(57) Lycus

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE CIENCIAS

CALCULO DE LA TENSION SUPERFICIAL DE FLUIDOS PUROS CON LA TEORIA DEL GRADIENTE

TESIS

QUE PARA OBTENER EL TITULO DE FISICO PRESENTA ELENA MARIA YAMILE EUFDOQUIA ZACARIAS BUSTOS.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Gracias a Manuel, por ser y por estar.

INDICE

Ι.	INTRODUCCION.	2
II.	TEORIA DEL GRADIENTE.	8
	1. La Teoria de Van der Waals.	8
	2. Modificaciones a la Teoría de Van der Waals.	12
	3. <u>La Ecuación de Estado.</u>	17
The state of	4. La Expresión para la Tensión Superficial.	20
III.	METODO DE CALCULO Y RESULTADOS.	24
	1. <u>Método de Cálculo.</u>	27
	2. Resultados.	35
IV.	CONCLUSIONES.	40
٧.	REFERENCIAS.	44

I. INTRODUCCION.

La investigación de las propiedades observables de un fluido puede ahordarse con diferentes metodologías. La medición experimental de una de sus características permite realizar una correlación entre los valores experimentales y los valores calculados a partir de modelos teóricos sobre el comportamiento molecular. Esta correlación sirve en gran medida, para evaluar la corrección de las aproximaciones implícitas en la teoría. También es posible hacer estimación de valores por métodos empíricos con el objeto de evaluar variables necesarias para fines prácticos.

En esta tesis, presento una metodología simple pero con fundamentación teórica sólida, para calcular la tensión superficial de fluidos simples polares y apolares. Utilizo la teoría del gradiente y la ecuación de estado de Fuller (I), aplicadas en una interfase plana entre las fases líquida y gaseosa en equilibrio. La teoría del gradiente es una simplificación matemática de ecuaciones rigurosas para propiedades de la interfase, obtenidas por mecánica estadística. La ecuación de estado de Fuller es una ecuación semiempírica útil para el cálculo de variables termodinámicas de substancias polares, como el agua.

La tensión superficial es una propiedad de las interfases que ha sido evaluada experimentalmente y que teóricamente se ha relacionado con varias características de los fluidos. En las expresiones matemáticas de estas relaciones, la tensión superficial puede ser expresada como una función de la geometría de la interfase; de variables termodinámicas del sistema; de la densidad de cada especie molecular que constituyen ese sistema; y de las características específicas de las moléculas que determinan la configuración molecu-

lar de un fluido: el potencial intermolecular y la función de correlación entre moléculas.

Macroscópicamente, la tensión superficial puede caracterizarse como la fuerza por unidad de longitud que actúa para producir una superficie de separación entre un líquido y su vapor. Puede ser me dida experimentalmente cuantificando una fuerza externa conocida que se opone a la tensión de esa superficie. También se puede analizar esta característica de las superficies fluidas, considerando que en la fase líquida las fuerzas atractivas son mayores que en la fase gaseosa produciéndose una fuerza resultante atractiva tangente a la superficie, sobre las moléculas que están en la región interfasica.

Los métodos de estimación empíricos para la tensión superficial, la expresan en función de la diferencia de densidades de las fases homogeneas o de la temperatura crítica del fluido. Debido a la dificultad de cuantificar este parámetro por medio de las ecuaciones matemáticas obtenidas por teorías rigurosas, estas correlaciones empíricas son muy útiles en el estudio de la tensión superficial de mezclas.

La tensión superficial, desde un punto de vista mecánico, es el efecto de los esfuerzos ejercidos por las fases homogéneas sobre la interfase. La diferencia de densidad entre las fases homogéneas provoca que haya diferencias en el transporte de moléculas, formándose así, un gradiente de concentración de moléculas en la interfase cuyo efecto es que el tensor de esfuerzos también varie a lo lar go de la superficie de separación. El análisis de los diferentes esfuerzos debidos al transporte molecular sirve para obtener una ex

presión matemática para la tensión superficial. Estos esfuerzos, pueden ser relacionados con la estructura microscópica del fluido estableciendo modelos sobre el comportamiento molecular. La estructura es la configuración espacial que toman las moléculas bajo diferentes condiciones termodinámicas y está definida teóricamente por el potencial intermolecular y por las funciones de correlación entre sus moléculas. La aparición explícita, en las ecuaciones, de las funciones de distribución de las microestructuras inhomogéneas es un obstáculo enorme, no sólo en la cuantificación de la tensión superficial, sino en la verificación de los modelos teóricos en los que se fundamentan.

En función de la estructura molecular de la interfase, Kirkwood y Buff (2) obtuvieron una ecuación exacta para la tensión su perficial. Partieron de la ecuación de Yvon-Born-Green relacionando el gradiente de densidad de moléculas con el potencial intermole cular y la función de distribución de pares. Su resultado es una e cuación integrodiferencial que es muy difícil de resolver, ya que en ella interviene la función de distribución determinada por la estructura inhomogénea.

Van der Waals, en 1894 (3), inició la investigación moderna sobre las interfases. Fue el primer investigador que utilizó argumentos sobre la estructura molecular de la interfase relacionándola a variables termodinámicas y encontrando una ecuación operativa para la tensión superficial. El enfoque de Van der Waals, ha sido también llamado "enfoque de la energía libre" porque considera el valor de la energía libre en la interfase. Como la energía libre de Helmholtz se obtiene directamente de la función de partición, este enfoque es útil para relacionar la tensión superficial con los

potenciales intermoleculares y las funciones de distribución molecular. La estructura molecular de la interfase queda determinada por la condición de equilibrio termodinámico que es la minimización de la energía libre de Helmholtz.

La energia libre también es una medida de cuánto trabajo puede ser realizado por el sistema en un proceso isotérmico y por eso, la tensión superficial se define, en el equilibrio termodinámico, como el cambio de energia libre necesario para incrementar una unidad de superficie de interfase a temperatura y volumen constantes.

El desarrollo de la termodinámica estadística sobre las características de fluidos densos con microestructuras inhomogéneas, ha permitido obtener expresiones rigurosas útiles para ser aplicadas en ingeniería química. Las dos áreas principales de investigación han sido:

- La explicación teórica de las características de la interfase y el cálculo de la tensión superficial partiendo de variables ob servables del sistema. La teoría del gradiente expresa la tensión superficial en función de los potenciales temodinámicos de la interfase y de las fases homogéneas, logrando un acuerdo experimental muy bueno. Por esto, Widom (4) sugiere que esta teoría está muy cercana a la descripción teórica del fluido real.
- El desarrollo de teorías que describen las fuerzas intermole culares y la estructura del fluido y las relacionan con las propiedades termodinámicas macroscópicas. Un ejemplo es la teoría de per turbaciones que permite obtener expresiones rigurosas de las variables termodinámicas. Por otra parte, utilizando ecuaciones de esta

do semiempiricas, que se ajustan por medio de correlaciones con datos experimentales, también se pueden obtener expresiones válidas para las variables termodinámicas de estos fluidos.

Carey y Davis, utilizaron la teoría del gradiente y la ecuación de estado de Peng y Robinson, que es una modificación empírica de la de Van der Waals. Dentro de la imprecisión propia de esta ecuación se obtuvo un acuerdo satisfactorio con el experimento para familias de alcanos, sus mezclas, y de alcoholes (5,6). Posteriormente, esta vez con la ecuación de estado de Fuller (que es útil para substancias polares, se calculó la tensión superficial del agua siguiendo el mismo método (7). También en este caso el acuerdo con el experimento es satisfactorio. Estos antecedentes han sugerido que éste puede ser un camino provechoso para calcular la tensión superficial de diversos fluidos, polares y apolares, dentro de la precisión de las ecuaciones de estado empleadas.

Nuestro interés es poder realizar cálculos prácticos de la tensión superficial, estudiando las posibles herramientas para el cálculo, y el grado de aproximación que se logra. Hemos investigado la aplicación de la teoría del gradiente en su forma más simple, con la ecuación de estado de Fuller desembocando en una fórmula semiteórica pero práctica, para el cálculo de la tensión superficial de fluidos puros, con un mínimo de ajuste, dentro de la tolerancia aceptable para aplicaciones en la ingeniería (10 - 15%). Para esto, en el capítulo II, presentamos en forma general, los antecedentes de la teoría del gradiente y las ideas más importantes de la teoría misma basándo nos en los resultados obtenidos por el grupo de Scriven y Davis para la tensión superficial.

En el capitulo III, aplicamos esta teoría con la ecuación de estado de Fuller a una gran variedad de substancias, agrupadas por las caracteríasticas de las familias químicas y estudiamos el acuer do con datos experimentales.

El resultado es que para 56 substancias de interés práctico en cálculos químicos, la teoría es predictiva o con un ajuste sencillo puede serlo. Cuantitativamente expresamos esa predicción en términos de un parámetro empírico que permite exhibir la bondad del ajuste. En algunos casos, particularmente en el del agua, el acuerdo con el experimento no es exacto. No obstante, un factor de escala único puede disminuír apreciablemente el error de la predicción. Hemos investigado la aplicación de la teoría del gradiente a hidrocarburos, aminas, nitrilos, haluros, alcoholes, ácidos y otras substancias simples. En aquellos casos donde el desacuerdo entre los valores teórico y experimental es mayor al 15%, un parámetro empírico disminuye la discrepancia. Hemos analizado este parámetro en función de propiedades moleculares de las diversas familias. En esta forma se ha logrado obtener un método práctico para calcular la ten sión superficial.

II. TEORIA DEL GRADIENTE.

1. La Teoria de Van der Waals.

La tensión superficial es una propiedad de la interfase que puede ser cuantificada experimentalmente. Analizada bajo diferentes enfoques teóricos, se puede expresar matemáticamente en función de diferentes características de los fluidos. Sin embargo, estas ecuaciones son muy difíciles de resolver, siendo necesario simplificarlas para poder compararlas con datos experimentales; esta correlación ayuda a profundizar en el conocimiento de la estructura y el comportamiento del fluido.

Considerando un sistema fluido en equilibrio, la tensión superficial puede expresarse en función de variables termodinámicas, y se define como la energía libre (F), por unidad de área de la in terfase (A). La ecuación que relaciona la tensión superficial con las propiedades termodinámicas de la interfase es:

$$\gamma = \left(\frac{\partial F}{\partial A}\right)_{V,T,N} \tag{2.1.1.}$$

V = volumen

T = temperatura

N = número de moléculas

Podemos ver que conociendo por mecánica estadística la función de partición, se obtiene la energía libre de Helmholtz y por lo tanto, también la tensión superficial como función de los potenciales intermoleculares y las funciones de distribución molecular. Este desarrollo teórico ha sido muy importante para estudiar las propiedades estructurales de fluidos inhomogéneos. Sólo para modelos de potenciales intermoleculares muy simples y por simulación en computadora se ha podido evaluar la tensión superficial y el perfil de

densidad de la interfase (8).

La energía libre de Helmholtz puede también ser evaluada a partir de una ecuación de estado. Ono y Kondo en su artículo clásico de revisión sobre la tensión superficial (9), mencionan como el principal postulado de la termodinámica estadística que se puede definir en cada punto de la pequeña región interfásica de estructura inhomogénea, cualquier cantidad termodinámica intensiva en función de la densidad y la temperatura locales. Este postulado fue en realidad introducido empíricamente por Van der Waals (3).

Para poder aplicar una ecuación de estado en la interfase, Van der Waals introdujo tres suposiciones fundamentales. Su enfoque fue visualizar a la interfase como una transición que minimiza la energía libre del sistema. Supuso que la variación de la densidad en la interfase es contínua, entre los dos valores de la densidad de las fases homogéneas líquida y gaseosa. Como consecuencia de esta continuidad, las variables termodinámicas pueden expresarse como función de la densidad y de sus gradientes. En esta forma, Van der Waals, obtuvo la tensión superficial en función de la variación de densidad a lo largo de la interfase, iniciando la investigación contemporanea sobre la estructura y el comportamiento de las interfases y sentando la base para la teoría del gradiente.

Las suposiciones de Van der Waals son las siguientes:

La primera es que la densidad varía en una forma continua a lo largo de la interfase entre los dos valores de las densidades ortobáricas, n_1 y n_g . Este perfil de densidad queda definido como la distribución de moléculas a lo largo de la interfase. El equi-

librio termodinámico define un perfil de densidad único. En el equilibrio, los potenciales químicos, μ , son iguales para las dos fases homogéneas, a una presión P y una temperatura T fijas.

El estudio de los valores que toman la presión y el potencial químico a lo largo de la interfase ha sido el punto de partida para estudiar la termodinámica de fluidos inhomogéneos. El potencial químico es el cambio de la energía libre con respecto al número de particulas, a una temperatura y volumen constantes. $\mu = \begin{pmatrix} \mathbf{A} \mathbf{F} \\ \mathbf{A} \mathbf{N} \end{pmatrix}$

Para mantener el equilibrio, el potencial químico debe ser constante, Por eso, el cambio en la energía libre a lo largo de la interfase, es lo que determina el perfil de densidad.

Otra variable termodinámica útil para el estudio de las interfases es el potencial termodinámico $\omega = f - n\mu$ donde n es la densidad y f es la densidad de energía libre, F/N . La ecuación de la tensión superficial a la que se llega con la teoría del gradiente está en función de la diferencia entre los potenciales termodinámicos entre la interfase inhomogénea y las fases de densidad constante.

La segunda suposición es que es posible definir valores para las variables termodinámicas en todos los puntos de la interfase, como una función de la densidad (a cada temperatura fija). Esto equiva le a suponer que existe una ecuación de estado analítica que describe el comportamiento de la interfase. Una ecuación de este tipo, se ría la que propuso Van der Waals:

$$P = \frac{RT}{V - b} - \frac{a}{b^2}$$
 (2.1.2.)

en donde a y b son parámetros que sirven para corregir la ecuación de estado del gas ideal por la presencia de fuerzas intermoleculares para partículas esféricas y rígidas. Aunque esta ecuación tiene un valor matemático para todos los valores de la densidad entre las fases homogéneas, los valores que asume en la interfase no son físicamente posibles.

Para encontrar el valor de la energía libre en la interfase con el que ésta fuera estable, Van der Waals hizo la tercera suposición que fue agregar al valor de la energía libre para el fluido homogéneo, un término proporcional a d^2n / dx^2 donde x es la distancia a lo largo de la interfase. Esta suposición es el origen del desarrollo de la teoría del gradiente. Van der Waals derivó matemáticamente este resultado minimizando la energía libre del sistema líquido-gas como condición de equilibrio. Tal término estabiliza la interfase y da un sentido físico a la porción inestable de la continuación analítica de la energía libre dentro de la interfase.

La ecuación de la energía libre total obtenida por Van der Waals para una interfase plana perpendicular al eje x, es:

$$F = \int n \left[f(n) - \frac{1}{2} c \frac{d^2n}{dx^2} \right] dx \qquad (2.1.3.)$$

$$c = \int_{0}^{\infty} s^2 u(s) ds$$
 (2.1.4.)

es una constante que depende de u(s), el potencial atractivo prome dio sobre una unidad de masa producido por todas las capas de densi dad homogénea que están a una distancia mayor que s. (Aproximación del campo molecular promedio).

Para la tensión superficial la ecuación que derivó es:

$$\Upsilon = c \int \left(\frac{dn}{dx}\right)^2 dx = c \int \frac{dn}{dx} dn$$
 (2.1.5.)

En esta ecuación se puede ver cómo a partir de la derivación en función del gradiente de la densidad, se obtiene, por un cambio de variable, una ecuación que define el perfil de densidad en la interfase.

2. Modificaciones a la Teoria de Van der Waals.

A partir de los trabajos de Van der Waals, las investigaciones sobre el comportamiento termodinámico de fluidos densos, han justificado las suposiciones implícitas en la teoría de Van der Waals.

La demostración más rigurosa de la validez de la primera suposición - la variación contínua de la densidad en la interfase - fue poder definir la estructura que toma la interfase en experimentos de simulación por computadora; por ejemplo, en su tesis doctoral, Chape la (8), evaluó la energía libre con un potencial de Lennard-Jones y demostró la variación contínua de la densidad en la interfase.

Sobre la segunda suposición de la forma analítica de la ecuación de estado en la región inhomogénea, diferentes grupos de investigación han explicado la dependencia entre las variables termodinámicas y la densidad inhomogénea en la interfase.

Abraham (10) ha extendido la teoría de Van der Waals, proponiendo la existencia de un fluido "constreñido" que obedece esta condi ción de continuidad analítica en la interfase con una densidad homogénea, pero inestable. Con su teoría generalizada de Van der Waals, este autor obtiene resultados teóricos que concuerdan con experimentos numéricos que simulan la estructura y la tensión superficial de la interfase líquido-vapor de un fluido de Lennard-Jones.

Bongiorno, Scriven y Davis (//,/?), han también modificado la teoría de Van der Waals, y ellos se refieren a esta suposición de dos maneras: como "equilibrio local" o como "fluido adjunto". Considerando el "equilibrio local", se supone que existe un equilibrio en cada punto de la interfase para la densidad en ese punto, pudiéndose definir la densidad local de energía libre o de entropía en ese punto por medio de una función analítica que es la ecuación de estado en la región de las dos fases. En la suposición del "fluido adjunto", las variables termodinámicas toman el valor que tendrían en un fluido en las mismas condiciones termodinámicas pero con la densidad local de ese punto de la interfase como si la densidad fuera homogénea. Es como si hubiera un conjunto de sistemas homogéneos adjuntos, cada uno con una densidad de un punto de la interfase.

Derivando las propiedades intensivas de la interfase como función de la densidad de cada punto (a una temperatura dada), y estableciendo las condiciones de equilibrio, se obtiene como resultado, el perfil de densidad necesario para cumplir con las condiciones de equilibrio exigidas. Por ejemplo, la presión tiene el mismo valor en las fases homogéneas, pero va asumiendo diferentes valores en la interfase debido al cambio de densidad, para cumplir con la condición de equilibrio hidrostático.

El "fluido adjunto", como quedó definido, es una estructura que no puede estar en equilibrio ya que con una densidad fija, el potenla energia libre en un volumen pequeño de la interfase puede expresarse como la suma de dos contribuciones:

- La energia libre que este volumen tendría en una solución homogénea.
- La "energía del gradiente", que es una función de la composición local.

La "energia del gradiente", es un término que estabiliza el sistema, minimizando la energia y determinando la composición molecular en la interfase.

En su crítica a la teoría del gradiente, Widom (4) sugiere que la aproximación de la "energía del gradiente" como factor de estabilidad puede ser válida sólo donde el gradiente sea pequeño; por ejemplo, cerca del punto crítico. En cuanto a terminar el desarrollo en serie de Taylor en el término del gradiente cuadrado, este au tor dice que no está justificada, porque existe la posibilidad de que la serie no converja. En cuanto a que exista realmente una ecuación analítica que describa el valor de la energía libre en la interfase, Widom favorece la posibilidad en cuanto a la forma; no pensando que sea una teoría definitiva, sino que se deben seguir buscando mejores explicaciones al comportamiento termodinámico de la interfase.

Por otro lado el grupo de Scriven y Davis, que más ha contribui do al desarrollo de la teoría del gradiente y a analizar la tensión superficial como una función del gradiente de la densidad, ha hecho correlaciones con diferentes modificaciones de la ecuación de la tensión superficial y ha encontrado muy buenas aproximaciones con datos experimentales aun lejos del punto crítico. Por esto, estos investigadores sugieren que aumentar términos en la serie no mejoraría la exactitud sobre el error que ya se tiene de los datos experimentales con los que comparan los valores calculados por su método. Además, si la aproximación del cuadrado del gradiente no fuera suficiente, es mejor utilizar ecuaciones más complejas o métodos de solución a las ecuaciones integrales que se obtienen rigurosamente por mecánica estadística, como es la expresión para la tensión superficial de Kirkwood y Buff (?). Este grupo también ha aplicado la teoría del gradiente para obtener expresiones para funciones como la función de correlación, la presión, etc. (6,12,14).

La expresión general para la tensión superficial que se despren de de estos trabajos, es una función de las propiedades termodinámicas de las fases homogéneas, descritas por una ecuación de estado, y de un parámetro de "influencia", que describe la influencia de los detalles microscópicos en la estructura de la interfase. Así, la te oría del gradiente, que fue introducida como una simplificación mate mática, ha resultado ser muy importante en la descripción de la física de fluidos inhomogéneos.

Davis y Scriven (12,14), establecen una derivación en gradientes para las funciones de distribución. Su objetivo es generalizar las suposiciones de Van der Waals y no limitarse al fluido sin estructura que está bajo un campo molecular promedio. La ventaja de esta generalización, es poder relacionar la teoría del gradiente con otras teorías sobre el comportamiento de la fase líquida. También Yang, Fleming y Gibbs (15), relacionaron la función de correlación directa del fluido uniforme con el término del gradiente cuadrado de la densidad en la ecuación para la energía libre propuesta por Van der Waals.

El factor de "influencia" que aparece en el desarrollo de la te oría del gradiente para la tensión superficial, fue obtenido por Bongiorno, Scriven y Davis (17) en términos de la función de correlación directa de la fase homogénea. A este parámetro c(n), ellos le llamaron factor de influencia por ser una medida de cómo, para lograr el equilibrio, el sistema responde formando una estructura inhomogénea entre las fases.

3. La Ecuación de Estado.

El ingrediente restante es la ecuación de estado. Van der Waals fue el primero en proponer una ecuación que describe cualitativamente las propiedades termodinámicas de un fluido real, incluyen do el equilibrio entre un líquido y su vapor.

Con la metodología actual de la mecánica estadística se ha descrito la ecuación de Van der Waals y se ha encontrado que está definida para un fluido sin estructura, o sea, que los valores de la fu<u>n</u> ción de distribución de pares son:

$$g(r_{12}) = 0$$
 si $r_{12} = 0$ y $g(r_{12}) = 1$ si $r_{12} > 0$ (2.3.1.)

Esto significa que cada molécula se puede considerar bajo el efecto de un potencial promedio que es el resultado de todas las interaccio nes intermoleculares de ese fluido sin estructura. Esta es la apro-ximación de campo promedio que está implicita en todos los cálculos que se basan en la ecuación de estado de Van der Waals. El potencial utilizado implicitamente en esta ecuación, tiene las caracterís ticas del potencial intermolecular que actua en los líquidos. Weeks,

Chandler y Andersen (16), demostraron en 1971, cómo es el potencial repulsivo el que determina la estructura de los líquidos y se considera a las fuerzas atractivas únicamente como una perturbación que afecta como un potencial promedio uniforme y muy débil.

Se han hecho muchas variaciones semiempíricas de la ecuación de Van der Waals, que conservando la esencia cualitativa de la e-cuación original, predicen cuantitativamente las propiedades de e-quilibrio de diversos fluidos.

La más conocida de estas modificaciones es la de Redlich y Kwong, propuesta en 1949 (17), y que, a su vez, ha dado lugar a más de cien ecuaciones semiempíricas.

En este trabajo hemos relacionado la modificación de Fuller (1) que describe con buena precisión las propiedades ortobáricas del agua y de otros fluidos polares, y que ha sido utilizada recientemente, conjuntamente con la teoría del gradiente, para predecir la tensión superficial del agua (7).

Esta ecuación contiene tres parámetros, que a su vez dependen de las propiedades críticas, $T_{\rm c}$, $p_{\rm c}$, el factor acéntrico y un parámetro empírico relacionado con propiedades interfásicas llamado paracor. Su forma analítica es:

$$p = \frac{RT}{v - b} - \frac{a(T)}{v(v + \psi b)}$$
 (2.3.2.)

en donde ψ es el parámetro que introdujo Fuller.

$$\Psi = \frac{1}{3} \left(\sqrt{\frac{1}{3} - \frac{3}{4}} - \frac{3}{2} \right) \quad (2.3.3.)$$

Con:

$$\alpha(T_r) = \left\{ 1 + \frac{\beta}{0.26} \right\} \left[0.480 + 1.574 \omega_a - 0.176 \omega_a^2 \right] \left(1 - T_r^{1/2} \right) \right\}^2$$
(2.3.4.)

el parámetro de interacción molecular es:

a (T) =
$$\Omega_a(\beta) = \frac{R^2 T_c \propto (T_r)}{P_c}$$
 (2.3.5.)

Volumen de exclusión:

$$b = \Omega_b(\beta) \frac{RT_c}{P_c}$$
 (2.3.6.)

$$\Omega_{a}(\beta) = \frac{(1 + \psi \beta)^{2} \Omega_{b}(\beta)}{\beta (1 - \beta)^{2} (2 + \psi \beta)}$$
 (2.3.7.)

$$\Omega_{b}(\beta) = \frac{\beta^{(1-\beta)(2+\psi\beta)-(1+\psi\beta)}}{(2+\psi\beta)(1-\beta)^{2}}$$
 (2.3.8.)

 ω_a es el factor acéntrico, β depende de la temperatura reducida T_r y del paracor \bar{p} de la siguiente forma:

$$\beta = \beta_c + (\beta_o - \beta_c) \frac{2}{1 + e^{\theta(T_r - 1)}} - 1 \qquad (2.3.9.3)$$

 β_c es el valor que define a β en el punto crítico, n_c es la densidad en el punto crítico y Z_c es la compresibilidad crítica.

$$\boldsymbol{\beta}_{c} = n_{c}b \tag{2.3.10.}$$

$$\frac{\beta_{\circ}}{\beta_{c}}$$
 = 7.788 - 36.8316 Z_c + 50.7071 Z_c (2.3.11.)

$$\theta = 10.9356 + 0.0286 \,\bar{p}$$
 (2.3.12.)

4. La Expresión para la Tensión Superficial.

la. aproximación. Siguiendo el criterio de Van der Waals, sobre el cambio contínuo de densidad en la interfase, y con la suposición de un "equilibrio local" en cada punto, se expresa la energía libre de la interfase como la integral de la densidad de energía libre en cada punto, siendo ésta una función contínua de la densidad.

$$F = \int f(n) dV$$
 (2.4.1.)

2a. aproximación. Se puede expresar la energía libre (F) en la interfase, en función de una ecuación de estado analítica (F_0), más un término de ajuste que minimiza el valor de la energía libre en la zona de densidad inhomogénea.

$$F = F_0 +$$
 (2.4.2.)

 $F_0 = P_0 V$ está definida por una ecuación de estado que describe las fases homogéneas de densidad constante. Z es una respuesta de la interfase para minimizar la energía libre. Esta respuesta determina el perfil de densidad en la zona de transición entre las fases homogéneas.

<u>3a. aproximación.</u> El valor de la energía libre se ajusta por medio de la teoría del gradiente, justificándose en un desarrollo ma temático en series de Taylor, de la función continua F, o por medio de una teoría variacional. Esta aproximación se lleva hasta el segundo orden del gradiente de densidad.

$$F = F_0 + ((\nabla n)^2)$$
 (2.4.3.)

En los trabajos del grupo de Davis (11,12), se obtienen las siguientes ecuaciones para la energía libre:

$$F = \int \left\{ f_0(n) + \frac{c(n)}{2} (\nabla n)^2 \right\} dV \qquad (2.4.4.)$$

Para una interfase plana perpendicular al eje coordenado x:

$$F = \omega(n_g) V + \mu N + A \int_{c(n)}^{\infty} c(n) \left(\frac{dn}{dx}\right)^2 dx \qquad (2.4.5.)$$

. El término $\left(\frac{dn}{dx}\right)^2$ es la respuesta de gradiente de densidad que toma la interfase para minimizar la energía libre.

El parámetro c(n(x)) es el factor de influencia; está definido por las características moleculares del fluido y determina la respuesta de la microestructura inhomogénea.

 ω (n) = f₀(n) - nµ es el potencial termodinámico; V es el vol<u>u</u> men, A es el área de la interfase plana perpendicular al eje x. N es el número de moléculas.

Imponiendo la restricción

$$N = \int n(x) dV$$
 (2.4.6.)

y estableciendo las condiciones de equilibrio químico

$$\mu (n_g) = \mu (n_g)$$
 (2.4.7.)

$$\omega(n_g) = \omega(n_g) = \omega_B$$

con las condiciones a la frontera

Como (2.1.1.) es:
$$\Upsilon = \left(\frac{3F}{3A}\right)_{T,V,N}$$

utilizando la ecuación (2.4.5)

$$\chi = \int_{\infty}^{\infty} c(n) \left(\frac{dn}{dx}\right)^2 dx \qquad (2.4.9.)$$

Para calcular el término $\left(\frac{dn}{dx}\right)^2$ en función de los potenciales termodinámicos, Bongiorno y Davis (II), obtienen la expresión:

$$\frac{\partial \omega}{\partial n} = c(n) \frac{d^2 n}{dx^2} + \frac{1}{2} \left(\frac{\partial c}{\partial n} \right) \left(\frac{dn}{dx} \right)^2$$

$$\frac{d\omega}{dx} = \left(\frac{\partial \omega}{\partial n} \right) \frac{dn}{dx} = \frac{d}{dx} \left[\frac{c(n)}{2} \left(\frac{dn}{dx} \right)^2 \right]$$

(2.4.11.)

Al integrar $\frac{d\omega}{dx}$ utilizando las condiciones a la frontera:

$$\left(\frac{dn}{dx}\right)^{2} = \left[\frac{2}{c(n)}(\omega(n) - \omega(n_{\mathbf{Z}}))\right]$$
 (2.4.12.)

Sustituyendo en la ecuación (2.4.9):

$$Y = \sqrt{2} \int_{n}^{n} \sqrt{c(n) \left[\omega(n) - \omega_{B}\right]} dn \qquad (2.4.13.)$$

La ecuación (2.4.13.) expresa la tensión superficial como una integral a lo largo de la interfase, del potencial termodinámico (n). La gran utilidad de esta expresión es que se emplea la misma forma analítica para la energía libre (contenida en la definición de (n)). que en la región homogénea. Esto no es sólo un artificio matemático, sino que lleva implícita la esencia de la teoría del gradiente: dar un sentido físico a la continuación analítica de la energía libre de la región homogénea dentro de la región interfásica, que es estabilizada por la existencia del gradiente de la densidad. La respuesta del sistema para dar lugar a una estructura inhomogénea está contenida en el factor de influencia, c(n).

III. METODO DE CALCULO Y RESULTADOS.

El objetivo de esta tesis es encontrar un método simple y general para obtener una expresión práctica, si bien aproximada, para la tensión superficial de un buen número de fluidos puros. La ecuación (2.4.13) que se obtuvo por medio de la teoría del gradiente es el punto de partida para describir un método de cálculo aplicable práctica mente a un gran número de substancias. La comparación entre datos experimentales de la tensión superficial y los valores calculados por este método nos permite evaluar el alcance de nuestro objetivo.

En el estudio de la tensión superficial del agua, Guerrero y Da vis (7) encontraron que un sólo factor de escala permite mejorar el acuerdo entre los datos experimentales y los calculados. trabajo, también se calcula un factor de escala, que denotaremos por E, para poder correlacionar los valores teóricos y experimentales de una gran variedad de substancias. El valor de E es el promedio sobre todas las temperaturas analizadas del cociente entre la tensión superficial experimental y su valor calculado. Observamos que el va lor de este cociente es prácticamente constante sobre todas las temperaturas para cada substancia; por eso, al multiplicar el valor de por el factor de escala E, se ob tensión superficial calculado tiene un valor de tensión superficial escalado γ_s que concuerda Yexp para cada temperatura. En muy bien con el valor experimental las gráficas 1 a 13 se ejemplifica claramente esta observación para diferentes substancias analizadas. Así, con este factor de escala E, es posible interpolar valores de la tensión superficial, y también con suficiente precisión, es posible extrapolarlos más allá del intervalo de temperatura estudiada. Ello se describirá con mayor am plitud en la sección de Resultados.

La evidencia de que nuestro método basado en la teoría del gradiente es muy práctico para la evaluación de la tensión superficial, se presenta en este capítulo. Calculamos valores de la tensión superficial de un número grande de substancias puras pertenecientes a diferentes familias químicas; este número se vió restringido principalmente por el tiempo consumido en buscar en la bibliografía todos los datos requeridos para el cálculo. Aquí presento cómo fue recaba da la información.

Un criterio utilizado para la elección de las substancias, fue que se pudiera describir el equilibrio físico por medio de la ecuación de estado de Fuller. En nuestra lista final de substancias aparecen casi todas aquéllas para las cuales Fuller demostró que su ecuación es válida (/). Se verificó que efectivamente se lograra el equilibrio líquido-vapor para cada temperatura analizada, utilizando como condición de equilibrio que la diferencia entre los potenciales químicos determinados por la ecuación de Fuller fuera menor que $0.1\ \%$, para una presión de saturación y temperatura fijas.

Como fuente de datos experimentales se utilizó el artículo de Jaspers (18) que tabula la tensión superficial para cada substancia a distintas temperaturas. Los demás datos requeridos para integrar la lista final de substancias analizadas fueron: las variables del potencial intermolecular de Stockmeyer: σ , ϵ_{lk} , y el momento dipolar D; y los valores del paracor, datos críticos y factor acéntrico que aparecen en la definición de los parámetros a, b, y ψ de la ecuación de Fuller.

Los paracores se obtuvieron del artículo de Quayle (19); utilizamos el método descrito por este mismo autor para calcular los paracores de algunas substancias que no estaban en las tablas. Estimamos el error introducido por este cálculo de los paracores y observamos que el valor final para la $\chi_{\rm C}$ y para las condiciones de equilibrio no varían apreciablemente, como se puede observar en el cálculo de la tensión superficial del amoniaco con dos valores diferentes de el paracor:

Temperatura	Paracor 55	Paracor 63	Yexp	
K	Yc	γ̈́c	dinas/cm	
203.15	61.1505	63.3800	42.39	
208.15	59.5151	60.7550	41.34	

Los valores críticos y el factor acéntrico se obtuvieron de las tablas del libro. "The Properties of Gases and Liquids" por Reid, Sherwood y Prausnitz (20). El momento dipolar está también tabula do en este libro, y para las substancias que no lo tenían tabulado, se encontró este dato en libro de Mc Clellan (21). Para el cloruro de nitrosilo, calculamos la tensión superficial con dos valores diferentes del momento dipolar: 1.28 para el estado gaseoso y 1.8 para el gas disuelto en CCl₄ a 285.15 K.

Temperatura		D = 1.8	D = 1.28	Yexp
4 1	K	∦ c.	Yc	dinas/cm
	243.15	34.6241	34.6261	33.97
	253.15	32.2239	32.2267	32.48

Esto indica que para hacer la correlación, este factor no es determinante.

Como en esta investigación no encontramos tablas extensas para los parámetros E/k y T del potencial de Stockmeyer, decidimos utilizar el método de Tyn y Calus descrito por Reid, Sherwood y Prausnitz (20), para calcular estos parámetros. Los valores calculados por este método no difieren mucho de los tabulados para algunas de las substancias estudiadas.

Nuestra lista final consta de 56 substancias pertenecientes a quince familias diferentes. En la tabla I siguen el orden de la cla sificación seguida por Jaspers en su compilación.

1. Método de Cálculo.

Para simplificar el cálculo de la ecuación (2.4.13), se transforma, por medio de cambios de variable, en una expresión adimensional dependiente únicamente de la ecuación de estado.

Si definimos las variables adimensionales:

n* = nb
$$T* = \frac{RTb}{a}$$
 $\omega* = \frac{b^2}{a}\omega$ y $y* = \frac{b^2}{ac}y$
Entonces: (3,1,1.)

$$\gamma^* = \sqrt{2} \int_{n_g^*}^{n_1^*} \sqrt{\omega^*(n^*) - \omega^*_B} dn^*$$
 (3.1.2.)

donde a y b son los parámetros de la ecuación de Fuller obtenidos a partir de datos críticos. (Ecuaciones (2.3.5.) y (2.3.6.)).

El factor de influencia c que aparece en estas transformaciones es en realidad una función de la densidad, aunque aquí se considera como una constante. Este parámetro depende de la estructura molecular del fluido y no de la ecuación de estado. Bongiorno, Scriven y Davis (12) y Carey (6) expresan el parámetro de influencia c en función del potencial intermolecular y la función de distribución de pares por medio de la siguiente ecuación:

$$c = -\frac{1}{6} \int s^2 u(s) g_o(s;n) d^3s$$
 (3.1.3.)

En un sistema sin estructura el parámetro de influencia se convierte en una constante, como lo es en la ecuación obtenida por Van der Waals (ecuación 2.1.3). Carey justifica el considerarlo como una constante asumiendo que el factor de influencia es una función muy débil de la densidad. El valor de c , se calcula independiente mente del valor de χ^* y de la ecuación de estado. Un resultado de Carey, que facilita la cuantificación del parámetro de influencia a partir de las propiedades moleculares del fluido, es que existe una relación adimensional entre a , b y c en la que c es una función lineal de $ab^{2/3}$:

$$K = \frac{c}{ab^{2/3}}$$
 (3.1.4.)

a y b ahora se relacionan con las características moleculares por medio de la teoría del campo potencial promedio:

$$a = -\frac{1}{2} \int u(s) g_o(s;n) d^3s ; b = \frac{2}{3} \pi \sigma^3$$
 (3.1.5.)

Guerrero y Davis (7) derivaron una expresión para K usando el potencial de Stockmeyer y la función de distribución radial en el límite de baja densidad $g_o = \exp(-u(s)/kT)$. En esta tesis, seguimos el mismo procedimiento.

El potencial de Stockmeyer, es una variación del potencial de Lennard-Jones, útil en el estudio de substancias polares. En el potencial de Stockmeyer intervienen los ángulos de asimetría electrostatica de las moléculas. Aquí considero el promedio global del efecto del potencial sin tomar en cuenta las orientaciones. El potencial intermolecular considerado es:

$$u(s) = 4E\left[\left(\frac{\sigma}{s}\right)^{12} - \left(\frac{\sigma}{s}\right)^{6}\right] - \frac{D}{3kTs^{6}}$$
 (3.1.6.)

donde d'es el diámetro de colisión, que es la separación mínima entre las particulas; & es la energía máxima de atracción entre ellas; y D es el momento dipolar.

Con estas relaciones, la definición de K es:

$$K = \frac{c}{ab^{2/3}} = \frac{\int_{s^2} u(s) e^{-u(s)/kT} d^3s}{3(3.1.7.)}$$

$$(3.1.7.)$$

Finalmente utilizando las ecuaciones (3.1.1.) y (3.1.4.) para calcular el valor final definido por la ecuación (2.4.13) se obtiene:

$$\chi_{c} = 1.1841 \times 10^{-2} \times \frac{a}{b^{5/3}} \sqrt{K} \times \chi^{*} \text{ dinas/cm}$$

El factor 1.1841×10^{-2} es un factor de conversión de unidades para obtener la tensión superficial en dinas/cm.

Para evaluar $\%^*$ de la ecuación (3.1.8), se utiliza la ecuación (3.1.2) que requiere únicamente información proveniente de la ecuación de estado; así se obtienen el potencial termodinámico y los límites de integración, que son las densidades adimensionales coexistentes en el equilibrio físico para cada temperatura fija.

La ecuación de estado de Fuller da una forma explicita para la energía libre de Helmholtz y el potencial químico; de donde se puede calcular el potencial termodinámico.

La ecuación de Fuller explicita en el volumen es:

$$p = \frac{RT}{v - b} - \frac{a(T)}{v(v + d)}$$
 $d = \psi b$ (3.1.9.)

donde v = volumen/mole = 1/n

si 🗗 = energia libre de Helmholtz/mole, entonces:

$$- b = (9)^{1}$$
 λ $\lambda = - \int b \, d\lambda$ (3.1.10.)

Integrando, se obtiene:

$$\mathcal{F} = \mathcal{F}^{id} + RT \ln\left(\frac{v}{v - b}\right) + \frac{a}{d} \ln\left(\frac{v}{v + d}\right)$$
(3.1.11.)

para el gas ideal

$$\mathcal{J}^{id} = -RT \ln v = \mu^{id} + RT$$
 (3.1.12.)

La densidad de energía libre, para la fase homogénea es:

$$f_o(n) = n \gamma = n \mu^{id}(T) - nRT \left[ln \left(\frac{1}{n} - b \right) + 1 - \frac{na}{d} ln (1 + nd) \right]$$
(3.1.13.)

y el potencial químico es:

$$\mu_{o}(n) = \frac{\partial f_{o}}{\partial n} = \mu^{id}(T) - RT \left[\ln \left(\frac{1}{n} - b \right) + 1 \right] + \frac{RT}{1 - nb}$$

$$- \frac{a}{d} \ln (1 + nd) - \frac{na}{1 + nd}$$
(3.1.14.)

Las expresiones finales, en términos de variables adimensionales definidas por la ecuación (3,1.1.) son:

$$\omega^*(n^*) = f_o^*(n) - n^*\mu^*$$
 (3.1.15.)

donde

$$f_{0}^{*}(n^{*}) = n^{*} \underbrace{1 - n^{*}T^{*} \ln \left(\frac{1}{n^{*}} - 1\right) - \frac{n^{*}}{\Psi} \ln \left(1 + \Psi n^{*}\right) - n^{*}T^{*}}_{(3.1.16.)}$$

$$y$$

$$\mu^{*} = \underbrace{1 - T^{*} \ln \left(\frac{1}{n^{*}} - 1\right) - \frac{1}{\Psi} \ln \left(1 + \Psi n^{*}\right)}_{+\frac{n^{*}T^{*}}{1 - n^{*}} - \frac{n^{*}}{1 + \Psi n^{*}}}_{(3.1.17.)}$$

$$\varphi = \frac{\psi}{b}$$
 y $\int = \frac{b}{a} \left[\mu^{id}(T) - RT \ln b \right]$ depende ûnicamente de la temperatura.

Para las fases homogéneas:

$$\omega^*(n_q^*) = \omega_B^* = -p_B^*$$
 (3.1.18.)

$$y p*_B = \frac{n*T*}{1-n*} - \frac{n*^2}{1+\psi n*} (3.1.19.)$$

El siguiente cálculo necesario, es encontrar las densidades de las dos fases en el equilibrio, que son los límites de integración. Con el valor de la densidad de la fase homogénea, se evalúa también el potencial termodinámico de la fase homogénea (ω^*_B) . Ello se resolvió utilizando el sistema CFLUID. (22).

Para évaluar la integral de la diferencia de potenciales termodinámicos, se elaboró también una subrutina, utilizando el método de Simpson (23), se comprobó que con un centenar de integrandos, la precisión en los resultados finales de la integración estaba dentro de la esperada de acuerdo a la precisión de datos experimentales. Por medio de este procedimiento, la integración se convierte en una sumatoria:

$$\int_{n^*g}^{n^*l} (\omega^*(n^*) - \omega^*g)^{1/2} dn^* = \sum_{i=1}^{N-1} \sqrt{\omega^*(n^*_i) - \omega^*g} \Delta^{n^*}i$$

$$con \quad n^*_i = \frac{n^*e^{-n^*g}}{N} \quad y \quad N = 100$$

Una vez obtenido el valor de ** de la ecuación (3.1.2.), se procede al cálculo del parámetro de influencia c. El procedimiento de cálculo de la K expresada en la ecuación (3.1.7.), con el cual se obtiene finalmente la c es el siguiente:

Si se realizan los cambios de variable:

$$X = \frac{s}{\nabla} \qquad y \qquad T^* = \frac{T}{\varepsilon_{/k}} \tag{3.1.21.}$$

y se introduce el valor del potencial u(s):

$$\frac{u(s)}{kT} = \frac{4}{T^*} \left[\chi^{-12} - \left(1 + \frac{b^*}{T^*}\right) \chi^{-6} \right]$$
 (3.1.22.)

donde
$$b^* = \frac{D^2}{12 \, \epsilon^2 \, \sigma^6}$$
 (3.1.23.)

Definiendo:

$$f(X, T^*) = \frac{4}{T^*} \left[X^{-12} - (1 + \frac{b^*}{T^*}) X^{-6} \right]$$
 (3.1.24.)

entonces la ecuación (3.1.7.) se convierte en:

$$K = \frac{c}{ab^{2/3}} = \frac{1}{3} \left(\frac{3}{2\pi}\right)^{2/3} \int_{0}^{\infty} e^{-f(X,T^*)} \frac{x^4 dX}{f(X,T^*)} \int_{0}^{\infty} e^{-f(X,T^*)} \frac{x^4 dX}{f(X,T^*)} dX dX$$
(3.1.25.)

El tipo de integrales que aparece en esta expresión pueden calcularse por medio del siguiente algoritmo:

$$\int_{0}^{\infty} g(x) dx = \sum_{i=1}^{N} g(x_{i-1}) x_{i}$$
(3.1.26.)

Si
$$\Delta x_i = e^{-4(1 + \frac{b^*}{T^*})} \frac{x_{i-1}}{T^*} \Delta y_i$$
 (3.1.27.)

con
$$x_i = x_{i-1} + \Delta x_i$$
 (3.1.28.)

Escogiendo:

$$x_0 = 0.8$$
, $\Delta y_i = 0.05$ $y N = 200$,

podemos calcular:

$$\int_{1.8}^{\infty} f(X,T^*) e^{-f(X,T^*)} \chi^{\nu} dX = \sum_{i=1}^{200} f(x_i,T^*) e^{\frac{4x_i^{-12}}{T^*}} \chi^{\nu} \Delta x_i$$
(3.1.29.)

con y = 2 y 4.

Esta expresión puede evaluarse en la computadora sencillamente siguiendo el siguiente método de cálculo:

1) Sea
$$y_i = 0.05$$
, $x_o = 0.8$ y $N = 200$

2) Calcular
$$\Delta x_1 = e^{-4(1 + \frac{b^*}{T^*}) \frac{x_0^{-0}}{T^*}}$$
 (0.05)

3)
$$x_1 = x_0 + x_1$$

4)
$$I_{1,2} = I_{1,2} + e^{-4x_1^{-12}/T*} f(x_1,T*) x_1^2 (\Delta x_1)$$

5)
$$I_{1,4} = I_{1,4} + e^{-4x_1^{-12}/T*} f(x_1, T*) x_1^2 (\Delta x_1)$$

$$\Delta x_{i} = e^{-4(1 + -\frac{b^{*}}{1*})^{-1} - \frac{1}{1*}}$$
 (0.05)

$$x_i = x_{i-1} + \Delta x_i$$

$$I_{1,2} = I_{1,2} + e^{-4x_i^{-12}/T^*} f(x_i, T^*) x_i^2 (\Delta x_i)$$

$$I_{1,4} = I_{1,4} + e^{-4x_i^{-12}/T^*} f(x_i, T^*) x_i^4 (\Delta x_i)$$

El valor de K es:

$$\frac{c}{ab^{2/3}} = \frac{1}{3} \left(\frac{3}{2\pi} \right)^{2/3} \frac{I_{1,4}}{I_{1,2}}$$
 (3.1.30.)

Una vez elaborada la subrutina que calcula estas integrales, y con el valor explícito de K, habiendo calculado \uparrow^* , se obtiene la expresión operativa que evalúa la tensión superficial \uparrow^c_c para cada temperatura. (Ecuación 3.1.8.).

2. Resultados.

El programa de computación elaborado, permite obtener un conjun to de valores de χ_c a diferentes temperaturas para cada substancia. Al hacer una comparación gráfica entre los valores calculados por me dio de la teoria del gradiente y los valores experimentales, se encontró una superposición notable para la mayoría de las substancias, lo que indica que la teoría del gradiente, aunada a la ecuación de estado de Fuller, conduce al cálculo eficiente de valores de la tensión superficial (Gráficas 1-8). Para algunas de las substancias, el acuerdo entre los resultados teóricos y experimentales no es tan exacto; pero se observa que las dos curvas son casi paralelas (Gráficas 9 - 13). Esta observación fue esencial para buscar un factor simple de escala $E = \left(\frac{\exp}{\sqrt{2}} \right)$ para ajustar las dos curvas. El valor C constante para cada substancia, y es muy de este factor es una cercano al valor unitario para la mayoría de ellas. Con este factor de escala, se calculó el valor de la tensión superficial escalada, $\gamma_{\rm S} = E \gamma_{\rm C}^{\rm c}$. como el producto: (3.1.31.)

Los resultados de estos cálculos se presentan en la tabla I, en donde se observa la variación del valor de E para diferentes familias de substancias. Para cada fluido, se reporta el valor del factor acéntrico (ω_a), del paracor (\bar{p}) y del momento dipolar (D). El factor acéntrico y el paracor son los parámetros en función de los cuales está expresada la ecuación de estado de Fuller; estos parámetros están interrelacionados y expresan características específicas de la estructura molecular. El paracor, es un indicador del tamaño y del tipo de enlaces de la molécula, mientras que el factor acéntri co lo es de la distribución de la carga electrostática molecular. El momento dipolar se refiere también a la distribución de las cargas electrostaticas de las moléculas y en nuestro estudio interviene dentro de la expresión del potencial de Stockmeyer en una forma simplificada. En esta investigación no comparamos nuestros valores calculados para la tensión superficial contra otros parámetros moleculares que pudieran ser importantes, debido a que no están involucrados en las ecuaciones utilizadas.

El factor empírico E nos permite evaluar qué tan adecuados son los parámetros de la estructura molecular que nosotros consideramos. En la tabla I y en las gráficas 1 - 13, se observa que el valor de E disminuye cuando aumentan el momento dipolar y el factor acéntrico. Para la mayoría de las substancias E≈1 y generalmente es menor que uno.

En la gráfica 14, se buscó la influencia del momento dipolar y el factor acéntrico en la determinación del parámetro E. Las substancias analizadas se representan por la letra de clasificación por familias y algunas tienen también el mismo número de clasificación que en la tabla I. Al graficar el momento dipolar contra el factor

acéntrico, la gráfica se puede dividir a simple vista en dos zonas: una donde E \approx 1 que cuenta con 42 substancias, y otra donde E<0.80 con 14 substancias. Es importante señalar que el amoniaco (N (27)) es la única substancia con E 0.80 que se encuentra en la zona de las substancias con E = 1 . El factor acéntrico y el momento dipolar del amoniaco, son muy similares a los mismos valores para el dióxido de azufre (H (33)), que tiene un valor para E de 0.981. También se pueden comparar los valores de E para el cloruro de nitrosilo (H (5)) y el agua (0 (20)), que difieren mucho, a pesar de tener valores similares de momento dipolar y factor acéntrico. Esto indica que algunas propiedades moleculares, no consideradas en este estudio, pueden influir en el valor de la tensión superficial. Por ejemplo, los puentes de hidrógeno que son una fuerza atractiva muy importante en la estructura del amoniaco y del agua.

Cuando el momento dipolar y el factor acéntrico tienen valores menores que 2.0 y 0.4 simultaneamente, la correlación entre datos calculados y experimentales es muy buena. Cuando el momento dipolar y el factor acéntrico aumentan, el valor de E se separa más del valor unitario. Esto es, para las substancias cuyo valor de E \approx 1.0, el valor del momento dipolar y/o del factor acéntrico es pequeño. Todas las substancias que tienen un momento dipolar y un factor acéntrico mayores que D = 2.0 y ω_a = 0.4, presentan un valor de E menor que 0.80.

Durante el procedimiento de computación, encontramos que para algunas substancias, el valor de E era del orden de 1.5. Investigando el motivo de esta discrepancia, encontramos que en estos casos el valor del factor acéntrico no estaba incluido en nuestro banco de datos, y al tomar este valor como si fuera cero, el valor de E aumentaba muchísimo. Esto es una indicación más del efecto de la car-

ga electrostática y la estructura molecular en el comportamiento de las interfases. Las substancias con este resultado de E>1.15, fueron desechadas, ya que no se contaba con todos los datos requeridos (en este caso, el factor acéntrico).

Intentamos profundizar en el análisis de los factores que infl \underline{u} yen en el valor de E , y para esto estudiamos el efecto del momento dipolar, del factor acéntrico, y del tamaño de la cadena de carbonos de las diferentes familias, en el parámetro de correlación E .

En la gráfica 15, se muestra el efecto del momento dipolar, y aunque en general se observa que para momentos dipolares mayores que 1.0, el valor de E desciende, no se puede adjudicar la variación de E a este factor. Sin embargo, hay que notar, en la gráfica 14, que el valor de D para el óxido nítrico (H(27)), es pequeño, y aunque ω_a es grande, el valor de E se conserva cercano a uno.

Al graficar E contra el factor acéntrico, (gráfica 16), sí se observa mejor la separación por familias de substancias con respecto al valor de E; y cómo este valor disminuye al aumentar el factor acéntrico. Sin embargo, la dispersión de los puntos no permite tampoco hacer una correlación simple entre E y ω_a .

Graficando E contra el número de carbonos de una familia, observamos en la gráfica 17, cómo para los alcoholes (B), ácidos (A), y nitrilos (I), al crecer la cadena de hidrocarburos, la E se acerca más a la unidad. Esto también indica que la posición en la que se encuentran los grupos polares dentro de la molécula, afecta el valor de la tensión superficial. Para las familias de hidrocarburos (K), aminas (F) y éteres (J), el valor de E permanece casi cons

tante. Las substancias representadas en esta gráfica, se presentan, junto con sus fórmulas químicas, en la tabla II.

El resultado más importante en esta investigación, fue el haber encontrado el paralelismo entre los valores resultantes de la teoría del gradiente y los valores experimentales para una gran cantidad de substancias, lo que permite utilizar este parámetro E, en un procedimiento predictivo de la tensión superficial de una substancia pura, con sólo tener un dato de tensión superficial a una temperatura. Este puede ser un dato obtenido de la literatura, o medido experimentalmente. Esto es, con un dato experimental de la tensión superficial, se calcula el valor teórico determinado por este método. Se evalúa el factor E que es el cociente de estos dos valores a la misma temperatura, y por el conocimiento del paralelismo entre las dos curvas, se pueden predecir diferentes valores de la tensión superficial a otras temperaturas.

IV. CONCLUSIONES.

En esta tesis se confirma que la teoría del gradiente es una formulación teórica apropiada para calcular la tensión superficial al aplicarla a un número grande de substancias de características distintas; apolares hasta fuertemente polares.

Presentamos las ideas básicas de la teoría del gradiente, sin intentar mejorar su formalismo. Diferentes investigadores han esta blecido formulaciones de esta teoría, relacionando la tensión super ficial con diferentes variables que caracterizan a la interfase. Nosotros seguimos el enfoque del grupo de Scriven y Davis que es fácilmente utilizable cuando se cuenta con información sobre propiedades de equilibrio del líquido y del gas. Así encontramos una fórmula operativa para calcular la tensión superficial con un método simple, aun cuando se sacrifica en parte la rigurosidad de la teoría del gradiente. Las aproximaciones que introducimos para facilitar los cálculos son:

- Utilizamos la ecuación de estado de Fuller, que es una derivación semiempírica de la ecuación de Van der Waals, por su utilidad en cálculos prácticos de la ingeniería química.
- Consideramos al factor de influencia como una función del potencial de Stockmeyer, dentro de la aproximación del campo molecular promedio; y de la función de distribución de pares en el límite de baja densidad.
- Calculamos, por métodos sencillos, los yalores del paracor y de los parámetros del potencial intermolecular de Stockmeyer, y en-

contramos que estos valores no influyen significativamente en los resultados finales.

Una vez establecidas las bases teóricas, se construyó un método de cálculo para predecir la tensión superficial en un intervalo amplio de temperatura. Se encontró para la mayoría de las substancias analizadas, una desviación entre χ_c y χ_{exp} menor al 10%.

Un escalamiento de la curva calculada permitió obtener valo res muy cercanos a los datos experimentales. Al analizar el ajus te entre los valores calculados y los datos experimentales en las temperaturas máxima, mínima y promedio, encontramos un acuerdo muy bueno con el valor del factor de escala promediado sobre todas las temperaturas. A este factor, lo denominamos por E. En esta forma, nuestro método puede considerarse interpolativo, aunque también es útil como un método predictivo de valores para la tensión superficial, cuando se hace el ajuste con el valor de E calculado en un sólo punto.

Observamos que el factor de escala E, presenta una tendencia a disminuir ante el aumento del momento dipolar y del factor acéntrico; ensayamos aquéllas correlaciones que naturalmente se pueden sugerir, pero aparentemente, E no depende simplemente de una sola propiedad molecular e implica todo un trabajo de regresión de datos para derivar dicha correlación.

Con esta formulación de la teoría del gradiente, auxiliada por una ecuación de estado, no se requiere mayor esfuerzo que el de determinar las propiedades en el equilibrio por medio de una ecuación de estado, para obtener la tensión superficial.

Claramente sería interesante extender este trabajo utilizando otros modelos de potencial intermolecular o ecuaciones de estado más rigurosas y ciertamente tratar el problema de las mezclas.

Consideramos que utilizando la teoría del gradiente como herra mienta de cálculo, se pueden sentar las bases para un estudio muy completo de la tensión superficial al nivel de las aplicaciones de la ingeniería química.

Este trabajo se realizó en la Subdirección de Investigación Básica de Procesos del Instituto Mexicano del Petróleo. El cálculo del equilibrio físico se realizó con el programa CFLUID desarrollado por el Dr. Miguel A. Leiva y sus colaboradores, a quie nes quisiera manifestar mi agradecimiento. Las discusiones con los Drs. Esteban Martina y Francisco Ramos fueron muy beneficiosas para aclarar los conceptos físicos de la teoría del gradiente; les agradezco profundamente el tiempo que me dedicaron. Asimismo, al Dr. Manuel I. Guerrero y a la Fís. Ana Laura Benavides, que con su amistad y constante estímulo me ayudaron en el desarrollo de esta tesis y de mi persona.

V. REFERENCIAS.

- 1. Fuller, G.G. Ind. Eng. Chem. Fundam. 15, 254 (1976).
- 2. Kirkwood, J.G., Buff, F.P. J. Chem. Phys. <u>17</u>, 338 (1949).
- 3. Van der Waals, J.D. Z. Phys. Chem. <u>13</u>, 657 (1894). Traducción al inglés por: Rowlinson, J.S. J. Statistical Physics <u>20</u>, 197 (1979).
- 4. Widom, B. en Phase Transitions and Critical Phenomena, Domb, C., Green, M.S., eds. Academic Press (1972), Vol 2, Chap. 3.
- 5. Carey, B.S., Scriven, L.E., Davis, H.T. A.I.Ch.E.J. <u>24</u>, 1076 (1978).
- 6. Carey, B.S. Ph. D. Thesis. Univ. of Minesota (1979).
- 7. Guerrero, M.I., Davis, H.T. I. and E. C. Fund. 19, 309 (1980).
- 8. Chapela, G.A. Ph. D. Thesis. Univ. of London (1975); Chapela, G.A., Saville, G., Thompson, S.M., Rowlinson, J.S. J. Chem. Soc. Far. Trans. 59, 22 (1976).
- 9. Ono, S., Kondo, S. Hand. Phys. 10, 134 (1970).
- 10. Abraham, F.F. Physics Reports (Review Section of Physics Letters) 53, 93 (1979).
- 11. Bongiorno, V., Davis, H.T. Physical Review a 12, 2213 (1975).

- 12. Bongiorno, V., Scriven, L.E., Davis, H.T. J. Coll. Int. Sci. 57, 462 (1976).
- 13. Cahn, J.W., Hilliard, J.E. J. Chem. Phys. 28, 258 (1958).
- 14. Davis, H.T., Scriven, L.E. J. Chem. Phys. <u>69</u>, 5215 (1978).
- 15. Yang, A.J.M., Fleming, P.D., Gibbs, D.H. J. Chem. Phys. <u>64</u>, 254 (1976).
- 16. Weeks, J.D., Chandler, D., Andersen, H.C. J. Chem. Phys. <u>54</u>, 5237 (1971).
- 17. Redlich, O., Kwong, J.N. Chem. Rev. 44, 233 (1949).
- 18. Jaspers, J.J. J. Phys. Chem. Data 1, 841 (1972).
- 19. Quayle, O.R. Chem. Rev. <u>53</u>, 439 (1953).
- 20. Reid, R.C., Prausnitz, J.M., Sherwood, A.E. The Properties of Gases and Liquids. Mc Graw Hill (1977).
- 21. Mc Clellan, A.L. Tables of Experimental Dipole Moments. S. Fco. (1963).
- 22. Leiva, M.A., Lira, R., Malo, J.M., Guerrero, M.I., López, J.A., Chapela, G.A. "Programa CFLUID Diseñado para Calcular y Comparar Propiedades Termodinámicas de Substancias Puras a Partir de Ecuaciones de Estado". Reporte de Investigación 52. División de Ciencias Básicas e Ingeniería, U.A.M. Iztapalapa (1981).

23. Abramowitz, M., Stegui, I.A. Handbook of Mathematical Functions. Dover Publications Inc. (1968).

TABLA I.

FAMILIAS	PARA	LAS	CUALES	E 2 1 .	

Num.	Nombre	Paracor	D	F.Acen.	Temp K	γc	χ_{exp}	Ys	Ε
c)									
249	Ciclohexano	239.7	0.3	0.213	283.15	28.673	26.430	27.268	0.951
	3			**	313.15	23.977	22.870	22.802	
					343.15	19.642	19.300	18.679	
D) _					-				
59	Metilioduro	146.6	1.6	0.172	283.15	32.787	32.850	33.424	1.019
		1. 14			303.15	29.015	29.720	29.578	
1.1			1		313.15	27.135	28.480	27.662	
							-14	y	
96	Etilbromuro	165.4	2.0	0.254	283.15	28.563	25.360	25.963	0.909
					293.15	26.609	24.200	24.186	
10.00				of the spirit	303.15	24.786	23.040	22.530	1.45
130	Propilcioruro	191.3	2.0	0.230	293.15	23.774	21.920	22 072	0.928
				0.250	303.15	22.110	20.670	20.528	0.928
					313:15	20.485	19.430	19.019	
						20,465	13.430	19.019	
131	lsopropilcloruro	191.8	2.1	0.232	293.15	22.782	19.600	10.026	0.011
0.5	raom opricionaro	131.0		0.232	303.15		18.720	19.976	0.877
						21.028		18.438	
				The state of	313.15	19.341	17.840	16.958	
E)		7 P 3						181	
42	Takina la suus da	220.0		0.104	200 15	22 020	27 (50	27 (76	0.007
42	Tetracloruro de	?20.0	0.0	0.194	298.15	27.938	27.650	27.575	0.987
	Carbono				338.15	21.786	21.530	21.502	
•					368.15	17.499	17.860	17.271	9
								174	
50	Cloroformo	183.4	1.1	0.293	298.15	28.193	26.670	27.389	0.972
					318.15	24.828	24.080	24.120	
					348.15	19.971	20.200	19.402	

Num.	Nombre	Paracor	D	F.Acen.	, Temp κ	Хc	Yexp	y 5.	Ε
F)	19.								
106	Etilamina	138.7	1.3	0.284	288.15	24.325	20.570	21.086	0.867
					303.15	21.188	18.510	18.367	
					313.15	19.191	17.140	16.635	
141	Propilamina	178. 9	1.3	0.229	288.15	25.234	23.000	23.444	0.929
					303.15	22.611	21.130	21.007	. 1.9
		J 1/4			313.15	20.989	19.890	19.416	
								-	
143	Trimetilamina	177.6	0.6	0.195	288.15	14.153	14.550	14.931	1.055
					303.15	12.072	12.840	12.735	
					313.15	10.752	11.710	11.343	
100							1	· Yah	
192	Butilamina	218.2	1.3	0.396	303.15	28.348	22.870	23,670	0.835
	Marie de la companya		Dec.		323.15	24.441	20.630	20.408	
		rythu i i i			333.15	22.637	19.510	18.901	
					A. Transfer	arak.			APELIA (P. C
194	Dietilamina	220.3	1.1	0.299	293.15	22.175	20.420	20.634	0.931
and the				e gala	303.15	20.581	19.280	19.151	The second
					313.15	18.991	18.140	17.672	
			7-7-		4				
G)		100							
242	Benceno	205,7	0.0	0.212	293.15	31.753	28.880	29.710	0.936
					323.15	26.526	.24.960	24.B19	
	3 1 1 1 1				343.15	23.265	22.400	21.769	
H) FL	UIDOS DE TEMPERATURA	DE EBULLICI	ON BAJA	9	· person				
5	Cloruro de	86.8	1.8	0.318	243.15	34.624	33.970	34.970	1.010
	Nitrosilo				253.15	32.224	32.480	32.546	•
					263.15	29.754	30.980	30.051	
6 -	Cloro	54.3	0.2	0.073	213.15	33.043	31.250	31.836	0.963
	ī	1			233.15	28.352	27.460	27.317	
					243.15	26.059	25.560	25.107	
							Y		

Num.	Nombre	Paracor	D	F.Acen.	Temp K	γ̈́c	Yexp	γs	E
٠.		•						. *	***
11	Fluor	25.7	0.0	0.048	73.15	16.769	16.820	17.839	1.064
					79.15	14.767	15.830	15.709	
	\$				83.15	13.454	15.170	14.312	
15	Ac. Bromhidrico	83.5	0.8	0.063	203.15	27.862	27.650	27.998	1.005
. 182				1100-1	213.15	25.342	25,570	25.465	
2.7					223.15	22.901	23.500	23.012	
27	Oxido Nitrico	37.3	0.2	0.607	113.15	28.500	26.170	25.967	0.911
					117.15	26.138	23.830	23.815	Tana a
					121.15	23.747	21.490	21.637	
29	Nitrógeno	12.5	Ò.0	0.040	78.00	8.170	8.750	8.937	1.094
					84.00	6.747	7.390	7.381	
			17.		90.00	5.426	6.030	5.936	
30	Oxido Nitroso	54.8	0.2	0.160	193.15	21,966	21.350	23.220	1.057
		200	STATE OF	AND ASSESSED.	233.15	12.042	13.220	12.729	
					263.15	6.091	7.120	6.439	
32	Oxfgeno	60.0	0.0	0.021	75.15	17.200	16.990	17.478	1.016
					83.15	14.661	14.940	14.898	
					89.15	12.888	13.400	13.096	
	a w			- 11-					
33	Dióxido de	88.7	1.6	0.251	243.15	36.469	32.420	33.478	0.918
	Azufre			1	253.15	30.928	28.530	28.391	
					283.15	25.647	24.630	23.544	14
44	Monóxido de								
	Carbono	61.6	0.1	0.049	83.15	8.182	9.190	9.378	1.146
					85.15	7.708	8.770	8.835	
					89.15	6.793	7.940	7.786	

Sexp - Ss	E
.460 26.04	7 0.948
.130 19.69	1
.900 13.25	В
.140 6:42	2 1.128
.670 2.60	1
.190 1.06	0
.900 19.36	2 0.960
.030 14.67	0
12.51	
	7.
21.83	0.972
9.520 19.50	12
7.660 17.30	18
.990 . 32.50	0.878
26.19)3
.330 24.14	2
.410 22,53	0.914
16.96	i2
1.270 13.56	6
	.670 2.60 .190 1.066 3.900 19.36 5.030 14.67 3.100 12.51 1.370 21.83 9.520 19.50 7.660 17.30 7.660 17.30 1.330 24.14 1.410 22.53 7.130 16.96 1.270 13.56

Num.	Nombre	Paracor	D	F.Acen.	Temp K	gc .	Yexp	8's	E
				8 4					
J)	•								**
101	Dimetil éter	137.5	1.3	0.192	228.15	23.830	21.620	21.899	0.919
	3 ,3				238.15	21.816	20.140	20.049	•
					248.15	19.852	18.670	18.244	
107	viin .								
187	Dietil éter	211.7	1.3	0.281	288.15	19.408	17.560	18.018	0.928
				* 1	298.15	17.808	16.550	16.533	
					303.15	17.034	16.200	15.814	· hart
231	Etil propil éter	252.0	1.2	0.331	288.15	19.599	20.340	20.505	1.046
				- To-day	313.15	16.882	17.700	17.662	
					333.15	14.801	15.600	15.485	
ment of a 1			a to the second		, a Maria			5 6 40	
277	Etil butil éter	290.5	1.2	0.400	303.15	23.759	19.600	19.781	0.833
		I'de day	73.4		313.15	22.146	18.550	18.439	
					333.15	19.168	16.460	15.959	
				11 Table 20					
·278	Diisopropil éter	289.2	1.2	0,340	298.15	19.348	17.270	17.562	0.908
					313.15	17.204	15.700	15.617	
					333.15	14.535	13.600	13.194	*
374	Dibutil éter	370.6	1.2	0.500	343.15	22.693	18.240	18.427	0.812
	4	1 - 1		- 22	353.15	21.328	17.310	17.319	-1 -1
10				13	363.15	19.947	16.370	16.197	

Num.	Nombre	Paracor	D	F.Acen.	Temp K	βc	Yexp	8's	E
. К)		72.6	0.0	0.008	100.00	15.134	16.328	16.299	1.077
61	, Hetano.	72.6	0.0	0.000	110.00	12.718	13.707	13.697	
					115.00	11.580	12.371	12.472	
					713.00				
100	Ctono	110.5	0.0	0.098	143,15	25.113	22.820	23.816	0.948
100	Etano	110.3	As in the	0.030	163.15	20.575	19.500	19.512	
				1 1	183.15	16.411	16.180	15.563	
			1	14-11-11	103.13				
132	Propano	150.8	.0.0	0.152	223.15	17.057	13.590	14.993	0.879
132	rropano			5 + 1 V	243.15	13.748	11.840	12.084	
					263.15	10.709	10.090	9.413	100
				e = 10			A		Name of the last
181	Butano	190.3	0.0	0.193	243.15	19.947	18.490	18.878	0.946
					263.15	16.780	16.080	15.881	
					283.15	13.820	13.660	13.080	
						17.4			
223	Pentano "	231.6	0.0	0.251	283.15	18.927	17.150	17.417	0.920
					293.15	17.438	16.050	16.048	
					303.15	15.991	14.940	14.716	
		1 1		6) . Y					
271	Hexano	270.5	0.0	0.296	293.15	20.718	18.400	18.834	0.909
					313.15	17.880	16.360	16.253	9.150
4			-		333.15	15.192	14.320	13.811	
1				-					
308	Heptano	-311.2	0.0	0.351	313.15	20.804	18.180	18.557	0.892
		•			333.15	18.191	16.220	16.227	
4					353.15	15.601	14.260	13.916	

FAMILIAS PARA LAS CUALES $E \neq 1$.

Num:	Nombre	Paracor	D	F.Acen.	Temp K	γ_{c}	$\gamma_{\rm exp}$	ð's	£
		* - * -							
A)	4 4	'							
94	Acido Acético	131.0	1.3	0.454	343.15	52.784	22.620	22.671	0.430
					353.15	49.592	21.630	21.300	
	11 11 11 11 11				363.15	46.687	20.630	20.052	
10				The second					
127	Acido Propiónico	169.5	1.5	0.536	343.15	48.286	21.730	22.694	0.470
1			4		353.15	44.314	20.740	20.827	
					363.15	41.708	19.740	19.602	
B)									
62	Metano1	88.0	1.7	0.559	313.15	53,669	20.960	21.260	0.396
					323,15	49.509	20.180	19.612	closium in
					333,15	45.671	19.410	18.092	
102	Etanol	126.6	1.3	0.454	323.15	41.427	19.890	20.589	0.497
					333.15	38.444	19.060	19.107	
					343.15	35.385	18.230	17.586	
									31
133	Propanol	165.1	1.7	0.624	333:15	36.288	20.600	21,438	0.591
				100 - 114 1	343.15	33.678	19.820	19,896	1
					353.15	31.101	19.040	18.374	
				1	114		13.040	10,374	
183	8utano1	204.1	1.8	0.590	343.15	33,133	20.930	21.815	0.650
		3.	1	3,330	353.15	30.906	20.040		0.658
					363.15			20.349	
					303,13	78.652	19.140	18.865	
123	: Alcohol Alilico	155.0	1.6	0,630	. 222 15	40 205	22 120	20.001	
	ATTOMOT ATTITUD		1.0	0,030	333.15	40.285	22,120	22.801	0.566
		. •			343.15	37.510	21.220	21.230	
	1 = 40				353.15	34.873	20.310	19.738	

1

Num.	Nombre	Paracor	D	F.Acen.	Temp K	Yc	Yexp	rs.	E
1)									
86.	Acetonitrilo	122.1	3.5	0.321	303.15	49.112	28.030	28.976	0.590
				•	323.15	42.805	25.500	25,255	
					333.15	39.835	24.240	23.503	
	4								0
-118	Propionitrilo	163.8	3.7	0.321	303.15	40.817	26.170	26.898	0.659
				6	323.15	36.026	23.860	23.741	
					333.15	33.682	22.710	22.196	
5	ALL DESCRIPTION OF THE PARTY OF				The Maria				
158	Butironitrilo	198.6	3.8	0.371	343.15	30,461	22.250	22.206	0.729
					353.15	28.732	21.210	20.946	
					363.15	26.823	20.180	19.554	
L)				7 7 7 9 1 1					0.700
122	Acetona	161.7	2.9	0.309	298.15	30.677	24.020	24.315	0.793
					308.15	28.524	22.340	22.609	
					318.15	26.373	21.220	20.903	4
H)				tin in the					
60	Nitrometano								
00	A Crome Land	132.2	3.1	0.346	323.15	48.031	32.340	32.376	0.674
					333.15	45.530	30.720	30.690	
4.					343.15	42.973	28.970	28.967	4
40						2			
N)	1								
22	Amoniaco	63.0	1.5	0.250	218.15	54.421	39.100	38.682	0.728
					228.15	50.187	36.670	35.673	
			17.		233.15	48.055	35.380	34.157	
		-							
0)							4		
20	Agua	38.0	1.85	0.344	393.15	92.315	54.840	63.137	0.691
	4				447.55	64.234	43.100	44.412	
					497.55	42.978	32.000	29.716	
				-4					

TABLA II. Fórmulas Químicas de Algunas Substancias Analizadas.

Num.	Nombre	Fórmula	E
Familia	A		+
94	Acido Acético	C ₂ H ₄ O ₂	0.430
127	Acido Propiónico	C3H6O2	0.470
Familia	B		
62	Metanol	CH ₄ O	0,396
102	Etanol	C ₂ H ₆ 0	0,497
133	Propanol	C ₃ H ₈ 0	0.591
183	Butanol	C4H ₁₀ O	0.658
Familia			
86	Acetonitrilo	CUN	0.500
118	Propionitrilo	C ₂ H ₃ N	0.590
158	Butironitrilo	C ₃ H ₅ N	0.729
120	DUCTIONICATIO	C ₄ H ₇ N	0.729

TABLA II. Fórmulas Químicas de Algunas Substancias Analizadas.

Num.	Nombre	Fórmula	E 、
			_ 、
Familia	P		
106 ·	Etilamina	C ₂ H ₇ N	0.867
141	Propilamina	C ₃ H ₉ N	0.929
192	Butilamina	C4H10N	0.835
Familia	J		
101	Dimetil éter	C2H60	0.919
187	Dietil éter	C4H100	0.928
278	Diisopropil éter	C ₆ H ₁₄ O	0.908
374	Dibutil éter	C ₈ H ₁₈ O	0.812
Familia	K		4
	He a second	4	
61	Metano	CH ₄	1.077
100	Etano	^C 2 ^H 6	0.948
132	Propano	C3H8	0.879
181	Butano	C4H10	0.946
233	Pentano	C ₅ H ₁₂	0.920
271	Hexano	C ₆ H ₁₄	0.909
308	Heptano	C7H16	0.892
	· ·		

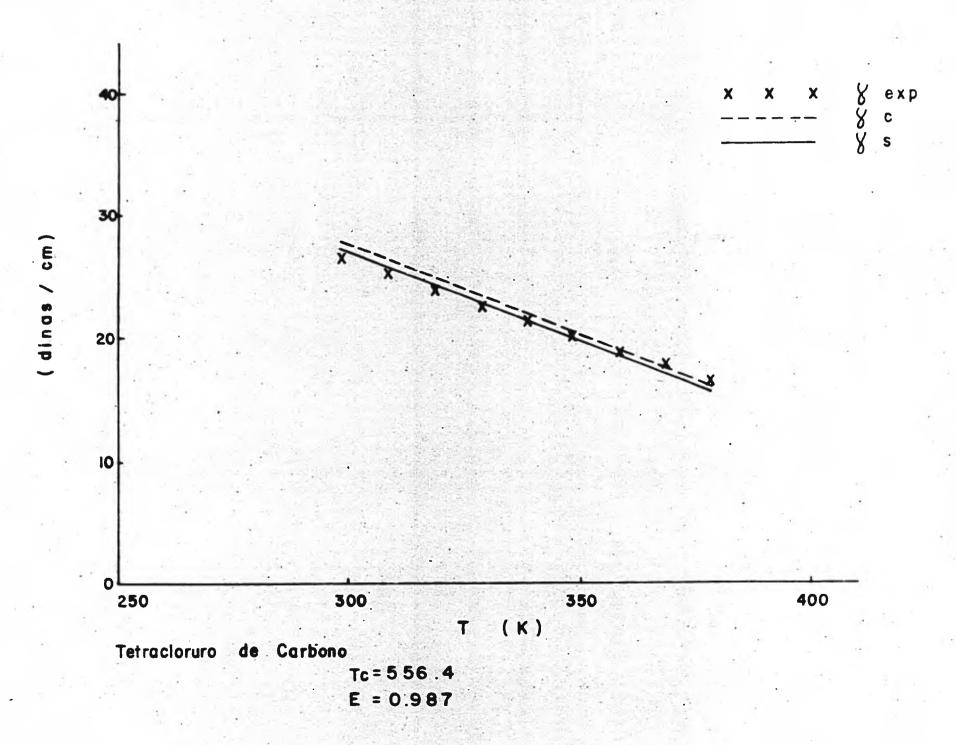


Fig. 2.

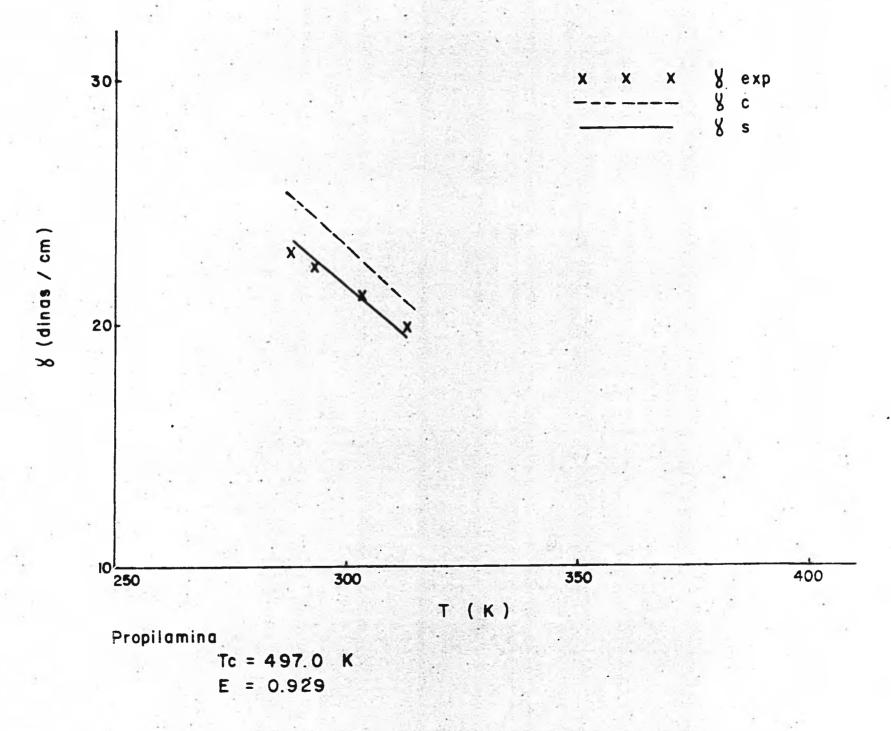


Fig. 3.

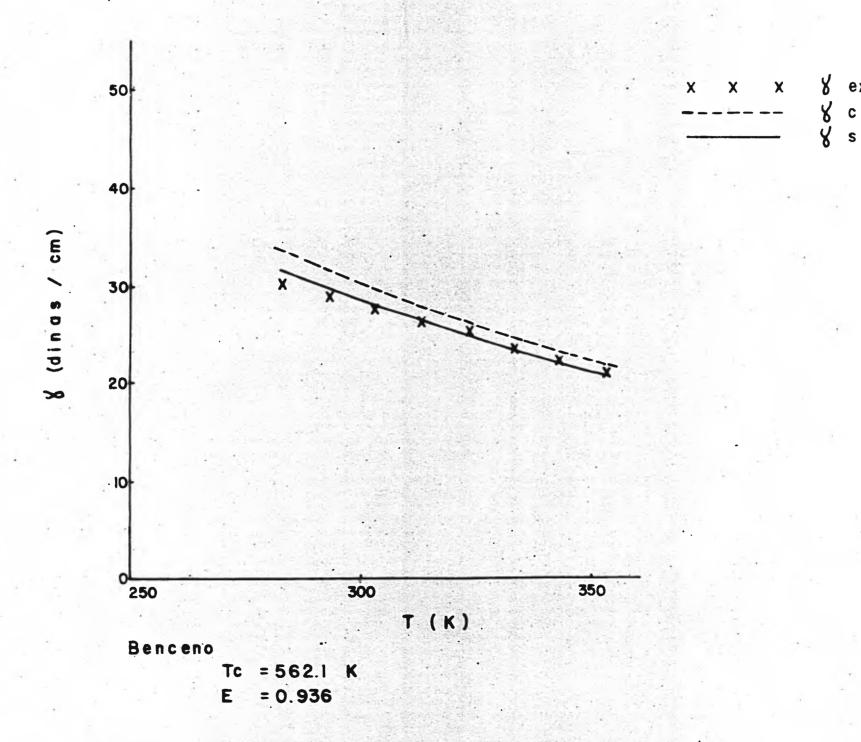


Fig. 4.

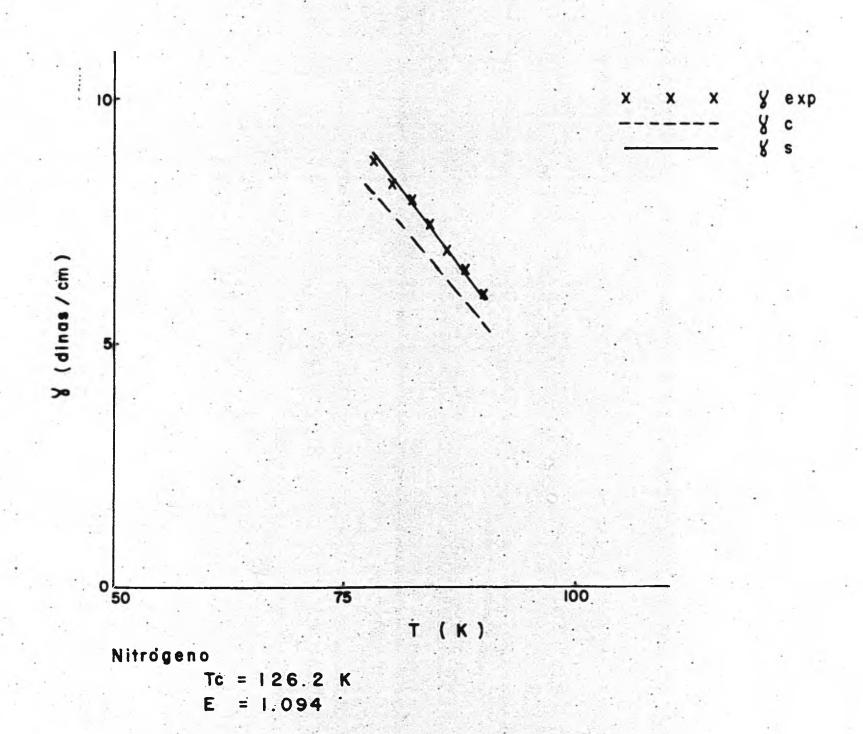


Fig. 5.

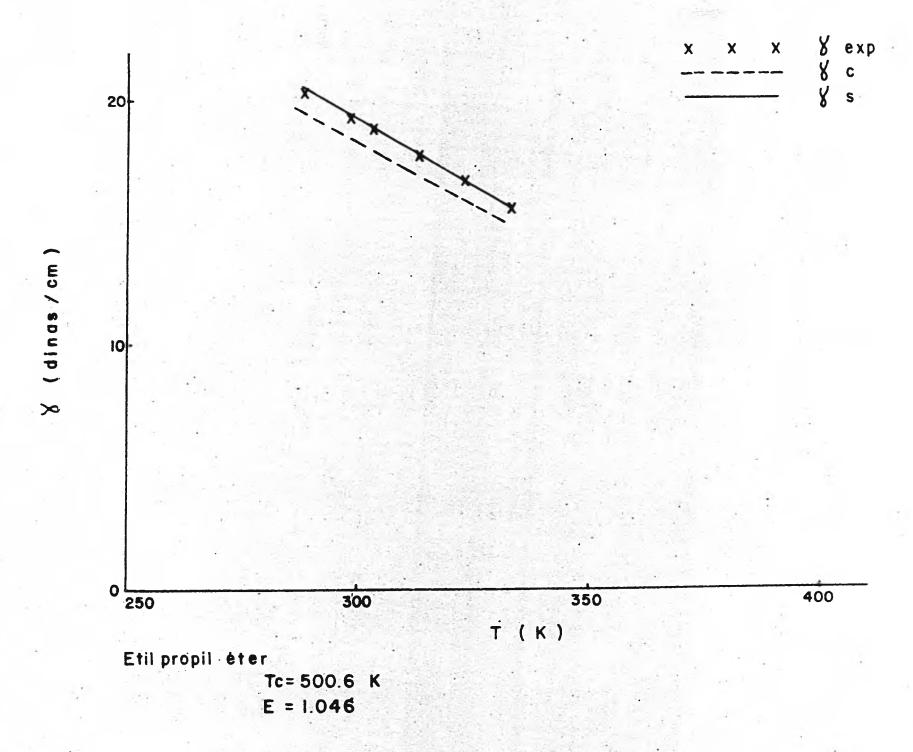


Fig. 6.

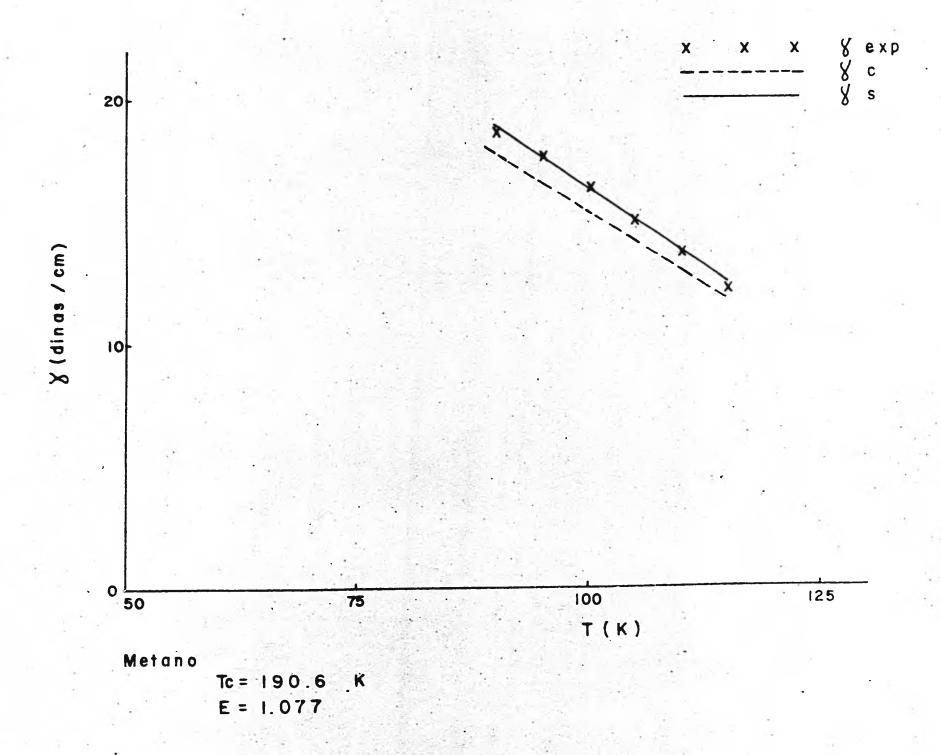


Fig. 7.

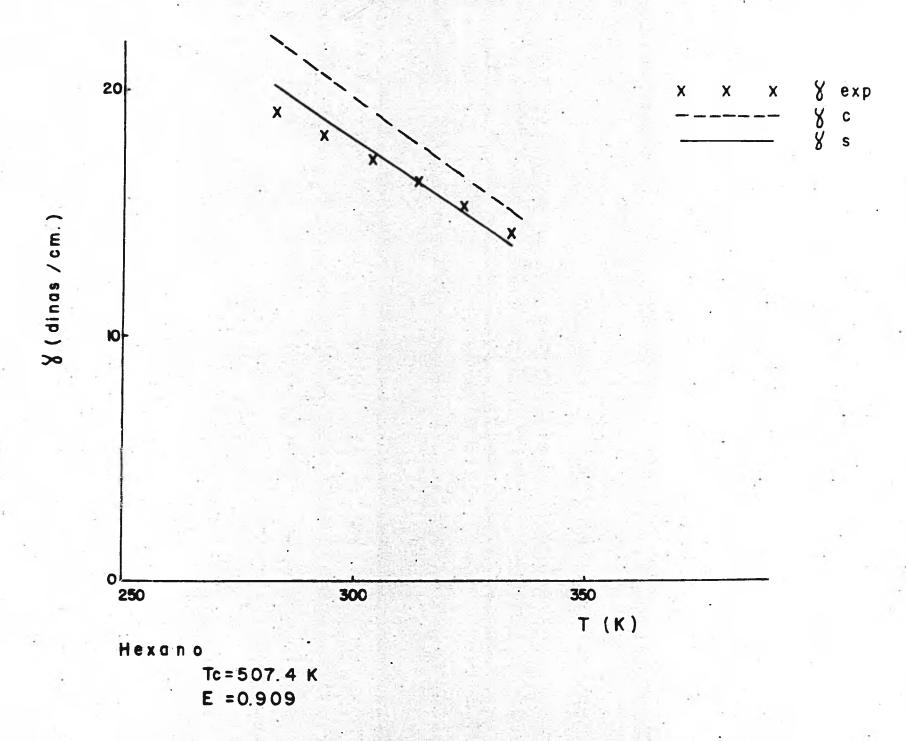


Fig. 8.

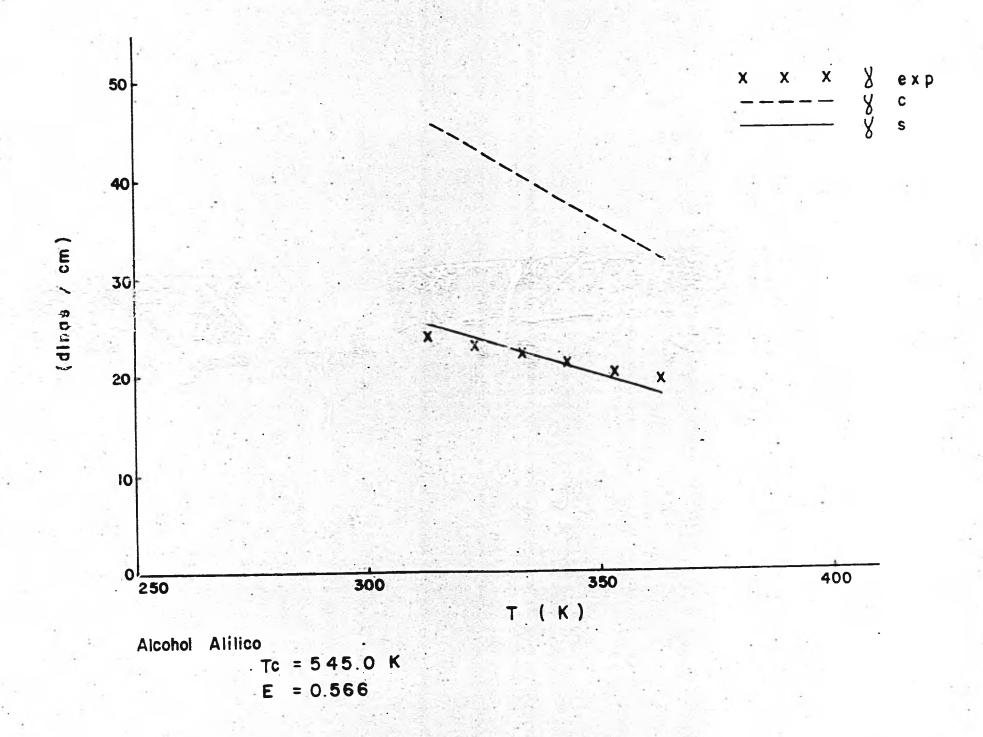


Fig. 9.

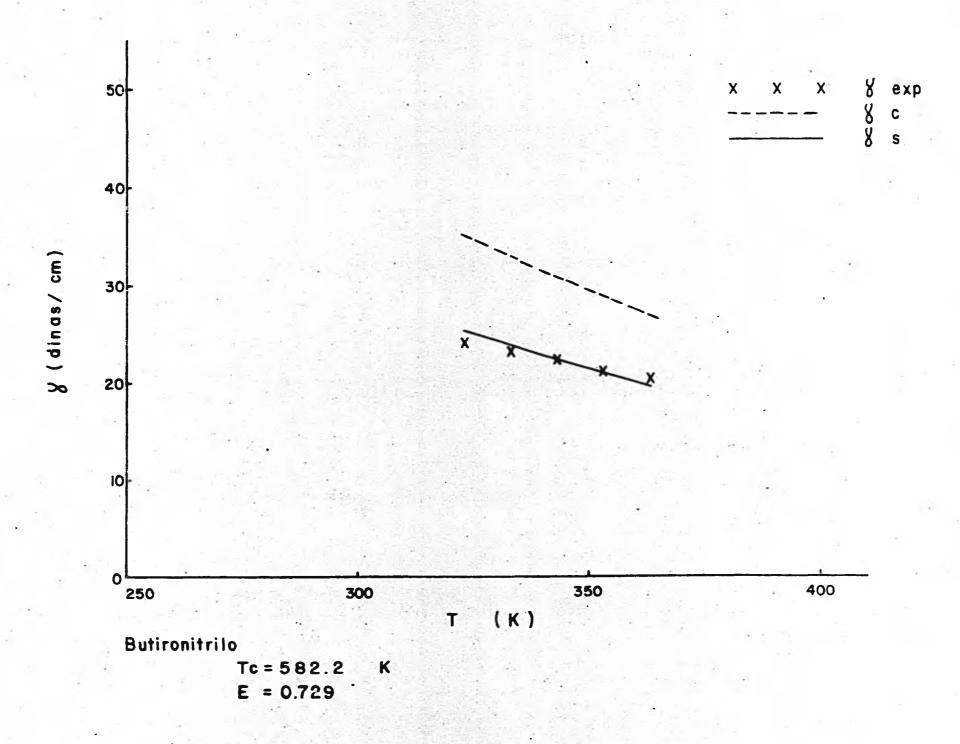


Fig. 10.

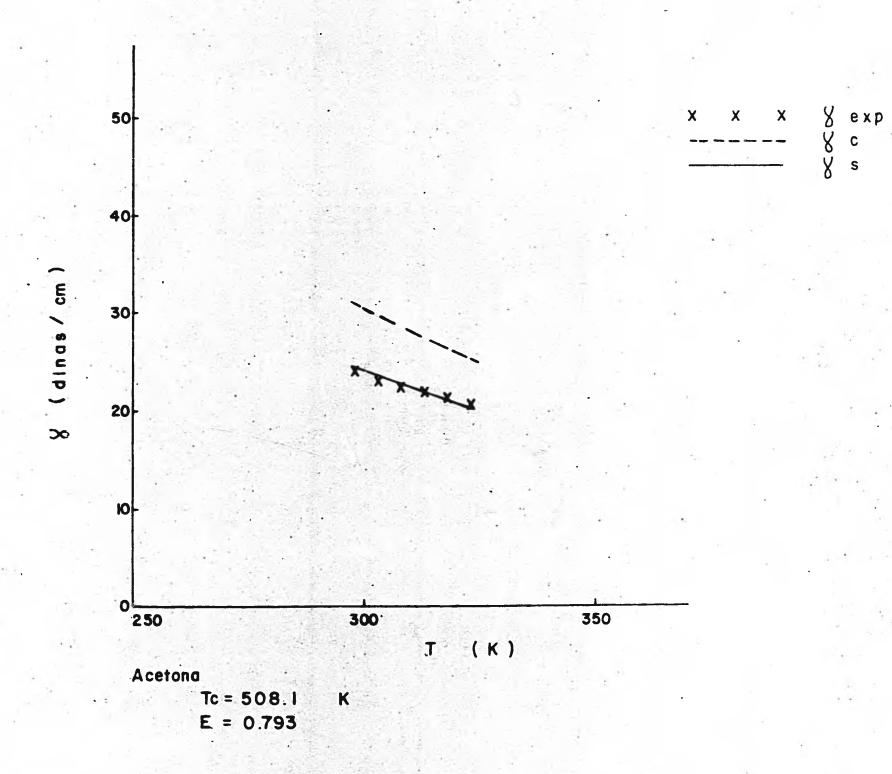


Fig. 11.

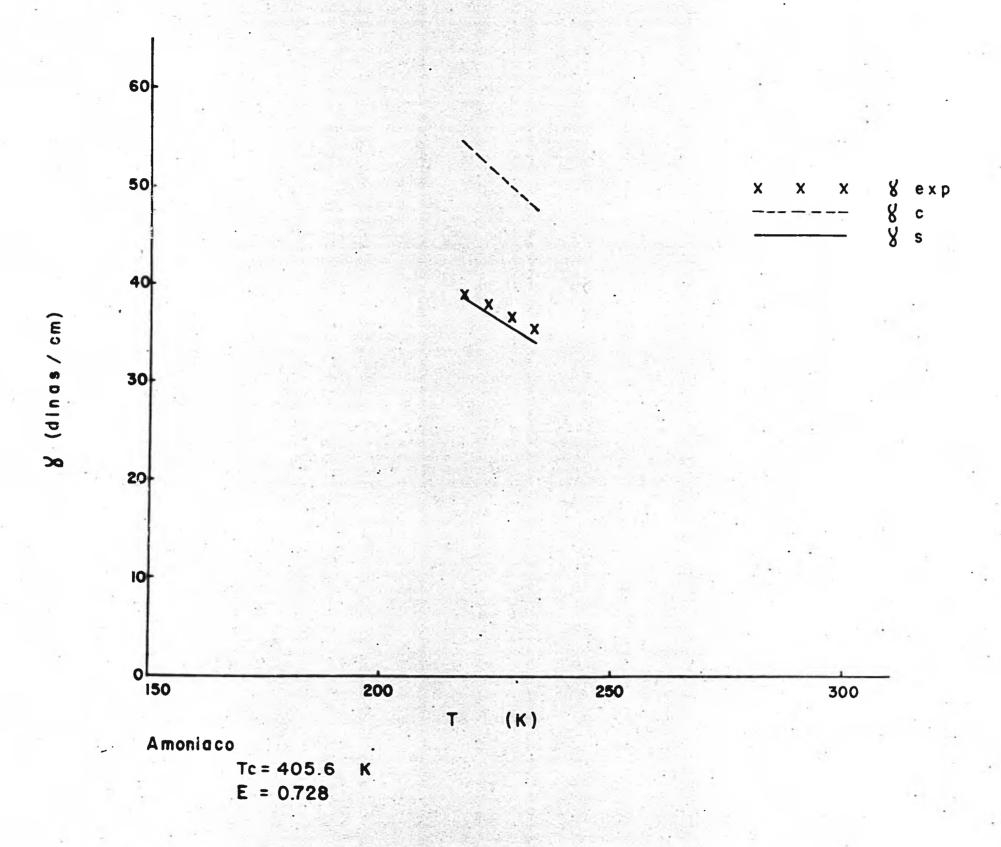


Fig. 12.

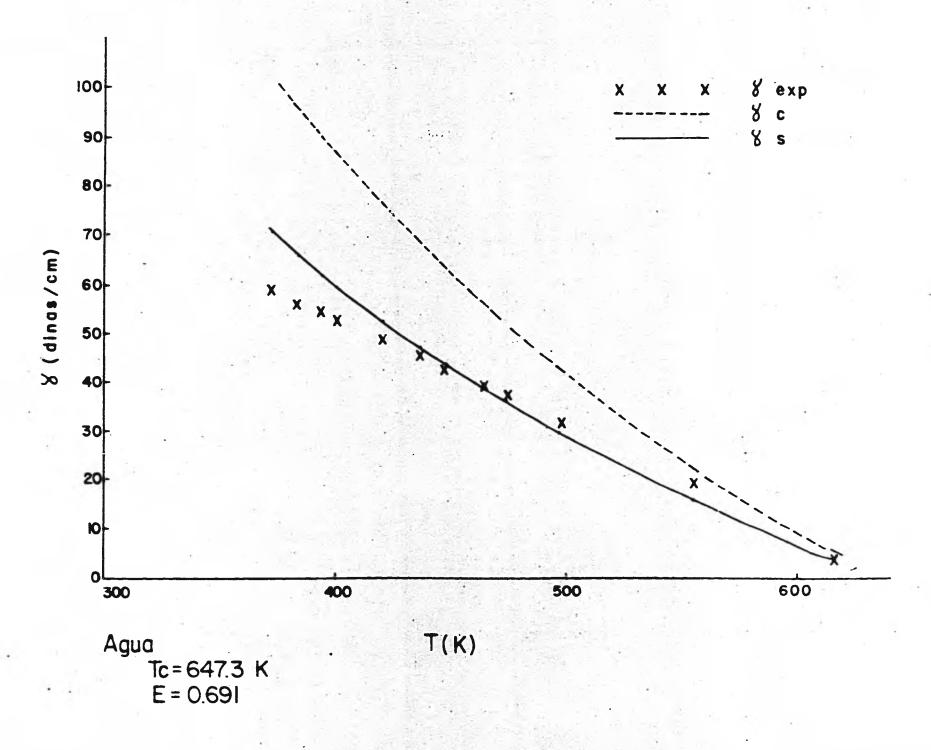


Fig. 13.

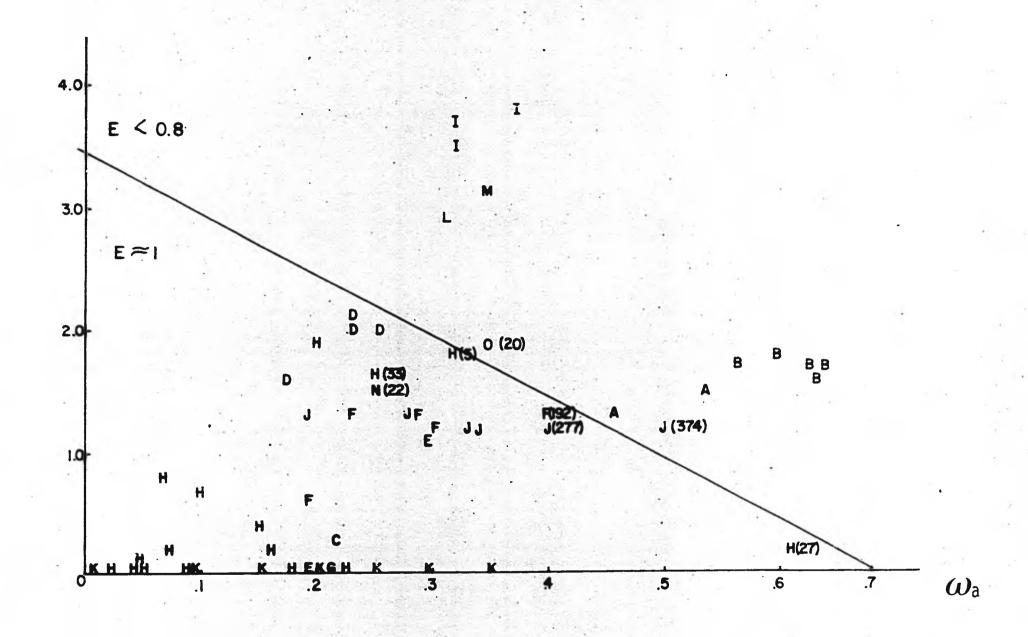


Fig. 14. Distribución de las substancias estudiadas respecto al momento dipolar y al factor acéntrico. Las letras y los números se refieren a las familias químicas y a los compuestos específicos, como están clasificados en la tabla I. La línea recta de fine dos zonas con diferentes valores del factor empírico E.

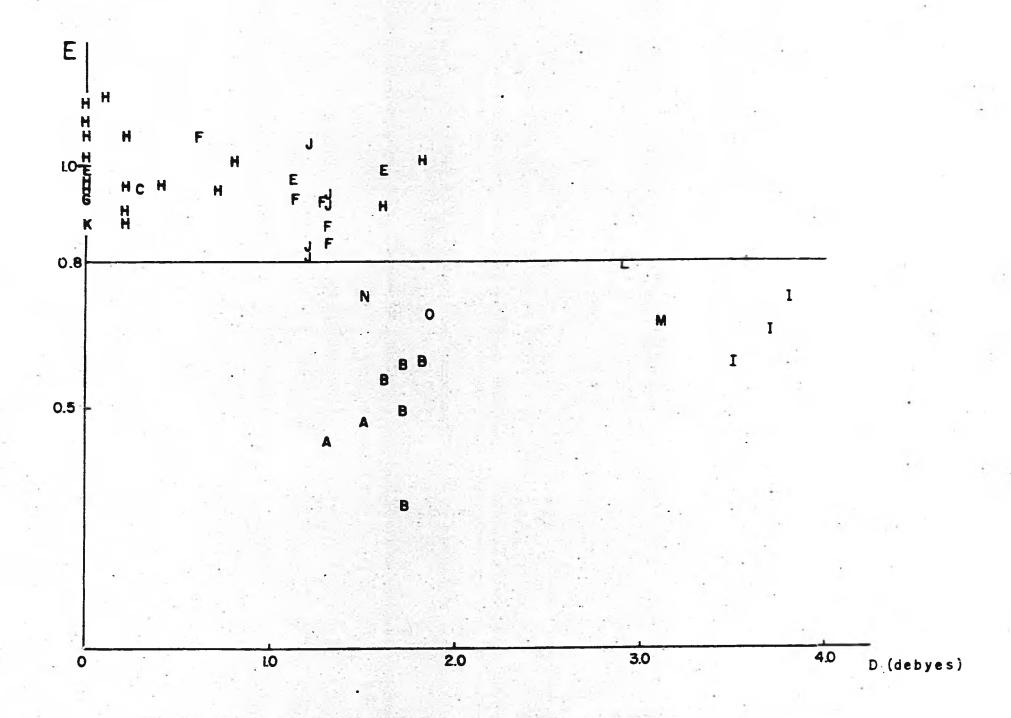


Fig. 15. Relación entre E y el momento dipolar. Las letras se refieren a las familias clasificadas en la tabla I. Sólo se indica un hidrocarburo (K), por tener todos estos compuestos D = 0 y $E \approx 1$.

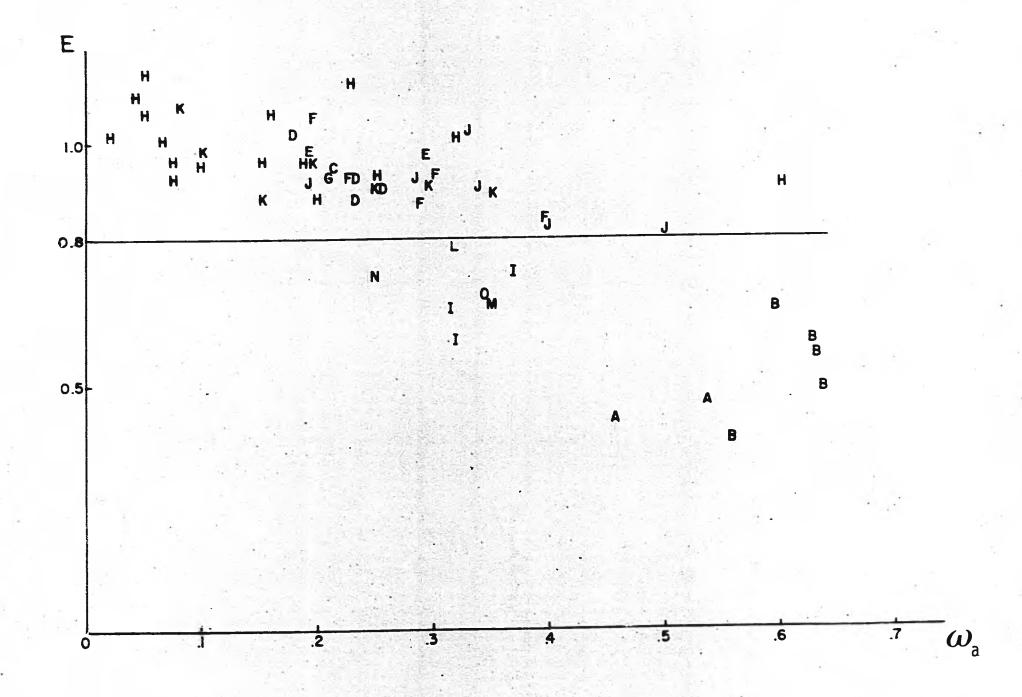


Fig. 16. Relación entre E y el factor acéntrico. Todas las substancias de las familias químicas C, D, E, F, G, H, J y K; tienen un valor de E > 0.80. Todos los compuestos estudiados pertenecientes a las familias A, B, I, L, M, N y 0; tienen un valor de E < 0.80.

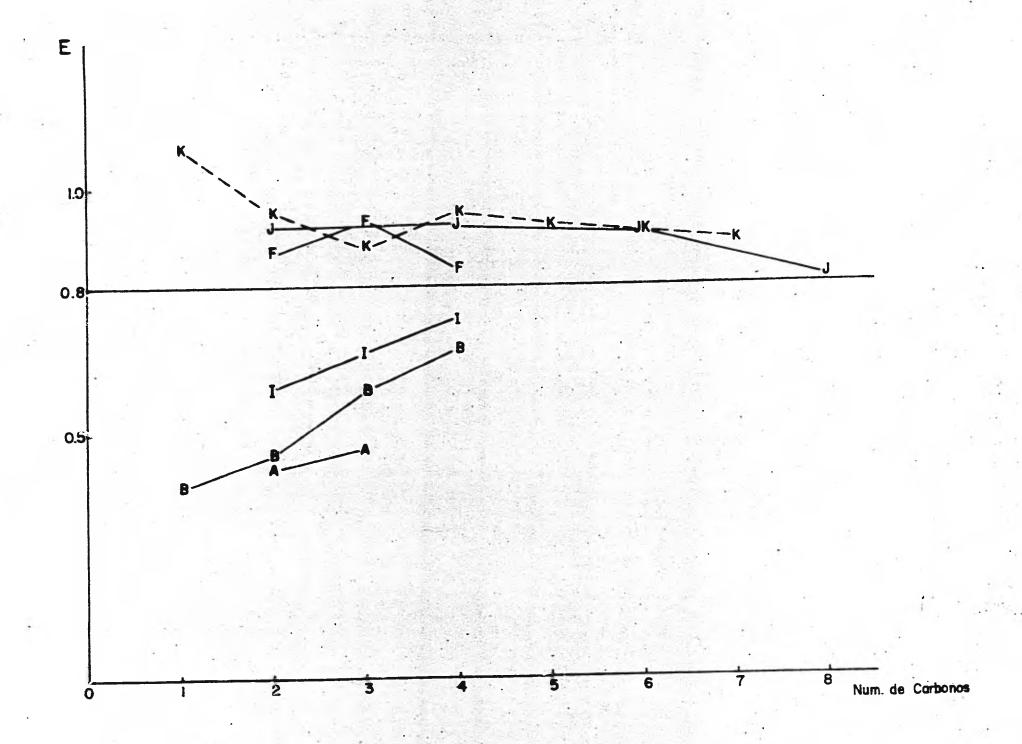


Fig. 17. Relación entre el valor de E y el número de carbonos de los compuestos químicos clasificados en la tabla II.