

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE CIENCIAS

Distribución de Foraminíferos Planctónicos en Sedimentos Superficiales del Golfo de California.

> S E S T Que para obtener el título de: B I 0 L 0 G 0 P r 11 ł a Gloria Antonia Rozo Vera

México, D. F.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

										ti ti ti
L.	DICE.									
					10 10 10 10 10 10 10 10 10 10 10 10 10 1				Páginas	
									1 4	1941-100
II,- Introducción		€ 1.1° • 1.1°							2	
111 Ubicación y caracterí	stica	s de	1. ái	rea	de e	stuc	110		5	
IV Material y métodos	•		•	•					8	
VSistemática	•	•							- 22	-
VI Resultados y discusió	n		6 (4) • (4)	•					31	
VII Conclusiones	1. 1								48 -	ほいねこ
'VIII Bibliografía	A E				lan Artistan Artistan			•	51	
IX Apéndice. Bioestadíst	ica ,	•							58	
Figuras entre p ági nas:			50.00 50 1						ingen gestig Solver gestig Solver gestig	
1 Nucleador de Caja "Reine	ck''	•		•		•	•		12	
2 Hoja de datos de submues da en la Campaña PALEO-I	treo en e	sedi 1 Gc	ment ol fo	tar I de	o, u Call	till for:	z <u>a</u> ia		13	
3 Observaciones y diagrama rio (vista superior), rea Caja "Reineck"	de s eliza	ubmi dos	esti en i	reo Jn r	sedi núcie	ment o de	8-		15	
4,- Submuestreo sedimentario		•	•	•	•	•		•	16	¥
5,- Composición de faunas de cos del Pacífico Norte	fora	mini •	ferc	55 j	olanc •	tón	•		29	
6 Distribución ecológica de	e for	amir	l fei	r05	plan	ctór	icos		30	
Tablas entre páginas:										
1 Muestras superficiales of de Caja "Reineck", duran	btenl te la	das Can	por	un e P/	nuci	eado 1, e	or in			

el Golfo de Californie

19

d Ø Set

Páginas

20

60

61

63

64

65

68

9

28

33

35

- 2.- Lista faunística de las especies y subespecies de foraminiferos planctónicos, observados en las muestras superficiales obtenidas durante la Campaña PALEO-I, en el Golfo de California.
- Abundancia absoluta de foraminíferos planctónicos en el Golfo de California
- 4.- Abundancia relativa de foraminíferos planctónicos en el Golfo de California
- 5.- Abundancia promedio por especie de foraminíferos planctónicos en el Golfo de California, y en cada una de las zonas propuestas (1, 2 y 3).
- 6.- Frecuencia absoluta y frecuencia relativa de presencia de foraminíferos planctónicos, para el -Golfo de California y para cada zona propuesta -(1, 2 y 3)
- 7.- Frecuencia relativa por especie de foraminíferos planctónicos para el Golfo de California, y para cada zona propuesta (1, 2 y 3).
- 8.- A) Indices de diversidad, B) Pruebas de t y grados de libertad, y C) Indices de similitud.

Mapas entre páginas:

- 1.- Derrotero de la Campaña PALEO-I, en el Golfo de California.
- 2.- Ublcación de las estaciones realizadas durante la Campaña PALEO-I, en el Golfo de California
- 4.- Distribución de <u>Globioerina pachyderma incompta</u> en el Golfo de California. Porcentajes relativos a la población total
- 5.- Distribución de <u>Gioboquadrina dutertrei blowi</u>, en el Golfo de California. Porcentajes relativos a la población total

Páglnas

37

38

39

44

- 6.- Distribución de <u>Giobigerina bulloides guadrilatera</u>, en el Golfo de California. Porcentajes relativos a la población total
- 7.- Distribución de <u>Globigerina</u> megastoma s.i., en el -Golfo de California, Porcentajes relativos a la población total
- 8.- Distribución de <u>Globigerina bulloides bulloides</u>, en el Golfo de California. Porcentajes relativos a la población total.
- 9.- Pistribución de <u>Globigerinita glutinata</u> en el Golfo de California, Porcentajes relativos a la población total

RESUMEN

Se efectua el análisis zoogeográfico de cincuenta especies y subespecies de foraminíferos planctónicos provenientes de cuarenta y siete muestras de sedimentos superficiales del Golfo de California, con la finalidad de deducir, cómo la dinámica oceánica influye en su distribución.

Fue posible definir tres grandes zonas zoogeográficas en el Golfo de California, las cuales tienen íntima relación con la distribución de masas de aguas superficiales en el Golfo: Zona I, Areas del Golfo de California con influencia de la Corriente de Ca lifornia; Zona 2, Areas del Golfo con influencia de surgencias, y Zona 3, Aguas del Golfo de California (posiblemente del Pacífico -Tropical Oriental, modificadas por procesos de evaporación); cada una de ellas, constituída por una asociación de foraminíferos plang tónicos específica de acuerdo a sus afinidades térmicas.

Este estudio se apoya en un análisis estadístico (abundan clas, frecuencias, índices de diversidad, índices de similitud y pruebas de significancia).

INTRODUCCION

El Golfo de California ha sido objeto de numerosos estudios sobre -Geología, Biogeografía y Oceanografía; considerándose clásicos entre otros, los de Shepard (1950), Byrne y Emery (1960), Roden (1964) y Van Andel (1964).

Uno de los aspectos que reclentemente ha sido investigado profusamente, es el de los factores que intervienen en la formación y distribu ción de sedimentos laminados. Estos sedimentos fueron descritos inicial, mente por Revelle (1950) y posteriormente por Van Andel (1964) y Calvert (1964; 1966). Los sedimentos laminados tienen un carácter estacional, presentando una alternancia de capas claras y obscuras producidas por cambios en la fuente sedimentaria; es decir, con aporte terrígeno fluvial en verano, y pelágico-planctónico en invierno. Dicha alternancia sedimentaria permite obtener información paleoclimática (Schrader at al, 1980; Donegan y Schrader, 1982).

El Instituto de Ciencias del Mar y Limnología y el Instituto de Geo logía de la UNAM, así como la Universidad del Estado de Oregon USA, pro movieron un estudio de los registros paleoclimáticos grabados en los se dimentos del Golfo de California. Para alcanzar tal objetivo, es neceso rio conocer cómo los parámetros climático-oceanográficos influyen sobre el carácter sedimentario marino, principalmente en la distribución geográfica y estratigráfica de los componentes sedimentarios (microfósiles, ninerales, elementos químicos, etc.). Contribuyendo en dicho propósito, mediante un análisis zoogeográfico, en este estudio se deduce cómo la dinámica oceánica influye en la distribución de foraminíferos planctón<u>i</u> cos en el Golfo de California. Los estudios de foraminíferos recientes en el Golfo de California, son escasos y se encuentran limitados a ciertas áreas (Bradshaw,1959; -Bandy,1961; Phieger,1964; Matoba y Oda,1982, y Matoba y Yamaguchi,1982). Consecuentemente, otro propósito de este estudio, es inferir si la distribución geográfica de las masas de agua superficiales del Golfo, se re flejan en los sedimentos del fondo marino.

Cada masa de agua en el océano se caracteriza por contener una bio ta planctónica en particular (Boltovskoy,1959,1962; Bradshaw,1959; Bandy, 1961,1968; Phleger,1976, y Lynts,1977), por lo que a los organismos que se utilizan para identificar masas de agua, se les denomina "indicadores bio lógicos". Los foraminíferos planctónicos han sido tipificados en este ren glón por algunos investigadores (Ejem: Bradshaw,1959; Phleger,1960,1976; Boltovskoy,1962; Bandy,1969, y Rögi y Bolli,1973).

Algunos autores (Roden, 1964, 1972; Ingle, 1973b; Molina-Cruz, 1982) han sugerido la presencia de frentes oceánicos en la boca del Golfo da -California, formados por la mezcia de las masas de agua de la Corriente de California, del Pacífico Subtropical y las propias del Golfo. Los fren tes oceánicos representan el límite entre masas de agua con propiedades diferentes mezciadas horizontalmente; tienen importantes efectos sobre el clima, y significativas consecuencias biológicas debido a que son áreas de alta productividad de toda la cadena alimenticia (Bowman y Esalas, 1978).

Asimismo, se ha planteado la existencia de surgencias a lo largo del Golfo de California (Byrne y Emery,1960), sugiriéndose que éstas pueden ser más intensas a lo largo de la costa oeste en invierno debido a los vientos del noroeste; y en la costa este en verano, por los vientos del -

sureste. Las surgencias son resultado de la acción del viento, ya que ég te, es el responsable de la circulación superficial oceánica y su influen cia se extiende a pocos cientos de metros. Los vientos inciden a lo largo de la costa oeste hacia el ecuador, y junto con el efecto de Coriolis, causan movimiento del agua superficial hacia el lado este, ocasionando elevaciones del agua desde profundidades de 200 a 400 metros. Estas aguas frías subsuperficiales contienen altas concentraciones de nutrientes, siendo así, áreas altamente fértiles (Riley y Chester, 1971).

Dado que estas regiones se caracterizan por una alta productividad primaria (Riley y Chester,1971; Bowman y Esalas,1978), se delimitarán por medio de la distribución de los foraminíferos planctónicos en el Golfo de California, utilizando indicadores biológicos de aguas transicionales, subtropicales y cálidas.

UBICACION Y CARACTERISTICAS DEL AREA DE ESTUDIO

El Golfo de California se encuentra localizado entre las latitudes 32°N y 23°N; y entre las longitudes 115°W y 107°W. Este Golfo es una estrecha cuenca de forma aproximadamente rectangular, limitado en el norte por el delta del Río Colorado y los estados de Baja California y Sonora, por la Península de Baja California al occidente, y por los estados de -Sonora y Sinaloa al oriente. En su parte terminal sur, tiene comunicación ablerta con el·Océano Pacífico. Los efectos climáticos del océano sobre el Golfo, son reducidos ampliamente por una casi ininterrumpida cadena montañosa de 1 a 3 Km, de alto en la Península de Baja California (Roden, 1964; Van Andel, 1964); por lo tanto el clima del Golfo es más continental que oceánico, observándose variaciones de temperatura anuales y diurnos muy grandes (Hernández, 1923).

Batimétricamente, el Golfo puede dividirse en una serie de cuencas y trincheras separadas unas de otras por cordilleras transversas (Shepard, 1950; Van Andel,1964). La mayoría de las cuencas son profundas y en able<u>r</u> ta comunicación con el océano, aunque el canal de Ballenas, entre isla A<u>n</u> gel de la Guarda, isla San Lorenzo y Punta San Gabriel, no tiene comunicación con él (Roden,1964).

La temperatura del agua superficial del Golfo oscila entre 14° y -17°C en el norte; 17° y 33.3°C cerca de Guaymas, y entre 11.1° y 36.7°C cerca de la Paz (Byrns, 1957); al comperar éstas con las del Océano Pacíf<u>i</u> co aledaño, se observa que las del Golfo son más cálidas desde abril hasta septiembre, y cercanamente iguales en los meses restantes (Roden, 1964). La salinidad en el norte y centro del Golfo, oscila entre 35°/... y -35.8°/...; salinidades mayores a 36°/..., son observadas localmente en

bahías semicerradas en el norte del Golfo y en la costa este de Baja Ca lifornia. En la parte sur, la salinidad oscila entre 34.6 °/... y 35 °/... La distribución de salinidad suglere que hay un flujo de agua hacia el in terior del Golfo, a lo largo de la costa este y un flujo hacia el exterior, a lo largo de la costa oeste, entre profundidades de 50 y 100 m. -(Roden, 1964).

En la entrada del Golfo de California, se observan en la superficie tres masas de agua: a) El agua de la Corriente de California, fría y de baja salinidad (≈ 34.6 '/...), la cual fluye hacia el sur, a lo largo de la costa occidental de Baja California, mezclándose en la boca del Golfo con b) el agua superficial del Pacífico Tropical Oriental, tempiada y de salinidad intermedia (34.65'/... ≈ 34.85 '/...), fluyendo hacia esta área desde el sureste, y con c) el agua del Golfo de California, tibia y de alta salinidad (≈ 34.90 '/...) (Roden y Groves, 1959; Griffiths, 1968; Steven son, 1970; Alvarez-Borrego y Schwartziose, 1979). Las aguas superficiales del Pacífico Tropical Oriental y Subsuperficial Subtropical, invaden el -Golfo de California al sur de las Islas Angel de la Guarda y Tiburón a f<u>i</u> nales de primavera y durante el verano. En el invierno y a finales de pr<u>i</u> mavera, estas aguas se retiran a la boca del Golfo (Alvarez-Borrego y Sch wartziose, 1979).

Los vientos del noroeste, en invierno, llevan aguas superficiales hacia el sur, causando extensas surgencias a lo largo de la costa este, particularmente en el sotavento de islas y sallentes. Los vientos del sureste en verano, mueven la superficie del agua hacia el noroeste, dando lugar a surgencias a lo largo de la costa de Baja California. La velocidad promedio de surgencia es de aproximadamente tres metros por día.

En el norte del Golfo de California, la mayor parte del área está cubierta por sedimentos procedentes principalmente del Río Colorado; en esta zona, se encuentran las mayores extensiones de sedimentos arenosos, localizados hasta el sur de la Cuenca Tiburón; en la plataforma oriental; los foraminíferos, esqueletos de moluscos, corales y briozoarios son muy escasos. En las áreas central y sur del Golfo se encuentran sedimen tos de origen batolítico y volcánico, observándose unicamente sedimentos arenosos a lo largo de los márgenes, encontrando que el cinturón arenoso es delgado y calcáreo en el lado occidental ; amplio y predominante. mente terrígeno en el márgen oriental. A lo largo del márgen occidental del centro y sur del Golfo, los esqueletos carbonatados son importantes constituyentes de las arenas de playa y plataforma. En las plataformas de ambas zonas, se concentra primeramente sílice blogénico, el cual es escaso ó ausente en el fondo de las cuencas. Al sur de la latitud 26 N, la sílice es casi exclusivamente de radiolarios, mientras que al norte de este paralelo, es predominantemente diatomítico. Cantidades significa tivas de diatomeas se encuentran en pocas áreas cercanas a la costa, par ticularmente a lo largo dei lado occidental del Golfo. Los sedimentos tanto del centro como del sur, contienen cantidades apreciables de ópalo blogénico en forma de esqueletos de radiolarios y de fragmentos y frústu las de diatomeas. La gran abundancia de lodos diatomíticos es debida a una alta productividad superficial y a condiciones anaeróbicas en el fon do. En el área central, se observan en algunas zonas sedimentos diatomiticos finamente laminados, mientras que en la parte sur, se observan localmente, sedimentos laminados constituídos por limos y arcillas. En el sur, la producción de sílice blogénico es menor al aporte de sedimentos terrígenos, y las arcillas limosas predominan en las plataformas y cuencas (Van Andel, 1964).

MATERIAL Y METODOS

La cempaña oceanográfica se realizó a bordo del B/O "El Puma", partiendo de la Paz, Baja California el día 20 de Mayo de 1982. El plan de campaña definió transectos en la parte norte, central y sur del Golfo; variándo el número de estaciones en cada uno de ellos (mapa no. 2). En cada transecto se hizo ecosondeo. Posteriormente se navegó hacia Cabo -San Lucas, y de ahí se tomó rumbo hacia Ensenada, para desembarcar el ~ día 6 de Junio.

a) Transectos en el norte del Golfo: Cuenca Delfín Entre Cuenca Delfín y Cuenca San Esteban Guenca San Esteban Cuenca San Pédro Mártir

b) Transectos en la parte central del Golfo:
Norte de Santa Rosalía
Noroeste de San Pedro Nolasco
Oeste de Guaymas
Oeste de la Isla Lobos
Bahía Concepción

c) Transectos en la parte central del sur del Golfo: Desembocadura del Río Mayo Este de la Cuenca del Carmen Norte del Río Fuerte Este de la Isla del Carmen Sur de la Isla Santa Catalina

Ubicación de las estaciones realizadas durante la Campaña PALEO·I, en el Golto de California.

MAPA NO 2

d) Transectos en la parte sur del Golfo: Río Sinaloa

Desembocadura del Río Cullacán

e) Transecto en la boca del Golfo

f) Transecto en la Cuenca de la Paz.

La ubicación de las estaciones se determinó empleando el radar y señales de satélites auxiliares de navegación.

Para la obtención de las muestras de sedimentos durante la campaña, fueron empleados diversos tipos da nucleadores; de Caja "Reineck" (Fig. No. 1); de Gravedad tipo Kasten y de gran diámetro, así como de Pistón. El nucleador de caja fue utilizado cuando se requería conservar la interfacie columna de agua-fondo oceánico. Los demás nucleadores se utili zaron para obtener muestras de mayor volumen, posteriormente utilizadas para estudios de bioestratigrafía, pues permite conocer la relación de la columna sedimentaria, con una mínima perturbación al momento del mues treo.

Las observaciones particulares de cada estación fueron registradas en formas previamente estipuladas (Fig. No. 2). En esta forma se anotó entre otras observaciones:

tipo de nucleador, coordenadas, tiempo, profundidad, etc.

El tiempo fue registrado de la siguiente manera:

localización y tiempo cuando el nucleador fue puesto en el agua. localización y tiempo cuando el nucleador se encontraba en el fondo. localización y tiempo cuando el nucleador era recuperado en la superficie. El tiempo está referido al tiempo local, más la diferencia con respecto al Meridiano de Greenwich.

OSU Oceanography

MARINE GEOLOGY CORING DATA SHEET

	•	•	JIGUUN:		
Cruise:				*****	
9 9 :	4844		70991491. 70991491		
lo/Day/Yr//			Sampler Types:		
atilude: "ºl)/N	1(bridge)	Multiple Gravity - M	G	
۰)	1(corrected)	Dredge - DR	1 03	
ongitude:ºC)/W	l	Kasten - K		
•)′M	I(corrected)	Gravity - G		
·	on bottom	recovered	Shipek Grab - SG		
ime:		(GMT)	Box Core - BC		
fater Depth:		fathoms(unco	Diner or)	an a	
(PDR)	*****	meters(corr)			
Vire Vision: Core Length:	20 40	60 80 100			Total Length
Other:			DC Section	Section	(cm from
CODe:			Number .	(cm)	Upper Lowe

		소문 이 법에 없는 것 같은 방법이 없다.			
rigger Line Length:	4	••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••		
rigger Line Length: Shear Pin Size:			······		•
rigger Line Length: hear Pin Size: ctuating Depth:					
rigger Line Length: hear Pin Size: ctuating Depth: ension: dar to telo:		• • • • • • • • • • • • • • • • • • •			
rigger Line Length: hear Pin Size: ctuating Depth: ension: rior to trip: n bottom:		••••••••••••••••••••••••••••••••••••••			
rigger Line Length: hear Pin Size; ctuating Depth: ension: nor to trip: in bottom: ullout (max.):		•			
rigger Line Length: hear Pin Size: ctuating Depth: ension: hor to trip: b bottom: ullout (max.): scending:					
rigger Line Length: chear Pin Size; ctuating Depth: ritor to trip: n bottom: ullout (max.): scending: ther Samplers: voe and		· · · · · · · · · · · · · · · · · · ·			
rigger Line Length: hear Pin Size; ctuating Depth: ension: rior to trip: in bottom: uliout (max.): scending: ther Samplers: ype and umber Leng		• • • • • • • • • • • • • • • • • • •			
rigger Line Length: hear Pin Size; ctuating Depth: ension: rior to trip: in bottom: in bottom: in bottom: scending: ther Samplers: rpe and umber Leng	<u></u>	· · · · · · · · · · · · · · · · · · ·			
rigger Line Length: hear Pin Size: ctuating Depth: nor to trip: n bottom: uilout (max.): scending: ther Samplers: ype and umber Leng	<u></u>				
rigger Line Length: hear Pin Size; ctuating Depth: ension: rior to trip: in bottom: uliout (max.): scending: ther Samplers: ype and umber Leng	<u></u>	· · · · · · · · · · · · · · · · · · ·			
rigger Line Length: hear Pin Size; ctuating Depth: ension: rior to trip: n bottom: uilout (max.): scending: ther Samplers: ype and lumber Leng	<u>th</u>	· · · · · · · · · · · · · · · · · · ·			

Remarks:

Figura No. 2.- Hoja de datos de submuestreo sedimentario, utilizada en la Campaña PALEO-1, en el Golfo de California. 13 Cuando se empleó el nucleador de caja, se elaboró un esquema de la vista superficial del núcleo (Fig. No. 3) para submuestreario. Este sub muestreo fué hecho insertando tubos de PVC y una rejilla de plástico – (Fig. No. 4).

Además, durante la campaña se tomaron muestras de fitoplancton (en espacios de una hora), y nanoplancton calcáreo (cada dos horas); realizándose hidrocalas para estudios de temperatura, 0¹⁸, y salinidad, a d<u>i</u> ferentes niveles de la columna de agua.

Al finalizar el crucero, las muestras se separaron y entregaron a las personas responsables de los diversos estudios por realizarse.

En este estudio se utilizaron 47 muestras, obtenidas del primer cen timetro cúbico del sedimento superficial del núcleo de caja, siendo procesadas para su análisis micropaleontológico, siguiéndo el método de New mann (1967).

Posteriormente, se identificaron las diferentes especies de foraminiferos planctónicos, tomando como base para estimar su abundancia relativa 300 individuos (Phleger,1960; Ayala Castañares y Segura,1968); cuan do la abundancia total fue inferior a 300, se contaron todos los individuos presentes en la muestra. En las muestras donde los foraminíferos planctónicos fueron muy abundantes, se empleó un cuarteador "Otto". Teniéndo los foraminíferos separados en laminillas de 60 casillas, se procedió a su determinación sistemática.

Los resultados fueron tratados estadísticamente como se específica a continuación:

Figura 4.- Submuestreo sedimentario

16

1.1.1.1

A. A. S.

- 1) Abundancia absoluta (Margalef, 1977)
- 2) Abundancia relativa (Margalef, 1977)
- Abundancia promedio (Margalef,1977; Ipsen y Feigl,1970).
- 4) Frecuencia absoluta de presencia (Amos, -Brown y Mink,1969)
- 5) Frecuencia relativa de presencia (Amos, Brown y Mink,1969)
- Frecuencia relativa de la especie (Lamotte,1976; Ipsen y Felgi,1970)
- 7) Indices de diversidad (Margalef,1977; Poole,1974)
- B) Pruebes de t de significancia y grados de libertad (Poole, 1974)
- 9) Indices de similitud (Mueller y Dumbois,-1974)

Los procedimientos estadísticos se encuentran en el apéndice "Bloestadística".

Tabla No.

3

ς

6

6

7

8

A

я

Especificación de algunos términos utilizados en este trabalo:

- Area norte, central y sur del Golfo de California.

Estas fueron delimitadas de manera arbitraria, utilizando como cr terio, rasgos fisiográficos (Rusnak y Fisher, 1964; Roden, 1964; Roden y Groves, 1959; y Alvarez-Borrego, 1979), y distribuciones fitogeográficas (Van Andel, 1964; Round, 1967; y Molina Cruz, en prensa).

<u>Area norto:</u> De la desembocadura del Río Colorado, hasta la Isla Tiburón.

Area central: Región desde Isla Tiburón, hasta Topolobampo.

Región desde Topolobampo, hasta Cabo Corrientes.

 Las columnas sedimentarias observadas en los núcleos recobrados, han sido descritas en la tabla No. 1, de acuerdo a sus propiedadas textu rales (Shepard, 1954).

En algunos casos fueron empleadas las siguientes abreviaturas para los géneros correspondientes:

18

G .- Globigerina

Area sur:

- Gnita. Globigerinita
- Gs.- Globigerinoides
- Gq. Globoquadrina
- Gr.- Globorotalla
- G1.- Globorotaloides
- H .- Hastigerina
- 0 .- Orbulina
- P.- Pullenlatina
- T .- Turborotalita

Tabla No. 1.- Muestras superficiales obtenidas por un nucleador de Caja "Reineck" durante la Campaña PALED-1, en el Golfo de California (Mapa No. 2).

	durante	la Campaña PALI	10-1, en el Golfo	de California	(Mapa No. 2).
Muestra No.	Latitud Norte	Longi tud Oaste	Profundided (metros)	Sedimentos laminados	Composición textural
2	29 58	113 38'	230	→	arcilla-limosa.
3	30 001	113 471	. 364		arcilla-limosa
5	29, 59'	114 03	448		arcilla-limosa
1	29 59	114 06	300 311/1	이 같은 바람을 물었다.	aiciiid~iiii03a,
9	30 00	112 001	248		limo, arcilla
	27 VI				y arena
13	28 21	112 28'	915	SI	arena, arcilla
					y limo
14:0000	28 15'	112 24	897		arena, arcilla
			640		y I Imo
17	27 51	112, 31	62U 9/10		arena-iimosa
10 21	2/ 50	112 45	REA		arcilla=11mosa
24	28 051	111 44	325	가는 이는 것을 빠른 아랍니다. 같은 가지는 것을 빼내고 있는 것이다.	arenosa
25	28 05 1	111 41	356		arenosa
26	28 04 1	111 411	389	n anti-tan T∎ an tan tan tan tan tan tan tan tan tan	limo-arenoso
27	28 011	111 401	477		limo-arcilloso
28	27 59'	111 401	520	SI SI	lodo
30	27 54	111 42	608	S I	arcilla-limosa
31	27 49	111 43'	000	S I	an Anntilantinada
33	27 40	111 44	0049 1/23	SI	arciila"ilmosa
27	27 40	111 051	723 607		limorarcilloso
41	27 281	111 041	817		limo-arcilloso
42	27 51	111 431	647	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
52	26 26'	109 55	515	51 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	arcilla-limosa
53	26 17	110 02'	745	5 7 6 6 1 6 2 5	
54	26, 18	109 56	609		arcilla-limosa
56	26 19	109,46	406	방법이 가 있는 방법을 수 있다. 같은 것 같은 것	arcilla~limosa
58	26 04	109 49	595 (75)	요즘, 소설정 입니 가지가 있 한국, 가기가 집 다 가지 않는	arcilla-limosa
79	25 39	109 40	נלט	51	arena, limo y
60	25 401	100 251	171		arcilla=limosa
61	25° 40'	109 34	163		limo, arcilla
					y arena
63	25 00	109 01	645	si	#
64	24 50 1	108 32	212	이 옷이 빠른 것이 있는	arena-arcillose
65	24, 48	108 32	645	S	arcilla+limosa
68	24 44	108 33	00U		IImo-arcilloso
03	24 09.	100 05	441		arcilla, limo
70	22 581	108 081	600		lodo
72	23 491	108 15'	895		arcilla, arena
					y limo
75	24 32	110 15	741		
77	24 33 '	110 151	725	S 1	
79	25 52	111 08'	256		lodo arenoso
80	25 57'	111 011	615	2011년 81 년 1월	IOCO arenoso
85	25 52	110 43	020 670		1000 arenoso
87	24 001	109 101	482	21 ww	arcilla-arenosa
88	24 091	109 101	850		arenas v arente
90	23 41	109 271	978		arcilla-arenosa
	이 다. 영화 관계 관계		걸 날아도 전 영향을 통하는 것이		승규가 같은 것이 같이 많이 있다.

Tabla No. 2.- Lista faunística de las especies y subespecies de foraminíferos planctónicos, observados en las muestras superficiales obtenidas durante la Campaña PALEO-I, en el Golfo de California (IGM-5512-MI a IGM-5561-MI. Colección Micro paleontológica del instituto de Geología, UNAM).

1 <u>Giobigerina bermudezi</u> Seigle,1963	IGM-5512-HI
2 <u>Globigerina bulloides apertura</u> Cushman,1918	IGM-5513-MI
3 <u>Globigerina bulloides bulloides</u> d'Orbigny,1826	IGM-5514-H1
4 <u>Globigerina bulloidas quadrilatera</u> Galloway y Wissler 1927	IGM-5515- M I
5 Globigerina bulloides umbilicata Orr y Zaitzeff,1971	IGM-5516-MI
6 <u>Globigerina bulloides</u> aff <u>umbilicata</u> Orr y Zaitzef f , 1971	IGM-5517-MI
7 <u>Globigerina calida</u> calida Parker,1962	IGM-5518-MI
8 <u>Globigerina calida praecalida</u> Blow,1969	IGM-5519-MI
9 <u>Globigerina</u> cf <u>falconensis</u> Blow,1959	IGM-5520-MI
10.~ <u>Globigerina megastoma</u> s.l. Earland,1934	IGM-5521-HI
11 Globigerina pachyderma incompta (Cifelli,1961)	IGM-5522-M1
12 Globigerina pachyderma pachyderma (Ehrenberg, 1861)	IGM-5523-HI
13 <u>Globigerina aff Globigerina pachyderma incompta</u> (Cifelli,1961)	IGM-5524-MI
14 <u>Globigerina guinqueloba</u> Natland, 1938	IGM-5525-MI
15 Globigerina eff riveroae Bolli y Mermúdez, 1965	IGM-5526-HI
16 <u>Globigerinite glutinate</u> (Egger, 1895)	IGM-5527-MI
17 <u>Globigerinita uvula</u> (Ehrenberg,1861)	IGM-5528-MI
18 Clobigarinoides bulloideus	IGM-5529-MI
19 Globigerinoides conglobatus (Brady, 1879)	IGM-5530-M1
20 <u>GlobigerInoides elongatus</u> (d'Orbigny, 1826)	IGM-5531-41
21 <u>Globigerinoides</u> cf <u>parkerae</u> (Bermúdez,1961)	IGM-5532-MI
22 <u>GlobigerInoides ruber</u> (d'Orbigny, 1839)	IGM-5533-NI

Continuación de la Tabla No. 2.

23 <u>Globigerinoides tenellus</u> Parker,1958	1GM-5534-M1
24 <u>Globigerinoides trilobus immaturus</u> LeRoy,1939	IGM-5535-MI
25 <u>Globigerinoides trilobus sacculifer</u> (Brady,1877)	IGM-5536-M1
26 Globigerinaides trilobus trilobus (Reuss, 1850)	IGM-5537-M1
27 <u>Globoquadrina dutertrel</u> s.l. (d'Orbigny,1839)	IGM-5538-MI
28 <u>Globoquadrina dutertrei</u> "A"	IGM-5539-MI
29 <u>Globoguadrina dutertrei blowi</u> Rögl y Bolli,1973	IGM-5540-MI
30 <u>Globorotalia acostaensis</u> (Blow,1959)	IGM-5541-M1
31 <u>Globoratalia hirsuta</u> (d'Orbigny,1839)	IGM-5542-M1
32 <u>Globorotalia humerosa</u> (Takayanagi y Salto,1962)	IGM-5543-M1
33 <u>Globorotalia menardii cultrata</u> (d'Orbigny,1839)	IGM-5544-MI
34 <u>Globorotalia menardii menardii</u> (Parker, Jones y - Brady,1865)	IGM-5545-MI
35 <u>Globorotalia scitula</u> (Brady,1882)	IGM-5546-M1
36 <u>Globorotalia tumida</u> (Brady,1877)	IGM-5547-MI
37 <u>Globorotaloides trema</u> Lipps,1964	IGM-5548-MI
38 <u>Globorotaloides</u> sp ^{!'A''}	IGM-5549-M1
39 <u>Globorotaloides</u> sp "B"	IGM-5550-MI
40 <u>Haitigerina sequilateralis</u> (d'Orbigny,1839)	IGM-5551-MI
41 <u>Hastigerina</u> <u>siphonifera</u> (Cushman, 1917)	IGM+5552-M1
42 <u>Orbulina suturalis</u> Brönnimann,1951	IGM-5553-MI
43. – <u>Orbulina universa</u> d'Orbigny,1839	IGH-5554-MI
44 Pulleniatina finalis Banner y Blow,1967	IGM-5555-MI
45 <u>Pulleniatina obliguiloculata</u> (Parker v Jones,1865)	IGM-5556-MI
46 Pulleniatina primalis Banner y Blow,1968	IGM-5557-MI
47 <u>Turborotalita anfracta</u> (Parker,1967)	IGM-5558-MI
48 <u>Turborotalita iota</u> (Parker,1962)	IGM-5559-M1
49 Turborotalita sp "A"	IGM-5560-MI
50 <u>Turborotalita</u> sp "B" 21	IGM-5561-M1

. .

SISTEMATICA

Todas las especies citadas en este trabajo (Tabla No. 2), han sido previamente referidas y discutidas ampliamente por diversos autores -(Ejem: Bolli, Loeblich y Tappan,1957; Phieger,1960,1964; Parker,1962; Blow,1969; Postuma,1971; y Stainforth <u>et al</u>.,1975). Por lo tanto, en esta sección sólo se incluye una breve discusión sobre las especies ó grupos de especies, cuya posición genérica ó específica ha sido continuamente modificada.

Superfamilia GLOBIGERINACEA Carpenter, Parker y Jones, 1862

Familla GLOBIGERINIDAE Carpenter, Parker y Jones, 1862 Subfamilla GLOBIGERININAE Carpenter, Parker y Jones, 1852

Género <u>Globigerina</u> d'Orbigny,1826 <u>Globigerina bulloides</u> d'Orbigny,1826

En el área de estudio se encuentran presentes las siguientes subespecies del grupo <u>Globigarina bulloidas</u>: <u>G. bulloides apertura</u> (Cushman), <u>G. bulloides bulloides</u> (d'Orbigny), <u>G. bulloides guadrilatera</u> -Galloway y Wissler), y <u>G. bulloides umbilicata</u> (Orr y Zaitzeff). Todas estas subespecies fueron determinadas de acuerdo a los criterios propuestos en las descripciones originales de cada una de ellas. Sin embargo, en algunas ocasiones no pudieron ser determinadas algunas formas cercanas a <u>G. bulloides umbilicata</u> debido a que la última cámara se en cuentra muy reducida y cubre parcialmente la abertura. En dichos ejemplares, la abertura es menos grande y profunda comparada con la forma típica de <u>G. bulloides umbilicata</u>. Para fines estadísticos, ésta fue tratada como G. bulloides aff umbilicata.

Globigerina pachyderma (Ehrenberg, 1861)

Con base en diferentes criterios: estructura de la pared, composición, talla, estructuras secundarlas, etc., la posición taxonómica de -<u>G. pachyderma</u> ha sido motivo de numerosas discusiones, sin que hasta la fecha exista un acuerdo generalizado sobre su asignación. As(, ha sido considerada como <u>Giobigarina</u> (Parker, 1962; Bé y Tolderlund, 1971), <u>Gioborotalla</u> (Jenkins, 1967; Bolli, 1970), <u>Turborotalla</u> (Bandy et al., 1969; Bandy, 1972), <u>Gioboquadrina</u> (Bé, 1977) y <u>Neogloboquadrina</u> (Collen y Vella, 1973). Parker (1972), considera que el criterio más importante para su clasificación es la estructura de la pared, asignándola a la familia -GLOBIGERINIDAE. Este criterio ha sido apoyado posteriormente por Olsson (1976), Bé y Tolderlund (1971), y Steineck y Fielsher (1978).

Por otra parte, se han eregido especies ó subespecies diferentes según sus características morfológicas y tipos de enrrollamiento, así la forma dextral ha sido considerada como <u>Globigerina pachyderma incompta</u> (Cifelli,1961), la forma sinistrel como <u>Globigerina pachyderma pachyderma</u> (Ehrenberg,1861), y a las formas dextrales recientes, relacionadas principalmente a aguas superficiales, como <u>Globigerina pachyderma</u> forma <u>superficiaria</u> (Boltovskoy, 1969).

Recientemente, Arikawa (1983) llevó a cabo un análisis completo, utilizando principalmente la morfología, estructura de la pared y el patrón de distribución ecológico. Este autor considera que esta especie pertenece al género <u>Globigarina</u>, concluyendo que las formas sinistrales características de regiones polares, subpolares y algunas veces de zonas transc<u>i</u> cionales (Boltovskoy, 1966; Bradshaw, 1959; Rögi y Bolli, 1973; Olsson, -1976; y Kennett, 1968), deben ser consideradas como <u>Globigarina pachydarma</u> <u>pachyderma</u>, y a las formas dextrales, que viven en regiones tropicales y subtropicales (Bradshaw,1959; Bé y Tolderlund,1971; Rögl y Bolli,1973), deben considerarse como <u>Globigerina pachyderma incompta</u>, subespecie que Arikawa (1983) considera, al igual que Parker (1971), Parker y Berger -(1971), Bé y Tolderlund (1971), y Kipp (1976), como formas inmaduras ó morfotipos de <u>Gg</u>. <u>dutertrei</u> presionadas ambientalmente, considerando también una gradación morfológica entre ellas.

En el presente trabajo, se sigue el criterio de Arikawa (1983), pa ra la definición taxonómica de este grupo.

<u>Globigerina</u> aff <u>Globigarina</u> <u>pachyderma</u> <u>incompta</u> (Cifelli, 1961)

Son las formas relacionadas con <u>G. pachyderma incompta</u> (Cifelli), que presentan 4 cámaras en la última espira, con un arreglo muy cerrado.

Género Globoguadrina Finlay, 1947

Globoquadrina dutertrei (d'Orbigny, 1839)

Esta especie ha sido considerada como <u>Giobigerina</u> (d'Orbigny,1839; Bannar y Blow,1960; Cifelli y Smith,1970), y como <u>Neogloboquadrina</u> (Ban dy, Frerichs y Vincent,1967). Parker (1962), debido a su apariencia, la relacionó con la familia GLOBOROTALIIDAE, en particular con el género -<u>Gioborotalia</u>. Posteriormente, Steineck y Fleisher (1978) la consideraron también dentro de la misma familia, pero referida al género <u>Gioboquadri</u>. na debido a la textura de la pared.

Arikzwa (1983), con base a la estructura de la pared, labios aperturales y patrón de distribución ecológico, asignó esta especie dentro del género <u>Globoquadrina</u>. Este criterio es el adoptado en este trabajo.

Globoquadrina dutertrei "A"

Incluye morfotipos que presentan un tamaño más reducido, espira más baja y enrrollamiento más cerrado que el observado en los especímenes considerados dentro del grupo <u>Ga dutertrei blowi. Ga dutertrei "A"</u> presenta de cinco a seis cámaras en la última espira y en algunos casos un reducido labio apertural. Esta forma no está relacionada con la descrita por Srinivasan y Kennett (1976).

Familla GLOBOROTALIIDAE Cushman,1927 Género <u>Globorotaloides</u> 80111,1957

Globorotaloides sp "A"

Esta forma presenta sels cámaras en la última espira, siendo la última de mayor tamaño. La abertura, un poco ancha y profunda está cubierta ligeramente por la última cámara. La periferia ecuatorial es lobulada y la disposición de las cámaras en la espira no es muy cerrada.

Globorotaloides sp "B"

En este morfotipo, las seis cámaras de la última espira están dispuestas más abiertamente que en <u>Globorotaloides</u> sp "A". Las cámaras son de pared gruesa y ensanchadas lateralmente. La última cámara es de mayor tamaño, y se diferencía de <u>Globorotaloides</u> sp "A" en que no cubre la abertura. La abertura es ancha, profunda y en posición umbilical-extraumbilical. La periferia ecuatorial de <u>Globorotaloides</u> sp "B" es poco l<u>o</u> bulada y ambos lados son convexos, a diferencia de la primera cuyo lado espiral es muy plano.

Las dos formas anteriores se diferencian de <u>Globorotaloides trema</u>

(Lipps,1964) por su gran tamaño, abertura umbilical más superficial y espira menos abierta. Asimismo, se distinguen de <u>Gioborotaloides hexagona</u> (Natland,1938) por la disposición de las cámaras en el espiral, cámaras de forma menos esféricas y globulares, y por las suturas que en el lado espiral no son tan marcadas como en <u>G1, hexagona</u>.

Género Turborotallta Blow y Banner, 1962

Turborotalita sp "A"

Incluye formas que presentan cinco cámaras dispuestas en una espira no muy cerrada, que en vista ecuatorial se observan poco lobuladas. La última cámara es grande, elongada y cubre parcialmente la abertura, la cual se observa muy delgada. La trocospiral es poco alta, observandose ligeramente convexa. Presenta gran concentración de grandes poros. Se di ferencía de <u>Turborotalita iota</u> (Parker,1962) y <u>Turborotalita anfracta</u> -(Parker,1967), por que éstas presentan una trocospiral más baja, sus cámaras son más lobuladas y su pared muy delicada. La última cámara de <u>Turborotalita</u> sp "A" es más bien elongada que inflada y carece de labio apertural y bulla, a diferencia de las dos especies de Parker.

Turborotalita sp "8"

Morfotipos con cinco cámaras en la última espira, siendo la primera cámara de tamaño pequeño. En vista ecuatorial, se observan de forma cuadrada ó romboldal, debido a que la última cámara sobresale principalmente del lado umbilical, sin cubrir el ombilgo. Este, se encuentra en pos<u>i</u> ción umbilical-extraumbilical. Las cámaras presentan una forma casi rectangular y en disposición menos cerrada en la trocospira, que en <u>Turbo-</u> rotalita anfracta (Parker,1967). La ausencia de labio apertural cubriendo el ombligo y la presentación de una pared gruesa con aspecto porcelanáceo, son aspectos también útiles para su diagnosis.

27

Zongeagrafía de foraminíteros planctónicos, definida en este estudio: Zona I : Areas del Golfo de California influenciadas por la Corriente de California. Zona 2 : Areas del Golfo do California influenciadas por surgencias. Zona 3 : Aguas del Golfo de California.

MAPA No 3

물건물을 통하는 것을 물질을 얻을 것을 수 있다.	Fr fa		Cálida				
ESPECIES	Faune Subártica	Fauna de Transición	Fauna Central	Fauna ecua torial (Ce tral-ceste			
Globigerina pachyderma							
Globigerinoides cf. minuta							
Globicerina auinqueloba							
Globigerina bulloides							
Globigerina eggeri (chica)							
Globigerinita glutinata				the second s			
Globigerina eggeri (grande)							
Orbulina universa				teriore and a second			
Globorotalia scitula							
Globigerinoides rubra							
Globigerinella aequilateralis			na la companya di seconda Tanàna dia mandritra dia mandritra dia mandritra dia mandritra di seconda di seconda di seconda di seconda di s	and an			
Globigarina sp.							
Globigerina hexagona				***			
Hastigerina pelagica			an a				
Globorotalia truncatulinoides				- 1 -			
Globigerine infleta							
Candeina nitida			and the second second				
Globigerinoides sacculifera							
Globorotalla menardii				e e Serve IV e versione E versione			
Globigerinoides sp.							
Globigerinoides conglobata							
Globorotalia tumida							
Globorotalla hirsuta							
Pulleniatina obliquiloculata							
Globigerinella sp.							
Sphaerodinella dehiscens							
Globigerina conglomerata				(
Hastigerina digitata			?	* * * = = = * * * * = *			

Fig. No. 5 .- Composición de faunas de foraminiferos planctónicos del Pacífico Nor-te. Tomado de Bradshaw (1959). 29 29

3 -11.6s

	AR		NSICIONAL	TROPICAL	PICAL	Temperatura en [°] C		Profundidad deliagu a en m,	
	Ē	5	E S	SUB	E	rango	optima	rango	optima
Neogloboquadrina pachyderma pachyderma, enrrollamiento sinistral	L			Ī		0-9	2		500-2000
Globigerinita uvula	Ļ	Ļ							
Globorotalia cavernula		L				4-6		0-1000	0-250
Globigerina: guinque l'oba		L				1-21	11-18		
Neogloboquadrine pachyderma pachyderma, enrrollamiento dextral					1.20	10-18			
N. pachyderma f. superficiaria (= N. pachyderma incomptá)								0-500	
Globigerina bulloides			_	_		0-27	3-19	0-1000	250-1000
Globorotalla Inflata		_	L	_		1 - 27	13-19	0-100	
Globorotalla truncatulinoides		-	-	┝		4-27	17-22		
Orbullne universa			_		-	10-30	17-23	0-100	
Globigarina calida			L	L		15-33	n an thair an thair Ta thairtean thairtean Ta thairtean		
Globigerinita glutinata		_		L	_			0-750	
Hastigerina pelagica		-	_		-	7-29	20-26	0-1000	Profundo
Globorotalla crassaformis						16-27		0-1500	100
Neogloboquadrina dutertrei			_			9-30	16-24	0-750	250
Globigerinoides conglobatus				L		15-30	21-29	0-250	
Grupo Globorotalla menardil				L		16-30	20-25	0-1000	500-1000
Globigerinella siphonifera				L	Ц	12-30	19-28	0-750	0-250
Pullenlatina obliquiloculata			÷	L	Ц	19-30	22-24		
Globigerinoides ruber	1	1		L		14-30	21-29	0-700	0-100
Globigerinoides sacculifer		2.				15-30	24-30	0-1000	50-100
Globorotalia tumida				L	Ц	19-31	29-31		

lg. No, 6 .- Distribución ecológica de foraminíferos planctónicos selaccionados (Según Dé, 1967, 1969; Bé and Tolderlund, 1971; Boltovskoy, 1969). Tomado de -Rógi and Bolli, 1973.

RESULTADOS Y DISCUSION

En términos generales, los foraminiferos planctónicos estudiados en el presente trabajo fueron abundantes y bien preservados. En algunas muestras, los ejemplares estaban retrabajados y destruidos.

Los grupos sistemáticos representados fueron 30 especies , 16 subespecies, y 10 géneros, pertenecientes a dos familias las cuales incluyen tres subfamilias. Cuatro especies fueron dejadas en nomenciatura abierta.

Siguiendo los criterios de Bradshaw (1959) y Rögi y Bolli (1973), fueron elegidas algunas especies ó grupos de ellas como indicadores de masas de agua (Figuras 5 y 6). Estas son: para masas de aguas frías, G, bulloides bulloides, G. pachyderma pachyderma, G. guinqueloba, Gnita, uvula y Gr. scitula; para masas de agua transicionales, G. pachyderma incompta, O universa, O suturalis, H. aeguilateralis, Gg. dutertrei, Gs. ruber y los demás elementos del grupo G, bulloides; y para masas de agua cálidas, -Gnita glutinata, Gr. hirsuta, A obliguiloculata, Gs. sacculifer, Gg. dutertrei, Gs. conglobatus y H. siphonifera. La distribución de dichas faunas, cuando fue factible, se comparó con las distribución de dichas faunas, planctónicos previamente delineadas por Bradshaw (1959), Bandy (1961), y Matoba y Oda (1982). Algunas de estas delineaciones no abarcan todo el -Golfo.

La discusión que a continuación se expone, está fundamentada en datos estadísticos: Abundancia absoluta (Tabla No. 3), abundancia relativa (Tabla No. 4), abundancia promedio (Tabla No. 5), frecuencia relativa -(Tabla No. 7) e indices de diversidad y semejanza faunística (Tabla No. 8).
1.- Las siguientes especies presenteron sus máximos valores de abundancia promedio y frecuencia relativa en la zona influenciada por la Corrien te de California: <u>G. pachyderma incompta</u> (Mapa No. 4), <u>Gi. trema, Gu. du</u> -<u>tertrei blowi</u> (Mapo No. 5), <u>Gs. ruber, Gr. tumida, Gi. sp. "A", <u>G. aff G. pa-</u> <u>chyderma, H. aequilateralis, Gs. elongatus, Gs. immaturus, Gr. menardii cul-</u> <u>trata, Gr. scitula, Q. universa y Gg. dutertrei s.).</u></u>

La abundancia relativa de <u>Gi</u>, <u>trema</u>, <u>G</u> aff <u>G</u> <u>pachyderma incompta</u>, <u>G</u> <u>dutartrel</u> s.1.; y <u>Gs</u>, sp "A" es rara, así como la de <u>Gs elongatus</u>, <u>Gs im-</u> <u>maturus</u>, <u>Gr menardii cultrata</u>, <u>Gr scitula</u>, <u>Gr tumida</u>, <u>O universe</u> y <u>H</u> <u>aequi</u> <u>lateralis</u>. <u>Gs ruber</u> es escasa, mientras que <u>Gg dutertrei blowi</u> y <u>G pachy-</u> <u>derma incompta</u> son abundante y muy abundante respectivamente.

En general, estas especies se encuentran distribuídas principalmente en el sur del Golfo, observándose que <u>G. pachyderma incompta</u> y <u>Gl. trema</u> tamblén presentan valores altos en los centros de surgencias. Las otras especies muestran una preferencia hacia la costa occidental. Esta distribución por consiguiente, está en relación directa con el tipo de agua que se encuentra a la entrada del Golfo; es decir, bajo la influencia de las aguas frías de la Corriente de California al occidente, y las aguas cálidas transportadas por la Contra-corriente Ecuatorial al oriente.

La Corriente de California fluye hacia el sur hasta aproximadamente 23°N (Sverdrup y Fleming, 1942), donde se mezcia con las aguas ecuatoriales. Sverdrup y Fleming (1941), refirieron la presencia de una contra-co rriente subsuperficial (bajo 200 m) cercana a la costa, que transporta aguas ecuatoriales hacia el norte. Esta contra-corriente, en otoño e invierno se encuentra en la superficie fluyendo hasta los 48° de latitud -Norte. Esta, es caracterizada por remolinos (eddies), cuyo lado oriental

LEYENDA

Distribución de *Globigerina pachyderma incompta*. en el Golfo de California. Porcentajes relativos a la población total

MAPA No 4

fluye hacía el norte paralelo a la línea de costa, y el lado occidental hacía el sur, expuesto a la influencia de la Corriente de California (Va lentin,1976). Por tal motivo, el lado oriental de los remolinos presenta mayor temperatura que el lado occidental.

Con base a lo anteriormente descrito, se puede explicar la presencia de las especies cálidas observadas en la zona l (pag. 49), como lo son <u>Gr. tumida, Gr. menardii cultrata, Gs. elongatus</u>, y <u>Gs. immaturus</u>. <u>Fs</u> tas especies fueron llevadas hasta allí supuestamente por la contra-co_ rriente ecuatorial. Su baja abundancia, está en relación e que las aguas frías limitan su distribución en esta zona. La gran abundancia de <u>Gg. du-</u> <u>tertrei blowi</u> y <u>G. pachyderma incompta</u> en la zona l, se debe a que ambas especies, aunque son transicionales, toleran aguas frías (Rögi y Bolli, -1973; Arikawa, 1983).

Bandy (1961), hace referencia de porcentajes muy bajos de <u>Ga</u>. <u>ruber</u> en el Golfo de California, al igual que Matoba y Oda (1982), en la Cuenca de Guaymas. Bradshaw (1959) describió la distribución de esta especie en la parte central y sur del Golfo, en porcentajes de l a 20% en general, observando la mayor abundancia hacia la boca. Dicha distribución, coincide con lo observado en este trabajo, aunque el porcentaje es menor.

Matoba y Oda (1982) observaron <u>Gg. dutertrai blowi</u> en porcentajes bajos en la cuenca de Guaymas; lo cual coincide con lo observado en este trabajo. <u>H. anguilateralis</u> fue referida por Bradshaw (1959) para el suroeste del Golfo en porcentajas mayores al 20%, sin embargo, en el presente estudio los valores observados fueron muy bajos, aunque la distribución en esa zona es similar. <u>O. universa</u> se distribuye principalmente en la z<u>o</u> na sur, por consiguiente, en acuerdo con Bradshaw (1959), aunque el porcen

Distribución de *Globoquadrina dutertrei blowi* en el Golfo de California Por centajes relativos a la población total.

tale observado es menor.

2.- Las especies a continuación, presentaron sus valores más altos de abundancia promedio en la zona i (pag. 49), y frecuencia relativa mayor en la zona 2 (pag. 49): <u>G. bulloides apertura, G. bulloides guadrilatera,</u> <u>G. megastoma s.l., G. bermudezi, G. bulloides bulloides y Gr. humerosa.</u> -Las dos primeras se encuentran distribuídas principalmente en el norte del Golfo, en áreas de surgencia. <u>G. megastoma s.l.</u> (Mapa No. 7), <u>G. bermuda-</u> zi, <u>Gr. humerosa, y G. bulloides bulloides</u> (Mapa No. 8), se encuentran en el centro del Golfo, y a excepción de la primera, se observan en áreas de surgencia.

La abundancia relativa de estas especies fue rara, para <u>Gr. humero</u>sa y escasa para <u>G. bermudezi. G. bulloides apertura, G. bulloides bulloi</u> <u>des y G. megastoma</u> fueron medianamente abundantes; y <u>G. bulloides quadri-</u> <u>latera</u> (Mapa No. 6) abundante.

En el caso de estas especies, puede considerarse que aunque su mayor densidad ocurre en la zona 1, debido a las condiciones oceanográficas planteadas anteriormente, es en la zona 2 donde alcanzan su "climax".

La presencia de los morfotipos del grupo <u>G</u>. <u>bulloides</u> en el área de estudio, es debida a que son especies transicionales, por lo que soportan las aguas frías de la zona 1, y prefieren las ricas en nutrientes de la zona 2.

El índice de similitud entre la zona 1 y 2 es alto, pero menor al índice entre la zona 1 y 3; esto se debe a que el tipo de agua entre la zona 1 y 2 es relativamente fría.

G. bulloides bulloides ha sido referida para el Golfo de California

Distribucion de *Globigerina bulloides quadrilatera.* en el Golfo de California. Porcentajes relativos a la población total.

Distribución de *Globiger ina megastema s.l.* en el Golfo de California. Porcentajes relativos a la población total.

MAPA No. 7

>10% 18.10% 10.11% 5.10% < 5%

Distribución de *Globigerina bulloides bulloides.* en el Golta de California Porcentajes relativos a la población total. por Matoba y Oda (1982), Bradshaw (1959), y Bandy (1961). Este último autor la observó en todo el Golfo, haciendo notar que en el norte es más abundante que otros grupos. Lo observado en este trabajo corresponde con la distribución general, aunque en el norte, es tan abundante como otros morfotipos del grupo <u>G. bulloides</u> y otros globigerinidos.

3.- En las zonas del Golfo de California influenciadas por surgencias, las abundancias promedio y frecuencias relativas más altas, fueron observadas en las siguientes especies: G. aff <u>riverose</u>, <u>Gnita.uvula</u>, <u>Gs</u>.cf <u>parkerae</u>, <u>G. aff falconensis</u>, y <u>G. pachyderma pachyderma</u>. La abundancia relativa de estas especies fue rara en general, y <u>su</u> principal distribución fue en el centro del Golfo. <u>Gnita.uvula</u>, <u>Gs</u>.cf <u>parkerae</u> y <u>G. pachyderma pachyderma</u> <u>pachyderma</u> <u>pachyderma</u> <u>pachyderma</u> <u>pachyderma</u> <u>pachyderma</u> <u>derma</u>, fueron unicamente observadas en esta zona.

<u>Quita uvula, G pachyderma pachyderma, así como G bulloides bulloides</u> especies de aguas frías polares y subpolares, pudieran deber su presencia en el Golfo de California, al hecho de haber sido transportadas al interior del Golfo por masas de aguas frías en periódos pasados, posteriormen te constituyendo un grupo endémico. Ingle (1973a,1974) sugiere que una fauna subártica invadió el Golfo durante los estadios glacial y del Pieis toceno, quedando algunas especies "atrapadas" por un reajuste de isotermas hacia el oeste en la época del Holoceno.

El Índice de diversidad para la zona 2, fue más alto que para la zona 1, pero menor que para la zona 3. Este valor está en función de la mezcia de aguas que caracteriza a las surgencias, las cuales al llevar aguas frías a la superficie están ocasionando que haya un desplazamiento de las especies que allí se encontraban. De allí que la baja abundancia de especies

"cálidas" se pueda deber al desplazamiento ejercido sobre ellas, por las especies de ó que toleran masas de agua frías.

La existencia de estas zonas de surgencias se ven por lo tanto, indicadas por la presencia de especies de aguas frías como <u>G</u> <u>bulloides bu-</u> <u>lloides</u>, <u>G</u> <u>pachyderma pachyderma y <u>Gnita</u> <u>uvula</u>, y por especies transicio nales con tolerancia a rangos bajos de temperatura, como lo son <u>G</u> <u>pachy-</u> <u>derma incompta</u>, y los demás integrantes del grupo <u>G</u> <u>bulloides</u>.</u>

La distribución referida por Bandy (1961) para <u>G. pachyderma</u> en el -Golfo de California, coincide con la distribución observada en este trabajo, para <u>G. pachyderma incompta</u>. Esta semejanza está en relación a que Bandy (1961) está considerando dentro de <u>G. pachyderma</u> a formas sinistrales y dextrales, pero principalmente a éstas últimas.

4. - Se observó que las siguientes especies, presentaron sus máximos valo res de abundancia promedio en la zona 1, y de frecuencia relativa; en la zona 3: <u>O quinqueloba</u>, <u>On acostaensis</u>, <u>T lota</u>, <u>Os sacculifer</u>, <u>Os trilobus trilobus</u>, <u>On menardii menardii</u>, <u>H siphonifera</u>, <u>P finalis</u>, <u>P obliquiloculata</u>, <u>P primalis</u>, y <u>O suturalis</u>.

La abundancia relativa fue de escasa a media para las tres primeras especies, muy rara para <u>Q suturalis</u>, y rara, para las demás especies.

<u>G. guinqueloba, Gs. sacculifer, Gr. acostaensis, Gr. menardii menardii,</u> <u>H. siphonifera, R. obliquiloculata, y I. iota</u> se distribuyen principalmente en el centro y sur del Golfo; <u>Gs. trilobus trilobus</u>, <u>Q. suturalis</u>, <u>P. fina-</u> <u>lis</u>, y <u>R. primalis</u>, ocurren principalmente en el sur.

La relación entre ambas zonas es similar al caso planteado en el pun to 2. La distribución se puede explicar debido a la mezcla ocasionada por

las aguas cálidas provenientes del sur, las aguas propias del Golfo, con sideradas como subtropicales, y las aguas frías bajo la influencia de la Corriente de California, las cuales dan como resultado la formación de un frente oceánico (Mapa No. 3), que se ubica entre la zona l y la zona 3. Dicha mezcla ocasiona por tanto, la distribución y los altos valores que presentan estas especies en la zona l.

El Índice de similitud entre la zona l y la zona 3, es el mayor, y se debe principalmente a que hay mayor número de especies en común, sobre todo formas transicionales, las cuales constituyen la mayor parte de la población, aun sin tomar en cuenta las formas típicas para cada zona. Las especies en común son resultado de la mezcla y permiten evidenciar la transición desde aguas frías hasta aguas cálidas.

La distribución observada de <u>R obliquiloculata</u> fue principalmente en el centro y sur del Golfo, con valores entre 1 y 5%. Bradshaw (1959) la reporta en esos mismos porcentajes, sólo que su distribución se restringe a una mancha entre los 26° y los 27° lat. N. El también hace ref<u>a</u> rencia de <u>Gis sacculifar</u> y <u>Gr. menardil menardil</u>, observando a la primera de los 27° lat. N hacia el sur del Golfo, en porcentajes del 1 al 30%. -Tal observación no está de acuerdo con el presente estudio, que concentra la distribución de esta especie en la costa occidental del Golfo, con valores del 1 al 5%. En el caso de <u>Gis menardil menardil</u>, la distribución observada aquí coincide con la de él, pero no en cuanto a valores; él encuentra porcentajes de l a mayores del 20%; en el presente estudio, los valores son del 1 al 5%.

5.- En la zone 3, presentaron sus más altos valores de abundancia promedio y frecuencia relativa las siguientes especies: <u>Gnita-plutinata</u> (Mapa

No. 9), <u>Ga dutertrei</u> "A" (Mapa No. 10), <u>Gs conglobatus, I anfracta, G</u> bulloides aff umbilicata, I sp "B", <u>Gs bulloideus, Gs tenellus, Gr hir-</u> suta, <u>GL</u> sp "B", y I sp "A".

En lo que se reflere a abundancia relativa, <u>Gnita glutinata</u> es abu<u>n</u> dante, <u>Gg.dutertrei</u> "A" media y <u>Gs-conglobatus, <u>T.anfracta</u>, <u>G.bulloides</u> aff <u>umbilicata</u> y <u>T</u>, sp "8" rara, Todas las demás especies fueron muy raras.</u>

La distribución para <u>Gnita glutinata y Gs. conglobatus</u> fue principal mente en la costa este del centro y sur del Golfo; para <u>Gs. tenellus</u>, <u>Ga</u>. <u>dutertrei</u> "A", <u>G. bulioides</u> aff <u>umbilicata</u> y <u>T</u>. sp. "A" en el centro. Las demás especies fueron observadas en el sur, marcadamente en la costa oriental. La distribución de dichas especies en la costa oriental del -Golfo, y sus valores altos, presentados en la zona 3, permiten evidenciar su gran afinidad por las masas de agua cálidas y subtropicales, observándose muchas formas de aguas cálidas, y muy pocas de aguas transicionales. Asimismo, la composición faunística de la zona 3, se diferencia de la del Pacífico Tropical Oriental, debido a la ausencia de formas cálidas típicas de aguas tropicales como <u>Gr. truncatulinoides</u>, <u>H. pelagica</u> y <u>Gr. inflata</u>.

Esta zona, posiblemente debe sus masas de agua, por un lado, a la in fluencia de las aguas del Pacífico Tropical Oriental, y por otro, a las aguas de la Contra-corriente Ecuatorial; ambas cálidas y fluyendo del sureste, siendo dicha influencia principalmente observada en la parte sur del Golfo, ya que conforme se avanza hacia el norte, las aguas del Golfo son modificadas por fuertes procesos de evaporación (Roden y Groves, 1959), relacionados probablemente, con la influencia continental sobre el clima del Golfo (Hernández, 1923). Dicha influencia es menor en la parte sur y -

Distribución de *Geobigerinita giutinata* en el Goito de California. Porcentajes relativos a la población total. ø

WAPA No.

Distribución de *Globoquadrina dutertrei* "A" en el Golfo de California. Porcentajes relativos a la población total

>50 % 25-50%10-25%5-10% <5 %

MAPA Ne. 10

en la boca del Golfo. Así, se observa la salinidad máxima en el norte, media en el centro y mínima, en el sur del Golfo (Roden,1964; Roden y -Groves,1959).

<u>Gs, conglobatus</u> es referida en el Golfo de California por Bandy (1961), Matoba y Oda (1982) y Bradshaw (1959); quien la observó principalmente – en el surceste con valores del 1 al 10%. Estos valores no concuerdan con lo observado aquí, pues esta especie, se encuentra en el surceste con valores menores.

<u>Gnita, glutinata</u> es referida como rara en el Golfo por Bandy (1961); Bradshaw (1959) la refiere en la costa occidental del Golfo, desde la boca hasta aproximadamente 28° de lat. N, como abundante. Lo observado en este estudio, indica que también es abundante en el sureste.

El índice de similitud entre la zona 2 y 3 fue el más bajo. Esto se puede explicar debido a que las condiciones ambientales de ambas zonas son muy diferentes; las masas de agua de la zona 2 son frías, como resultado de surgencias, y las de la zona 3, cálidas debido a la influencia de las masas de agua cálidas previamente descritas, y a los procesos de evaporación. El índice de diversidad para la zona 3, fue el más alto debido a dos condiciones: 1) presencia de masas cálidas y 2) abundancia de especies transicionales. Las masas de agua cálidas ya sean tropicales ó subtropicales, permiten condiciones óptimas para la mayoría de especies -(Krebs, 1978). El alto índice de diversidad observado en la zona 3, no se contrapone con el enunciado de que la diversidad aumenta en dirección de los polos al ecuador, es decir de aguas polares a aguas subtropicales. El número de individuos por especie aumenta del ecuador, a los polos (Krebs, 1978). 6.- Al llevar los resultados del análisis estadístico a una prueba de significancia (ipsen y Feigl,1970; Mueller y Dombols,1974), con una probabil dad de 0.05 (ipsen y Feigl,1970; Parker,1974; Gardner,1974), las tres zonas resultaron significativamente diferentes (Tabla No. 8), por lo cual la pro babilidad de que las diferencias fueran debidas al azar es mínima.

7.- Las cinco especies más abundantes en el Golfo de California en orden decreciente son: <u>Ginbigerina pachyderma incompta</u>, <u>Giobigerina bulloides</u> -<u>quadrilatera</u>, <u>Giobigerinita glutinata</u>, <u>Giobigerina megastoma</u> s.1. y <u>Giobo-</u> <u>guadrina dutertrel blowi</u>. De éstas, las cuatro primeras coinciden en 44 eg taciones. Las especies menos abundantes, en orden decreciente son: <u>Giobiga</u> <u>rinoides bulloideus</u>, <u>Giobigerinoides tenellus</u>, <u>Gioborotalia hirsuta</u>, <u>Giobi</u> <u>gerina bulloides aff umbilicata y Iurborotalita sp</u> "A".

8.- La presencia de organismos subtropicales y tropicales en sedimentos ba jo la influencia de las aguas relativamente frías de la Corriente de Callfornia, se puede explicar no solo por afinidades de las especies a cierto tipo de masas de aqua, requerimientos alimenticios, ó necesidades reproduc tivas, sino también por la estratificación de la columna de agua. El agua del Golfo de California, cálida y ligera, fluye por arriba del agua de la Corriente de California y del agua superficial del Pacífico Tropical Orien tal que son más densas (Alvarez-Borrego y Schwartzlose,1979). Bajo dichas masas de aqua, se encuentran sucesivamente; Aqua Subtropical Subsuperficial, agua intermedia del Artico y agua del fondo del Pacífico (Griffiths,1968). Esta estratificación del agua crea, al depositarse los organismos, una mezcla de especies de diferentes ambientes llamada Tanatocenosis; por consiguiente, en los sedimentos no todas las especies observadas están en relación con las aguas superficiales. Este fenómeno probablemente se acentúa en la boca del Golfo y zonas aledañas por el flujo existente hacia el interior y exterior (Griffiths, 1968), influyendo también en la distribución de los -

47

organismos.

CONCLUSIONES

1.- El presente trabajo aporta nueva información sobre la distribución de 50 especies de foraminíferos planctónicos en el Golfo de California.

2.- Se reportan por primera vez en el Golfo de California, las siguientes especies:

Globigerina calida calida, Globigerina calida praecalida, Globigerina megastoma, Globigerina eff. riveroae, Globigerinoides bulloideus, Globigerinoides of parkerae, Globigerinoides trilobus immaturus, Glo borotalia acostaensis, Globorotalia humerosa, Globorotaloides trema, Hastigerina siphonifera, Pulleniatina finalis, y Pulleniatina prima-Lis.

3.- De acuerdo a sus afinidades térmicas, se sugiere la siguiente composición faunística da foraminíferos planctónicos:

Fauna subártica:

Globorotaloides trema

Fauna de transición:

Globigerina bermudezi, Globigerina bulloides apertura, Globigerina bulloides quadrilatera, Globigerina aff faiconensis, Globigerina megestoma, Globigerina aff.riverose, Globigerinoides elongatus, Globigerinoides trilobus immaturus, Globigerinoides of parkerse, Globigerinoides trilobus trilobus, Globoquadrina dutertrei blowi, Globorota lia acostaensis, Globorotalia humarosa, Orbulina suturalis, Pullenia tina finalis, Pulleniatina primalis, Turborotalita lota.

Fauna subtropical:

<u>Turborotalita anfracta, Globigerinoides bulloideus, Globigerinoides</u> tenellus.

- 4.- La distribución y abundancia de los foraminíferos planctónicos, per miten definir tres grandes zonas zoogeográficas que tienen íntima relación, con la distribución de masas de aguas superficiales en el Golfo de California. Estas son (Mapa No. 3):
 - Z<u>ona 1</u>, Areas del Golfo de California influenciadas por la Corriente de California.
 - Zona 2, Areas del Golfo de California influenciadas por surgencias.
 - <u>Zona 1</u>, Aguas del Golfo de Callfornia (la cual es posiblemente agua del Pacífico Tropical Oriental, modificada por procesos de evaporación).
- 5.- Estas zonas zoogeográficas son definidas principalmente con base en los foraminíferos planctónicos indicadores de diferentes masas de agua, y se apoya en isotermas del Golfo de California (Robinson, -1973). La zona i es definida por medio de la presencia y abundancia de faunas de transición que presentan tolerancia a aguas frías como: <u>Globigerina pachydarma incompta</u>, <u>Globigerina aff. Globigerina pachyderma incompta</u>, y <u>Globoguadrina dutertrei blowi</u>; asimismo, se está considerando la ausencia ó baja abundancia de especies muy relacionadas con masas de aguas cálidas como: <u>Globigerinita glutinata</u>, <u>Globigerinoides conglobatus</u>, <u>Globorotalia hirsuta</u>, <u>Globoquadrina dutertrei</u>. Estas últimas, entre otras, son la base para definir la zona

3, debido a su mayor presencia y abundancia, así como la escasa pra sencia da formas transicionales. La zona influenciada por surgen cias, es definida por la presencia de formas de aguas frías como : <u>Giobigarina pachyderma pachyderma</u>, <u>Giobigarina bulloides bulloides</u>, y <u>Giobigarinita uvula</u>, y formas transicionales con tolerancia a aguas frías.

6.- La diversidad en el Golfo de California es alta, observándose mayor, en el área que abarca aguas subtropicales, es decir, aguas del Golfo de California. La similitud faunística más alta está dada entre la zona 1 y el área de aguas subtropicales. Ambos valores están en relación directa con la mezcia de masas de agua que se encuentran en cada una de ellas. Dicha mezcia permite el desplazamiento de formas de aguas frías hacia zonas de masas de aguas cálidas, razón por la cual, en la zona 3, se observan más especies. Este hecho, que no oc<u>u</u> rre significativamente en sentido contrario, es debido a que la influencia de aguas frías es un factor más limitante para la incursión de especies de aguas cálidas.

BIBLIOGRAFIA

- Alvarez-Borrego, S., In press. Gulf of California. <u>In</u>: Ketchum, R.,(Eds.). Estuarles And Enclosed Seas. <u>In</u>: Series: Ecosystems of the Morid. Elsevier, Amsterdam. Chapter 16.
 - y Schwartzlose, R.A., (1979) Masas de Agua del Golfo de California. Ciencias Marinas (Méx.), vol. 6 (1 y 2): 43-63.

Amos, R., Brown, F. and Mink, O.G.,(1969) Introducción a la Estadística. Harper & Row Publishers Inc. New York: 137 p.

Arikawa, R.,(1983) Distribution and Taxonomy of <u>Globigerina pachyderma</u> -(Ehrenberg) off The Sanriku Coast, Northeast Honshu, Japan. Tohoku Univ. Sci. Rep., 2nd. Ser. (Geol.), v. 53, No. 2: 103-157.

Ayala-Castañares, A., y Segura, L.R.,(1968) Ecología y Distribución de los Foraminíferos Recientes de la Laguna Madre, Tamaul<u>i</u> pas, Méx: Boletín No.87 del Instituto de Geología, UNAM,, México : 84 p.

Bandy, 0.,(1960) The geologic significance of colling ratios in the foram<u>1</u> nifer <u>Globigerina pachyderma</u> (Ehrenberg). Jour. -Paleont. vol. 34, No. 4: 671-681.

> ,(1961) Distribution of foraminifera, radiolaria and diatoms in sediments of the Gulf of California. Micropaleontology, vol. 7, No. 1: 1-26.

> (1968) Paleoclimatology and Neogene Planktonic Foraminiferal Zonation. Committee Mediterranean Neogene Stratigraphy. Proc. IV Session, Bologna. Giornale de Geologia (2) XXXV, Fasc. 11 : 277-290.

- ,(1969) Relationship of Neogene Planktonic Foraminifera to Paleoceanography and Correlation. In: Bronnimann P. & H. H. Renz (Eds.). "Proc. first Int. Conf. Planktonic Microfossils". Geneve 1967, v. 1: 46-57.
- ,(1972) Origin and development of <u>Gioborotalia</u> (Turborotalia) <u>pa-</u> <u>chyderma</u> (Ehrenberg). Micropaleontology, vol. 18, No. 3: 294-318.
- Butler, E., and Weight, R.C., (1969) Alaskan Upper Miocene marine glacial deposits and The <u>Turborotalla pachyderma</u> datum plane. Science, vol. 166, No. 3905: 607-609.

_, Frenichs, W.E., and Vincent, E.,(1967) Origin, development and geologic significance of <u>Meogloboquadrina</u> Bandy, -Frenichs, and Vincent, gen. nov. Contr. Cush. Found. Foram. Res. vol. XVIII, Part. 4: 152-157.

Banner,F.T. and Blow,W.H., (1960) Some primary types of species belonging to the Superfamily Globigerinaceae. Cushman Found. Foram. Res. Contr. vol.11. pt. 1: 1-41.

Bé, A.W.H., (1960) Some observations on artic planktonic foraminifera. -Cushman Found. Foram. Res. Contr., vol. 11, pt.2: 64-68.

> ,(1977) An Ecological Zoogeographic and Taxonomic Review of Ra cent Planktonic Foraminifera. <u>In</u>: Ramsay;A.T.S., (Eds.). Oceanic Micropaleontology. Academic Press Inc. (London) LTD, V.1,:1-100.

and Tolderlund, D. S., (1971) Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans, <u>In:</u> Funnell, B.M., and Riedel W.R.(Eds), The Micropaleontology of -Oceans, London Cambridge Univ. Press: 105-149.

Blow,W.H.,(1969) Latte Middle Eocene To Recent Planktonic Foraminiferal Biostratigraphy. <u>In</u>: Proceedings Of The First international Conference On Planktonic Microfossils. Geneva 1967, vol.1.

> and Banner,F.T.,(1962) The Mid-Tertiary (Upper Eccene to Aquitanian) Globigerinaceae. <u>In</u>: Eames,F.E., Banner, F.T., Blow, W.H. and Clarke, W.J.,(Eds). Fundamen tals of Mid-Tertiary stratigraphical correlation. Cambridge Univ. Press, 61.

Bolli,H.M.,(1970) The foraminifera of Site: 23-31,Leg 4.Init. Reports D.S. D.P. vol. IV. Washington (U.S. Govt. Printing Office): 577-643.

> Loeblich A.R. and Tappan, H., (1957) Planktonic Foraminiferal families Hantkeninidae, Orbulinidae, Globorotallidae y Globotruncanidae, <u>in</u> Studies in Foraminifera U.S. Nat. Mus. Bull.215,: 3-50.

Boltovskoy,E.,(1959) Foraminifera as biological indicators in the study of oceans currents. Micropaleontology, vol. 5, no. 4: 473-481.

- (1962) Planktonic foraminifera as indicators of different water masses in the South Atlantic, Micropaleontology, vol.8, no, 3: 403-408.
- (1966) La zone de Convergencia Subtropical/Subantártica en el Océano Atlántico (parte occidental), Secr. Marina, Serv. Hidr. Vav., H. 6401^Buenos Aires: 1-69.

,(1969) Living planktonic foraminifera at the 90° E Meridian from the equator to the Antertic. Micropaleontology 15: 237. Bowman, M., and Esalas, W.,(1978) Oceanic Fronts in Coastal Porcesses, Proceedings of a Workshop Held at the Marine Sciences -Research Center, May 25-27, 1977. Berlin Heldelberg New York.: 114 p.

Bradshaw, J.,(1959) Ecology Of Living Planktonic Foraminifera in The North And Equatorial Pacific Ocean, Contr. Cush. Found, ~ Foram. Res. vol. X, Part. 2: 25-64.

Byrne, J.V.,(1957) The Marine Geology of the Gulf of California. Southern California. Univ. unpublished doctoral dissertation.

> , and Emery, K.O.,(1960) Sediments of the Gulf of California. Bull. Geol. Soc. Am. vol. 71, Part. 2: 983-1010,

Calvert, S.E.,(1964) Factors affecting distribution of laminated diatomaceous sediments in Gulf of California. <u>In</u>: T.J.H. -Van Andel and G.G. Shor Jr.(eds.). Marine Geology of the Gulf of California. Mem. Assoc. Petr. Geol. : 311-330.

> ,(1966) Origin of diatom-rich varved sediments from the Gulf of Callfornia, Jour. Geol., 76: 546-565.

Clfelli, R.,(1961) <u>Globigerina incompta</u>, a new species of pelagic foraminifera from the North Atlantic. Cush. Found. Foram. -Res. Contr. vol. 12, Pt. 3: 83-86.

> and Smith, R.K.,(1970) Distribution of planktonic foraminifera in the vecinity of the North Atlantic Current. Smith sonian inst. Contr. Paleobiol. no. 4: 1-52.

Collen, J.D., and Vella, P., (1973) Pilocene planktonic foraminifera, southern North Island. New Zealand Jour. Foram. Res., vol. 3 No. 1: 13-29.

Donegan, D., and Schrader, H.,(1982) Biogenic And Abiogenic Components Of La minated Hemipelagic Sediments in The Central Gulf Of California, Marine Geology No. 48: 215-237.

Gardner, E.J., (1974) Genético. 2a, Ed. Limusa, México : 57-63.

Gary, M., Mc Afee, R., and Wolf, C.,(1974) Glossary Of Geology. American Geo logical institute, Washington D.C.

Griffiths, R.C., (1968) Physical, chemical and biological oceanography of the entrance to the Gulf of California, Spring of 1960. Spec, Sci. Rept. U.S. Fish. Wild. Serv., No. 573: 47 p. Hernández, J., (1923) The temperature of Mexico: Monthly Weather Rev. Supp. 23: 24 p.

Ingle, J.C. Jr., (1973a) Neogene Foraminifera from northeastern Pacific Ocean, Lag. 18. Deep Sea Orilling Project. Init. Rept. -D.S.D.P. vol. XVIII.Washington U.S. Govt. Printing Office): 517-567.

> (1973b) Summary Comments On Neogene Biostratigraphy, Physical Stratigraphy and Paleo-Oceanography In The Marginal Northeastern Pacific Ocean, Init. Rept. D.S. D.P. vol. XVIII, Washington (U.S. Govt. Printing -Office): 949-960.

(1974) Paleobathymetric history of Neogene Marine Sediments, northern Gulf of California. In: Gastil G. and Lillegraven J. (Eds). The Geology of Peninsular California, Guldebook, 49th. Annual Meeting; Pacific Sactions of the American Association of Petroleum Geologist and the Society of Economist and Paleontological Mineralogist, San Diego: 121-138.

Ipsen,J. and Feigl,P.,(1970) Bancroft's Introduction To Biostatics. 2a. Ed. Harper & Row, New York.:223 pp.

Jenkins, O.G., (1967) Recent distribution, origin and colling ratios changes in <u>Globorotalia pechyderma</u> (Ehrenberg). Micropaleon tology, vol. 13, no. 2: 195-203.

Kennett, J. P., (1968) Latitudinal variation in <u>Globigerina pachyderma</u> (Ehren berg) in surface sediments of the Southwest Pacific Ocean. Micropaleontology, vol.14, no. 3: 305-318.

Kipp,N.G.,(1976) New transfer function for estimating past sea-surface con ditions from sea-bed distribution of planktonic for raminiferal assemblages in the North Atlantic, Geol. Soc. Amer.,Mem., no. 145: 3-42.

Krebs,C.J.,(1978) Ecology. The Experimental Analysis of Distribution and -Abundance. 2a. Ed. Harper & Row Publishers, New York : 371-406.

Lamotte, M., (1976) Estadística Biológica. Principios Fundamentales. Sa. Ed. Toray Mason, S.A. Barcelona: 163 p.

Lipps, J.H., (1964) Miocene planktonic Foraminifera from Newport Bay, California. Tulane Stud.Geol., 2 (4): 109-132.

Lynts,G.W.,(1977) Late Neogene Planktonic Foraminifers: East Pacific Rise And Galapagos Spreading Center, Deep Sea Drilling Project. Leg 54, init. Rept. D.S.D.P. vol. LIV, -Washington (U.S.Govt, Printing Office): 487-507.

Margalef, R., (1977) Ecologia. 2a, Ed. Omega Barcelona.: 359-382.

Matoba, Y., and Oda, M.,(1982) Late Pliocene To Holocene Planktonic Fora-. minifers Of The Guaymas Basin. Guif Of California. Sites 477 Trogh 481. Deep Sea Drilling Project. Init. Repts. D.S.D.P. vol. LXIV, Part.2, Washington (U.S. Govt. Printing Office): 1003-1026.

> ____, and Yamaguchi, .,(1982) Late Pliocene To Holocene Benthic Foreminifers Of The Guaymas Basin, Gulf Of California. Sites 477 Through 481. Deep Sea Drilling Project. Init. Repts. D.S.D.P. vol. LXIV, Part. 2, Washington (U.S.Govt. Printing Office): 1027-1056.

Molina Cruz, A., en prensa. Registro micropaleontológico de las masas de agua en la región central del Golfo de California. -(The micropaleontologic record of the water masses from the central region of the Gulf of California).<u>In</u>: Ayala-Castañares,A.F.B. Phleger,R. Schwartzlose y A. Laguarda (Eds.). Simposio "El Golfo de California" (-Symposium "The Gulf of California"). U.N.A.M.

> (1982) Radiolarians in The Gulf Of California. Deep Sea Drilling Project. Init. Repts. D.S.D.P. vol. LXIV, Part. 2. Washington (U.S.Govt. Printing Office): 983-1002.

Mueller, D., and Dombols, H.E., (1974) Aims and Methods of Vegetation Ecology. Jhon Wiley & Sons, New York: 547 p.

Natland, M.L.,(1938) New Species of foraminifera from off the west coast of North America and from the latter Tertiary of the Los Angeles Basin, California Univ. Scripps Inst. Oceanogr. Bull. Tech. Serv., v. 4, No. 5: 149.

Neumann, M.,(1967) Manuel de Micropaleontologie des foraminiferes. Gauthier -Vierlars. Paris: 297 p.

d'Orbigny, (1839) <u>Gioboquadrina dutertrel</u>. Foraminiferes, <u>in</u>: Ramón de là -Sagra, Histoire physique et naturelle de l'ile de -Cuba. A. Bertrond, Paris, France.: 84.

Parker, F.L., (1962) Planktonic foraminiferal species in Pacific sediments. Micropaleontology, vol. 8, No. 2: 219-254.

(1967) <u>Globorotalie anfracta</u>, Bull. Amer. Paleont, 52: 175.

,(1971) Distribution of planktonic foraminifera in Recent deepsea sediments. <u>In</u>: Funnell,B.M. and Riedel, W.R. -(Eds.). The Micropaleontology Of Oceans. London: Cam bridge University Press: 89-308.

and Berger, W., (1971) Faunal and Solution patterns of planktonic foraminifera in surface sediments of the South Pacific, Deep Sea Res. vol. 18, No. 1: 73-107.

Parker, R.E.,(1974) Introductory Statics for Biology. 2a. Ed. Studies In Biology.

Phieger, F.B., (1960) Ecology and Distribution of Recent Foraminifera. Johns Hopkins Press, Baltimore,: 213-276,

Phleger,F.B.,(1964) Patterns Of Living Benthonic Foraminifera Gulf Of Call fornia. Marine Geology Of The Gulf Of Callfornia -A Symposium, Memoir no. 3: 377-394.

Poole,R.W.,(1974) An introduction to Quantitative Ecology. Mc Graw-Hill -Book Company, New York: 532 p.

Poore,R.Z.,(1981) Mjocene Through Quaternary Planktonic Foraminifera From Offshore Southern Callfornia And Baja Callfornia. Deep Sea Drilling Project. Init. Repts. D.S.D.P. vol.LXIII, Washington (U.S.Govt. Printing Office): 415-436.

Postuma, J.A., (1971) Manual of Planktonic Foraminifera. Elsevier Publishing Company, Amsterdam: 400 p.

Revelle,R.R.,(1950) Sedimentation and oceanography survey of field observations, part. 5 of The 1940 E.W.Scripps cruise to The Gulf of California, Geol. Soc. America Mem. : 43 p.

Rögl,F., and Bolli,H.,(1973) Holocene To Pleistocene Foraminifera Of Leg. 15, Site 147 (Cariaco Basin (Trench), Caribbean -Sea) And Their Climatic Interpretation. Deep Sea -Drilling Project. Init. Repts, D.S.D.P. vol. XV, Washingtong (U.S.Govt. Printing Office): 553-615.

Robinson, M.K., (1973) Atlas of Monthly mean Sea Surface and Subsurface Tem peratures in the Gulf of California. Mexico. San -Diego Society of Natural History, Memoir 5: 97 p.

Roden,G.I.,(1964) Oceanographic Aspects of the Gulf of California. <u>In:</u> -Van Andel, T.J.H. and Shor,G.G. jr. (Eds). Marine Geology of the Gulf of California. A Symposium. -Memoir no. 3: 30-58.

> (1972) Thermohaline structure and baroclinic flow across the Gulf of California entrance and in the Revilla Gigedo Island region. J. Phys. Oceangr., vol. 2, no. 2: 177–183.

and Groves,G.W.,(1959) Recent oceanographic investigations in The Gulf of California, Sears Foundation, J. Mar. Res. 18 (1): 10-35.

Round,F.E.,(1967) The Phytoplankton Of The Gulf Of California. Part.l. its Composition, Distribution And Contribution To The Sediments. J. exp. mar. Biol. Ecol. vol.1 : 76-97.

⁽¹⁹⁷⁶⁾ Interpretations of Late Quaternary foraminifera in deep-sea cores. Progress in micropaleontology: 263 -277.

Rusnak,G.A. and Fisher,R.L.,(1964) Structural History and Evolution Of -Gulf Of California.<u>In</u>; Van Andel T.J.H. and Shor, G.G. Jr. (Eds). Marine Geology of the Gulf of Cal<u>i</u> fornia. A Symposium. Memoir no.3: 144-156.

RileyJ.P. and Chester,R.,(1971) Introduction to Marine Chemistry. Academic Press, New York : 37-60.

Schrader,H. at al., (1980) Laminated diatomaceous sediments from the Guay mas Basin slope (central Gulf of Callfornia): -250,000 year climate record. Science, 207: 1207 -1209.

Shepard, F.P., (1950) Submarine topography of the Gulf of California. Part. 3 of the E.W. Scripps Cruise 1940-to the Gulf of California, Geol. Soc. Am. Mem. 43: 32 p.

> __,(1954) Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Petrology, v. 24: 151-158.

Srinivasan, M.S. and Kennett, J.P., (1976) Evolution and phenotipic variation in the late Cenozoic <u>Neogloboguadrina dutertert</u> trel plexus. Progress in Micropaleontology. Takatyanagi and Saito (Eds). Spec. Publ. Micropaleontology Press. The American Mus. of Nat. His. New - York: 329-355.

Stainforth, R. M. <u>et al.</u>, (1975) Cenozoic Planktonic Foraminifera zonation and Characteristics of Index Forms. The University of Kansas Paleontological Contributions, Article 62.

Steineck, P.L. and Fleisher, R.L., (1978) Towards the classical evolutionary reclassification of Cenozoic Globigerinacea -(Foraminiferida). Jour. Pal. v. 52, no.3: 618-632.

Stevenson,M.L.,(1970) On the physical and biological oceanography near the entrance to the Gulf of California, October -1966-August 1967, Inter, Amer, Trop, Tuna Comm. Bull, 4, num.3: 389-504.

Sverdrup,M.W. and Fleming, (1941) The waters off the coast of southern -California, March to July 1937. Bull. Scripps Inst. Oceanography. vol. 4, no. 10: 261-378.

and general biology. Prentice Hall, New York: 1089 PP.

Valentin,P.C.,(1976) Zoogeography Of Holocene Ostracoda Off Western North America And Paleoclimatic Implications, Geological Survey Professional Paper 916. U.S. Govt. Printing Office, Washingtong.

Van Andel,T.,(1964) Recent Marine Sediments Of The Gulf Of California. Ln: Van Andel,T.J.H. and Shor,G.G.Jr. (Eds). Marine -Geology of the Gulf of California. Memoir 3:216-310.

APENDICE .

Bioestadística.

Con base a la distribución de los organismos observados, y las isotermás proporcionadas por Robinson (1973), se proponen tres grandes zonas para el Golfo de California; las cuáles al ser tratadas estadísticamente, reafirman su existencia.

Para la obtención de índices y demás valores estadísticos para el -<u>Golfo de California</u>, se está considerando la población total de foraminíf<u>e</u> ros planctónicos (todas las especies, en el total de estaciones). El índice de diversidad se representa por H¹.

Zona 1. - Abarca las siguientes estaciones: 72, 79, 85, 87, 88 y 90. inclu ye las especies dadas a continuación cuyo número correspondiente se encuentra en la Tabla No. 2. Las especies subrayadas corresponden a las for mas que no se encuentran en esta zona.

1 6	11 16	21 26 31	36 41 46
2 7	12 17	22 27 32	37 42 47
3 8	13 <u>18</u>	23 28 33	38 43 48
4 9	14 19	24 29 34	39 44 49
5 10	15 20	25 30 35	40 45 <u>50</u>

Individuos totales: 34,800 Especies presentes: 40 Especies ausentes : 10 El índice de diversidad correspondiente se representa por H' (Tabla No. 8). I

Zona 2. - Consta de las siguientes estaciones: 2, 3, 5, 7, 9, 11, 17, 24, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 52, y 56., e incluye las siguientes especies:

1 .	6	11	16	21	26	31	36	41	46
2.	7	12	17	22	27	32	37	42	47
3	8	13	18	23	28	33	38	43	48
4	9	14	19	24	29	34	39	44	49
5	ī0	15	20	25	30	35	40	45	50

Individuos totales: 28,512 Especies presentes: 39 Especies ausentes : 11 El Índice de diversidad correspon diente se representa por H'(Tabia No. 8). 2

<u>Zona 3</u>. - Incluye las sigulentes estaciones: 13, 14, 18, 21, 53, 54, 58, -59, 60, 61, 63, 64, 65, 68, 69, 70, 75, 77, 80 y 83., y contiene las esp<u>e</u> cles sigulentes:

1	6	신하다	11	16	21		26 3	1 36	41 46
2			12	17	22	• ····································	27 2	2 17	42 4
5	ģ	at sije sa Late sj	12 .	18	- 		20 2	2 28	42 14
2		$(x,y) \in \mathbb{R}$	12	10	2) 01		20 3	5 10	12 12
4	2		14	19	24		29 J	4 13	44 4
5	्युवेधि	0	15	21	- 25		30 3	5 40	45 50

Individuos totales: 28,507 Especies presentes: 45 Especies ausentes : 5 El Índice de diversidad correspon diente se representa por H' $(T_a - b)a No. 8)$.

<u>Población total</u>. - Número total de especies de foraminíferos planctónicos, observados en el total de estaciones de muestreo. Tabla No. 3.

Abundancia absoluta. - Número total de foraminiferos planctónicos de la misma especie, observados en el total de estaciones de muestreo, siguiendo los criterios de Margalef (1977). Tabia Nº 3.

Abundancia relativa.- Se considera a la abundancia absoluta de una especie, expresada en porcentaje. Tabia No. 4.

La abundancia relativa es empleada de la siguiente manera:

5% - rara
5 - 10% - escasa
10 - 25% - media
25 - 50% - abundante
50% - muy abundante

	관습관	19.95			المندرة	file.			100			4				i en el					ه را میرد و در بود	Sec. 1	승규가 가 아파리	nationi North		n de Sector	el Dise 243-144											di di		195
아님 같은 것은 것을 가지?			2			4 A.											Rea Stati															in in Star								
																																ça Şela				, Pe				
																				n det Negel																				ici.
		36																												tary Ng										
		1111 1111 30103																		\tilde{t}			n Birgi								(二)(注 (現代)									5.8
	ы _{на} Т									S. i.e.		U.Š												a Martin Martin		1					3. 12 ¹⁵		18							
Tabla No. 3,- Abundancia absolute de foreminiferos pla	nctónico	a én	el Gol	l fo de	Cell fo	rnl a .																4							ġ.				AN SE						ų.	
Estación BG-No. 2	-1-5	<u>,</u>	<u> </u>	المحلل	3 14	_12_	8	21	24_2	5	\$ 27.	28	10	<u>.</u>	- 13	37	40.41	42	52		54 56	- 58	- 59	<u>60 6</u>)	61	64 6	5	69	20	- 72	. 75 .	<u>n</u>	<u>79 80</u>	<u>A</u> 3	<u>85</u>	87	88	90	por especie.	iuos
Ijpecia No.																																								
1Globigarios beroudezi 2Globigarios bulloides sparturs 1856 3Globigarios bulloides bulloides 896	12 10 56 41 24 36	6 15 23	20 1 48 4 88 1	128 172 1 128	0 14	144 280 184	14 34 24	8 26 32	18 6 16 8	4 91 4 12	3 4 5 8 4 13	48 40 140	40 112 192	20 40 96	44 80	3 10 30	34 44 5 24 27	68 28 132	24 104	128	20 4 40 12	16 88 120	40 68	4 1	24 64 84	5 I 44 Z	0 4	48 256 136	12 72	64 448	112	112 1	20 320 14 288	256 320	36 56 36	32 64 256	32 352 352	48 424 232	1,035 5,915 5,849	
4 <u>Diobigerina bulloides quadrilatera</u> 2400 5 <u>Diobigerina bulloides umbilicata</u> 256 6 <u>Giobigerina bulloides aff umbilicata</u>	46 50 20 14	55 9	236 3 16	184 I 32	7 53	368 48	40 8 3	90	24 5	6 16	2	176 56	416	204	160	33	4 1	168	66	232	52 11	184	84 20	16 2	5 168	31 3	3 38	512	124	224	304 16	16 2	16 912	672	228	864	1280	160 288	12,016 1,068	
7Olobicarina calida calida 224 8Olobicarina calida prascalida 288 9Olobicarina of falsonansis 160	11 14 5 1	562	28 28	80 24	3 2 5 2	40 48	34 5	10	2	8 1	2 2	40 60	24 88 8	8 12	8	6 2 1	6 5 16 14	28 16 40	2	8 32	16 10	112 56	28 20 8		4 12 20		5	24 24 32	8 8		24 40	48 1	10 32	96 64	44 32 8	96 128	32 64	24 48	1,184 1,324 159	
10. Globicarina medastona s.1. 928 11. Globicarina pachyderna incomata 896 12. Globicarina pachyderna bachyderna	32 29 30 38	50 38	160 2 164 2 4	264 232 2	7 9 1 65	176	26 31 1	26 44);	14 4 18 65	0 48 2 248 8	3 2	64 96	192 232	84 112	12 228	16 26	26 3 76 28	80 136 8	8 120	312 80	64 34 12	408 136	152 36	4 10 9 41	36	11 13 2	4 10	56 168	31 40	6432	152 208	160 31 200 11	34 352 58 368	480 336	80 80	832 1792	448 1600	232 24	6,715 16,263 20	
13Giobigarina aff G pachydarna inconota 14Giobigarina guingueicha 15Giobigarina aff riversan 512	19 14	ł	20	52	2 6	116	3	30	2	6 50	5 9	16	40	52	36	32	6 9	12	8	32	50 17	8	8 64	17 17	8	30 4	0 16	48	80		144	184 1	20	336	4	128 320	128	24	136 2,043	는 이가 있었 - 이 것 같아 - 이 것 같아
16. Aliobioarinita giutinata 95 17. Aliobioarinita uvula 18. Aliobioaringida bullaldaus	12	27	124	56	6 50	8	50 I	34	2	6 201 4 1	48	100	232	236	316	54	74 98	168	152	672	2 24 26	400	264 4	82 94 I	3 212	93 8	3 144	536	472	96	504	392 2 ¹	6 432	480	120	128	160	56	8,085	
19 Alobioaringidas conglobatus 20 Alobioaringidas e fonçatus - Alobioaringidas e fonçatus						8						8	8				4				2	48	12	1	20		3	16	8		16		32		4			8 16	190 24	
22, Globiaerinoides ruber. 160 23, Globiaerinoides tenellus 24 Globiaerinoides trilobus (maturus	64	3	8	88	1 3	80	5	4	2	4		20	32	8	4	9	24	40		40	6	152 A	40		52	3	62	88 24	20	96	32	16 1	8 48 8 48	144	40	512	416	128	2,757	
25. Globberinoides trilobus sacculifer 26. Globberinoides trilobus trilobus			d Sata	8		8			2				8				2	8		÷		24	16 16	10	20	ં	2 2	48 56	ð	64	40	40	8	32	12	64	32	24	423 274	
27. Globoquedrine dutertrei "A" 28. Globoquedrine dutertrei "A" 29. Globoquedrine dutertrei blowi	12 26	16	96 2	164	9 16 2	264	6	4	8 14	0 60	9	100	104	96	124	19	38 22	72	52	200	36 3	200	64	6.15	5 64	n	, 9	80	24	1152	104	176	96 352	240	92	1472	2848	168	3,205 5,963	
90 Filobrostalia Alfranta 92 Eloborostalia humarona 92 Eloborostalia humarona 96	1 2	-3	4	24	2	8	1	8	3	2 11		120	48	24	48 29	22	48 23	24	34	64	8	24	8	•	(2	3	2 10		4	224	16	16	6 48	448 32	16	480	352	216	5,174	
5). "Alobardialia menardii Sulfrala 64 94. "Globardialia menardii menardii 52 15. "Alobardialia acitula			4	8		24	3	2	() 	2 (8	24 8	12	8		6 1	1	2	72	10	48	8	1	32			48	28	-00	48	24	144	240	16	32	288	48	1,289 712	
6. Siloparatalia Lumida 7. Sistematalia dan Leana 8. Siloparataliden sp "A"				8		8		2												16		32		1995. 1995			1	/0		200	- 1 -2	8	16			345	64	17. 1997	81 26	
19Gioborotaloidea sp "P" 10Hastigering equilateralis 11Hastigering sighonifarg							- 244 - 197 - 545					8					2	.8		8	4	16 8	16 8	7		i.		16.	4	32	8		8 8 16		4		32	32	183 76	
2, - Urbulina auturalia 3 Orbulina universa 4 <u>Pullenlatina finalia</u>						8 24								8			2 2	,	1	8	26		8 12		4		1		4 8 4	192			16	16	28	480	352	16	1,098 166	
5Pulleplatine obliguiloculata 6Pulleplatine primelis 7Iurborotalite enfracta		2	8		2	48	1	2				20	24 16	4	12 20	7	8 1	8	8 6	24 48	6 8 6	8 56 8	24 28 32	1.	12		}	16 8	12	32	32 32	56 24	24 80 38 128 16	128	32 64	64	64	24 88	560 989 213	
8Iurberotalita lota 96 9Iurberotalita sp "A" 0Iurberotalita sp "B"	11 1997 - 1	8	56	8	1 7		9	20 2	e. L	4 36 8 12	9	20	24	40	36	25	12 6	20	8	40	16.6	8	24	13 14 10 4	24	24 2 6	6 14	24	60 24		80 24	120	30 80	96	4	128		16	1,353 2 94	
ptal de individuos por estación	100 100	100 1	200 24	00 9	9 100	2400	100 6	00 59	4 120	0 1200	1.128	200	2288	1148	1200	100 (100.257	1196	600	2400	600 97	2400	1200 2	09 100	2 1200	300 30	0 100	2400	1200	9600 1	2400 2	400 241	0 4800	4800	1200	9600	9600	2400	91.817	

																																	「大学を					
Tabla 16g, 6, - Aburdancia retestive de foranici fe Leseción 86-16.	rov planct 2	ónicos 	en al 6 <u>6</u>	alfa de 79	Gelifor Ll	11a 13	- 14		- 18	21	- 24	- 24	26	27 2A		34.4 223 234 24 24 24 24 24 24 24 24 24 24 24 24 24	31	17 4	.d41	42	52 5	<u>i 54</u>	- 56 -	28 - 1	<u>9 60</u>	61	and the second second	64	6 <u>5</u> 6	69	- 20	72	<u>15 1</u> 7	 19.	80	<u>. 83 . 8</u> '	5 <u>87</u>	<u>88</u>
1. Sloblerins konudari 2. Sloblerins kultoides serture 3. Sloblerins kultoides kultoides 4. Stoblerins kultoides kudritister 6. Sloblerins kultoides (VII) substitutes 5. Sloblerins kultoides (VII) substitutes	19.3 1 9.3 25.0 1 2.7 2.3	4.0 3 8.7 13 8.0 12 5.3 16 6.7 4	.3 2. .7 5. .0 7. .7 18. .7 3.	0 1.7 0 4.0 7 7.3 3 19.7 0 1.3 7 2.3	5.3 19.7 5.3 16.0 1.3	1.0 10.1 5.0 17.2 1.0	1.3 4.7 8.3 17.7 0.7	6.0 11.7 7.7 15.3 2.0	4.7 11.3 8.0 13.3 2.7 1.0	1.3 4.3 5.3 15.0	3.0 6.0 4.0	5.3 7.0 4.7 1.3	0,7 3 8.0 6 0.3 10 3.3 3 0.3 1	.1 4.0 .3 3.3 .2 11.7 .9 14.7 .6 4.7	1,7 4.9 8.4 18.8 0,7	1.7 3.5 8.4 17.8 0.3	0.3 1 3.7 3 6.7 10 3.3 11 0.3 0	.0 5. .3 7. .0 4. .0 16. .3 0.	7 3 1.9 0 10.5 7 7.4 7 0.4	5.7 2.3 11.0 14,0 0.3 2.3	0.3 4.0 5. 7.3 5. 1.0 9. 0.	3 3.3 7 6.7 7 8.7 3 0.7	4.1	2.7 1.7 3. 5.0 5. 1.7 7. 1.	3 1.9 7 13.4 0 7.6 7 3 0.5	1.0 5.0 11.3 8.3 1.0	2.0 5.3 7.0 14.0	0,3 1,7 3 14,0 7 10,0 11 0,0 0	0.1 .3 1.1 .3 5.1 .0 12.1 .7 0.1	2.0 10.7 5.7 21.3 0.7	1.0 6.0 10.3	0.7 4 4.7 7 2.3 12 0	.7 4.1 .3 10.0 .7 13.1 .7 0.1	2.3 5.0 6.0 9.0 1.0	3.3 6.7 6.0 19.0 2.7	5.3 6.7 4.0 2.0 3.1 2.0	0 0.3 7 0.7 0 2.7 0 9.0 7 1.0	0,3 2 3,7 17 3,7 9 13,3 6 12
8Globigarino calido graenalia 9Globigarino el faiconomia 10Globigarino sepaizosa ».1. 1Globigarino astividaren pachedarena 2Globigarino actividaren pachedarena 4Globigarino actividarena inconsta 4Globigarino actividarena inconsta	3.0 1.7 9.7 1 9.3 1 5.3	1.7 0.7 9 0.0 12 6.3 4	2; 3 0. 17 16; 7 12; 0, 7 2,	0 2.3 7 7 13.3 7 13.3 7 13.7 0.3 3 1.7 0 2.0	1.0 11.0 9.7 6.3	7.1 2).2 2.0 6.1	1.7 0.7 3.0 31.7 2.0 2.0	2.0 7.3 13.0 5.7	1,3 1.7 8.7 10,3	1.7 0.3 4.3 24.0 5.0	2.1 63.6 0.3	3.3 54.3 2 0.7	1.0 0.3 4.0 1 0.7 6	5.0 .6 5.3 .3 8.0 .0 1.3 .7	3.8 0.3 17,1 10,1	1,0 7,3 9,7 1 4,5 1,0	1.0 0 1.0 5 9.0 8 3.0 10	1.7 2. 1.3 2. 1.3 4. 1.7 12.	.7 .3 .7 10.9 .0 3.5	1.3 3.3 6.7 11.4 1 0.7 1.0 2.0	0,3 1, 1,3 13, 0,0 3, 1,3 1,	3 1.7 0 10.7 3 5.7 3 8.3 0.3	12.4	2.3 1, 7.0 12, 5.7 3, 0.3 5, 1.5,7 3,	7 0,5 7 1.9 0 4.3 7 3 8.1	2.3 0.1 3.3 13.7 5.7	1,0 1,7 3,0 11,7 0,7	1 3.7 4.3 10.0 13	.7 .3 0,1 .3 3.1 .7 4,0 .3 5.1	1,0 1,3 2,3 7,0 1,3 1,3	0.7 2.7 3.3 6 6.7	7.0 8 7.0 8	.7 0.1 .3 6.1 .7 8.1 .0 7.1 .7	7 1.3 7 16.0 8 7.0 7 5.0 1.3 1 10.1	2.3 7.3 7.7	1.3 2. 0.0 6. 7.0 6. 7.0 6. 7.0 1.	7 1.3 7 8.7 7 18.7 1.3 3 3.3 7 1.3	0,7 1 2 4,7 9 16.7 1 1,3 1
7Biolistinis puinna 8Biolistinis puinna 9Biolistiniois puinista 9Biolistinista sionatuu 1Biolistinista sionatuu 1Biolistinista subat 2Biolistinista subat 3Biolistinista subat	1.2	2.0 1	9. .3 1.1	0 10.3 0 0.7	3.7	6.1 1.0	1,0	0.3 0.3 3.3 0.7	1.7	0.7 0.3	0,3	0.3 2	,0 ,0	,5 o, j 0, j 1, j	0.3 1,4 0.7	n.7 Q.3	0.3 IO	0. 1.0 4.	.9 30.1 .7 .0	3.3	,,, I. 0,	0.3 0.3 7 1.0	14.0	2.0 1. 5.3 3. 0.3	3 0,5 3 3	0,3 0,3 0,3	1.7 4,3 2.0	1 1,0 2 0,7 0	.0 .0 0.;	0.7 3.7 1.0	0.7 1.7 3.0	0 1.0 1	.7 .3 0.1	7 5.7 0,3	0,7 6,3 1,0	0. 3.0 3. 0.3) 3 5.3 1.3	0 0 4,3 5 1 3,0 f
 Analigerinoita iriliaata sacculier. Analigerinoita iriliaata sirilaata Analigerinoita iriliata sirilataa Analigerinoita dusteriri irii Analiata dusteriri iliana Analiata irista dusteriri iliana Analiata irista 	6.7 1.0 0.7	4.0 8 4.7 3 0,3 0	.7 5.; .3 8.(.7 1.(3 8,0 D 5,3 D 0,3	0.3 11.0 1.7 1.0	9.1 2.0 7.1	5.3 8.0 0.7	0.3 11.0 4.3 1.7 0.3 0.3	2.0 7.0 0.3	0,7 7.0 1.3	0,3 13,1 6,0	11,7 3.0 2.7 0,3	5.0 5.7 4 1.0 0	.0 8.3 .7 10.7	4.5 0.3 4.9 2.4 0.7	8,4 1 5,6 2,1 0,3	0.3 6 4.0 7 2.3 0	5.3 6. 7.3 8. 0.7 0.	.3 0,4 .3 8,6 .0 8,9 .7 1,9	6.0 8.4 2.0 0.3	8.7 8. 0. 5.7 8. 2.	3 6.0 3 11.7 7 1.3 0.3	3.1 6.2	1.0 1.3 1.3 1.0 1.0 1.0 1.0 1.0	3 3 2.9 7 3.8 7	5.0 2.0 0.3	5.) 9.0 1.0 10	3.7 7.7 1.0	.0 .3 .3 .3 .3 .3 .1	2.3 3.3 1.7	2,0 1 5,7 0.3 0,7	1 0.7 2.0 2.7 9 2.3 0	.7 1.1 .3 7.1 .7 9.1 .7 0.1	7 0.3 3 4.0 7 7.0 7 0.3 1.0	7.3 4.3 1.0 0.3	0.7 0. 5.0 7. 9.3 6. 0.7 1. 9.	3 0.7 7 15.1 7 5.0 3 7 0.3	29.7 3.7 9
4. Globoratila constill constill 5. Globoratila stivia 6. Globoratila stivia 8. Globoratilas traita 8. Globoratilas traita 9. Globorati antis, p. 199 10. Globorati antis, p. 199 10. Globolas antiliacatilia 10. Globolas atticationa 10. Globolas atticationa	0.3			0.3	0.3 0.3			11.0 0.3	1,0 0,3	0,3 V,3		1.0	0,3	0.; 0.;	1,0 0,3	1,0 0,3	0.7	0	,0 0,4 ,3	0.7	v.3 5. 0. 0.	u 1.7 7 3 0.7	i I I	z,0 0, 1,3 0, 5,7 1, 5,3 0,	, 0,5 3 3,3 7	0.3 0.3	1.0	0 0.3 0.3	3 0.3	0.7 0.7 0.3	2.3 0.3 0.3 0.3	2 3.0 1 0.3 0	.0 1.0 .0 0.:	2,0 1,0 1,3 3 0,7 0,3 0,3	1.0 1.0 0.3	9,0 1, 1,0 1, 0, 0, 0,	, 0.3 5.7 3 2.0	9.9 2 1,3 2,3 1 0,7 0.3 1
3-officia universa 4-pilicaisia finalis 5-faliensia finalis 6-pilicaisia pinalis 7-furborialita antarasia 8-farborialita laina 9-farborialita laina 9-farborialita 10-10 7-farborialita 10-10 9-farborialita 10-10 10-farborialita 10-10 10-farbo	1.0	1	0.1 .7 2.1	0.7 4.7	0.3	1,0	0,3 0,7 2,3	0,3 1.0 2.0	0,3 3,0	0.3].3 0.3		0.3 0.7	0.3 0 3.0 7 1.0	0.1 .8 1.1 .8 .0 1.1	1.0 0.7 1.0	0.7 0.3 0,3 3.5	i.0 1.7 3.0 8	0, 0, 1, 2,3 3,3 2, 0,7	.3 .3 .0 2.3 1.2	0.7 1.7	0.3 0. 1.3 1. 1.0 2. 1.3 1.	3 0.3 7 1.0 0 1.0 0 1.3 1.0 7 2.7	6.2	0.1 2.1 2.1 2.3 2. 2.3 2. 2.3 2.	7 0 3 7 C.5 0 6.2 4.8	4.7 1.3	0.3 0.7 1.0 0.7 0.4 2	D 8.0 2.0	.3 0. .0 0. .3 0. .7 4.	0.7 0.3 1.0	0,7 0,3 1.0 2.3 5.0 2.0	2,0 0,1 1 3	.3 2. .3 1.1 .3 5.1	1.0 1.0 3.7 0.0,7 0.3.3	0,3 0.3 1.3 2.7 1.7	0.3 2.7 2. 3.7 5. 1.3 2.0 0.	5.0 7 0.7 3 1.3	3.7 0.7 1 3

이 것 같아요. 이렇는 아는 그는 것 같아요. 그 그 것이 없는 것 같아요. 그 물건값

·

Con estos porcentajes han sido eTaborados mapas de distribución para las especies más diagnósticas, utilizando isolíneas.

<u>Abundancia promedio</u>, - Abundancia absoluta de foraminíferos planctónicos de la misma especie, encontrados en el número de estaciones que abarca cada zona. Tabla No. 5.

<u>Frecuencia absoluta de presencia</u>. - Representada por el número de estaciones en las que éstuvo presente cada especie, entre el número de estaciones totales, siguiendo los criterios de Amos, Brown y Mink (1969) y Marg<u>a</u> lef (1977). Tabla No. 6.

Frecuencia relativa de presencia.- Frecuencia absoluta de presencia, expresada en porcentaje. Tabla No. 6.

Frecuencia relativa de la especie. - Abundancia absoluta de la especie, entre el valor de la población total, siguiendo los criterios de Lamotte (1976). Tabla No. 7.

La frecuencia relativa utilizada para comparar especies entre sí, dentro de la población total de foraminíferos planctónicos, es empleada de la s<u>i</u> guiente manera:

18 % - muy alta - alta 9 % - media - baja - <1 % - rara

Indica de diversidad. - Se estiman los índices de diversidad para el Golfo de California y para cada zona. La diversidad está considerándose como el número de especies y la abundancia relativa de las mismas (Margalef, 1977; Tabla No. 5.- Abundancia promedio por especie, de foraminíferos planctónicos en el Golfo de California y en cada una de las zonas propuestas (1, 2 y 3).

	Galfa			
	UTIO			
1Globigerina bermudezi	22.02	34.00	26.24	14,00
2 -Globigerina bulloides apertura	125.85	180,00	157.38	76.50
3Globigerina bulloides bulloides	124.45	244.67	117.76	95.40
4Globigerina bulloides quadrilatera	255.66	495.33	244.62	195.35
5. Globigerina bullgides umbilicata	22.72	56.00	24.14	11.25
6Globigerina bulloides aff umbilicata	0.06	0.00	0.00	0.15
7Globigerina calida calida	25.19	35.33	26.33	20.95
8, -Globigerina calida praecalida	28.17	46.67	29.48	21,25
9Globigerina cf. falconensis	7.64	9.33	10,95	3.65
10Globigerina megastoma 5.1.	142.87	329.33	115,62	115.55
11Globlgerina pachyderma incompta	346.02	1682.67	193.43	105.25
12Globigerina pachyderma pachyderma	0.42	0.00	0.95	0,00
13Globigerina aff Globigerina pachyderma	2.89	21.33	0.00	0,04
14Globigerina guingue loba	43.47	99.33	15.81	55.75
15Globigerina aff riveroae	27.23	8.67	48.71	10.25
16Globigerinita giutinata	172.02	134.67	97.57	261,40
17 Globigerinita uvula	0.19	0.00	0,43	0,00
18Blobigerinoldes bulloideus	0.15	0,00	0.00	0,35
19Globiceringides conglobatus	4.04	2.00	0.95	7,90
20Globigerinoides elongatus	0.51	2.67	0,38	0.00
21Globigerinoldes of. parkerae	0.17	0,00	0.38	0.00
22Globigerinoides ruber	58.66	221.33	24.29	45.95
23Globigerinoides tenellus	0.11	0,00	0,00	0.25
24Globigerinoides trilobus immaturus	13.98	73.33	2.09	8,65
25Globigerinoides trilobus sacculifer	9.00	22.00	1.24	13.25
26Globigeringides trilobus trilobus	5.83	12.67	0,52	9.35
27. Globoquadrina dutertrei s.l.	1.36	10.67	0.00	0.00
28Globauadrina dutertrei "A"	68.19	59.33	62.71	76.60
29Globoquadrina dutertrei blowi	126.87	912.00	18.57	5.05
30, -Gioborotalia acostaensis	110.09	258.67	74.43	102.95
31Globorotalla hirsute	0.09	- 0,00	0,00	0.20
32Globorotalla humerosa	17.38	41.33	15.14	12.55
33. Globorotalla menardil cultrata	6.77	21.33	4.86	12.55
34, -Globorotalla menardli menardli	27.42	72.00	6.90	35.60
35Globorotalia scitula	15.15	116.00	0.69	0,40
36, -Globorotalla tumida	37.60	260.00	0.95	9.35
37Globorotaloldes trema	1.72	10.67	0,00	0.85
38Globorotaloides sp. "A"	0.55	2.67	0.00	0,50
39, -Globorotaloldes sp. "B"	0.17	0.00	0,00	0.40
40Hestigerina acquitateralis	3.89	18,00	0.09	3.65
41Hestigerine siphonifere	1.62	2.67	0.76	2,20
42, -Orbulina suturalis	0,17	0.67	0.00	0.20
43Orbuiling universe	23.36	170.67	0.48	3.20
44Pullenlatina finalis	3.53	11.33	1.71	3.20
45Pullenlatina obliguiloculata	11.92	34.67	2,67	14.80
46Pullenietine primalis	21,04	45.33	6.29	29.25
47Turborotalita anfracta	4.53	2.67	1.05	8.75
48Turborotalita iota	28.79	38,00	20.24	35.00
49Turborotalita sp. "A"	0,04	0.00	0,00	0,10
50, -Turborotalita sp. "B"	2,00	0,00	1.19	3.45

Tabla No. 6.- Frecuencia absoluta y frecuencia relativa de presencia de foraminíferos planctónicos, para el Golfo de California, y para cada zona propuesta (1, 2 y 3).

 $\langle c \rangle$

ESPECIES,	frecue de pre	ncia at sencia.	soluta		frecuen de pres	cia rel encia (ativa %),	
	Golfo		2	3	Golfo		2	3
1Globigering barmudezi	0.680	0.833	0.710	0.550	68.0	83.3	71.0	55.0
2, Globigerina bulloides apertura	1.0	1.0	1.0	1.0	100	100	100	100
3. Globigerina bulloides bulloides	1.0	1.0	1.0	1.0	100	100	100	100
4. Globigerina bulloides quadrilatera	1.0	1.0	1.0	1,0	100	100	100	100
5. Globigerina bulloides umbilicata	0.723	0.500	0.857	0.650	72.3	50.0	85.7	65.0
6Globigerine bulloides aff umbi-			$(x,y) \in \mathcal{X}$					
<u>lleite</u>	0.020	0,000	0,000	0.050	2,00	0,0	0.0	5.0
7. Globigerine callde callda	0.851	0.667	0,952	0.800	85.1	66.7	95.2	80.0
8Giobioerina calida praecalida	0.766	0.833	0.714	0.800	76.6	83.3	71.4	80.0
9. filobioarina cf. falconansia	0.425	0.333	0.381	0,500	42.5	33.3	38.1	50.0
10, -Globinerina magastone s. I.	0.957	0.833	0.952	1.00	95.7	83.3	95.2	100
11, Globigerine pachyderma incomota	1.0	1.0	1.0	1.0	100	100	100	100
12 Globigerine pachyderme pachyderma 13 Globigerina aff Globigerina pachy	0.064	0.0	0.143	0,0	6.4	0,0	14.3	0.0
	0.042	0.167	0.0	0.05	4.2	16.7	0.0	5.0
14Globigerina guinguelaba	0.851	0.833	0.762	0,950	85.1	83.3	76.2	95.0
15Globigering aff riverose	0.532	0.333	0.619	0.500	53.2	33.3	61.9	50.0
16Globigerinita glutinata	0.979	1.0	0.952	1.0	97.9	100	95.2	100
17Globicerinita uvula	0.064	0.0	0,143	0.0	6.4	0.0	14.3	0.0
18, -Globigerinoides bulloideus	0.064	0.0	0.0	0,150	6.4	0.0	Ç.0	15.0
19Globigerinoides conglobatus	0.319	0.333	0.143	0,500	31.9	33.7	14.3	50.0
20Globleerinoides elongatus	0,042	0.167	0.048	0.0	4.2	16.7	4.8	0.0
21Globigerinoides cf. parkarae	0,021	0.0	0.048	0,0	2.1	0.0	4.8	0.0
22Globigerinoldes ruber	0.851	1.0	0.714	0,950	85.1	100	71.4	95.0
23Globigerinoides tenellus 24Globigerinoides trilobus immatu	0.042	0.0	0,0	0,100	4.2	C.O	0.0	10.0
Lut ,	0.447	0.667	0,238	0.600	44.7	66.7	23.8	60.0
25Globigerinoides trilobus saccu-	0.00						10.0	
	0.383	0.667	0,190	0.500	38.3	00./	19.0	50.0
20ulobigerinoides trilobus trilobus	0.255	0.500	0.143	0.300	25.5	50.0	14.3	30.0
2/ Uloboquedrine dutertrei s. I.	0.021	0,167	0.0	0.0	2.1	10./	0.0	0,0
28. "Aloboquadrina dutertrel "A"	0.787	0.500	0.809	0,850	78.7	50.0	80.9	85.0
29 Vioboquadrina dutertrei biowi	0.277	0,500	0.238	0.250	27.7	50.0	23.8	25,0
30Gioborotalia acostaensis	1.0	1.0	1.0	1.0	100	100	100	100
31Gioborotalia hirsuta	0.021	0.0	0.0	0,050	2.1	0.0	0.0	5.0
32. Gioborotalia humerosa	0.744	0,500	0.809	0.750	74.4	50.0	80.9	75.0
33Gioborotalia menardii cultreta	0,404	0.667	0.333	0.400	40,4	66.7	33.3	40,0
34Gioborotalia menardii menardii	0.723	0.833	0,619	0,800	72.3	83.3	61.9	80,0
35. Globorotalia scitula	0.106	0,500	0,048	0.050	10.6	50.0	4.8	5.0
36Globorotalla tumida	0.404	1,0	0.143	0.500	40,4	100	14.3	50.0
37Globorotaloides trema	0.064	0.167	0.0	0,100	6.4	16.7	0,0	10.0
38Globorotaloides sp. "A"	0.064	0,167	0.0	0,100	6.4	16.7	0.0	10,0
39Globorotaloides sp. "B"	0.042	0,0	0,0	0,100	4,2	0.0	0.0	10.0
40Hastigerina acquilataralis	0,298	0.833	0,048	0,400	29.8	83.3	4.8	40.0
41Hastigerina_siphonifera	0.191	0.333	0.095	0.250	19,1	33.3	9.5	25.0
42Urbulina suturalis	0.042	0,167	0.0	0.050	4.2	16.7	0.0	5.0
43 Urbulina universa	0.298	0,500	0.095	0,450	29.8	50.0	9.5	45.0
44Pulleniatina finalis	0.277	0,500	0.190	0,300	27.7	50.0	19.0	30.0
45Pullaniatina obliguiloculata	0.446	0.833	0,238	0.550	44.6	83.3	23.8	55.0
46Pulleniatina primalis	0,638	0.667	0.476	0,800	63.8	66.7	47.6	80.0
47Turborotalita anfracta	0.362	0.167	0,238	0.550	36.2	16.7	23.8	55.0
48 Jurborotalita lota	0.894	0.667	0.857	1.0	89.4	66.7	85.7	100
49Iurborotalita sp. "A"	0.020	0.0	0.0	0.05	2.0	0.0	0.0	5.0
50, - <u>Turborotalita</u> sp. "B"	0.234	0.0	0,190	0.350	23.4	0.0	19.0	3

64

, li

د ود

and a

Tabla No. 7. - Frecuencia relativa por especie de foraminiferos planctónicos, para el Golfo de California, y para cada zona propuesta (1, 2 y 3).

ESPECIES.	Gol fo		2	3
1Globigerina bermudezi	0.0113	0,0058	0.0193	0.0098
2Globigerina bulloides apertura	0.0644	0.0310	0,1159	0.0537
3Globigerina bulloides bulloides	0.0637	0.0421	0.0867	0.0669
4. Globigerina bulloides quadrilatera	0.1309	0,0854	0.1802	0.1370
5. Globloerina builoides umbilicata	0.0111	0,0096	0.0178	0.0079
6. Globigerina bulloides aff unbilicata	0.00003	0.0	0.0	0.0001
7Globigerina calida calida	0.0129	0,0061	0,0194	0.0147
8Globigerina calida prescalida	0.0144	0.0080	0.0217	0.0149
9. Globigerina cf. falconensis	0.0039	0.0016	0,0081	0.0026
10Globigerina megastoma s.l.	0.073	0.0568	0.0851	0.0811
11Globigerina pachyderma incomota	0,1771	0.2901	0.1425	0.0738
12Globigerina pachyderma pachyderma	0.0002	0.0	0,0007	0.0
13Globigerina aff Globigerina pachyderma	0,0015	0.0037	0.0	0,0003
14, -Globigerina guingueloba	0.0222	0,0171	0.0116	0,0391
15. Globigerina aft giveroae	0.0139	0.0015	0.0359	0,0072
16. Globicerinita glutinata	0.0880	0.0232	0.0719	0.1834
17Globloerinita uvula	0.0001	0,0	0,0003	0.0
18Globigerinoides bulloideus	0.00008	0.0	0.0	0.0002
19Globigerinoides conglobatus	0.0021	0,0003	0.0007	0.0055
20Globigerinoides elongatus	0.0003	0.0004	0.0003	0.0
21Globigerinoides cf. parkerse	0,0001	0.0	0.0003	0.0
22, -Globigerinoides ruber	0.0300	0.0382	0,0179	0.0322
23Globigeringides tenellus	0.00005	0.0	0.0	0.00007
24Globigerinoides trilobus immaturus	0.0071	0.0126	0.0015	0.0061
25. Globigerinoides trilobus sacculifer	0.0046	0.0038	0.0009	0.0093
26. Globigerinoides trilobus trilobus	0.0030	0.0022	0.0004	0.0065
27Globoguadrina dutertrei s.1.	0.0007	0,0018	0.0	0.0
28Globoquadrina dutertrei "A"	0.0349	0.0102	0.0462	0.0537
29. Globoquadrina dutertrei blowi	0.0649	0.1572	0.0137	0.0035
30, -Globorotalla acostaensis	0.0563	0.0446	0.0548	0.0722
31. Globorotalia hirsuta	0.00004	0.0	0.0	0.0001
32, Globorotalla humerosa	0.0089	0.0071	0.0111	0.0088
33Globorota la menardii cultrata	0.0035	0.0037	0.0036	0.0031
34Globorotalla menardil menardil	0.0140	0.0124	0,0051	0.0250
35Gloporotalla scitula	0.0077	0.0200	0,0003	0.0003
36, -Globorotalla tumida	0.0192	0,0448	0,0007	0.0065
37Globorotaloides trema	0.0009	0,0018	0.0	0.0006
38Globorotaloides sp. "A"	0.0003	0,0004	0.0	0.0003
39Globorotaloides sp. "B"	0,0001	0.0	0.0	0.0003
40Hastigerina acquilateralis	0.0020	0.0031	0.00007	0.0026
41Hastigering siphonifera	0.0008	0,0004	0,0006	0.0015
42Orbulina suturalis	0,0001	0,0001	0.0	0.0001
43Orbuline universe	0.0119	0.0294	0,0003	0.0022
44 <u>Pullenlatina finalis</u>	0.0018	0.0019	0.0013	0.0022
45Pulleniatina obliguiloculata	0.0061	0,0060	0,0020	0.0104
46Pullenlatina primalis	0.0108	0.0078	0.0046	0.0205
47Turborotalita anfracta	0.0023	0.0004	0.0008	0.0061
48Turborotalita lota	0.0147	0.0065	0.0149	0.0245
49Turborotalita sp. "A"	0.00002	0.0	0,0	0.00007
50, -Turborotalita sp, "B"	0,0010	0.0	0,0009	0.0024

Poole,1974). El índice de diversidad utilizado es el de Shannon-Weaver (Ln: Poole,1974).

H. .

debido, a que por su carácter logarítmico, se ajusta a la distribución h<u>a</u> bitual de la mayoría de las asociaciones específicas, con el resultado práctico de que cualquier serie numérica de diversidades calculadas sobre muestras distribuídas en el espacio ó en el tiempo en un ecosistema, tiene una distribución aproximadamente normal, lo cual permite aplicarles má todos estadísticos.

Las estimaciones de los Índices de diversidad y su error estandard se encuentran en la Tabla No. 8.

Con el objeto de reafirmar la existencia de las tres zonas, mediante sus índices de diversidad, se establecieron las siguientes hipótesis:

	1 at 1	Sec. 8.										c														· · ·												
			1.1		1 at 1			£		244	 1.2 						+ •	• •		. 1					*			1.1.1	- 11									
-				B	-	67	_	-									-		-							-		-	- 14						-			
		1.1	-		-													· ·	-							- 63	~					-			_			
					•••			-													•																	
	- e -	- A - A - A - A - A - A - A - A - A - A	•••																															÷				
				- 16.1		· · ·		· · · ·																														
										·. ·								1.1			_		1.1							-							a -	
	1 .														× · ,	- C.C.	×				•••	•					·.			× .								
	-	1.1																															 				•	
	* 11		1 - X		e 2 -				 								1.1	•									-										- C.	
										·									1.11.1											-								
									2 2 C -		- A . A														20						· · · ·							
					1. C.						1.11								1.11					e											· • •	× .		
																						1.1.1.1																
				6 N N	24 - A					· ·		1 C																										
											- A																											
· • •				×		÷ .				1.41	6 L. H.							- C.				- 1 M																
														-																								
	S			1 K.					1.1									14.0																				
													1.12																1.4.1									
1.14		- A - A			8		1.0		 																													
	1 d a											· · ·									2 ° -																	
									1.11			2.11								- 4					<i>t.</i>				. .				- 64		_	- 14		
			*		~		- 7-		 - 62	£ 4	-	•					•		-									=					• • •		-	•••	•	
- B. J			~		-		101			- L - Z		~		1.1.1.2.2					_									-				-			T			
			-	• •					 																1.11													
· · · ·																																-						
																		•			-						-			- 1						· · · ·	-	
																					_						•			-							-	
																					- 24									•							•	
		A																			-						-										а.	
÷ .										· · ·								•																				

para lo cual, se aplicó una prueba de t de significancia, obteniéndose también sus respectivos grados de libertad, llevándose posteriormente a tablas de probabilidad (Poole,1974; lpsen y Feigl,1970; Gardner,1974). -Los resultados se encuentran en la Tabla No. 8.

Finalmente, se obtuvo un <u>indice de similitud</u> utilizando el de Sørensen (1948, <u>in</u>: Mueller y Dombois,1974), el cual es el más aplicado, debido a que en su fórmula, el denominador es independiente del numerador. Sørensen subraya que teóricamente, cada especie tiene una oportunidad igual de estar presente en dos áreas, lo cual implica que cualquier especie puede presentarse también en las dos comunidades bajo comparación ó en una sola. Por tanto, expresa la verdadera medida de especies coincidentes, contra las teóricamente posibles.

$$\frac{1S}{S} = \frac{2c}{A + B} \times \frac{100}{\frac{1}{2}(A + B)} \times \frac{1}{\frac{1}{2}(A + B)}$$

En esta fórmula, la expresión (A + B) $\frac{1}{2}$ ó (A + B)/2 representa la suma de las ocurrencias realizables teóricamente, mientras que c, es una expresión de las ocurrencias realmente encontradas.

Los Índices de similitud obtenidos se encuentran en la Tabla No. 8,

67
Tabla No. 8.- A) indices de diversidad, B) Pruebas de t, y grados de libertad, y C) indices de similitud.

ない情報などのでないとうという

▲ 11日本が日本 11日に 11日の一部門 11日間の

	indices de diversi- dad.	Golfo de <u>California</u>	Zona I		Zona 2		Zona 3	
		H' = 1,2504 ± 0,0015	H1 =	1.1304 0.0029	H' = 1.15 2 ± 0.00	66 25	H' = 1.2308 3 ± 0.0027	
_		rolación H! = H!		relación HI - HI		relación #1 - #1		
•	Pruebas de t y grados de liber- tad.	1 2 Para una probabilidad diferentes.		del 0.05,	23 resultaron	signi fi	cativamente	
F	?rueba de t ≖	6.7458		20.0011		25.15		
G 1	irados de Ibertad =	63,177		56,830		63,303		
))	Indices de Similitud	88.61 %		83.33 %		89,41 %		

68