
6 X	6	15	90.00	13.71	22.26	82.58								0.53	0.01	0.54			
7X	33.20	1250	581	16.21	24.17	J <i>280</i> .33								2.92	0.05	2.97			
82	6	20	120	18.71	52.26	455.18								0.53	0.01	0.54			
	129		1463.8			3295,35		7146		39,119			200,539						

Σ

continuación.....Tabla No 4

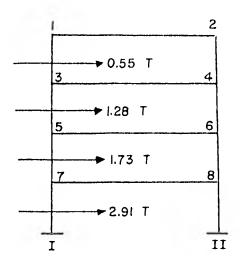


FIGURA No. 44
FUERZAS CORTANTES EN EL MARCO J-J'

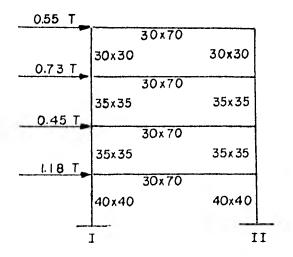
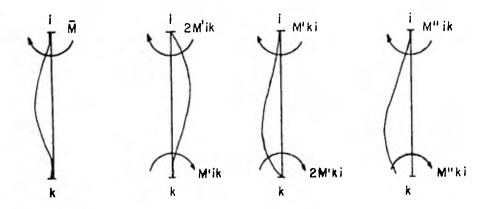


FIGURA No. 45
FUERZAS SISMICAS EN EL MARCO J-J'

Conocido el sistema de cargas que actúa en cada ma \underline{r} co o elemento resistente, este se analiza para su dimensionamiento.

Por consiguiente en la figura 44 se representan las fuerzas cortantes mas desfavorables, para la estructura, yque actúan en el marco J-J'.


Para las fuerzas cortantes que actúan en los muros, estos se revisarán para saber si son capaces de resistir di cha fuerza.

En la figura 45 aparecen las supuestas fuerzas sísmicas que actúan en cada nivel de la estructura, así como - las secciones de anteproyecto de los elementos que integran el marco. En seguida, se analiza el marco suponiendo que - en el actúan dichas fuerzas, el método de análisis que se - usará es el de G. Kani, que ya se explicó su procedimiento-cuando se analizó la estructura en el sentido "Y" por cargas verticales.

El procedimiento de análisis, por fuerza sísmica, - es similar al anterior, con la variante de que hay que to--mar en cuenta que ahora la estructura sufre cierto desplaza miento horizontal.

En este caso la configuración deformada de una barra

la podemos considerar como la superposición de los siguientes estados.

Las tres primeras etapas de la configuración son -exactamente iguales, a las consideradas en el caso de estruc
turas con nudos indesplazables, que ya vimos anteriormenteen el análisis por cargas verticales.

Bastará para el cálculo del momento Mik en el extremo de la barra que se desplaza, agregar a la igualdad -(a), el valor de M"ik debido al desplazamiento 5, del extre
mo i de la barra.

Conocidos, por lo tanto, estos cuatro valores de -los momentos en el extremo de la barra, puede obtenerse elmomento total resultante mediante la suma: Mik = Mik + 2M'ik
+ M'ki + M"ik. Donde el valor M"ik debido al desplazamiento del extremo de la barra, se designará como la influen-cia del desplazamiento de los pisos de la estructura, sobre

los momentos en los nudos.

Planteando el equilibrio de momentos en el extremoi, y recurriendo al concepto de factor de rotación tenemos:

$$Mik = 0$$

 $M'ik = Mik (Mi + M'ki + M''ik) -----(I)$

Analicemos ahora el equilibrio de cortantes en un - entrepiso cualquiera.

$$\sum Qik = \sum_{r}^{n} Fr = Qr$$

 \sum Qik = Qr (cortante de entrepiso) FIGURA N-. 46

Expresando Qik en función de los momentos en los -- extremos de las columnas Figura No. 47 Mik

$$Qik = \frac{Mik + Mki}{h}$$

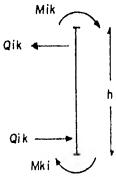


FIGURA No. 47

Aceptemos que todas las columnas del entrepiso r -- tengan la misma altura 'h' entonces $\Sigma Qik = 1/h (\Sigma Mik + \Sigma Mki)$

Ahora sustituyendo a ΣMik y ΣMki de acuerdo a (a') se tiene:

$$\Sigma Qik = \frac{1}{h} (2\Sigma M'ik+\Sigma M'ki+\Sigma M''ik+2\Sigma M'ki+\Sigma M''ik)$$

Agrupando términos.

$$Qik = \frac{1}{h} (3\Sigma M'ik + 3\Sigma M'ki + 2\Sigma M''ik)$$

Planteando el equilibrio de fuerzas horizontales en el entrepiso r.

$$\frac{1}{h} \quad (3\Sigma M'ik + 3\Sigma M'ki + 2\Sigma M''ik) = -Qr$$

$$3\Sigma M'ik + 3\Sigma M'ki + 2\Sigma M''ik = -Qrh$$

Dividiendo entre 2 y agrupando términos

$$\frac{3}{2} \left(\sum M'ik + \sum M'ki \right) + \sum M''ik = -\frac{Qrh}{2}$$

$$\Sigma M''ik = -\frac{3}{2} \left(\frac{Qrh}{3} + \Sigma M'ik + \Sigma M'ki \right)$$

A la cantidad Qr h/3 se le llama momento de entrepiso, y es positiva si las fuerzas externas actúan de derecha a izquierda ($\tilde{M}r = Qr h/r$).

Para distribu1r la suma de las contribuciones pordesplazamiento entre cada una de las columnas del entrepiso r, podemos obtener factores semejantes a los de rotación.

La rigidez de la columna del entrepiso r es $6EI/h^2$, pero la cantidad $\frac{6E}{h^2}$ es una constante, por lo que se puede-afirmar que la rigidez lateral de las columnas es proporcional a 'I'.

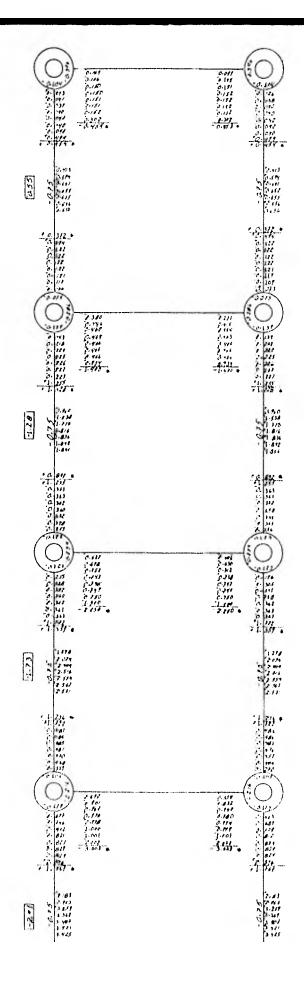
El factor de desplazamiento se toma como:

$$\forall$$
ik = $-\frac{3}{2}$ $\frac{\text{lik}}{\text{\Sigma Iik}}$ (por entrepiso)

: M''ik =
$$\sqrt{ik}$$
 (\sqrt{Mr} + Σ M'ik + Σ M'ki) ----- II

Se dispone ahora de (1) y (II), las cuales aplica--das en forma sucesiva llevan a la solución final que se presenta en la figura No. 48.

En las figuras 49 y 50 se representan los momentosy cortantes finales obtenidos, a partir de las supuestas -fuerzas sísmicas que actuarán en la estructura en el sentido (X) cuando haya un movimiento sísmico.


La figura 53 representa el análisis del mismo marco, por carga vertical debido al peso propio de las trabes de -rigidez, y en las figuras 54 y 55 se vaciaron los resultados obtenidos de éste análisis.

En la figura 44 se recopilan los momentos finales - que actúan en el marco, debido a las fuerzas sísmicas actua<u>n</u> do de izquierda a derecha, y a el peso propio de las trabes de rigidez.

En las figuras 45, 46, 47 y 48 se representan los - diagramas de momentos y cortantes finales que actúan en la-estructura, para cada tipo de carga, según se indique en la figura.

Nudo	Trabe	de inercia	Rigidez relativa I/L (cm ³)	Columna	Momento de inercia I (cm4)		suma de rigideces	Factor de Dis- iribucion(Traba) FD:-1/2(I/UkI/L	Factor de Dis- tribución(Columno ED> 1/20/19 1/1
_1	1-2	851,500	858	و - ا	67.500	225	1,083	-0.396	-0.104
_2	2-1	857,500	858	2-4	67,500	225	1.083	-0.386	-0.104
3	3-4	857,500	858	3-1	67,500	225	1,500		-0.075
_3				3.5 185.052		411	1,500	-0.286	-0.139
4	4-3	857,500	85 B	4.2	67.500	225			-0.075
4			858	41-6	125,052	417	1,500	-0.286	-0.139
_5	5-6	857,500	050	<i>5</i> -3	125,052	417	4 . 40		-0.123
5			858	5.7	125,052	417	1,692	-0.254	
6	6.5	857,500	0.50	6.4	125,052	417		1	-0.123
6		057,500	8.58	6-8	125.052	4/17	1,692	-0.254	-0.123
7	7.8	857,500	858	7-5	125,057	417	The state of the s	• • • • • • • • • • • • • • • • • • • •	-0.123
7		007,300	030	7.1	2/3,333	711	1,986	-0.216	-0.105
8	8-7	857,500	858	8-6	175,052	417			-0.179
8	<u>.</u>		030	8- <u>11</u>	213, 333	711	1,186	-0.216	-0.105 -0.179

TABLA No. 5
OBTENCION DE LOS FACTORES DE DISTRIBUCION POR
SISMO.

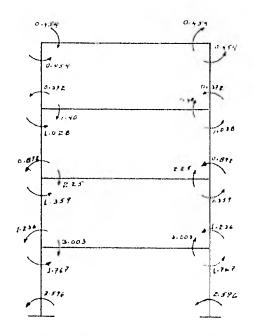


FIGURA No. 49
MOMENTOS FINALES (SISMO) (ton/m)

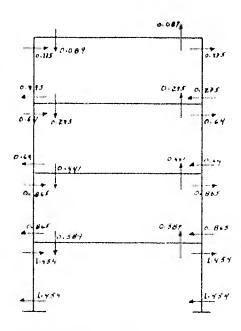


FIGURA No. 50 CORTANTES FINALES (SISMO) (TON)

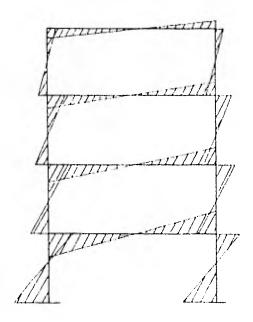


FIGURA No. 51
DIAGRAMA DE MOMENTOS FINALES
(SISMO)

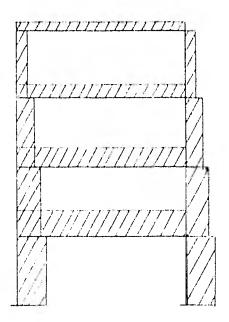
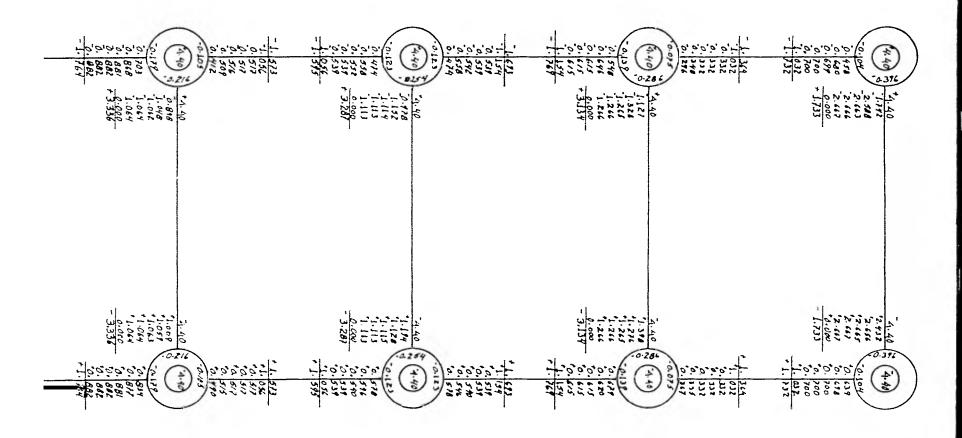



FIGURA No. 52
DIAGRAMA DE CORTANTES FINALES
(SISMO)

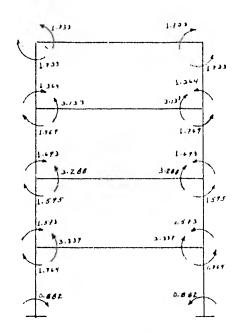


FIGURA No. 54

MOMENTOS FINALES DEBIDO AL PESO
PROPIO DE LAS TRABES

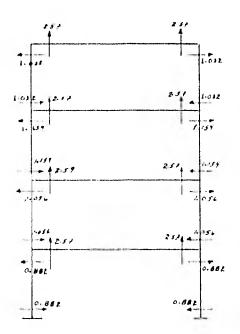


FIGURA No. 55

CORTANTES FINALES DEBIDO
AL PESO PROPIO DE LAS TRABES

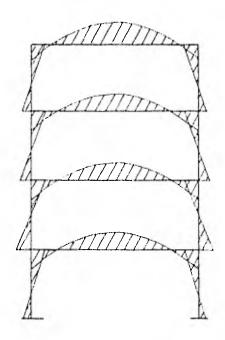


FIGURA No. 56

DIAGRAMA DE MOMENTOS FINALES DEBIDO AL PESO DE LAS TRABES

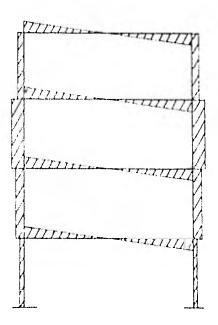


FIGURA No. 57

DIAGRAMA DE CORTANTES FINALES DEBIDO AL PESO DE LAS TRABES.

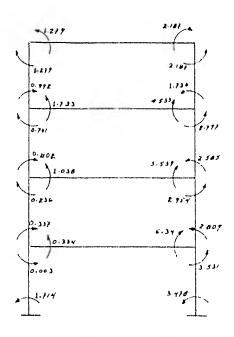


FIGURA NO. 58

MOMENTOS FINALES: SISMO + PESO TRABES (C.M.) ACTUANDO EL SISMO DE IZQUIERDA A DERECHA

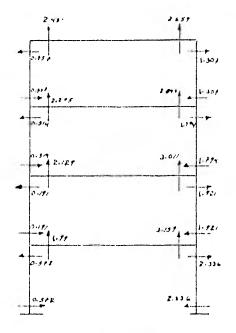


FIGURA No. 59

CORTANTES FINALES: SISMO + C.M. ACTUANDO EL SISMO DE IZQUIERDA A DERECHA.

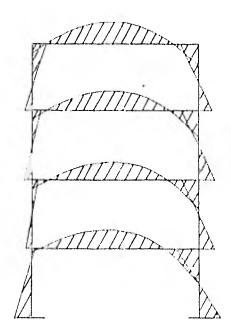


FIGURA No. 60

DIAGRAMA DE MOMENTOS SISMO + PITRABES.

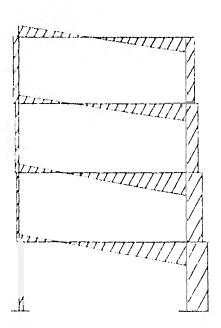
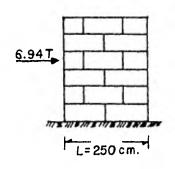



FIGURA No. 61
DIAGRAMA DE CORTANTES
(SISMO + C.M.)

Revisión de muros por cargas laterales.

Se analizará el muro que se encuentre en situaciónmas desfavorable dedibo a este tipo de carga.

CONSTANTES:

$$E=400 fm^*$$

$$f_{\rm m}^{\star} = 15 \text{ Kg/cm}^2$$

$$V* = 3.5 \text{Kg/cm}^2$$

$$P = 11,776 \text{ Kg}$$

$$L = 250 \text{ cm}$$

$$t = 14 \text{ cm}$$

Fuerza cortante que actúa en el muro.

$$Vu=1.1x6.94$$
 ton = 7.63 ton

Fuerza cortante que resiste elmuro: (de acuerdo al reglamento

de COnstrucciones en vi-

 $Vr=Fr (0.5V^{\bullet}At+0.3P) \leq 1.5fr V*At$

Vr=0.8(0.5x3.5x250z14+0.3x11,776)

$$Vr=0.8(6,125+3533) = 7,726 \text{ Kg}.$$

Vr = 7.726 ton

Vr = 7.726 ton Vu = 7.63 ton

En los muros la resistencia al corte esadecuada.

5) REVISION DE ELEMENTOS PRECOLADOS

DESCRIPCION

La losa de entrepiso y azotea, para el edificio enestudio, estará constituída por trabes presforzadas pretensadas tipo "TT" que lleva torones de \emptyset = 1/2". Contiene un firme armado con malla para absorber los esfuerzos que se presentan por los cambios de temperatura, este firme tieneun espesor de 5cm. es de F'c = 250 Kg/cm²y armado con electromalla 66-66.

Estos elementos estarán libremente apoyados en lastrabes de concreto armado en el lugar.

El concreto armado se transforma en concreto presforzado cuando se introducen, en el elemento, esfuerzos en elsentido opuesto a los producidos por las cargas de trabajo.

La aplicación de las fuerzas de presfuerzo se hace - siempre después del colado del concreto, pero los tendones-

pueden ser tensados antes del colado, técnica del pretensado; o después del colado, tecnica del postensado.

El pretensado se aplica a elementos undireccionales tales como: vigas, viguetas, losas aligeradas, o nervadas,-tuberías, postes, pilotes, columnas, durmientes, canales para irrigación.

El postensado, ésta técnica se utiliza para ligar y presforzar dovelas, elementos de estructuras o estructuras completas.

Fórmulas para revisión de esfuerzos bajo condiciones de servicio en vigas de concreto presforzado.

En una sección cualquiera, sometida a una fuerza "P" con una excentricidad "e", los esfuerzos en las fibras extremas pueden determinarse mediante la fórmula de la escuadría.

$$f = \frac{P}{A} + \frac{My}{I} - - - - - - - - - (1)$$

Esfuerzo en la fibra superior $fs = \frac{P}{A} + \frac{My}{I}$

Esfuerzo en la fibra inferior $fi = \frac{P}{A} - \frac{My_2}{I}$

Pero como: M=Pe y sustituyendo en ----- (1)

$$F = \frac{P}{A} + \frac{Pey}{I}$$

$$F = \frac{P}{A} (1 + \frac{Aey}{I})$$

$$\frac{I}{A} = r^2$$
 (radio de giro de la sección)

Por lo tanto la fórmula de la escuadría podrá escribi<u>r</u> se en función del rádio de giro de la sección.

$$F = \frac{P}{A} \left(1 + \frac{ey}{r^2} \right)$$

Cuando, además de la fuerza " P ", existe un momento - " M ", la fórmula es modificada como sigue:

$$F = \frac{P}{A} \left(1 + \frac{ey}{r^2} \right) + \frac{m}{\bar{c}}$$

$$Z = \frac{I}{V}$$
 (Módulo de sección)

Esta expresión general puede adaptarse a la revisión - de esfuerzos en las condiciones de carga inicial y final.

CONDICION INICIAL

$$Fi = \frac{Po}{A} (1 - \frac{eY1}{r_1^2})$$

$$Fi = \frac{Po}{A} (1 + \frac{eY2}{r_2^2})$$

CONDICION FINAL

$$Es = \frac{P}{A} \left(1 + \frac{eY1}{r_1^2} \right)$$

$$f_1^9 = \frac{p}{A} (1 - \frac{ey_2}{r_2^2})$$

El término $\frac{M}{2}$ desaparece de estas últimas ecuaciones, por tratarse en nuestro caso de vigas libremente apoyadas.

Notación para las fórmulas anteriores.

- fs, fi Esfuerzos en las fibras superior e inferior
 - A Area de la sección
- Y₁,Y₂ Distancia del centro de gravedad de la sección a las fibras superior e inferior.
 - e Excentricidad de la fuerza de presfuerzo
 - I Momento de inercia de la sección
 - Po Fuerza inicial de presfuerzo, inmediatamente después de la transferencia y antes de las pérdidas.
- \mathbf{Z}_1 , \mathbf{Z}_2 Modulos de sección correspondientes a las fibras superior e inferior.
 - P Fuerza efectiva de presfuerzo después de de ducidas las pérdidas.

Sección Propuesta:

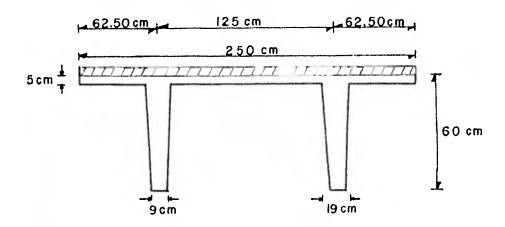
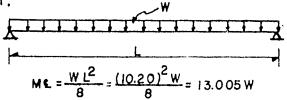


FIGURA No. 62

Acero de Presfuerzo:

4 torones en cada nervio de \emptyset = 1/2" Esfuerzo resistente del acero de presfuerzo fs=18,000Kg/cm² Fuerza presforzante final por toron 13,650 kg.

Concreto:


Concreto presforzado: $f_c^* = 400 \text{ Kg/cm}^2$

Cargas de diseño:

CARGA	Por i	_n 2	Por	m.	TOTAL
peso propio de la trabe	280	Kg/m²	700	Kg/m	7,140
peso del firme	120	11	300	п	3,060
plafon+cancel+loseto vinil.	8 0	Ħ	200	11	2,040
fino p/colococion de loseta	40	11	100	11	1,020
carga viva	360	11	900	11	9,180

Tabla No. 5

Obtención del momento en el centro del claro de la trabe "TT".

M & = 13.005 W x 1.4 = 18.207 W

Las expresiones que permiten obtener los esfuerzosproducidos en las fibras extremas por efectos de la sobrecargas aplicadas. Excluyendo todavía hasta este momento, la acción del presfuerzo son:

$$fs = \frac{P}{A} + \frac{M}{Z_1}$$
; $como \frac{P}{A} = 0$

$$fs = \frac{M}{21}$$
 (Esfuerzo en la fibra superior)

$$fi = \frac{P}{A} - \frac{M}{22}$$
; $Como \frac{P}{A} = 0$

fi =
$$-\frac{M}{Z_2}$$
 (Esfuerzo en la fibra inferior)

 $\rm Z_1$ y $\rm Z_2$ Son los módulos de sección de la secciónsimple excepto cuando se considera la acción de la carga viva, en que se deben considerar los módulos de la sección compuesta.

	ა.–E	TRABE"TT"						
CARACTERISTICA	b o.	simple(s/recubrimien)	compuesta(c/recub.)					
distancia del E.N. a la fibra sup.	y _i	17.77	16.60					
distancia del E.N. a la fibra inf.	У2	43.1 9	49.36					
peralte de la sección en estudio	h	60.00	65.0 0					
superficie de la sección transversa	Α	2,858.00	4,108.00					
momento de inercia de la sección	Ig	931, 291. 00	1'291,269.00					
modulo de sección superior	Z_1	52,408.00	77,787.00					
modulo de sección inferior	Z ₂	21,563.00	26,160.00					
radio de giro de la seccion/distan- cia del E.N. a la fibra superior	r2y	1.8.34	17.69					
cia del E.N. a la fibra superlor radio de giro de la seccion/distan- cia del E.N. a la fibra inferlor	r ² / ₂	7.54	7.28					

TABLA No. 6

Momento flexionante y esfuerzos en la sección de es tudio.

CARGA		TRABE "TT"	
CARGA	Momento	Esfzo. en fibro superi,	Esfzo. en fibra inferior
peso propio de trabe	1'274,490	fs = 1274,490 =+ 24.32	f; = 1'274,490 = -59.11
peso del firme	546,210	fs = 546,210 52,408 = +10.42	fi = 546,210 - 25.33
pla fon +cancel → loseta	364,140	$f_6 = \frac{364,140}{52,408} = + 6.95$	$f1 = \frac{364,140}{21,563} = -16.89$
fino p/colocación loseta	182,070	$f_s = \frac{182,070}{52,408} = +3.47$	$fi = \frac{182,070}{21,563} = -8.44$
carga viva	1'638,630	$f_s = \frac{1.638,630}{52,408} = +21.07$	fi = 1 638,630 = -62.44

TABLA No. 7

Obtendremos ahora los esfuerzos debidos a la ac--ción del presfuerzo en la sección en estudio, para poder -hacer la superposición ordenada de todos los efectos, lo -cual se ilustra muy objetivamente en forma de tabla. Tabla 7

Presfuerzo en la sección.

Los esfuerzos en las fibras extremas, debido a la -acción del presfuerzo, se obtienen con la expresión:

$$f = \frac{P}{A} \left(1 \pm \frac{eY}{r^2} \right)$$

$$e = (Y_2 - d) = (43.19 - 17.50) = 25.69$$

$$p = \frac{4 \text{torones } \emptyset \ 1/2''}{\text{Nervio}} \times 2 \text{ Nervios=8 torones } \emptyset \ 1/2''$$

$$p = 8 \times 13,650 \text{ Kg} = 109,200 \text{ Kg}.$$

$$f = \frac{109,200}{2,858} (1 + \frac{25.69}{7.54}) = +168.40 \text{ Kg/cm}^2$$

$$d = \frac{20 \times 2 + 15 \times 2}{4} = 17.5$$

$$f = \frac{109,200}{2,858} (1 - \frac{25.69}{18.35}) = -15.31 \text{ Kg/cm}^2$$

Resumiremos en una tabla los esfuerzos producidos por cada uno de los efectos calculados en la sección en estudio, para ver si la trabe resiste todas las condiciones de carga.

Resumen de esfuerzos en la sección de estudio.

CARGA	FIBRA S	UPERIOR	FIBRA INFERIOR					
CARGA	Parcial	Acumulada	Parcial	Acumulado				
peso propio de trobe	24.32	24.32	- 5 9.11	-5 9.11				
presfuerzo	-15:31	9.01	1 6 8.40	+109.29				
pesa del firme	10.42	19.43	-25.33	+ 83.96				
plafon - cancel - loseta	6.95	26.38	-16.89	+ 67.07				
fino p/colocacion loseta	3. 47	29.85	- 8.44	+ 58.63				
carga viva	21.07	50.92	-62.64	- 4.01				

TABLA No. 8

En la tabla anterior vemos que bajo la condición de carga, peso propio de trabe mas presfuerzo, o sea, en la -- puesta en tensión, los esfuerzos que se presentan en las fibras extremas son bajos, y por lo tanto, no presenta problemas la pieza en su etapa inicial ni en condiciones de carga.

Esfuerzos permisibles del concreto.

Tension:
$$f_{t perm.} = 2\sqrt{f_{c}} = 2\sqrt{400} = 40 \text{ Kg/cm}$$

Compresion: fc perm. =
$$0.45 \text{ fc}^{\dagger} = 0.45 \text{ y } 400 = 180 \text{ kg/cm}$$

Comparación de esfuerzos

Etapa inicial:

Tension 15.31 $\text{Kg/cm}^2 \angle 40 \text{ Kg/cm}^2$ Compresion 168.40 $\text{Kg/cm}^2 \angle 180 \text{ Kg/cm}^2$

En condiciones de carga:

Tensión 4.01 ∠ 40 Kg/cm².

Compresión 50.92 ∠ 180 Kg/cm²

Ambos esfuerzos que actúan en la trabe quedan dentro de los valores de los esfuerzos permisibles. Luego la sección propuesta pasa la revisión.

DISEÑO DE ELEMENTOS ESTRUCTURALES

El diseño de los diferentes elementos de la estructura se hará de acuerdo con la teoría elástica del concreto reforzado.

Se tendrá en cuenta las especificaciones del reglamento de las construcciones para el D.F. en vigor.

Los elementos que se resolverán estarán bajo los - tipos de esfuerzo siguientes:

- A).- Sujetos a flexión únicamente debido a la acción de cargas que actúan perpendicularmente a su eje longitudinal o por la existencia de momentos exteriores.
- B).- Aquellos que se ven sujetos a compresión o te $\underline{\mathbf{n}}$ sión y flexiones.

Trabes de concreto reforzado.

Analicemos, el comportamiento de una trabe de concreto no armado, sobre dos apoyos, solicitada en su centropor una carga de intensidad creciente Fig. 63

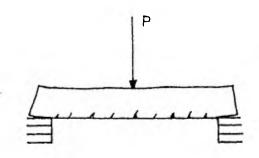


FIGURA No. 63

Bajo el peso propio y la carga, la parte inferior - de la trabe se tensiona y la parte superior se comprime, co mo el concreto es un material que resiste mal a la ten--- sión, con un pequeño valor de sobrecarga, la parte de abajo se agrieta y la trabe se rompe rápidamente.

Ahora consideremos la misma trabe, pero con barrasde acero ahogadas en la parte inferior. Fig. 64.

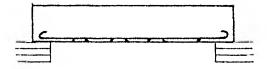
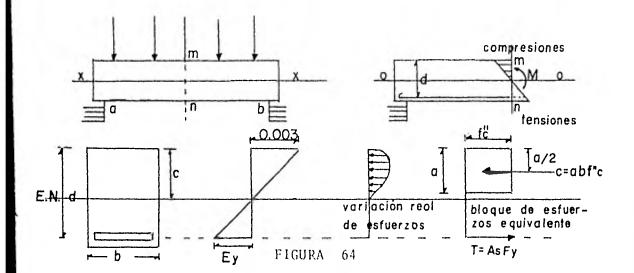


FIGURA No. 64

Con el aumento de la carga, el concreto de la zonainferior, va de nuevo a llegar al límite de su resistenciaa la tensión pero ahora ese alargamiento y aún el mismo --- agrietamiento no ponen en peligro la estabilidad de la trabe, ya que las barras de acero absorben dicha tensión.

La determinación de la resistencia de secciones deconcreto armado de cualquier forma, sujetos a flexión, carga axial o una combinación de ambas, se efectuará a partirde las hipótesis del reglamento de construcciones para el--D.F. las cuales enumeramos a continuación:


- a). La distribución de deformaciones unitarias en la sección transversal de un elemento es plana.
- b). El concreto no resiste esfuerzos de tensión.
- c). La deformación unitaria máxima admisible en elconcreto en compresión es 0.003
- d). La distribución de esfuerzos en la zona de compresión puede considerarse como uniforme en lazona equivalente de compresión, cuya profundidad
 se considerará como 0.8 de la del eje neutro. tal esfuerzo en el concreto se tomará igual a:

$$f_c^{"} = 0.85 f_c^*$$
 si $\frac{L}{f_c}$ 250 Kg/cm²

$$f_c'' = (1.05 - f_c' / 1250) f_c si > 250 Kg/cm^2$$

- e). Se conocen las características esfuerzo-deforma ción del acero. El módulo de elasticidad, Es, se toma igual a 2 x 10 para acero de refuerzo ordinario. El diagrama de esfuerzo deformación-del acero de refuerzo ordinario puede idealizar se por medio de una recta que pase por el origen con pendiente igual a Es, y una recta horizon-tal que pasa por la ordenada correspondiente al esfuerzo de fluencia real o convencional del --acero.
- f). La deformación unitaria del acero es igual a la del concreto que se encuentra al mismo nivel.

Para determinar las fórmulas que han de servir de -base para el diseño de trabes consideramos la fig. 64, que-a la vez nos representa el significado de las hipótesis ---anteriores.

Obtención del momento resistente.

Tomando momento con respecto a la resultante de com presión.

M=
$$T(d-0/2)$$
 = As y $(d-0/2)$
= As y $(d-a/2)$ -----1

Tomando momentos con respecto al acero de tensión.

$$M = C (d-a/2)$$

 $M = ab f''_{C} (d-a/2)$ -----2

Por equilibrio de fuerzas, se puede obtener la profundidad del bloque de esfuerzo \underline{a} .

$$C = T$$
; $ab f_{C}^{"} = As fy$

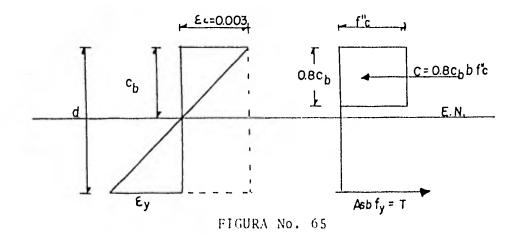
$$a = \frac{Asfy}{b f_{C}^{"}}$$

Sust. 3 en 2

$$M = ab f''_{c} (d - \frac{Asfy}{2b f''_{c}})$$
 ----- 4

Siendo $P = \frac{As}{bd}$; y definiendo el índice de resistencia; q como: $q = \frac{p f_y}{f_c^{11}}$

resulta:


$$M = bd^2 f_C'' + q (1-0.5 q)$$
 ----- 5

La ecuación 5 proporciona la resistencia ideal a flexión de la sección considerada y deberá ser afectada por un factor de resistencia para obtener la resistencia de diseño, se tiene entonces:

$$Mr = FR bd^2 f_c'' q (1-0.5q)$$

El factor de resistencia, F_R , toma en cuenta los -- aspectos siguientes: la dispersión de los resultados experimentales en que se basa la fórmula, el grado de seguridad involucrado en cada fórmula, el tipo de falla que puede presentarse y las consecuencias de la falla. Para flexión --- $F_R = 0.9$

Determinación del porcentaje balanceado.

Del diagrama de deformaciones unitarias se puede es tablecer una proporcionalidad de triángulos semejantes.

$$\frac{Cb}{d} = \frac{0.003}{+0.003}$$

De la ecuación de equilibrio.

$$Pb = \frac{f''_{C}}{y} = \frac{4800}{+6000}$$
 $T = C$

Resistencia del concreto a fuerza cortante.

La resistencia del concreto a este tipo de esfuerzo es bastante alta. Sin embargo, la combinación de los esfuerzo zos cortantes horizontales y verticales produce tensiones -

en planos a 45° respecto al eje neutro, que provocan los -- agrietamientos mostrados en la viga de la fig. 66

Para aumentar la resistencia de los elementos de -concreto, a los efectos de la fuerza cortante, estos se refuerzan en sus secciones transversales. Este tipo de re--fuerzo puede ser de distintos modos. El tipo de refuerzo transversal de uso mas extendido es el estribo vertical. -Fig. 67

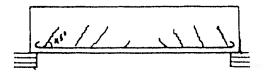


FIGURA No. 66

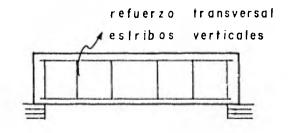


FIGURA No. 67

Aplicación del caso en estudio.

Para el diseño de las trabes, es necesario conocerlos momentos flexionantes y las fuerzas cortantes, a que es tá sometida cada una de las secciones, por la acción de las cargas verticales y de las fuerzas sísmicas.

Ejemplo ilustrativo de la trabe de azotea.

CORTANTE ISOSTATICO EN B:

Rb. =
$$\frac{W1}{2}$$

RB. =
$$\frac{7.90 \times 2.20}{2}$$
 = 9.875 ton.

Corte hiperestático en B:

$$RBH = \frac{MBA - MAB}{I}$$

RBH =
$$\frac{4.496-3.211}{2.50}$$
 = 0.514 ton.

RBH = 0.514 ton.

Cortante total en B:

$$RB = \frac{WL}{2} + \frac{MBA - MAB}{L}$$

RB=9.875+0.54 = 10.389 ton

Cortante total en A:

$$RA = \frac{WL}{2} - \frac{MBA - MAB}{L}$$

$$RA = 9.875 - 0.515 = 9.361 \text{ ton.}$$

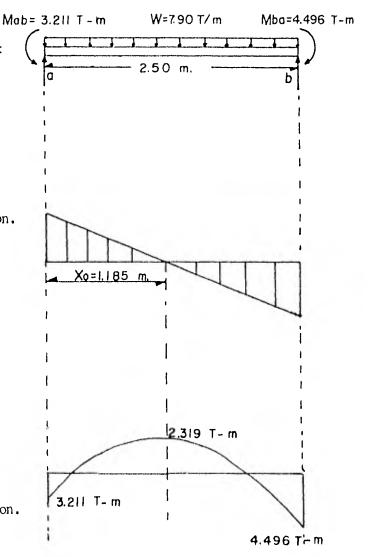


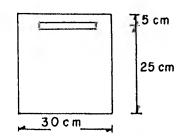
FIGURA No. 68

El cortante será nulo a la distancia

$$Xo = \frac{PA}{W}$$
; $Xo = \frac{9.361}{7.90} = 1.185$ mts.

Momento estático

Momento hiperestático.


$$M = \frac{ML^2}{8} = \frac{7.90 \times (2.50)^2}{8}$$
 MAB = 3.211 ton-m

Mest =
$$6.172$$
 ton-m MBA = 4.496 ton-m

Obtención de la resistencia de la trabe empleando - las hipótesis del reglamento de construccion para el D.F.

DATOS:

$$Mu(-) = 4.496 \times 1.4 = 6.294 \text{ ton-m}$$

 $Mu(-) = 3.211 \times 1.4 = 4.495$
 $Mu(+) = 2.319 \times 1.4 - 3.246$

RESISTENCIA NOMINAL DEL MATERIAL:

Concreto:
$$f_C' = 200 \text{ Kg/cm}^2$$

A cero : fy = 4200 "

CONSTANTES

$$f_c^* = 0.8 \ \dot{c} = 0.8 \ x \ 200 = 160 \ Kg/cm^2$$

$$f_{C}^{"} = 0.85 f_{C}^{*} = 0.85 \times 160 = 136 \text{ Kg/cm}^{2}$$

$$(\text{por ser } f_{C}^{*} = 250 \text{ Kg/cm}^{2})$$

$$Pb = \frac{f''}{fy} = \frac{4800}{fy+6000} = \frac{136}{4200} = \frac{4800}{4200+6000} = 0.0152$$

$$Pmax = 0.75 Pb = 0.75 (0.0152) = 0.0114$$

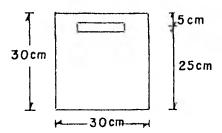
$$Pmin = \frac{0.7}{fy} = \frac{f'_{C}}{fy} = \frac{0.7}{4200} = 0.00236$$

$$q = P\frac{fy}{f''_{C}} = 0.0114 = \frac{4200}{136} = 0.352$$

SOLUCION:

$$M_F = FR \ bd^2 \ f_C^{"} \ q \ (1-0.59)$$
 $629,400 = 0.9 \ (30) \ (25) \ 136 \ (9-0.59)$
 $629,400 = 2,295,000 \ (9-059)$
 $q - 2q + 0.55 = 0$
 $q = \frac{2 \pm 4-2.20}{2}$
 $q = 0.329$
 $q - 1.671$
 $p = q \frac{f_C^{"}}{y} = \frac{0.329 \times 136}{4200} = \frac{0.0106}{4200}$

Revisión de la cuantía de acero:


$$Pmax = 0.0114$$

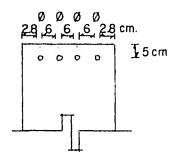
Pmim <u>L</u> Pobt L Pmax

Pmin = 0.00236

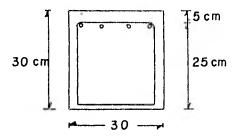
0.00236 L 0.0106 L 0.0114

Por lo tanto, se acepta la sección propuesta por -- flexión.

Acero de refuerzo.


$$As = Pbd = (0.0106) (30)(25)$$

$$As = 7.95 \text{ Cm}^2 = 8 \text{ cm}^2$$


Proposición de acero:

$$\emptyset_{\#6} = 1.9 \text{ cm.}$$
 $s_{\#6} = 2.85 \text{ cm}^2$

$$\emptyset_{\#_4} = 1.27 \text{ cm}.$$
 $\$\#_4 = 1.27 \text{ cm}^2$

Sección y armado propuesto.

Revisión por cortante

Si p 0.01 Vc_R =
$$F_R$$
 bd (0.2 + 30P) $\sqrt{f_c^*}$

Si P 0.01 Vc_R = 0.5 F_R bd
$$\sqrt{f_c^*}$$

 $V_{\mbox{\footnotesize{cR}}}$ + cortante que toma al concreto

Tomando el área de dos varillas del # 6 que van a - 10 largo de toda la trabe.

$$As = 2.85 \text{ cm}^2 \text{x} \ 2 = 5.7 \text{ cm}^2$$

$$P = \frac{As}{bd} = \frac{5.7}{30x25} = 0.0076$$

0,0076 / 0,01 ...

$$Vc_R = 0.8 \times 30 \times 25 \left[(0.2 + (30)(0.0076) \right] \sqrt{160}$$

 $Vc_R = 3.248 \text{ ton.}$

Cortante que actúa en la trabe debido a las cargas.

$$V = 9.34x1.4 = 13.104 \text{ ton}$$

$$V = 10.39x1.4 = 14.546$$
 ton

Cortante que actúa a una distancia "d" del paño de apoyo

$$Vu = 9.091 \text{ ton}$$

$$Vu = 7.64 \text{ ton.}$$

Cortante de diseño:

$$Vu - Vc_R = 9.091 - 3.248 = 5.843$$
ton

$$Vu - Vc_R = 7.64 - 3.248 = 4.392 \text{ ton}$$

Separación de estribos:

$$\emptyset = 1/4$$
": Os#₂= 0.32 cm²

$$S = \frac{FR \text{ as fy d}}{Vu - VcR} \quad \text{(estribos verticales)}$$

$$S_1 = \frac{(0.8)(0.32)(4200)(25)}{5.843} = 5 \text{ cm}.$$

$$S_2 = \frac{(0.8)(0.32)(4200)(25)}{4.392} = 6 \text{ cm}.$$

Diseño de columnas.

El método empleado, esta basado en el análisis --elástico de elementos esbeltos sujetos a carga axial y flexión y es el que propone el reglamento de construcción para
el D.F.

Este método recibe el nombre de momento complement \underline{a} rio.

En esencia, el procedimiento de este análisis sim-plificado, se basa en las ideas siguientes:

En una viga-columna sujeta a carga axial, P L Pc, y-a un momento flexionante constante, Mo, la flecha en un punto se tiene aproximadamente con la expresión.

$$Y = Yo \begin{bmatrix} \frac{1}{1 - P/Pc} \end{bmatrix}$$

Donde Yo es la flecha que habría si no actuara la -carga "P" el momento flexionante es:

$$M = Mo + P Yo \left[\frac{1}{1 - P/Pc} \right]$$

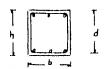
Expresión que, con algunas simplificaciones, se ---

transforma en:

$$M = \frac{1}{1 - P/Po} Mo.$$

Fórmulas utilizadas y conceptos que aparecen en latabla No. 10

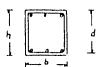
$$Mc = \frac{Cm}{1 - Pu/Pc} M_2$$


El coeficiente de M_2 en la anterior ecuación es elfactor de amplificación.

El coeficiente Cm es un factor correctivo que haceequivalente el diagrama de momentos flexionantes del elemen to al diagrama de un elemento con momentos iguales en ambos extremos, y se valúa de la siguiente manera.

Para elementos sin posibilidad de desplazamiento $1\underline{a}$ teral relativo:

$$Cm = 0.6 + 0.4 (M^2 / M_2)$$


Para elementos con posibilidad de desplazamiento $1\underline{a}$ teral relativo

12 2 50 kg/cm2 1 x 4200 kg/cm2

		, .				,				······			· · · · · · · · · · · · · · · · · · ·	200 kg/	· · · · · · · · · · · · · · · · · · ·				·									
1	2	3	4	5	. 6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	21	28	29
Colons		Pa corso aval de dimaelo				Assesso (morest) Relation	6-1	15-2	(h-51	17/	Sections Pologie, Yallo	100 0 .02	41,0 (418)		1,15,	1000	U	(7:00)	P. 11/2	10 1 d/2	Mr. For	Ab P.T.	1104%	9 (610/40	A 2/5	Paria 20/fg	Pair	16076
	4.	1,800	173,300	45,400	247,620	240,570	30	30	25	0.30	30:30	245	900	21	158,714	11,500	0.10	25010	297911		251311				2004	i		
А	3.	24,686	174,900	102,800	247,660	307,670	35	35	30	0.85	35135	285	10.50	21	158,14	125,052	0.60	×19030107	5 4 528	1.051	323,637	0 052	0.14	030	0.012	0.0047	0.08	15
•	2.	39,581	159,500	135,700	223,300	324,140	35	35	30	0.85	35135	304	10.50	21	158,114	125012	050	52010	479.652	101	359.185	3.057	0.22	053	0.021	0.0011	0.08	26
	1.	54.810	88.200	259,600	125,480	382,580	40	40	35	0.90	40140	270	12.00	23	150,114	2/4, 333	0.23	1 297.10	1,262,42	1.075	317.796	0.040	0.24	0.60	0.024	0.2097	0.08	38
	4.	11,463	12,727	0.00	18.100	14,222	30	30	25	080	30,30		100	-	158,114	63,500	-	-	-	L	18,110	0.105	009	0.22	o. aro	0.0041	1.03	i,
R	3*	32,455	11.857	0.00	16,600	13,043	35	35	30	0.05	35135	-	10.50		150,114	125152		-	-	£	16,600	0.003	0.18	049	2.02	0.0047	0.08	25
U	2.	53,4%	8.286	0.00	11,160	9,115	35	35	30	0.85	35/35		10-50	-	158,114	125,052	-	-	-	1	11,160	2002	0.30	0.80	0 03	awn	0.08	37
	i*	74,816	47,571	0.00	66,600	5 2,328	40	40	35	0.10	40140	-	12 30	-	150,114	2/3,333		-		1	66,600	0.007	0.52	0.77	0.03	0.0017	0.06	48
	40	15,061	173,500	45,400	242,680	249,570	30	30	25	0.80	301 30	265	900	21	158 /14	مع و ۾ ،	070	2 SVI 10	211.167	1.033	253,30	0.065	012	0.24	0.010	A0047	0.08	8
_	3.	37,651	176,900	102,800	247,660	301,110	35	35	30	0.85	35/35	285	10.50	27	158 114	125,052	0.60	9 793110	5/4518	1.084	333,574	0.054	0.22	0.52	0.021	0.0041	0.08	مج
	2.	64,240	157,500	135,000	225,500	324.940	35	35	30	0.85	35.35	304	1050	21	158,114	125,012	050	ישונוצצ	478 42	1.155	315, 306	0.060	0.36	0.95	0.040	0.0047	0.08	44
	1.	81,208	88,200	258,600	123400	382,580	40	40	35	0.70	40.40	210	12.00	23	158,114	213, 233	0.23	1.077, 10	1,262,902	1.076	91.671	0015	0.40	0.93	2031	40047	0.08	50

Tabla N.9

fie 250 kg/cm² fie 4200 kg/cm²

١								735 7	200 kg/	14"	······································		···						.,		,			. ,
	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	21	28	29	30
16.83	Monee to mercuse mercus	iЬ	h (6-)	d (h-51	d/h	Section Pologica Yallo	H Longi. Lod e lac Live Live	rodio do girclasti	H/4722	118	1000	υ	(11.6.4.)	P. 11/2 (m)	11/1/2	Mr. 101	7. 16 12.78	71 Bh 7.	9 (610/20	B. 76	20/19	Pris	(cm)	Lilout
<u>1</u> ,20	240,570	30	30	25	0.80	30130	265	9.00	29	150,00	47,500	0.70	258118	291.161	1.034	250,811	0 064	2.08	010	12004	0.0047	0.08	4	61.36
,,,,,,	307,670	35	35	30	0.85	35135	285	10.50	27	158,114	125,052	0.60	499310	5/4 578	1.051	323,631	0.052	0.15	230	awr	0.0017	0.08	15	80-5
5,300	324,140	35	35	30	0.85	35135	304	10.50	21	158,114	125052	050	521100	410 662	1-01	359.185	0.057	0.22	12.53	0.021	0 0011	0.08	26	40.16
480	382,580	40	40	35	0.90	40 140	270	12.00	23	150,114	2/3,333	0.23	1077.100	1,242,47	1.045	311716	2.040	0.24	0.60	0.024	0 2091	0.08	38	8p - 1
100	14,222	30	30	25	0.80	30130	-	100		158,114	67,500		-	-	1	18,110	0 105	0.09	022	2.00	0.0091	0.05	4	20 3
600	13,043	35	35	30	0.05	35135	-	10.50	-	150,114	125152	-	-		Ĺ	16,600	0.003	3.18	049	2.02	0.0.190	0.08	25	40-34
160	9,115	35	35	30	0.85	35/35	-	10.50	-	158,114	125,052	-	-	-	i	11.160	0002	0.30	0.80	003	20011	0.08	37	80-1
600	5 2,328	40	40	35	0.10	40140	_	1200	-	158,114	213,355	•			1	66, 600	0.007	0.32	0.77	0.03	0.0017	0.06	48	20.31
2,620	249,570	30	30	25	0.80	30130	265	9.00	21	158/14	. 6 300	010	25016	21/167	1093	253,20	0.065	012	0.24	0010	20047	0.08	9	29-1/
,660	307,670	35	35	30	0.85	35135	285	10.50	27	158,114	125,052	0.60	4993110	514588	1.084	333 54	0.054	0.22	0.52	2021	0.0041	0.08	25	10-4
500	324,940	35	35	30	0.85	35135	304	1050	21	158,114	125,052	250	ישוינוגצ	478,42	1-135	375, 306	0.060	0.36	0.95	0040	0.0047	0.08	1.0	20.5%
1400	382,580	40	40	35	0.10	40.40	210	12.00	23	150,114	213,333	0.23	1 077, 10"	1,247,502	1076	911,671	0045	040	0.93	0031	10017	0.08	59	20.14

Tabla N.9

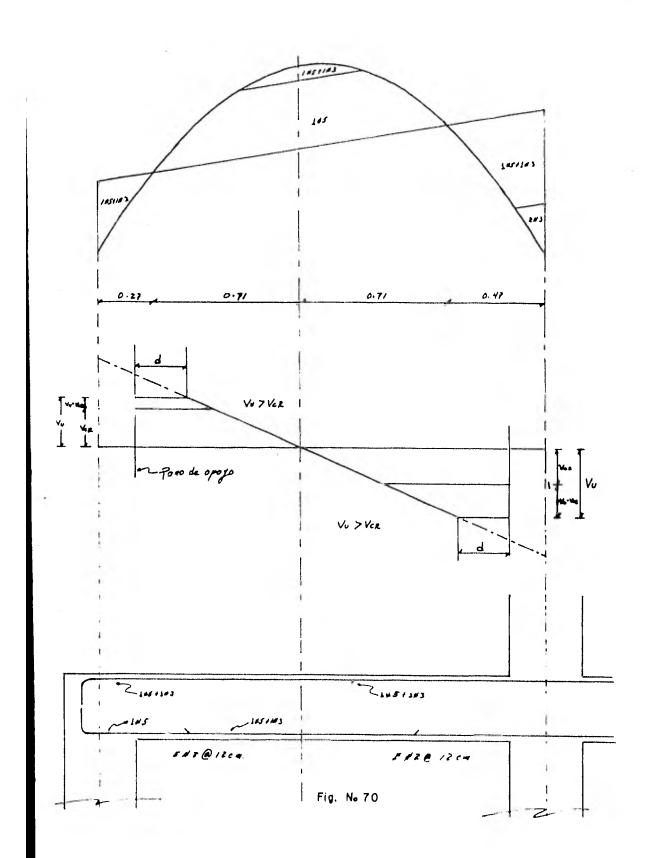
SECCIONES Y REFUERZOS DE COLUMNAS

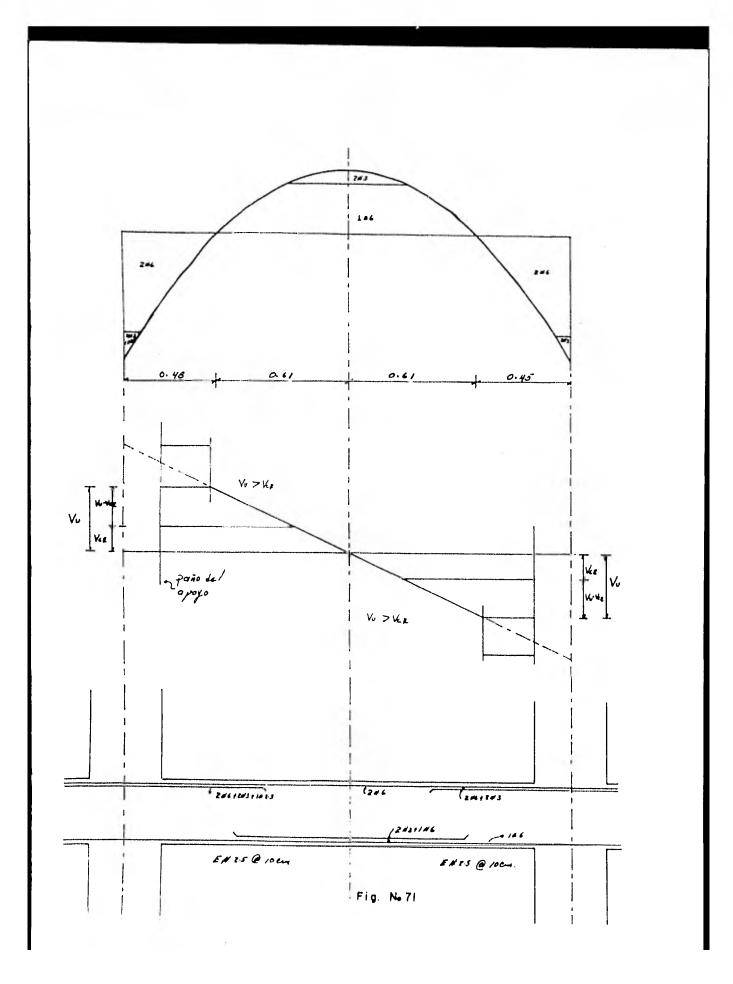
NIVEL	S	ECCION		ARMADO							
141466	EJE A	EJE B	EJE C	EJE A	EJE B	EJE C					
4	30×30	30×30	30 × 30	Onillos 1/4"	69 1/2 + 20 - 48 Onillos 1/4 @ 13 c4						
3	35x35	35: 35	3 <i>5 :</i> 3 <i>5</i>	anilles 1/4	4 p-74+4p-76 anillos 1/4 @ 2504.	quilles 1/4					
2	35×35	35 × 35	35 + 35	40-34-40-76 anillos 1/4	8p-1-	1					
1	40 x 40	40140	40140	8\$-1" Onillos 44 @ 30cm.	1						

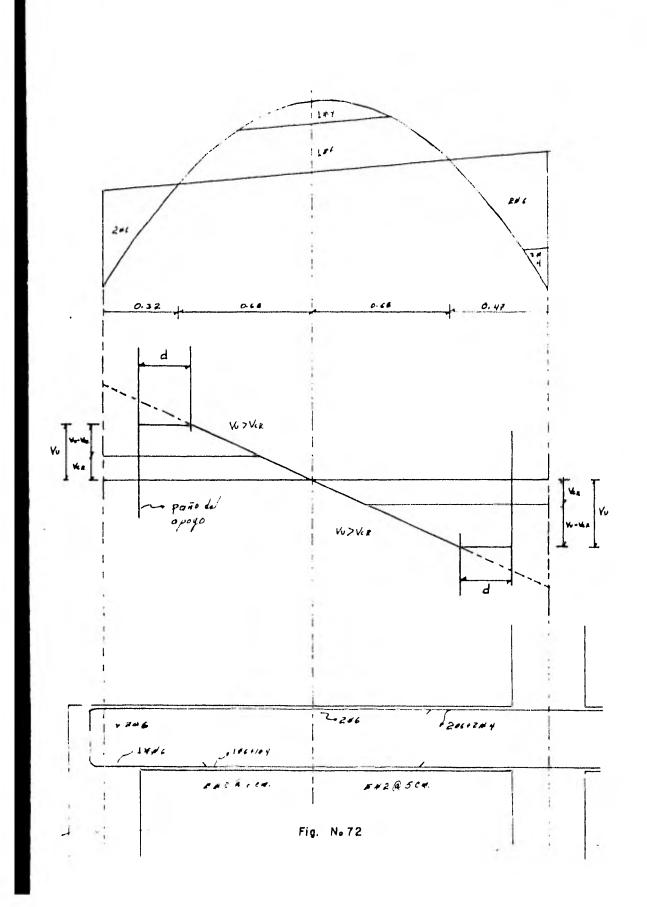
Los momentos M_1 y M_2 son los momentos flexionantes en los extremos del elemento, siendo M_2 el momento numéricamente mayor.

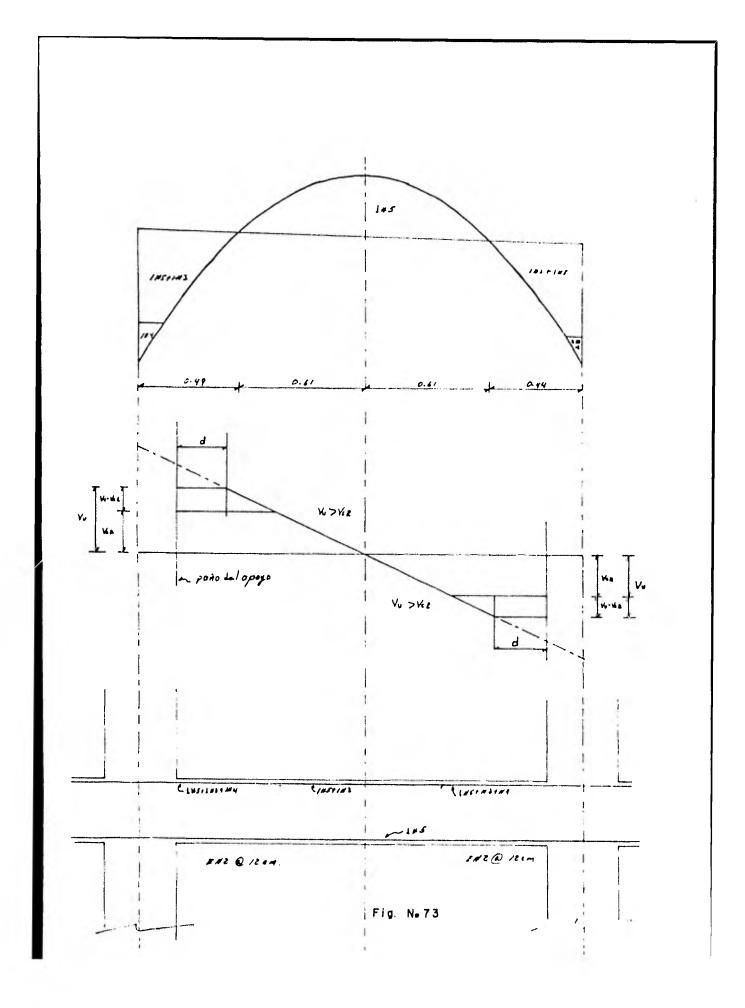
Pc es la carga crítica de pandeo o carga crítica de euler de elementos de comportamiento lineal y se obtiene de:

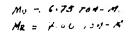
$$PC = \frac{FR \quad EI}{(H^1)^2}$$


EI es una rigidez modificada y se obtiene como: --- $EI = \frac{0.4 \text{ EcIg}}{(1+u)}$


Ec Módulo de elasticidad de concreto.


Ig el menor momento de inercia de la sección transversal, de la sección bruta del concreto.


H' Longitud efectiva de pandeo.


Pu Carga última que actúa en la columna debido a - las cargas.1/1+u toma en cuenta el efecto de las deformaciones diferidas debidas al flujo plástico del material.

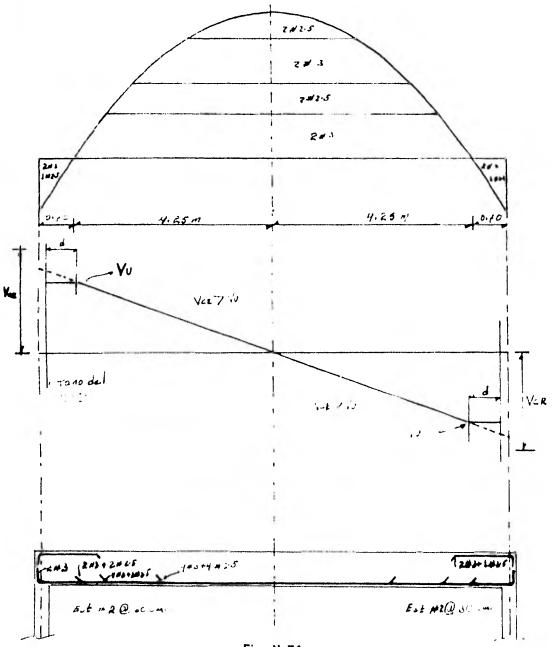
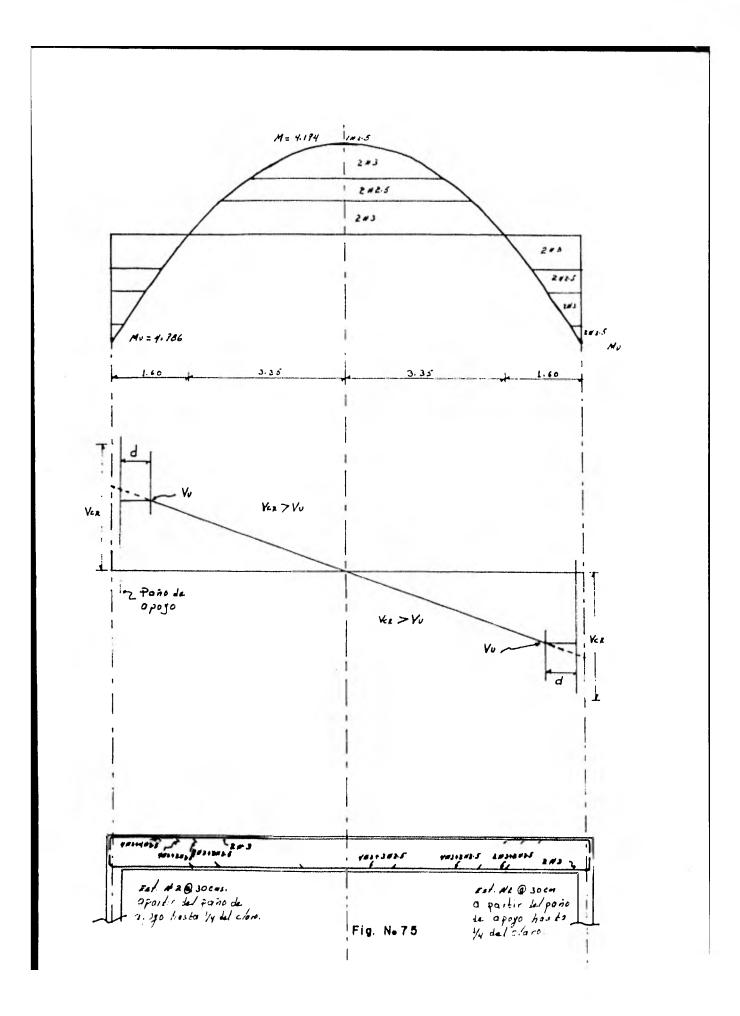



Fig. No 74

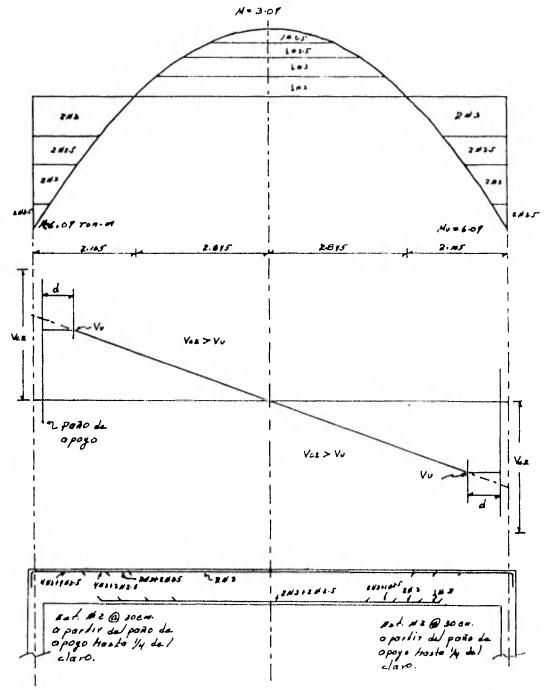


Fig. N. 76

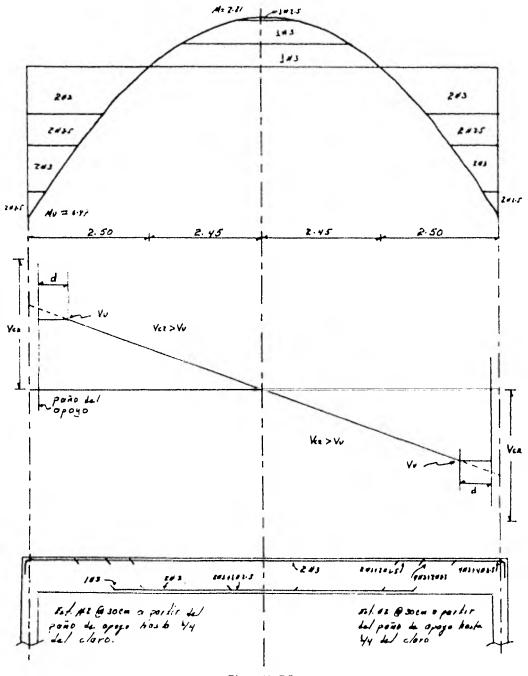


Fig. N. 77

CIMENTACION

Descripción del proyecto y del predio.

Se proyecta construir un edificio, para oficinas, - que constará de sótano y tres plantas. El nivel de piso -- del sótano con respecto al nivel del terreno actual, será - de -1.00 m.

El edificio, según el proyecto, es de forma rectangular y sus dimensiones en planta de $10.20 \times 20m$.

Estructuralmente el edificio se resolvió a base de losas prefabricadas, marcos de concreto reforzado colados - en el lugar y muros de rigidez, las columnas estarán espa-ciadas del orden de 2.50 m. en un sentido y 10.20m en la dirección normal.

Cargas sobre el suelo.

Cuando se aplica una carga al terreno, este se comprime en mayor o menor grado, según sea la intensidad de -las cargas aplicadas, la magnitud del área cargada, la natu
raleza del terreno, etc.

Debido al peso de la estructura, el terreno sobre - el que se apoyará el edificio, estará sometido a una determinada presión, cuyo valor dependerá de dicho peso. En cual quier caso, esta presión deberá ser menor que la que se conoce como resistencia del terreno o resistencia permisibledel terreno.

De acuerdo al lugar en que estará ubicado el edificio en estudio, consideramos una resistencia del terreno de 15 ton/M2, ya afectada por el factor de resistencia.

Para un determinado peso del edificio, la presión - sobre el terreno dependerá de la magnitud del área de la base de cimentación, la cual puede hacerse variar hasta que-dicha presión caiga dentro de los límites permisibles.

Tipos de cimentaciones.

Los tipos de cimentación para cualquier tipo de estructura se pueden clasificar en superficiales y profundas.

Las cimentaciones profundas se utilizan generalmente cuando la estructura tiene un peso muy grande, debido asu tamaño, y las condiciones del suelo son muy desfavorables.

El edificio en estudio, debido a las condiciones que

que se presentan, su cimentación cae dentro del tipo superficial.

Cimentaciones superficiales.

Zapatas aisladas.

Las zapatas aisladas se emplean como elementos de cimentación bajo columnas, cuando el peso que transmite cada columna le corresponde un área de cimentación adecuada.

Zapatas continuas.

Las zapatas contínuas se utilizan cuando las capassuperficiales del terreno son resistentes y de baja compresibilidad, para las cargas que la estructura les transmitirá. Estas zapatas pueden disponerse en un sentido o en --ambos, de acuerdo a la intensidad de las cargas aplicadas.

Losas de cimentación

En este caso el área total sobre la que se encuen-tra descansando el edificio es aprovechada para transmitirlas cargas al terreno y así reducir la presión de contacto.

Obtanción del tipo de cimentación superficial parael edificio. Primera alternativa: Zapata aislada.

Capacidad de carga del suelo: 15 ton/m²

Carga que descarga por columna a nivel de desplante: Q. Area de la zapata: A_z F.C = 1.4

De los conceptos anteriores tenemos:

$$\frac{Q (F.C)}{A_2} \leq 15 \text{ Ton/m}^2$$

$$A_{\mathbf{g}} = \frac{Q \times 1.4}{15}$$

En la figura se concentran las cargas que bajan por cada columna a nivel de desplante.

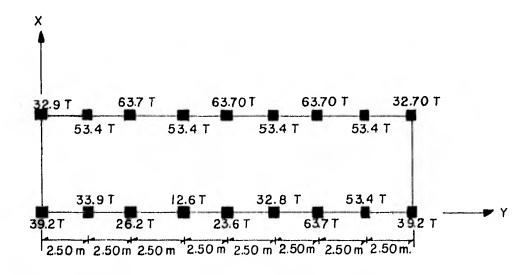
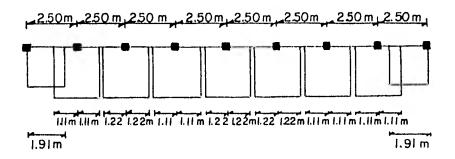


FIGURA No. 78


En la tabla No. 11 se concentran las operaciones ylos resultados obtenidos.

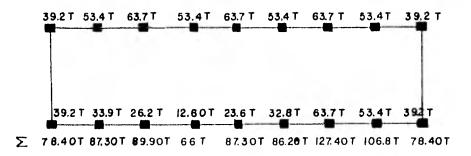
Q(ton)	Azi = Q(F.C)	L=VAzi	
39.20	3.6 m ²	1.91 m	
5 3.4 0	4.98 "	2.23 "	
33.90	3.16 "	1.78	
63.70	5.94 "	2.44 "	
26.20	2.44 "	1.56 "	
12.60	1.18 ''	1.08 "	
23.6 0	2.20 "	1.48 "	
32.80	3.06 "	1.75 "	

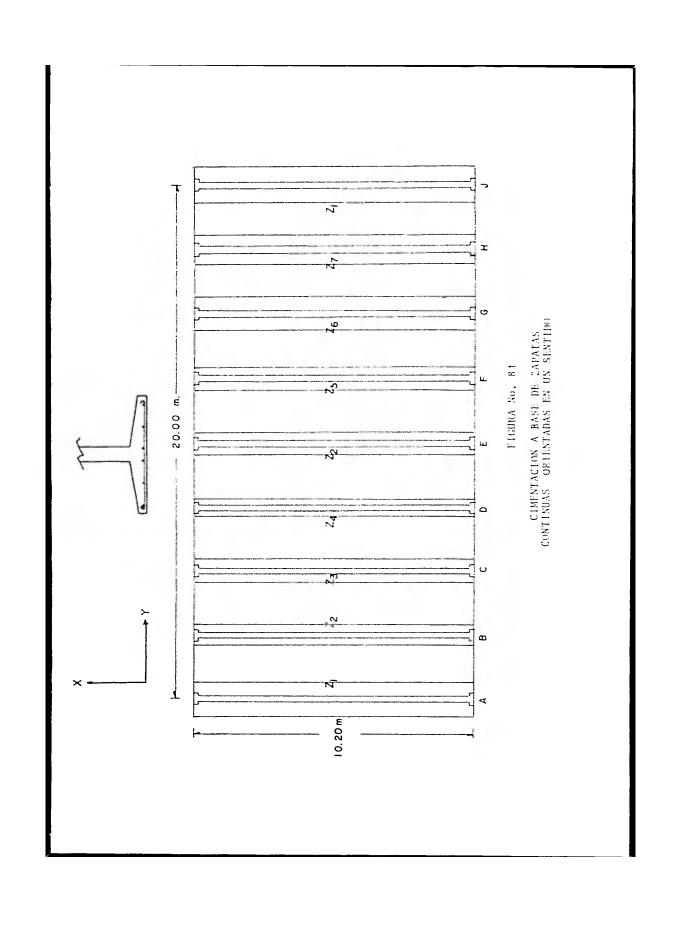
TABLA No. 11

.

Como lo muestran las dimensiones obtenidas en la tabla No. 11, las áreas de las zapatas en el sentido "Y" quedan muy juntas o se interceptan como se aprecia en la figura No. 79 por lo que la alternativa de zapatas aisladas que da anulada.

Segunda alternativa: Zapatas continuas (X)




FIGURA No. 80

Q(ton)	A= Qx 1.4	L(m)	Ancho de zapata(m)	Zi
86.24	8.05	10.20	0.78	Z_1
96.03	8.96	10.20	0.87	Z_2
98.89	9.23	10.20	0.90	Z_3
72.60	6.7 8	10.20	0.66	Z4
94.82	8.85	10.20	0.86	Z ₅
140.14	13.08	10.20	1,28	Z ₆
117.48	10.96	10.20	1.07	Z ₇

TABLA No. 12

NOTA: A los valores de Q se les aumentó el 10% - de su valor para tomar en cuenta el peso propio de zapatas.

Por los resultados obtenidos y, representados en la tabla No. 12 se considerará una cimentación a base de zapatas corridas en dirección X Fig. No. 81

DISEÑO DE ZAPATAS

ZAPATA CENTRO

Obtención del paralte por cortante en la sección crítica.

Se considera una longitud de - cimentación de un M.

DATOS:

Longitud zapata: 10.20 Mts.

Ancho de zapata: 0.90 M.

Carga última: 98.89 ton.

 $fe = 200 \text{ Kg/cm}; fc = 0.8 \times 200 = 160 \text{Kg/cm}^2$

 $fy = 4200 \text{ Kg/cm}^2$

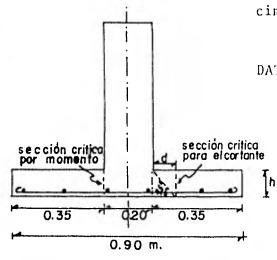


FIGURA No. 82

CARGAS:

Carga por M. de cimentación. $\frac{98.89}{10.20} = 9.70$ ton.

reacción del suelo

$$\frac{9.70}{1.0\times0.9} = 10.78 \text{ ton/m}^2$$

Cortante debido a la ca $\underline{\mathbf{r}}$

ca Vu=10.78x1.00(0.35-d)

Cortante crítico del co \underline{n}

creto

Vc=0.5 fc = 0.5 160=6.32 Kg/cm^2 igualando cortantes.

$$63.2 = \frac{10.78 \times 1.00 \text{mx} (35-d)}{0.90 \times d}$$

$$56.88d = 3.77 - 1078 d$$

$$d = \frac{3.77}{67.66} = 0.0557 \text{ m}.$$

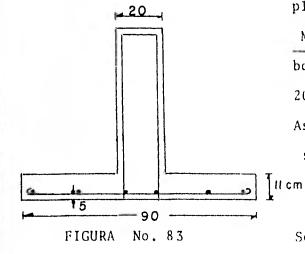
$$d = 6 \text{ cm}$$
; $r = 5 \text{ cm}$

$$h = 6+5 = 11 \text{ cm}.$$

ANALISIS POR FLEXION

$$M = \frac{WX^2}{2}$$
; $M = \frac{10.78(0.45-0.1)^2}{2}$

$$M = 0.66 \text{ ton - m}$$


usando las tablas de diseño -plástico.

$$\frac{MR}{bd^2} = \frac{66,000}{90 \times 6^2} = 20.37$$

$$20.37$$
 $P = 0.005$

As = Pbd =
$$0.005x100x6 = 3 \text{ cm}^2$$

 $s_{\#} = 0.49\text{cm}^2$; $s = \frac{90x0.49}{3} = 14.7\text{cm}$.

$$\dot{s} = 15 \text{ cm}.$$

Se usan varillas # 2.5 a 15 cm en el sentido longitudinal.

Refuerzo transversal.

Por contracción es necesario collocar refuerzo transversal.

Pmin = 0.002

$$Pf = \frac{Ast}{bd}$$
; Ast = bd P_{τ} .

Ast =
$$0.002x100x6 = 1.2 \text{ cm}^2$$

Ast=
$$1.2 \text{ cm}^2$$
.

$$s_{\#} = 0.49 \text{cm}^2$$
; $S = \frac{100 \times 0.49}{1.20} = 40.8 \text{ cm}$.

$$S = 41 \text{ cm}.$$

Se usan varillas # 2.5 a.41 cm en este sentido.

Esta Tesis se imprimió en Septiembre de 1982 empleando el sistema de reproducción Foto-Offset en los Talleres de Impresos Offsali-G, S. A., Av. Colonia del Valle No. 535, (Esq. Adolfo Prieto), Tels. 523-21-05 y 523-03-33 03100 México, D. F.