

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

SOLUCION DEL MODELO BAROTROPICO EQUIVALENTE CON EL METODO DE ELEMENTO FINITO.

TESIS PROFESIONAL

Que	para	obtene	r el	Ti	alo	de
F	ł	5	1	C	;	0
P	t	9 S	θ	0	t	9

VICTOR ORLANDO MAGAÑA RUEDA

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE.

		Pag
INTRODUCCION		1
CAPITULO I. UN MODELO DE PREDICCION DEL TIEMPO		4
l.l Hipótesis usadas en el desarrollo del modelo.		4,
1.2 La ecuación de vorticidad	•	5
1.3 Una constricción integral		7
1.4 Análisis de escala	•	9
1.5 El modelo barotrópico equivalente		12
CAPITULO II. EL METODO DE ELEMENTO FINITO		17
2.1 Los métodos numéricos		17
2.2 El método de elemento finito		18
2.3 Construcción del método		20
2.4 Algunas ventajas del método de ele- mento finito sobre el método de di- ferencias finitas		23
2.5 Matemáticas del modelo. Implementación ción del método de elemento finito		25
2.6 Método numérico.		30
		39
EXPERIMENTOS NUMERICOS Y RESULTADOS		57
3.1 Condiciones para la solución del modelo		39

3.2	Determinación del parámetro de di- fusión M.	40
3.3	Método de evaluación.	41
3.4	Análisis objetivo	44
3.5	Resultados Conclusiones Mapag do propóstico y do las	49 52
	condiciones observadas.	53
APEN El M	NDICE A. Metodo de diferencias finitas	63
APEN DESC DE D DE P	NDICE B RIPCION DE LA INFORMACION DEL BANCO DATOS USADA PARA TRABAJAR EL MODELO PREDICCION NUMERICA DEL TIEMPO	71
APEN LIST	NDICE C NADOS DE LOS PROGRAMAS	81
BIBL	JIOGRAFIA	102

INTRODUCCION

La vida, salud y comodidad del ser humano, así como del resto de los seres vivos que habitan este planeta, dependen en gran medida de los factores atmosféricos que les rodean. Los efectos combinados de temperatura, humedad y movimiento del aire afectan la eficiencia de sus actividades.

El interés del hombre por entender el comportamiento de la atmósfera, lo ha llevado a plantearse el problema de desarrollar una teoría de circulación general de la atmósfera que permita a los meteorólogos predecir el tiempo y el clima.

Hasta antes de 1950 todos los pronósticos del tiempo estaban basados en un análisis sinóptico de los datos reportados, sin embargo, numerosos intentos se habían ya realizado para poder resolver las ecuaciones hidrodinámicas que describen el comportamiento de la atmósfera y así realizar predicciones sobre bases más científicas. Tal es el caso de los trabajos de Richardson por el año de 1922 y de V. Bjerknes en 1920.

No es sino hasta principios de los años cincuenta, que en base a los resultados de Rossby y al trabajo de Charney, Von Neuman y R. Fjøfort, se consigue resolver numéricamente, con ayuda de la computadora ENIAC, una ecuación que describe el comportamiento dinámico de la atmósfera y de esta forma,

realizar el primer pronóstico numérico del tiempo, a partir de condiciones iniciales reales.

De ese día hasta la fecha, se ha trabajado intensamente para aumentar la precisión de los pronósticos a corto plazo.

El presente trabajo forma parte de ese esfuerzo, al resolver numéricamente la ecuación de vorticidad asociada al modelo barotrópico equivalente, pero sin utilizar un esquema de diferencias finitas, como lo hicieran Charney y sus compañeros, sino empleando el método de elemento finito, de reciente aplicación en meteorología, tal como lo plantean Staniforth y Mitchel en 1977 para el caso de ecuaciones primitivas (ver ref.l).

El desarrollo de esta tesis se divide en tres capítulos. El primero de ellos plantea como se desarrolla el modelo barotrópico equivalente, que es utilizado para realizar pronóstico del tiempo. El segundo capítulo describe el método de elemento finito y su implementación numérica para el caso del modelo barotrópico. El tercero explica los experimentos numéricos realizados y analiza los resultados obtenidos. Como complemento de este material se anexan tres apéndices, el primero de los cuales (apéndice A) describe la manera de resolver el mod<u>e</u> lo con el método de diferencias finitas, método con el cual se compara el de elemento finito. El apéndice B describe las car

tas del tiempo de los días analizados (9, 10 y 11 de enero de 1984), para los niveles de 500 mb, 700 mb y superficie, además presenta las fotografías de satélite correspondientes a los días mencionados, con el fin de analizar el comportamiento de los sistemas en toda la tropósfera. Por último, en el apéndice C, se presentan los listados de los programas utilizados en el desarrollo de la tesis.

з.

CAPITULO I.

UN MODELO DE PREDICCION DEL TIEMPO.

1.1 Hipótesis usadas en el desarrollo del modelo.

Para desarrollar un modelo físico-matemático que describa a la atmósfera de manera consistente, desde el punto de vis ta dinámico y energético para el caso de la escala sinóptica, son necesarias ciertas suposiciones. Una de ellas es considerar a la atmósfera como un medio continuo sujeto a los principios de la mecánica de los fluídos. Las fuerzas a las que está sometido, para movimientos de interés meteorológico, son la fuerza gravitacional, la del gradiente de presión y la de fri<u>c</u> ción, además de la fuerza centrífuga y la fuerza de Coriolis, que deben ser tomadas en cuenta, por estar los movimientos referidos a un sistema en rotación como lo es la Tierra.

El balance entre estas fuerzas lleva a la ecuación de movimiento relativo, que escrita en forma vectorial es (ver ref.

$$\frac{d\mathbf{V}_3}{d\mathbf{t}} = -\alpha_y^v \mathbf{p} - 2\mathbf{\Omega} \times \mathbf{V}_3 + \mathbf{\vec{g}} + \mathbf{\vec{F}}$$
(1.1)

El subíndice 3 denota la velocidad del viento \mathbf{V} y al operador gradiente ∇ en tres dimensiones; α corresponde al volumen específico del aire; Ω es la velocidad angular de

rotación de la Tierra; \vec{g} es la suma de la fuerza centrífuga y la gravitacional; y \vec{F} la fuerza de fricción. El término -2 Ω × V₃ corresponde a la fuerza de Coriolis.

La ecuación (1.1) puede ser descompuesta en una parte vertical y otra horizontal:

$$0 = -\alpha \frac{\partial p}{\partial z} - g \qquad (1.2)$$

$$\frac{d\mathbf{v}}{d\mathbf{t}} = -\alpha \nabla \mathbf{p} - \mathbf{E} \times \mathbf{v} + \mathbf{F}_{\mathbf{h}} \qquad (1.3)$$

En la parte vertical (ec.(1.2)) se ha supuesto la aprox<u>i</u> mación hidrostática, la cual se satisface para escala sinóptica. El vector \vec{f} corresponde al parámetro de Coriolis y puede ser escrito como $\vec{f} = \hat{k}f$, siendo $f=2\Omega$ sen ϕ y ϕ la latitud.

1.2 La ecuación de vorticidad.

Para propósitos de análisis dinámico y predicción numéri ca, es conveniente considerar a la variable de interés meteoro lógico que es la vorticidad en su componente vertical, pues ésta se conserva siguiendo el movimiento de la troposfera media, proporcionando así un esquema sencillo de predicción.

Aplicando el operador $\hat{k} \cdot \nabla x$ a la ecuación (1.3) y utilizando la presión como coordenada vertical se llega a:

$$\frac{\partial \zeta}{\partial t} + \nabla \cdot (\zeta + f) + \omega \frac{\partial \zeta}{\partial p} = -(\zeta + f) \nabla \cdot \nabla - \hat{k} \cdot \nabla \omega \times \frac{\partial \nabla}{\partial p} + \hat{k} \cdot \nabla \times \vec{F}_{h}$$
(1.4)

con $\zeta := \hat{k} \cdot \nabla \times V y$ después de haber utilizado las relaciones vectoriales:

 $(\mathbf{V} \cdot \nabla) \mathbf{V} = \nabla \left(\frac{\mathbf{V}^2}{2}\right) + \zeta \hat{\mathbf{k}} \times \mathbf{V}$ $\hat{\mathbf{k}} \cdot \left[\nabla \times \left(\hat{\mathbf{ak}} \times \mathbf{V}\right)\right] = \mathbf{a} \nabla \cdot \mathbf{V} + \mathbf{V} \cdot \nabla \mathbf{a}$

La interpretación de la ecuación (1.4) es la siguiente:

ζ Ξ vorticidad relativa al sistema en rotación, relacionada con la velocidad angular de la partícula en cada punto.

V = Velocidad en el plano horizontal.

 $\omega = \frac{\partial p}{\partial t} \equiv Cambio individual de la presión.$

- $\nabla \cdot \nabla(\zeta + f) \equiv Advección horizontal de vorticidad total, o trans$ porte de vorticidad absoluta por el viento horizontal.
 - $ω \frac{\partial r}{\partial p}$ = Cambio por advección vertical de la vorticiad relativa.
- $(\zeta + f) \nabla \cdot V \equiv Cambio de vorticidad absoluta por divergencia del viento.$

término debido a la inclinación

 $\hat{\mathbf{k}} \cdot \nabla \times \dot{\mathbf{F}}_{\mathbf{h}} \equiv \mathbf{t}$ érmino debido a la fricción.

б.

1.3 Una constricción integral.

La ecuación (1.4) corresponde a la ecuación de vorticidad y es usualmente escrita como:

$$\frac{\partial \zeta}{\partial t} + \nabla \cdot \nabla (\zeta + \mathbf{f}) + \omega \frac{\partial \zeta}{\partial p} + (\zeta + \mathbf{f}) \nabla \cdot \nabla + \hat{\mathbf{k}} \cdot \nabla \omega \times \frac{\partial \nabla}{\partial p} = -g \hat{\mathbf{k}} \cdot \nabla \times \frac{\partial \tau}{\partial p}$$

donde se ha parametrizado la fuerza de fricción mediante el tensor de los esfuerzos τ , quedando el término $\hat{k} \cdot \nabla \times \vec{F}_h = -g\hat{k} \cdot \nabla \times \frac{\partial \tau}{\partial p}$ Pero la ecuación anterior también puede ser expresada como:

$$\frac{\partial z}{\partial t} = -\nabla \cdot (\eta \nabla + \omega \frac{\partial \nabla}{\partial p} \times \hat{k} - g\hat{k} \times \frac{\partial \tau}{\partial p})$$
(1.5)

ï

habiéndose utilizado las relaciones:

$$\eta = \zeta + \mathbf{f} \equiv \text{ vorticidad absoluta y}$$

$$\nabla \cdot \left[\omega \frac{\partial V}{\partial p} \times \hat{\mathbf{k}} \right] = \hat{\mathbf{k}} \cdot \nabla \omega \times \frac{\partial V}{\partial p} - \omega \frac{\partial V}{\partial p} \cdot \nabla \times \hat{\mathbf{k}} =$$

$$= \omega \frac{\partial}{\partial p} \hat{\mathbf{k}} \cdot \nabla \times \nabla + \hat{\mathbf{k}} \cdot \nabla \omega \times \frac{\partial V}{\partial p} = \omega \frac{\partial \zeta}{\partial p} + \hat{\mathbf{k}} \cdot \nabla \omega \times \frac{\partial V}{\partial p}$$

Integrando (1.5) sobre una masa M, se llega a:

$$\int \frac{\partial \zeta}{\partial t} \quad dM = -\int \nabla \cdot (\eta \nabla + \omega \frac{\partial \nabla}{\partial p} \times \hat{k} - g\hat{k} \times \frac{\partial \tau}{\partial p}) dM \qquad (1.6)$$

donde $dM = \rho dx dy dz = -g^{-1} ds dp$

Utilizando el teorema de la divergencia en dos dimensiones se puede pasar de una integral de superficie a una integral de línea, esto es:

$$\frac{\partial}{\partial t} \int \zeta dM = g^{-1} \oint_{L} \left[nV + (\omega \ \frac{\partial V}{\partial p} + g \ \frac{\partial \tau}{\partial p}) \times \hat{k} \right] \cdot \hat{n} dldp \qquad (1.7)$$

donde \hat{n} es un vector unitario normal a la curva \underline{L} que encierra a la superficie S . El lado izquierdo de la ecuación (1.7) es una medida de la generación media de vorticidad sobre la masa M. El lado derecho se anula si la componente normal a L es cero ó si S es una superficie cerrada. En consecuencia, la generación media de vorticidad sobre una superficie de área limitada es cero, condición que se debe cumplir si se ut<u>i</u> liza la ecuación de vorticidad como ecuación de pronóstico. Como esta propiedad funciona para toda la ecuación, cualquier forma aproximada debe poseer la misma propiedad por consistencia energética, evitándose así la generación ficticia de vort<u>i</u> cidad.

Como cada término en la ecuación (1.7) es cero se puede

eliminar el término correspondiente a la fricción sin violar la constricción integral, ya que éste es mucho menor en magnitud que los demás, quedando la ecuación como sigue:

$$\frac{\partial \zeta}{\partial t} + V \cdot \nabla (\zeta + f) + \omega \frac{\partial \zeta}{\partial p} + (\zeta + f) \nabla \cdot V + \hat{k} \cdot V \omega \times \frac{\partial V}{\partial p} = 0 \quad (1.8)$$

1.4 Análisis de escala.

Para analizar la conveniencia de diferentes aproximaciones a la ecuación de vorticidad, considerando siempre la constricción integral $\int \frac{\partial \zeta}{\partial t} dM = 0_1$, es conveniente expresar el vector velocidad del viento como la suma de una parte rotacional y otra divergente, que de acuerdo al teorema de Helmholtz es:

$$v = v_{\psi} + v_{\chi}$$

con V_{ψ} la parte rotacional y V_{χ} la parte divergente, las cuales cumplen:

$$\nabla \cdot \mathbf{v}_{\Psi} = \mathbf{0}$$

$$\nabla \times \mathbf{v}_{\chi} = \mathbf{0}$$
(1.9)

La parte rotacional puede ser expresada en términos de la función de corriente Ψ , definida por:

ó en coordenadas cartesianas:

 $u_{\psi} = -\frac{\partial \psi}{\partial \chi}$ $v_{\psi} = \frac{\partial \psi}{\partial x}$

donde se tiene que:

$$\zeta = \hat{k} \cdot \nabla \times V = \nabla^2 \Psi$$

Para movimientos de escala sinóptica en latitudes medias, la velocidad del viento es casi no divergente en la troposfera media, esto es:

$$|v_{\psi}| >> |v_{\chi}|$$
 (1.10)

Después de substituír en la ecuación (1.8), las propiedades (1.9) y (1.10), y reagrupar, se llega en primera aproxi mación a:

$$\frac{\partial \zeta}{\partial t} + V_{\Psi} \cdot \nabla (\zeta + f) + \nabla \cdot f V_{\chi} + \omega \frac{\partial \zeta}{\partial p} + \nabla \cdot \zeta V_{\chi} + \hat{k} \cdot \nabla \omega \times \frac{\partial V}{\partial p} X = 0 \quad (1.11)$$

Haciendo un análiṡis∵de la escala de la ecuación (l.ll), se tiene que para latitudes medias:

 $\nabla(\zeta + f) \cdot V_{\chi} \sim 10^{-10} \text{seg}^{-2}$ $\frac{\partial \zeta}{\partial t} \sim 10^{-10} \text{seg}^{-2}$

$$V_{\chi} \cdot \nabla \zeta \sim 10^{-11} \text{seg}^{-2} \qquad V_{\chi} \cdot \nabla f \sim 10^{-19} \text{seg}^{-2}$$

$$f \nabla \cdot V_{\chi} \sim 10^{-10} \text{seg}^{-2} \qquad \zeta \nabla \cdot V_{\chi} \sim 10^{-11} \text{seg}^{-2}$$

$$\omega \ \frac{\partial \zeta}{\partial p} \ v \ 10^{-11} \text{seg}^{-2} \qquad \qquad \hat{k} \cdot \nabla \omega \ \times \ \frac{\partial V}{\partial p} \ v \ 10^{-11} \text{seg}^{-2}$$

observándose que es posible eliminar los términos de advección vertical y de inclinación, cumpliéndose aún la constricción in tegral. De igual manera se puede eliminar $\nabla \cdot \zeta V_{\chi}$ y el término $\nabla_{\chi} \cdot \nabla f$, siempre y cuando se considere que el parámetro de Coriolis es constante (f = f_o), para que de esta forma se conserve la vorticidad total, teniendo como segunda aproximación:

$$\frac{\partial c}{\partial t} + v_{\psi} \cdot \nabla (\zeta + f) = -f_0 \nabla \cdot V. \qquad (1.12)$$

Con el fin de que este modelo también sea válido para el caso de la República Mexicana, es necesario extender el análisis de escala de la ecuación (1.11) a latitudes bajas, para que las suposiciones hechas adquieran validez en toda la región de estudio (región cuarta). Holton (ver ref. 3), demuestra que en ausencia de calentamientos por condensación, los mo vimientos en los trópicos en los cuales la escala vertical es comparable a la escala de altura de la troposfera, deben ser barotrópicos, y la ecuación (1.12) es válida en latitudes bajas. Aplicándose la ecuación de continuidad $\nabla \cdot \nabla_{\chi} = -\frac{\partial \omega}{\partial p}$ a la ecuación (l.12) se llega a:

$$\frac{\partial \zeta}{\partial t} + V_{\psi} \cdot \nabla (\zeta + f) = f_0 \frac{\partial \omega}{\partial p}$$
(1.13)

Por ser la vorticidad un rotacional, en su cálculo sólo interviene la componente V_{ψ} , que puede ser evaluada mediante la función de corriente Ψ , en términos de la cual la ecuación (1.13) resulta ser:

$$\frac{\partial \nabla^2 \Psi}{\partial t} + J (\Psi, \nabla^2 \Psi + f) = f_0 \frac{\partial \omega}{\partial p}$$
(1.14)

siendo J la función jacobiana*.

En un modelo barotropico las superficies de igual densidad, de igual temperatura y de igual presión coinciden (ver ref. 4), por lo tanto todas las superficies isobáricas son paralelas y es suficiente hacer predicción en un solo nivel.

1.5 El modelo barotrópico equivalente.

En este modelo se permite que el viento varíe en la vertical, no en dirección pero sí en intensidad, es decir:

* Si se desprecia el término $\frac{f_0 \partial \omega}{\partial p}$, se tiene el modelo otr<u>ó</u> pico simple, pero para que sea éste más completo se mantendrá.

$$V = A(p)\overline{V}$$
 (1.15)

donde A = A(p) es una función empírica de la presión (ver fig. l), y la barra sobre la velocidad representa un valor integral medio con respecto a la presión, esto es:

$$(-) = \frac{1}{p_0} \int_0^{p_0} (\cdot) dp$$
 (1.16)

Fig. 1. Función empírica de la presión A(p).

Es evidente que en estas condiciones:

and the second second

$$\nabla_{\Psi} = \mathbf{A}(\mathbf{p})\overline{\nabla}_{\Psi}, \quad \Psi = \mathbf{A}(\mathbf{p})\overline{\Psi} \quad \mathbf{y} \quad \zeta = \mathbf{A}(\mathbf{p})\overline{\zeta} \quad (1.17)$$

Sustituyendo (1.15) y (1.17) en (1.14) y aplicando el operador (1.16) se obtiene:

$$\frac{\partial \nabla^2 \Psi}{\partial} + \overline{\Lambda}^2 J (\Psi, \nabla^2 \overline{\Psi}) + J (\overline{\Psi}, f) \doteq \frac{f_0 \omega_0}{p_0}$$
(1.18)

donde se ha tomado $\omega(p = 0) = 0$ $\omega(p = p_0) = \omega_0$

Utilizando la aproximación hidrostática (l.2) y la aproximación geostrófica $V_{\alpha} \cdot \nabla \phi = 0$, se observa que:

$$\omega_0 = \rho_0 A(p_0) \frac{\partial \Phi}{\partial t}$$

donde ρ_0 es la densidad al nivel de presión p_0 y ϕ es la función del geopotencial.

Definiendo $V^* = \overline{A}^2 \overline{V}, \quad \Psi^* = \overline{A}^2 \Psi Y \quad \phi^* = \overline{A}^2 \overline{\phi}$ la ecuación (1.18) se reduce a

$$\frac{\partial \nabla^2 \Psi}{\partial t} + J(\Psi^*, \nabla^2 \Psi^* + f) = M' \frac{\partial \Phi}{\partial t}^*$$
(1.19)

$$\operatorname{con} M' = \frac{f_0 \rho_0 A_0}{P_0}$$

En la aproximación geostrófica (ver ref. 3) $fv_{\psi} = v_g$ con v_{α} el viento geostrófico, teniéndose entonces que:

$$gz = \phi = f$$

$$(\nabla^2 - M) \frac{\partial z}{\partial t} + J(z, \frac{q}{f} \nabla^2 z + f) = 0$$
 (1.21)

con $M = f_0 M' = \frac{f_0^2 A_0}{RT_0} \approx 3.10^{-13} A_0$ (1.22)

En la atmósfera se ha encontrado que $A_{\hat{O}}$ no es función únicamente de la presión y que en realidad no hay una superficie isobárica sencilla en la cual $V = V^*$, no obstante se tiene, en un sentido estadístico, que la superficie que mejor lo cumple se encuentra a 500 mb y es aquí donde se realizan las predicciones con el modelo descrito por la ecuación (1.21).

El término de la forma $M \frac{\partial Z}{\partial t}$ equivale a un proceso de difusión y representa la divergencia de la velocidad o la generación de vorticidad. Este término es muy pequeño a 500mb y puede ser utilizado como parámetro de ajuste del modelo para valores óptimos en situaciones conocidas, simular efectos de orografía o representar la presencia de la estratosfera.

Si en la ecuación (1.21) se toma M = 0, se tiene el mode lo barotrópico simple, el cual en ocasiones presenta una fuente de error, ya que puede generar movimientos retrógrados rápidos

11 201

en ondas de tipo planetario durante la predicción, las cuales en realidad se mueven al este o al oeste a muy bajas velocidades. Un análisis lineal de perturbación en la ecuación (1.21) muestra que cuando el término M es escogido de manera adecuada, los movimientos retrógrados erróneos se reducen, mejorando así la predicción (ver ref. 2).

La ecuación (1.21) corresponde a una ecuación del tipo Helmholtz, que no tiene solución analítica y que generalmente se resuelve por algún método numérico o algún método de aprox<u>i</u> maciones (ver ref. 5).

EL METODO DE ELEMENTO FINITO.

2.1 Los métodos numéricos.

Para describir un sistema físico como la atmósfera, es necesario hacer ciertas suposiciones, que vuelven al problema matemáticamente adecuado, pero a menudo conducen a ecuaciones imposibles de resolver analíticamente.

Como el problema matemático no resuelve el problema físico en forma completa, frecuentemente es más apropiado encontrar una solución aproximada a un modelo que conserve los invariantes del sistema, que resolver en forma exacta un modelo demasiado simplificado. De lo anterior se comprende la importancia que han adquirido los métodos numéricos en la solución de ecuaciones diferenciales parciales.

El método numérico que interesa desarrollar en este trabajo, es el método de elemento finito y, para analizarlo, se comparará con el método de diferencias finitas, ampliamente conocido y aplicado a modelos de predicción (ver apéndice A). 2.2. El método de elemento finito.

De los resultados obtenidos en la solución de ecuaciones diferenciales parciales por métodos variacionales, considérese el caso particular del método de Rayleigh-Ritz. Este aproxima la función solución del problema con una combinación de funciones lineales independientes, determinando en un sentido matemático, los pesos asociados con cada una de estas funciones, pero manteniendo la idea de que deben de ser diferentes de cero en todo el dominio del problema. En el caso de una solución complicada, la determinación del peso para cada función re sulta muy difícil de obtener. Tomando en cuenta lo anterior, se pensó en aplicar el método de Rayleigh-Ritz, con la salvedad de que el dominio se subdividiera en pequeños pedazos o elementos, surgiendo así el método espectral y el de elemento finito, que son similares en su construcción. En el primero se utiliza una combinación de funciones seno y coseno en todo el dominio. En el segundo la combinación es de polinomios de bajo orden. Cada polinomio o función base es diferente de cero sobre una subdivisión del dominio llamada elemento finito (ver fig 2)

Fig. 2. Dominio dividido en elementos finitos.

La formulación de elemento finito, a diferencia de los métodos de funciones de prueba tradicionales, aproxima la solución en cada una de las regiones correspondientes a los elementos finitos. De esta manera , la aproximación en la región global del dominio es seccionalmente continua y debe proporcionar cambios compatibles en las fronteras con los elementos vecinos.

La selección de un elemento finito depende de la geometría del problema, el grado de aproximación deseado en la solución y la facilidad de integración sobre el dominio del elemento.

Las ecuaciones de elemento finito se pueden obtener por

métodos variacionales (Rayleigh-Ritz) o también por métodos de residuos pesados (Galerkin). Sin embargo, en el método de el<u>e</u> mento finito, los principios variacionales se construyen para una subdivisión del dominio y se ensamblan para obtener un principio variacional global.

El paso crucial en el método de elemento finito, es la se lección de las funciones de interpolación o funciones base, las cuales determinan el grado de aproximación de la solución y deben satisfacer requerimientos de completez (ver ref. 6 y ref. 7)

2.3 Construcción del método.

Si se presenta un problema por resolver de la forma: $\underline{\mathcal{I}} \underline{U} = \underline{f}$ donde:

 \mathcal{X} representa un operador diferencial que actúa sobre el vector incógnita <u>U y f</u> es una función conocida, se puede aprox<u>i</u> mar la solución por una función de prueba \widetilde{U} dada por:

$$\tilde{U} = \sum_{i=1}^{M} C_i \phi_i$$

donde ϕ_i son M funciones conocidas (polinomios de bajo orden), linealmente independientes sobre el dominio, y los coeficientes C_i son parámetros desconocidos que regularmente dependen del tiempo y pueden ser determinados de manera distinta a como se da la solución espacial del problema. Cada función base está

identificada con un nodo específico.

La sustitución de la función de prueba \widetilde{U} en el sistema, conduce a un error o residuo dado por: R = $\mathcal{L}\widetilde{U}$ - f.

Para hacer mínimo este error se utiliza un criterio de residuos pesados, obligando a que R sea cero en promedio, esto es, la función pesada de los residuos WR, con W una función de peso, debe satisfacer la condición:

$$\int_{\Omega} WR d\Omega = 0$$
 (2.1)

siendo R la función residual y Ω un dominio determinado. Este proceso se conoce como dualización.

En el caso de elemento finito, las funciones base coinciden con las funciones de peso, cumpliéndose así con la cond<u>i</u> ción de ortogonalidad entre ellas, requerida por (2.1)

La aplicación del procedimiento de dualización da como resultado un sistema de ecuaciones de elemento finito, al cual, después de aplicarle condiciones de frontera adecuadas, se le integra de manera local, o sea en coordenadas del elemento fin<u>i</u> to correspondiente, aprovechando el hecho de que las funciones empleadas son cero en todo el dominio excepto ahf. Los resultados de la integración, para cada elemento ai<u>s</u> lado, se agrupan para formar un sistema global de ecuaciones algebraicas o de ecuaciones diferenciales ordinarias en el tie<u>m</u> po, que tienen como incógnitas las constantes asociadas con la función de prueba. Después de resolver estos sistemas los valores de las constantes C_i quedan definidos y de esta forma los valores de la función en los puntos nodales del elemento, ya que $\tilde{U}(x_i) = C_i$, pudiéndose determinar en forma única, el cambio de la función para cualquier punto del dominio con base en una evaluación de la función de prueba \tilde{U} .

Los problemas no estacionarios requieren de un análisis temporal, es por ello que frecuentemente se utilizan las ventajas de resolución que tiene el método de elemento finito en la parte espacial (determina la solución para cualquier punto del dominio), y un esquema de diferencias finitas para resolver la parte temporal. Típicamente la solución espacial por elemento finito, conduce a una ecuación diferencial del tipo:

 $[A] \{\phi\} + [B] \{\frac{d\phi}{dt}\} = \{F\}$ (2.2)

con matrices de coeficientes [A], [B] y $\{F\}$, siendo esta última la que contiene la información conocida de condiciones de frontera o funciones de forzamiento y ϕ la función incógnita.

Para resolver estos sistemas de ecuaciones diferenciales ordinarios, la derivada en el tiempo puede ser reemplazada por un esquema de diferencias finitas que puede ser explícito, implícito o semi-implicito de Cranck-Nicolson, dependiendo de la precisión deseada y de la estabilidad del problema.

2.4. Algunas ventajas del método de elemento finito sobre el método de diferencias finitas.

En ambos métodos el dominio se discretiza, esto es,se co nocen valores de la función sólo para ciertos puntos en el dominio (puntos nodales). Para el caso de diferencias finitas, éstos están distribuídos de manera simétrica, mientras que en el caso de elemento finito, no es necesario que la distribución de los puntos nodales sea tan rígida (ver fig. 2), teniéndose así la ventaja de poder representar dominios irregulares y poder manejar las condiciones de frontera de manera más adecuada. Al mismo tiempo, se puèden concentrar mayor número de puntos en una región, para aumentar el número de funciones coordenadas y obtener mejor resolución en lugares donde se sos pecha que la solución varía rápidamente, evitándose así el uso de mallas anidadas que requiere el método de diferencias finitas, para obtener alta resolución de las ondas de pequeña longitud sin provocar problemas de estabilidad y dispersión compu tacional.

Se ha demostrado que la representación que se logra, de las derivadas, con el método de elemento finito, posee igual o mejor grado de aproximación que la obtenida con diferencias finitas (ver ref. 6). La solución espacial que se obtiene con elemento finito es mejor, debido a que el valor de la función, para cada punto del dominio, puede ser obtenida por evaluación directa de U, la función de prueba, sin tener que recurrir, co mo en el caso de diferencias finitas, a esquemas de interpolación.

Respecto a los criterios de estabilidad computacional, se ha demostrado que si se considera la condición impuesta por el criterio de Courant-Friedichs-Levi (criterio CFL), para diferencias finitas, esto es, $\left(\frac{C\Delta t}{\Delta x}\right) < \frac{1}{2}$, con C la velocidad de fase de las ondas más rápidas, se tendrá una solución computacionalmente estable que converja aunque no para todos los esta dos iniciales, es decir, para todas las longitudes de onda. En el caso de elemento finito, el criterio de estabilidad computacional es $\left(\frac{C\Delta t}{\Delta x}\right) < \frac{1}{\sqrt{6}}$ (ver ref.9), que es más restrictivo que el criterio CFL, pero proporciona una solución adecua da para la velocidad de fase de las ondas más rápidas y para todas las longitudes de onda, con una mejor aproximación espacial en los puntos nodales.

Los elementos que se utilizan en los presentes experimen

tos son cuadrados, con un lado $\Delta X = 231.42$ km, y los puntos nodales coinciden con la malla que se utilizará para el caso de diferencias finitas (ver fig. 3).

Fig. 3. Malla de puntos utilizada para resolver el modelo de predicción.

2.5 Matemáticas del modelo. Implementación del Método de elemento finito.

Para resolver una ecuación del tipo Helmholtz, como la descrita por la ecuación (1.21), es necesario definir condiciones iniciales y de frontera (ver apartado 3.1).

La implementación del método de elemento finito, requiere que sobre el área de predicción se defina una base de polinomios de bajo orden. Para el presente trabajo se utilizan funciones lineales llamadas "chapeaus". Para cada nodo i, j se define una función $W_{ij} = \omega_i(X) \omega_j(Y)$, donde $\omega_i(X) y$ $\omega_i(Y)$ quedan definidas de manera similar por:

$$\omega_{i}(x) \begin{cases} \frac{x - x_{i-1}}{x_{i} - x_{i-1}} & \text{si } x_{i-1} < x < x_{i} \\ \frac{x_{i+1} - x}{x_{i+1} - x_{i}} & \text{si } x_{i} < x < x_{i+1} \\ 0 & \text{en cualquier otro caso} \end{cases}$$

(ver fig 4), siendo x_i la coordenada del nodo i-esimo en la dirección del eje x. Análogamente se define para y.

tangular.

La función W_{ij} toma un valor igual a l en el nodo i, j pero tiende a cero en los demás nodos.

El conjuto de funciones así definido para todos los nodos del área, forma una base densa del espacio de Hilbert $H^1 \times H^1$, cuyas funciones y sus derivadas son de cuadrado integrable, de-finidas en el dominio Ω del área de predicción.

La operación de dualización se efectúa en el espacio de Hilbert de funciones cuadrado integrables L^2 y se denota por < f,g > $_L^2$, para el caso de dos funciones f y g cualesquiera; dicha operación coincide con el producto escalar definido en este espacio.

Por ser W_{ij} una base del espacio, calquier función Z del mismo se puede desarrollar en la forma:

$$\hat{Z} = \sum_{ij}^{IJ} z_{ij} W_{ij} = \sum_{ij}^{IJ} z_{ij} \omega_i(\mathbf{x}) \omega_j(\mathbf{y})$$
(2.4)

donde Z_{ij} son coeficientes constantes que deben ser determinados

En el caso de funciones que no sólo sean dependientes de las coordenadas espaciales x, y, sino también del tiempo, se puede definir un espacio de Hilbert:

 $H^{1}(O,T; H^{1} \times H^{1})$

cuyas funciones base sean las funciones chapeau:

$$W_{ijk} = \omega_{i}(x)\omega_{j}(y)\omega_{k}(t) \qquad (2.5)$$

donde el dominio de la función $\omega_{k}(t)$ queda comprendido en el intervalo [O,T] para cada función $\omega_{k}(t)$ en la coordenada temporal de la misma forma definida que las funciones $\omega_{i}(x)$ y $\omega_{i}(y)$.

De lo anterior, la función de prueba \widetilde{Z} queda definida por:

$$Z(\mathbf{x},\mathbf{y},\mathbf{t}) = \sum_{\substack{j \in \mathbb{Z} \\ ijk}}^{IJK} z_{ijk} \omega_i(\mathbf{x}) \omega_j(\mathbf{y}) \omega_k(\mathbf{t})$$
(2.6)

donde:

1	4	i	<	I
1	≼	j	\$	J
1	\$	k	<	к

En el espacio donde se define la función Z, se procede a dualizar la ecuación (1.21), multiplicando en forma escalar ambos miembros por la función base W_{lmn} , que coincide con la función de prueba propuesta para Z, la función incógnita. Los subíndices lym recorren los valores interiores de i y j, y n recorre todos los valores de k.

De esta forma y con las condiciones de frontera pro-

puestas en el capítulo III, que definen los valores de Z_{ijk} en los extremos, esto es, cuando i = l, i = I, j = l, j = J, k = l se obtiene un sistema algebraico de (I-2) (J-2) (K-l) ecuaciones con el mismo número de incógnitas, que en principio puede ser resuelto de manera única.

El sistema de ecuaciones obtenido es no lineal, y su solución es larga y complicada de obtener, pero puede linealiza<u>r</u> se. Para ello se considera que la función jacobiana que apar<u>e</u> ce en la ecuación (1.21) no depende del tiempo y su valor es igual para cualquier instante t = t_n , de esta manera, el sistema a resolver es lineal y por tanto más sencillo.

La propiedad de las funciones chapeaus de que en cada nodo, la única función base no nula es la correspondiente a dicho nodo, donde adquiere el valor de la unidad, hace que el coeficiente Z_{ijk} sea una muy buena aproximación para el verdadero valor de la función en dicho punto, o sea $Z(x_i, y_j, t_k)$. Esto permite tomar como campo inicial los puntos Z_{ijl} , los valores de la altura de la superficie de 500 mb en el momento del análisis para los puntos de la malla que corresponde al área de trabajo, y a la inversa, tomar los valores de los coeficien tes Z_{ijk} obtenidos en la resolución del sistema de ecuaciones, como los valores del campo correspondientes al tiempo T para el cual se está pronosticando.

2.6 Método numérico.

A continuación se desarrolla el método numérico que resuelve la ecuación (l.21), donde analizan las partes temporal y espacial por separado.

a) Dualizando la ecuación (1.21) de la forma descrita se tiene:

 $\langle (\nabla^2 - M) \frac{\partial z}{\partial t}, W_{lmn} \rangle = -\langle J(z, \frac{g}{f_0} \nabla^2 z + f), W_{lmn} \rangle$ (2.7) $\operatorname{con} 2 \leqslant 1 \leqslant (I-1); 2 \leqslant m \leqslant (J-1); 1 \leqslant n \leqslant (K-1)$

Sustituyendo la función Z por la función de prueba $\frac{1}{2}$ de<u>s</u> crita en términos de las funciones base W_{ijk} se obtiene:

$$\langle (\nabla^2 - M \frac{\partial}{\partial t} \frac{IJK}{\Sigma} Z_{ijk} W_{ijk}, W_{lmn} \rangle = -J_{lmn} (Z, \frac{g}{f_0} \nabla^2 Z + f) \qquad (2.8)$$

dondé en el segundo miembro se ha utilizado el símbolo J_{lmn} p<u>a</u>ra designar el producto escalar del valor de la función jacobiana en el instante t_n por la función base W_{lmn} y cuyo cálculo se desarrolla más adelante.

b) Integración en el tiempo.

Los únicos coeficientes que intervienen en la resolución

de la ecuación cuando $l = l_1$, $m = m_1$ y $n = n_1$ son, por la cons trucción de las funciones chapeaus, los coeficientes vecinos, esto es, aquellos en que $l_1 - 1 \le i \le l_1 + 1$; $m_1 - 1 \le j \le m_1 + 1$; $n_1 - 1 \le n \le n_1 + 1$ ya que los únicos productos esca lares no nulos son aquellos de la forma $\le u_1$, $w_1 \ge cuyos$ subíndices cumplen lo anterior.

En el primer paso de tiempo, esto es, cuando n = 1, las incógnitas de las (I - 2) (J - 2) ecuaciones son los coeficien tes Z_{ijk} en que 1 < i < I; 1 < j < J; K = 2, ya que los Z_{ij1} son las condiciones iniciales y los Z_{ij2} , con i = 1, i = I, j = 1, J = J, están dados por las condiciones de frontera. Des pués de esto, el número de coeficientes por encontrar es (I - 2) (J - 2), igual al número de ecuaciones y por tanto el sistema es (K - 1) veces más pequeño que el anterior y puede ser resuelto de forma única.

Una vez resuelto el conjunto anterior de ecuaciones, los coeficientes que deben ser determinados son los Z_{ij3} , que pueden ser obtenidos a partir de las (I - 2) (J - 2) ecuaciones resultantes, tal y como se procedió en el paso de tiempo anterior. De esta forma se puede proceder hasta K veces, obtenié<u>n</u> dose entonces los coeficientes Z_{ijK} , que corresponden al valor del campo pronosticado al tiempo T en cada nodo ij. Para casos como el de la ecuación (1.21), el procedimiento coincide con el método de leapfrog desarrollado en el esquema de diferencias finitas.

c) Integración en el espacio.

De forma análoga, en las ecuaciones en que $l = l_1$; $m = m_1$, las únicas incógnitas que intervienen son aquellas en que se cumple $l_1 - l \le i \le l_1 + l$; $m_1 - l \le j \le m_1 + l$, por tanto, si se conocen los Valores de $Z_{ij(n+1)}$ para $i = l_1 - l$; $i = l_1 + l$; $j = m_1 - l$; $j = m_1 + l$, se puede, de dicha ecuación despejar $Z_{l_1m_1(n+1)}$.

Para construír el procedimiento anterior, que es iterativo, se procede de la siguiente forma:

En una primera aproximación, para calcular los coeficentes $Z_{l_1m_1(n+1)}$, se suponen los coeficientes que lo rodean nulos y se despeja la ecuación correspondiente a cada valor de $Z_{ij(n+1)}$ (ver ec. 2.15). En sucesivas aproximaciones se van tomando los nuevos valores calculados y se van introduciendo en las ecuaciones, calculando nuevas aproximaciones para cada coeficiente, hasta que la diferencia con la aproximación anterior sea inferior a un valor predeterminado. Durante todo este procedimiento, los coeficientes en la frontera se mantienen
Constantes, interviniendo en el cálculo de las sucesivas aprox<u>i</u> maciones para los nodos inmediatos vecinos en el interior del dominio. El procedimiento anterior es realizado por la subrutina HSI1EF (ver apéndice C).

Desarrollando ahora más ampliamente la ecuación (1.21), desdoblando las funciones base en función de cada coordenada y aplicando los operadores a las mismas, así como efectuando el producto escalar se tiene:

$$\lim_{\substack{\Sigma \\ ijk}} z_{ijk} \left\{ \left(\int_{0}^{I\Delta x} \omega_{i}^{"}(x) \omega_{1}(x) dx \int_{0}^{J\Delta y} \omega_{j}(y) \omega_{m}(y) dy \right) \right\}$$

$$+ \int_{0}^{\mathbf{I}\Delta \mathbf{x}} \omega_{\mathbf{i}}(\mathbf{x}) \omega_{\mathbf{l}}(\mathbf{x}) d\mathbf{x} \cdot \int_{0}^{\mathbf{J}\Delta \mathbf{y}} \omega_{\mathbf{j}}^{*}(\mathbf{y}) \omega_{\mathbf{m}}(\mathbf{y}) d\mathbf{y} \int_{0}^{\mathbf{T}} \omega_{\mathbf{k}}^{*}(\mathbf{t}) \omega_{\mathbf{n}}(\mathbf{t}) d\mathbf{t}$$

$$- M \int_{0}^{\mathbf{I}\Delta \mathbf{x}} \omega_{\mathbf{i}}(\mathbf{x}) \omega_{\mathbf{l}}(\mathbf{x}) d\mathbf{x} \cdot \int_{0}^{\mathbf{J}\Delta \mathbf{y}} \omega_{\mathbf{j}}(\mathbf{y}) \omega_{\mathbf{m}}(\mathbf{y}) d\mathbf{y} \int_{0}^{\mathbf{T}} \omega_{\mathbf{k}}^{*}(\mathbf{t}) \omega_{\mathbf{n}}(\mathbf{t}) d\mathbf{t} = -J_{1mn}$$

$$(2.9)$$

Las derivadas segundas que aparecen en las integrales, no pueden ser obtenidas directamente, debido a que las funciones base utilizadas (funciones chapeau) son de primer grado y no son dos veces derivables. Este problema se evita si se utiliza integración por partes en las integrales en las cuales aparecen segundas derivadas, es decir:

$$\int u'' v dx = u'v - \int u' v dx \qquad (2.10)$$

apareciendo ya únicamente derivadas primeras, que son fácilme<u>n</u> te calculables.

Si se denota por C_{ij}^{lm} el término marcado como l en la expresión (2.9), por A_{ij}^{lm} el marcado con 2 y por B_k^n el correspondiente al tiempo, dicha ecuación toma la forma:

$$\sum_{\substack{j=1\\j \\ j \\ j \\ k}}^{1JK} z_{ijk} (C_{ij}^{lm} - MA_{ij}^{lm}) B_k^n = J_{lmn}$$
(2.11)

o bien, como $B_{n+1}^{n} = 0.5$, $B_{n}^{n} = 0$, y $B_{n-1}^{n} = -0.5$, la expresión (2.11) queda finalmente como: $IJ_{ij}Z_{ij(n+1)}(C_{ij}^{lm} - MA_{ij}^{lm}) = -2J_{lmn} + \frac{IJ_{ij}Z_{ij(n-1)}(C_{ij}^{lm} - MA_{ij}^{lm})$ Obteniéndose la matriz inversa de $(C_{ij}^{lm} - MA_{ij}^{lm})$ se tiene: $Z_{ij(n+1)} = -2 \frac{IJ_{ij}}{ij}J_{lmn}(C_{ij}^{lm} - MA_{ij}^{lm})^{-1} + Z_{ij(n-1)}$ (2.13)

que es una expresión similar a la utilizada por el método de leapfrog utilizado en la integración de modelos numéricos con diferencias finitas. El problema se reduce entonces a calcular el término

$$-\sum_{lm}^{lj} J_{lmn} (C_{ij}^{lm} - MA_{ij}^{lm})^{-1}$$

que será denotado por 2, por tanto, de la ec: (2.12) y la ec. (2.13) IJ lm . . . lm

$$\sum_{ij}^{\Sigma} z_{ijn} (C_{ij}^{lm} - MA_{ij}^{lm}) = -J_{lmn}$$

.....

que desarrollado da:

ï

$$\dot{z}_{1mn}(c_{1m}^{1m} - MA_{1m}^{1m}) = -J_{1mn} - \dot{z}_{1-1,m-1,n}(c_{1-1,m-1}^{1m}MA_{1-1,m1-1}^{1m})$$

$$\dot{z}_{1,m-1,n}(c_{1,m-1}^{lm} - MA_{1,m-1}^{lm}) - \dot{z}_{1+1,m-1,n}(c_{1+1,m-1}^{lm} - MA_{1+1,m-1}^{lm})$$

$$\dot{z}_{1-1,m,n}(c_{1-1,m}^{lm} - MA_{1-1,m}^{lm}) - \dot{z}_{1+1,m,n}(c_{1+1,m}^{lm} - MA_{1+1,m}^{\tilde{m}})$$

$$-\dot{z}_{1 \rightarrow 1, m+1, n} (c_{1-1, m+1}^{lm} - MA_{1-1, m+1}^{lm}) - \dot{z}_{1, m+1, n} (c_{1, m+1, N}^{lm} - MA_{1, m+1, n}^{lm})$$

$$-\dot{z}_{1+1,m+1,n}(c_{1+1,m+1}^{lm}-MA_{1+1,m+1}^{lm})$$
(2.14)

La primera aproximación a \dot{z}_{lmn} es, según el método iterativo descrito:

$$\dot{Z}_{1mn} = -J_{1mn} (C_{1m}^{1m} - MA_{1m}^{1m})^{-1}$$
 (2.15)

haciendo recorrer a l y a m todos los nodos interiores del área de predicción, se obtiene la función en primera aproximación.

Introduciendo estos valores en el segundo miembro de la ecuación (2.14) se obtiene un nuevo valor para cada \dot{z}_{lmn} . Sin embargo el método converge lentamente y es necesario introducir un factor de sobrerrelajación superior a la unidad, que multiplica cada aproximación para acelerar la convergencia.

Los números ($C_{ij}^{lm} - MA_{ij}^{lm}$) que intervienen en el proceso son calculados en cada paso de tiempo y varían dependiendo del valor que sea asignado al parámetro M. También se prescribe el valor del factor de sobrerrelajación (REL = 1.5).

d) Cálculo del segundo miembro.

l) Función laplaciana del geopotencial en el instante t_n .

Al ser esta función obtenida por derivación de una función elemento del espacio de Hilbert H¹ x H¹, el espacio al que debe pertenecer es H⁰ x H⁰ = L² x L² de funciones cuadrado integrable, pero no derivables en el sentido ordinario. Una base adecuada de dicho espacio es la formada por las funciones características bidimensionales, es decir:

1

$$\theta_{ij} = \theta_i(x)\theta_j(y)$$

donde:

$$\theta_{i}(x) \begin{cases} 1 & \frac{x_{i-1} + x_{i}}{2} < x < \frac{x_{i} + x_{i+1}}{2} \\ 0 & \text{para todo otro valor de } x \end{cases}$$

La ecuación a resolver es de la forma: $\mathbf{G}_{n} = \nabla^{2} \mathbf{z}_{n}^{1}$

que dualizada resulta:

$$\langle G_n, W_{lmn} \rangle = \langle \nabla^2 z_n, W_{lm} \rangle$$

y desarrollando las funciones G_n y Z_n :

$$\begin{split} & \stackrel{IJ}{\underset{ij}{\Sigma}} G_{ijn} \int_{0}^{I\Delta x} \theta_{i}(x) \omega_{1}(x) dx \int_{0}^{J\Delta y} \theta_{j}(y) \omega_{m}(y) dy = \\ & \Sigma Z_{ijn} \left(\int_{0}^{I\Delta x} \omega_{1}^{"}(x) \omega_{1}(x) dx \int_{0}^{J\Delta y} \omega_{j}(y) \omega_{m}(y) dy \right) \\ & + \int_{0}^{I\Delta x} \omega_{i}(x) \omega_{1}(x) dx \int_{0}^{J\Delta y} \omega_{j}(y) \omega_{m}(y) dy \end{split}$$

El segundo miembro es calculable y es obtenido por la sub rrutina CHALAPl (ver apéndice C).

Puesto que la integral de la función chapeau utilizada en este trabajo como base es la unidad, el coeficiente de la función dual del laplaciano que resulta al dualizar con la fu<u>n</u> ción W_{lm} , equivale al valor medio de dicha función en el dominio en el que W_{lm} es no nula, ese valor medio es una buena aproximación al coeficiente G_{lmn} .

Una vez calculados los coeficientes G_{lmn} y sumados los correspondientes valores de la función de Coriolis, el cálculo del dual de la función jacobiana es inmediato, interviniendo en él, integrales de una función característica, una función chapeau y la derivada de otra. La subrutina OMDCJI es la encargada de efectuarlo.

CAPITULO III

EXPERIMENTOS NUMERICOS Y RESULTADOS

3.1 Condiciones para la solución del modelo.-

La ecuación (1.21) que define el modelo es del tipo Helmholtz, la cual necesita condiciones iniciales y de frontera para ser resuelta.

La ecuación de vorticidad barotrópica tiene como hipótesis fundamental el hecho de que la vorticidad se debe conservar en la región de área limitada donde se hace el pronóstico del tiem po. Basándose en esto, se determinan las condiciones de front<u>e</u> ra que deben ser aplicadas para resolverla.

Las utilizadas en los presentes experimentos, consisten en mantener los valores de la altura geopotencial constantes a lo largo de toda la frontera de la región donde se pronostica, manteniendo el valor inicial de Z constante durante todos los pasos de tiempo, de tal forma que $\frac{\partial z}{\partial t}$ se anule y se evite el flujo de vorticidad a través de la frontera, asegurando su conservación, tal como el modelo lo requiere.

Con la condición de frontera constante se genera cierto "ruido" en las regiones cercanas a ésta, es decir, valores inciertos para Z conforme se avanza en el tiempo de pronóstico. Sin embargo, para pronósticos a 24 horas, este "ruido" no avanza demasiado. Además, no es necesario que el área donde se apl<u>i</u> ca el modelo coincida exactamente con la región donde se considera válida la predicción, e incluso, ésta no se ve afectada determinantemente en pronósticos a 48 horas.

Como condiciones iniciales, se tomará el análisis objetivo del campo observado.

Bajo las condiciones anteriores el modelo será resuelto con el método de elemento finito y para medir su eficiencia, se comparará con un esquema de diferencias finitas.

3.2 Determinación del parámetro de difusión M.

Al desarrollar el modelo barotrópico equivalente, aparece un término de la forma M $\frac{\partial z}{\partial t}$ el cual representa la divergencia de la velocidad del viento o la generación de vorticidad, y matemáticamente equivale a un proceso de difusión. En los exper<u>i</u> mentos realizados, el parámetro M se utiliza como un factor de ajuste. Para el caso de diferencias finitas, el valor utilizado es (ver ref. 10):

 $M = 8.27 \times 10^{-13}$

valor con el cual se obtuvieron los mejores resultados experimentales con la evaluación sinóptica y matemática, superando los obtenidos con el modelo barotrópico simple, en el cual M = 0.0.

En el caso de elemento finito, el valor de M que mejores resultados proporcionó fue M = 3×10^{-13} . Los resultados de los experimentos para diferentes valores de M, se muestran en la tabla 1 (ver tabla 1).

Los diferentes valores de M con los que el modelo es probado, muestran que éste tiene el efecto de reducir la velocidad con la que los sistemas evolucionan y se desplazan, dicho resu<u>l</u> tado coincide con lo que predice la teoría (ver ref. 2).

El valor de la velocidad de fase, para las ondas más rápidas presentes en los días analizados (~50 m/seg), sirve para determinar el valor del paso de tiempo al resolver el modelo. Utilizando el criterio de estabilidad CFL y para una distancia de separación entre puntos de malla $\Delta x = 231.42$ km, el paso de tiempo que debe utilizarse es $\Delta t = 2700$ seg (ver Fig. 3).

3.3 Método de evaluación.

Una vez realizados los experimentos, se requirió de un criterio que ayudara a determinar cuando un pronóstico era ace<u>r</u> tado y en qué medida. El procedimiento utilizado comunmente, es el de análizar sinópticamente si el movimiento de los sistemas

Método	Tiempo Pronost.	М	Tiempo Comp.	Tiempo Corrida	RECM	Cambios Acertad.
Elemento finito	24 hrs	0.0	1.0 s	25.3 s	8 0.16 m	44.2%
	н п	.5 x 10 ⁻¹³	1.0 s	37.7 s	51.1 m	49.7%
11 11	11 IV	1 x 10 ⁻¹³	1.1 s	36.8 s	34.8 m	55.9%
60 EF		2×10^{-13}	1.0 s	32.5 s	22.5 m	63.7%
		3 x 10 ⁻¹³	.9 s	31.8 s	20.0 m	67.0%
H H	0. u	4×10^{-13}	.9 s	30.0 s	20.3 m	67.4%
n u	48 hrs.	3×10^{-13}	1.0 s	54.0 s	36.7 m	80.3%
Diferencias finitas	24 hrs.	8.27 x 10 ⁻¹⁴	.9 s	52.4 s	55.8 m	67.1%
n u	0.0	82.7 x 10 ⁻¹⁴	1.0 s	36.0 s	31.6 m	69.8%
	11 11	827 x 10 ⁻¹⁴	.9 s	27.2 s	24.4 m	61.3%
11 A	0 0	0.0	1.0 s	25.3 в	62.13 m	44.2%
11 H	48 hrs.	82.7 X 10 ⁻¹⁴	0.9 s	61.2 s	90.0 m	23.2%
Persistencia	24 hrs.				31.49 m	

TABLA 1.- Resultados de los experimentos numéricos de pronóstico del tiempo para los días 10 y 11 de enero de 1984, utilizando diferentes valores del parámetro M.

corresponde al observado en el día para el cual se hizo la predicción. Si bien, este criterio es un buen método de evaluación, no proporciona una medida exacta de la calidad de la predicción, lo cual es necesario para comparar objetivamente los métodos numéricos utilizados en la solución del problema (elemento finito y diferencias finitas). El esquema de evaluación propuesto en este trabajo, junto con el análisis sinóptico de los resultados, permite establecer la comparación deseada. Debe recordarse, que para tener un concepto claro de la eficiencia de un modelo de pronóstico, o de la presición del método nu mérico que lo resuelve, se debe usar un número suficientemente grande de pronósticos realizados durante algún tiempo, para eva luar los resultados estadísticamente; sin embargo, para los fines de este trabajo, se considera suficiente la evaluación de 👘 un caso particular.

El procedimiento propuesto consta de dos partes. La primera de ella compara la matriz de los valores del geopotencial pronosticada y la correspondiente a los valores observados. Para dicha comparación se emplea la raíz del error cuadrático medio, dado por la expresión:

$$RECM = \sqrt{\frac{\sum_{i=1}^{N} (x_{o_i} - x_{p_i})}{N}}$$

con X_{O_i} el valor observado, X_{P_i} el valor pronosticado y N el número de puntos para los cuales se hace la comparación.

El segundo procedimiento de evaluación, sirve para analizar si el modelo predice correctamente los cambios de altura geopotencial, esto es, se compara la altura geopotencial inicial con la altura geopotencial observada al día siguiente, y se observa si ésta ha aumentado, disminuído, o permanecido constante. En seguida se analizan estos mismos cambios utilizando el campo inicial y el pronosticado por el modelo. La evaluación se obtiene al comparar cuantos cambios fueron pronosticados correct<u>a</u> mente del total considerado. La evaluación se realiza elimina<u>n</u> do los puntos frontera de la malla y los dos vecinos más cercanos, con el fin de eliminar el ruido que produce la frontera.

Los resultados de la evaluación con estos procedimientos aparecen en la tabla l, incluyendo el valor de la evaluación RECM para el caso de la persistencia como método de pronóstico, el cual consiste en considerar que las condiciones en la atmósfera no varían de un día a otro.

3.4 Análisis objetivo.

Al realizar la evaluación de los pronósticos, se encuentra que, conforme se evalúa en regiones más interiores los resultados mejoran. Esto se debe a que la comparación que se realiza en áreas donde no existen datos reportados dependen del análisis subjetivo que se haga, ya que los campos representados ahí se basan en la experiencia y habilidad del analista al interpolar y extrapolar.

Para evitar lo aleatorio que puedan resultar los análisis, se utiliza un esquema de análisis objetivo, el cual es un proceso de transformación, con un método computacional, de datos observados en puntos espaciados irregularmente (posiciones de estaciones de observación) a datos en los puntos de una malla con arreglo regular. El esquema interpola, extrapola, elimina datos erróneos y alisa el campo. Las correcciones se hacen a un campo preliminar dado, en base a los datos reportados en las estaciones. El campo preliminar puede ser un campo climatológico, el campo asociado al análisis subjetivo o el campo pronosticado para la hora del análisis, siendo este último el utiliz<u>a</u> do en sistemas de pronóstico operativos.

El método de análisis descrito a continuación, es el desarrollado por G. P. Cressmann (1959), en el cual, las correcciones sobre el campo preliminar de altura geopotencial se apl<u>i</u> can para cada punto de la malla, de acuerdo a los siguientes criterios (ver Ref. 12):

 Se supone que el error entre el valor real del campo y el valor estimado en el punto de la malla, es proporcional a

la diferencia entre el campo observado y el valor estimado en el punto de observación, esto es:

$$Z_{R} = Z_{E} + W(Z_{OE} - Z_{EE})$$
 (3.2)

donde W es un factor que depende de la distancia entre el punto de la malla y la estación de observación; Z_R es el valor real en el punto de la malla; Z_E es el valor estimado inicialmente en el punto de la malla; Z_{OE} es el valor repor tado en la estación y Z_{EE} el valor estimado en la estación.

 Si se conoce el gradiente de la altura geopotencial en el punto de observación (x, y), es posible obtener una aproximación a un punto de malla cercano a éste, por medio de un desarrollo de Taylor. Si el punto de malla tiene coordenadas (x + Δx, y + Δy) entonces:

$$z_a(x + \Delta x, y + \Delta y) \stackrel{\sim}{=} z_{OE} + (\frac{\partial z}{\partial x})_{OE} x + (\frac{\partial z}{\partial y})_{OE} \Delta y$$

con:

$$\left(\frac{\partial z}{\partial x}\right)_{OE}$$
 $\left(\frac{\partial z}{\partial y}\right)_{OE}$

las componentes del gradiente en el punto de observación. Estas componentes pueden ser obtenidas a partir de la relación de viento geostrófico $V_g = kV$, siendo V_g el viento geostrófico, V el viento real y k es una constante que se determina con una ecuación de balance. De lo anterior se tiene que:

$$\left(\frac{\partial z}{\partial x}\right)_{OE} = \frac{\mathrm{kfv}}{\mathrm{mg}}, \left(\frac{\partial z}{\partial y}\right)_{OE} = -\frac{\mathrm{kfu}}{\mathrm{mg}}$$
 (3.4)

donde f es el parámetro de Coriolis, u y v las componentes zonal y meridional del viento respectivamente, y m es el factor de mapa.

La relación (3.3) permite calcular una nueva corrección al valor del punto de la malla, suponiendo que el error entre el campo real y estimado, es proporcional a la diferencia entre los campos preliminar y aproximado por (3.2), es decir:

$$Z_{R} = Z_{E} + W(Z_{A} - Z_{E})$$
 (3.5)

Sustituyendo (3.4) y (3.3) en (3.5) se obtiene:

$$Z_{R} = Z_{E} + W\{Z_{OE} + \frac{fk}{mg}(v\Delta x - u\Delta y) - Z_{E}\}$$
 (3.6)

Por tanto, se efectúan dos correcciones; la primera en base a la altura observada Ch y la segunda, al viento observado Cy.

El valor de W propuesto por Cressmann es:

$$W = \frac{N^2 - d^2}{N^2 + d^2}$$
(3.7)

con d la distancia del punto de observación al punto de la malla donde se hace la corrección y N la longitud del radio del círculo, centrado en el punto de observación, que encierra los puntos de la malla por corregir.

Dependiendo de las observaciones disponibles, en cada punto se tiene diferentes correcciones. La corrección definitiva se toma como un promedio pesado de las mismas, esto es, si en un punto de malla se tienen n_h correcciones por altura y n_v correcciones por viento, la corrección final será:

$$C = \frac{A \sum C_{h} + \sum C_{v}}{An_{h} + n_{v}}$$
(3.8)

donde el factor de peso A depende de la bondad del campo preliminar y del gradiente de altura geopotencial.

El campo corregido en una primera iteración sirve como campo preliminar para una segunda iteración de corrección, do<u>n</u> de el radio del círculo se reduce. De esta forma se procede hasta que N adquiere un valor igual a la distancia de separación entre los puntos de la malla.

En cada iteración se eliminan aquellos valores reportados cuya diferencia con el estimado inicial sea mayor que un error máximo permitido, o sea que un dato ZOE es eliminado si:

 $|z_{OE} - z_{EE}| > E_{MAX}$

Un criterio semejante se utiliza para eliminar datos erróneos de viento.

3.5 Resultados.

Los días para los cuales se realizan experimentos de pro nóstico son 10 y 11 de enero de 1984, tomando como campo inicial, el análisis objetivo de las 12:00 "Z" del día 9 de enero de 1984. Los campos observados los días 10 y 11 de enero tam bién son analizados objetivamente, usando el método descrito en el punto anterior. Como campo preliminar del día 9 de enero se utiliza el análisis subjetivo para ese día, el cual fue realizado en el Departamento de Meteorología Sinóptica del Cen tro de Ciencias de la Atmósfera de la UNAM (ver apéndice B). Para los días 10 y 11 se utilizan, como campo preliminar, los pronósticos a 24 y 48 horas respectivamente. Este campo de pronóstico corresponde a un promedio de las predicciones efectuadas con el método de diferencias finitas y con el de elemen to finito. El máximo error permitido en el análisis objetivo es de 40 metros y el número de iteraciones realizadas por el procedimiento es N = 6.

(3.9)

Los principales sistemas observados el día 9 de enero (ver Fig. 4) son: una vaguada que cubre todo Norteamérica y una cuña que se localiza en el lado Oeste de Estados Unidos. El pronóstico con elemento finito define de manera correcta el movimiento de precesión que efectúa la vaguada en latitudes bajas el día 10 de enero (ver Fig. 5), aunque cabe decir que el sistema se encuentra un poco adelantado con respecto al observado (ver Fig. 7). La cuña que se introdujo por el Oeste de Estados Un<u>i</u> dos fue pronosticada de manera correcta.

En el caso del método de diferencias finitas (ver Fig.6), los movimientos no se definen con tanta claridad como en el caso anterior, y nuevamente se mueven con una velocidad un poco mayor a la que en realidad tienen, sobre todo en latitudes bajas. Con ambos métodos se obtienen soluciones que predicen de manera correcta el movimiento del eje de vaguada. Con el método de diferencias finitas, la extensión de la alta semipermanente del Pacífico ha disminuído.

En el pronóstico a 48 horas, la solución con el método de elemento finito (ver Fig. 8), define de mejor manera la evolución de los sistemas, que como lo hace el modelo sí se resuelve con diferencias finitas (ver Fig. 9), aunque nuevamente los sistemas se desplazan en latitudes bajas con una velocidad mayor que la observada (ver Fig. 10).

En pronósticos a 24 horas, se encuentra que conforme aumenta el valor del parámetro M, los resultados de la evaluación mejoran. Por esta razón se utiliza la persistencia como un m<u>é</u> todo de pronóstico. Los resultados aparecen en la tabla 1, y muestran que el modelo barotrópico equivalente proporciona mejores resultados que la persistencia.

La condición impuesta por el modelo, de que la vorticidad total se conserve en la región de área limitada, se cumple de mejor manera si el modelo se resuelve utilizando el método de elemento finito (ver gráfica l).

Gráfica l. Vorticidad total (ŋ) vs. Tiempo de pronóstico (T) para toda la región cuarta.

Conclusiones.

La definición espacial que proporciona el modelo barotrópico equivalente, al ser resuelto con el método de elemento f<u>i</u> nito,es mejor que la obtenida con un esquema de diferencias f<u>i</u> nitas.

Además se tiene la posibilidad de incrementar el grado de los polinomios utilizados en la función de prueba, y de esta forma aumentar la resolución espacial.

El uso de un esquema de análisis objetivo ayuda a eliminar los posibles errores que conlleva el análisis subjetivo, permitiendo así, realizar un evaluación más adecuada de las predicciones.

El modelo barotrópico equivalente funciona mejor para l<u>a</u> titudes medias que para latitudes bajas, debido a que en estas últimas no se consideran los efectos de los sistemas convectivos presentes en los trópicos, los cuales son una fuente de vorticidad. La inclusión de este efecto, podría proporcionar mejores resultados en los trópicos y en particular en México (ver Ref. 13).

El parámetro de ajuste M reduce la velocidad de evolución de los sistemas. El valor que éste tome, depende de la época del año en la que se realiza pronóstico del tiempo. La inclusión de este factor en el modelo proporciona mejores resultados que el modelo barotrópico simple.

Los pronósticos obtenidos con el modelo barotrópico equi valente, tienen un buen porcentaje de validez para predicciones a 24 horas, pero éste disminuye al aumentar el tiempo de pronóstico, debido a que los efectos de calentamiento del sistema no se incluyen, y el "ruido" que introducen las fronteras adquiere importancia.

La utilización del valor medio de la función W_{lm} , empleada en el cálculo de la función Z para obtener los coeficientes G_{lmn} , resulta ser una buena aproximación, que evita procedimientos iterativos y de esta forma ahorra tiempo de máquina (ver tabla I). Con lo anterior, la función laplaciana es suave y no da lugar a inestabilidad, incluso si no se introduce difusión en el modelo.

Mapas de los pronósticos y de las condiciones observadas.

Las cotas de los símbolos para los mapas que a continuación se presentan, aparecen en las tablas II y III. La tabla II corresponde a las figuras 4, 5, 6, 8 y 9. La tabla III corresponde a las figuras 7 y 10.

época del año en la que se realiza pronóstico del tiempo. La inclusión de este factor en el modelo proporciona mejores resultados que el modelo barotrópico simple.

Los pronósticos obtenidos con el modelo barotrópico equi valente, tienen un buen porcentaje de validez para predicciones a 24 horas, pero éste disminuye al aumentar el tiempo de pronóstico, debido a que los efectos de calentamiento del sistema no se incluyen, y el "ruido" que introducen las fronteras adquiere importancia.

La utilización del valor medio de la función W_{lm} , empleada en el cálculo de la función Z para obtener los coeficientes G_{lmn} , resulta ser una buena aproximación, que evita procedimientos iterativos y de esta forma ahorra tiempo de máquina (ver tabla I). Con lo anterior, la función laplaciana es suave y no da lugar a inestabilidad, incluso si no se introduce difusión en el modelo.

Mapas de los pronósticos y de las condiciones observadas.

Las cotas de los símbolos para los mapas que a continuación se presentan, aparecen en las tablas II y III. La tabla II corresponde a las figuras 4, 5, 6, 8 y 9. La tabla III corresponde a las figuras 7 y 10.

TABLA II

COTAS DE LOS SIMBOLOS

SIMBOLO	INFERIOR (mts)	SUPERIOR (mts)
A	5102	5123
В	5187	5208
D	5229	5251
Е	5272	5293
F	5314	5336
G	5357	5378
H .	5399	5420
I	5442	5463
J	5484	5505
к	5527	5548
L	5569	5590
M	5612	5633
N	5654	5675
0	5696	5718
Р	5639	5 760
Q	5781	5803
R	5824	5845
S	5866	5888
Т	5909	5930

	TABLA III					
COTAS DE LOS SIMBOLOS						
SIMBOLO	INFERIOR (mts)	SUPERIOR (mts)				
A	5098	5119				
В	5141	5162				
С	5184	5205				
D	5227	5248				
Е	5270	5291				
F	5313	5334				
G	5356	5377				
Н	5398	5420				
I	5441	5463				
J ·	5484	5506				
' К	5527	5549				
L	5570	5592.				
M	5613	5635				
N	5656	5677				
0	5699	5720				
Р	5742	5763				
Q	5785	5806				
R	5828	5849				
S	5871	5892				
T	5914	5935				

_Fig. 4. Análisis objetivo de altura geopotencial para 500 mb del día 9 de enero de 1984.

 Pronóstico de altura geopotencial, 500 mb, para el día 10 de enero de 1984, utilizando el método de diferencias finitas (pronóstico a ²⁴ horas).

Fig.

•;;:::: . सामग patra and a second second 111 _________ 7 0 ¢. 1 J J J

Fig. 8. Pronóstico de altura geopotencial, 500 mb, para el día 11 de enero de 1984, utilizando el método de elemento finito (pronóstico a 48 horas).

Fig. 10 Análisis objetivo de altura geopotencial para 500 mb del día 11 de enero de 1984.

APENDICE - A

EL METODO DE DIFERENCIAS FINITAS

En el desarrollo del modelo, se han utilizado coordenadas cartesianas x, y, pero como las dimensiones del área de trabajo son del orden del radio de la Tierra, se debe tomar en cue<u>n</u> ta la curvatura de ésta. La manera más simple, consiste en transformar las ecuaciones para que se apliquen directamente en una proyección conformal, por ejemplo de Lambert, donde se co<u>n</u> servan ángulos y formas.

Para realizar tal transformación de las ecuaciones, se introduce un parámetro de escala del mapa (m), el cual se def<u>i</u> ne como la razón entre una pequeña distancia en el mapa (ds) y su correspondiente distancia en la esfera (ds_e), (el subíndice corresponde a coordenadas de la esfera) (ver Ref. 8):

$$m = \frac{ds}{ds_e}$$

Para proyecciones estándar, m corresponde sólamente de la latitud, pero varía de una proyección y escala de mapa a otra.

Con esta fórmula, se pueden encontrar expresiones para

los operadores jacobiano y laplaciano con respecto a las coordenadas de mapa.

$$J_{e}(\alpha,\beta) = \frac{\partial \alpha}{\partial x_{e}} \frac{\partial \beta}{\partial y_{e}} - \frac{\partial \alpha}{\partial y_{e}} \frac{\partial \beta}{\partial x_{e}} = m^{2} \left(\frac{\partial \alpha}{\partial x} \frac{\partial \beta}{\partial y} - \frac{\partial \alpha}{\partial y} \frac{\partial \beta}{\partial x} \right) = m^{2} J(\alpha,\beta)$$

$$\nabla_{e}^{2} \alpha = \frac{\partial^{2} \alpha}{\partial x_{e}^{2}} + \frac{\partial^{2} \alpha}{\partial y_{e}^{2}} = m^{2} \left(\frac{\partial^{2} \alpha}{\partial x^{2}} + \frac{\partial^{2} \alpha}{\partial y^{2}} \right) = m^{2} \nabla^{2} \alpha$$

Con ayuda de estas expresiones se puede escribir la ecuación de vorticidad barotrópica equivalente (1.21), como:

$$(\nabla^2 - \frac{M}{m^2}) \frac{\partial z}{\partial t} + J(z, \frac{g}{f_0}m^2\nabla^2 z + f) = 0$$
 (A.1)

y de esta forma aplicarla a una proyección conformal.

La manera como frecuentemente se resuelve esta ecuación es con el método de diferencias finitas, que consiste en representar una variable continua, por sus valores en puntos discr<u>e</u> tos, separados una pequeña distancia, y en aproximar las derivadas de una variable, por diferencias entre valores de puntos adecuadamente localizados, separados una pequeña distancia, p<u>e</u> ro finita.

Para implementar el esquema de diferencias finitas se utiliza una malla como la que se muestra en la Fig. A.l, definiendo las variables independientes como:

x = i+d 0 ≤ i ≤ I y = j+d 0 ≤ j ≤ J

donde i, j son enteros, y d es la distancia entre los puntos advacentes de la malla

Los operadores diferenciales que se utilizan para deriva das espaciales, con el esquema de diferencias finitas son:

$$\nabla^{2} a \gtrsim \frac{a_{i+1j} + a_{ij+1} + a_{i-1j} + a_{ij-1} - 4a_{ij}}{d^{2}} = \frac{\Psi^{2} a}{d^{2}}$$

$$J(\alpha,\beta) = \frac{(\alpha_{i+1j} - \alpha_{ij-1})}{2d} \frac{(\beta_{ij+1} - \beta_{ij-1})}{2d}$$

-
$$\frac{(\alpha_{ij+1} - \alpha_{ij-1})}{2\alpha} \frac{(\beta_{i+1j} - \beta_{i-1j})}{2d} = \frac{1}{4d^2} J(\alpha,\beta).$$

Para el caso de derivadas en el tiempo, un esquema adecu<u>a</u> do depende del paso de tiempo en cuestión. Si se trata del pr<u>i</u> mer paso, se utiliza un esquema de diferencias adelantado, que en forma de diferencias finitas se escribe como:

$$\left(\frac{\partial z}{\partial t}\right)^{\circ} \Re \frac{z'-z^{\circ}}{t}$$
 (A.4)

donde el superíndice indica el paso de tiempo.

Si se trata de un segundo o mayor paso de tiempo se utiliza un esquema de diferencias centradas:

$$(\frac{\partial z}{\partial t}) \approx \frac{z^{m+1} - z^{m-1}}{2\Delta t}$$
 A.5

Implementando los resultados anteriores al modelo de pr<u>e</u> dicción (A.1), la ecuación que debe resolverse computacionalmente para cada punto de la malla es:

$$\left(\frac{\dot{\Psi}^2}{dz} - \frac{M}{m^2}\right) \frac{\partial z}{\partial t} = \frac{1}{4d^2} \mathbf{J} \left(\frac{m^2 q}{f d^2} \nabla \mathbf{z}^2 + f, z\right)$$
 A.6

donde los operadores (laplaciano y jacobiano) en diferencias finitas, han quedados definidos por las relaciones A.2 y A.3.

Las condiciones de frontera constante en todos los pasos de tiempo, garantizan la conservación de la vorticidad en la región de pronóstico de área limitada. Además, se considera $\left(\frac{\partial z}{\partial t}\right)^{0} = 0$, lo cual resulta ser una buena aproximación.

Los pasos que se siguen al resolver el modelo dado por (A.6) son:

- Analizar el campo de alturas del geopotencial de una super ficie isobárica, e interpolar los valores de ésta en cada punto de la malla rectangular igualmente espaciada, que cu bre una región mayor, que aquella donde se desea que el pronóstico sea válido.
- 2) Calcular el laplaciano del geopotencial mediante la relación. $\frac{m^2}{d^2} \nabla^2 gz = \frac{m^2}{d^2} \nabla^2 \phi$
Calcular el jacobiano de la ecuación utilizando el hecho de que f depende sólo de y, esto es:

$$\mathbf{J}\left(\frac{m}{d2} \nabla^2 g z + \mathbf{f}, z\right) = \mathbf{J}\left(\frac{m^2}{d^2 z} \nabla^2 g z, z\right) - \frac{\partial \mathbf{f}}{\partial y} \frac{\partial z}{\partial x}$$

- 5) Utilizar el método de relajación para resolver la ecuación del tipo Helmholtz resultante, para la tendencia de la altura geopotencial: $T = \frac{\partial z}{\partial t}$
- 6) Extrapolar un paso adelante en el tiempo, incrementando esta variable, y así obtener z (t₂ + Δ t)
- 7) Utilizar el pronóstico de $z (t_s + \Delta t)$ como campo inicial, y regresar al paso 2), repitiendo el proceso N veces, hasta que t, + N Δt alcance el tiempo para el cual se desea pronosticar.

En el paso 5) se utiliza el método de relajación para r<u>e</u> solver la ecuación del tipo Helmholtz. Este consiste en lo s<u>i</u> guiente:

Dadas condiciones a la frontera, en una malla de n x n, se obtendrá (n - 1)² ecuaciones para los (n - 1)² puntos interiores de la malla, o sea, las variables T_{ij} , donde $T = \frac{\partial z}{\partial t}$. Así el sistema es completo y puede resolverse,mediante la técnica de aproximaciones sucesivas que es la relajación.

Supóngase que se da una solución m -ésima de la tendencia en el punto (i, j) que es T_{ij}^m . Entonces A.6 puede ser escrita de la forma:

$$\nabla^2 \mathbf{T}_{\mathbf{ij}}^{\mathbf{m}} - \lambda_{\mathbf{ij}}^2 \mathbf{T}_{\mathbf{ij}}^{\mathbf{m}} - \mathbf{F}_{\mathbf{ij}}^{\mathbf{m}} = \mathbf{R}_{\mathbf{ij}}^{\mathbf{m}} \qquad \mathbf{A.7}$$

donde R_{ij}^{m} es llamado el residual, que es una medida del error cometido con la suposisicón. Si la suposición hubiera sido c<u>o</u> rrecta, el residual hubiera sido cero, lo que casi nunca sucede. El objeto del método de relajación es el de proveer una manera sistemática de reducir los valores de los residuales. Desarrollando A.7: $T_{i-1j}^{m} + T_{i+1j}^{m} + T_{ij-1}^{m} + T_{ij+1}^{m} - 4T_{ij}^{m} - \lambda_{ij}^{2}T_{ij}^{m} - F_{ij} = R_{ij}^{m}$

A.8

Ahora se determina el valor de T_{1j}^{m} para el cual se reduce el residual a cero. Sin modificar los valores de los puntos adyacentes a (i, j) se tiene que: $T_{i-1j}^{m} + T_{i+1j}^{m} + T_{ij-1}^{m} + T_{ij+1}^{m} - (4 + \lambda_{ij}^{2})T_{ij}^{m+1} - F_{ij} = 0$

Despejando se tiene que:

$$\mathbf{T}_{ij}^{m+1} = \frac{\mathbf{T}_{i-1}^{m} + \mathbf{T}_{i+1j}^{m} + \mathbf{T}_{ij-1}^{m} + \mathbf{T}_{ij+1}^{m} - \mathbf{F}_{ij}}{4 + \lambda_{ij}^{2}}$$

Si se resta A.9 de A.8 se obtiene:

$$\mathbf{T}_{ij}^{m+1} = \mathbf{T}_{ij}^{m} + \frac{\mathbf{R}_{ij}}{4 + \lambda_{ij}^{2}}$$

lo que muestra que la suposición (m + l) de T es incrementada con respecto al valor m por una cantidad $\frac{R_{ij}}{4 + \lambda_{ij}^2}$, que reducirá el residuo a cero en un punto particular (i,j).

APENDICE B

ESTUDIO DE LA INFORMACION DEL BANCO DE DATOS PARA TRABAJAR EL MODELO DE PREDICCION NUMERICA DEL TIEMPO

a) Creación de un banco de datos.

Para la obtención de datos meteorológicos, con los cuales trabajar un modelo de predicción del tiempo, analizar su eficiencia y verificar la importancia que tiene el método numérico elegido al resolver el modelo, es necesario realizar un análisis de las cartas del tiempo, que corresponden a los días para los cuales se hace pronóstico. Este análisis tiene por objeto confirmar la consistencia dinámica que tiene al transcurrir el tiempo los sistemas representados en las cartas.

Las cartas que se presentan a continuación corresponden a los análisis subjetivos para diferentes niveles. En el presente estudio, el periodo elegido corresponde al mes de enero de 1984, (días 9, 10 y 11), pues es durante el invierno cuando se cumplen de mejor forma las condiciones impuestas por el modelo barotrópico equivalente.

Las cartas que se describen a continuación corresponden a los campos del geopotencial en la región cuarta, para los n<u>i</u> veles de 500 mb, 700 mb, superficie y para verificar los análisis se presenta la fotografía del satélite para cada día. Además, se crea un banco de datos que asigna a cada punto de la malla su correpondiente latitud.

b) Descripción de las cartas del tiempo.

9 de enero de 1984 12:00 "Z"

500 mb

El principal sistema observado es una vaguada, que cubre la mayor parte de Norteamérica. El eje asociado con la vaguada pasa por la parte central de Canadá y Estados Unidos, y por la vertiente del Golfo de México en latitudes bajas.

En latitudes medias, el eje presenta una inclinación en la dirección SW - NE.

Adicionalmente, se puede identificar otra vaguada la cual no es tan pronunciada como la primera, y cuyo eje pasa por el océano Atlántico con un inclinación SE - NW. Además se comie<u>n</u> za a introducir una vaguada por el lado Oeste de Norteamérica.

Al Oeste de la costa mexicana del Pacífico, se localiza un sistema de alta, que corresponde con la deformación de la alta semipermanente del Pacífico, también se observa un sistema de alta sobre Centroamérica y el Caribe que está relacionado con la deformación de la alta semipermanente del Atlántico. Entre estos dos sistemas de alta, se encuentra un canal de bajas, que se une con la parte baja de la vaguada.

700 mb

La carta de 700 mb presenta, en general, la misma estructura que la carta de 500 mb.. El eje de la vaguada se encuentra un poco corrido hacia el Este con respecto a la carta de 500 mb.

La presencia de las altas, en este nivel, es más evidente,

Superficie

En este nivel se localizan dos frentes, asociados con los ejes de la vaguada principal y la vaguada del Oeste de Norteamérica. El primero de ellos está en la frontera entre Estados Unidos y Canadá y el segundo al Este de la costa de E.U.A. Correspondiendo a la baja embebida en la vaguada existe un acoplamiento de un frente frío y uno caliente, los cuales generan circulación ciclónica.

Fotografía de satélite.

La nubosidad observada en la parte Centro -Este de Nort<u>e</u> america, está asociada con la baja embebida en la vaguada. La nubosidad, que entra por las costas de Michoacán, está asoci<u>a</u> da con el canal de bajas que se une con la vaguada principal. También se observa nubosidad en el Pacífico Norte y en el Atlá<u>n</u> tico, correspondiente a las vaguadas localizadas en esas zonas.

<u>10 de enero de 1984</u> 500 mb

El eje de la vaguada ha avanzado hacia el Este en latitudes medias, con una velocidad promedio de 4 m/seg aproximadamente, pero en latitudes bajas se ha rezagado hacia el Oeste con una velocidad aproximada de -10 m/seg, debido al efecto de bloqueamiento que ejerce la deformación de la alta semipermanente del Atlántico, cuya presencia resulta más clara. La vaguada que se encontraba al Este de E.U.A. casi ha desaparecido. La presencia de la vaguada al Oeste de Norteamérica es ahora más notorias por la "forma de cuña" que ha alcanzado la alta semipermanente del Pacífico.

El canal de altas que existía en el Caribe y Centroamérica ha ganado terreno longitudinalmente y está separado de la alta semipermanente del Pacífico, por la presencia del canal de bajas que se une con el eje de la vaguada principal a la altura del estado de Sinaloa, lo que muestra que éste se ha inclinado en latitudes bajas.

700 mb

El esquema de la carta a este nivel es similar al de 500 mb, pero se observa que comienza a segregarse una pequeña baja de la vaguada principal.

Superficie

Se detecta un frente frío, asociado con la vaguada que entra por Oeste de Norteamérica. El frente frío de la frontera Norte de E.U.A. ha quedado ocluído por un frente de aire caliente. Se encuentra también un acoplamiento de frentes, en la región de la baja embebida, con circulación ciclónica.

Fotografía de Satélite.

La nubosidad presente confirma la existencia de los sistemas descritos observados en los diferentes niveles.

<u>11 de enero de 1984.</u>

500 mb

La vaguada que entraba por el Oeste de Norteamérica ha casi alcanza-

do al sistema de vaguada principal, cuyo eje ha adquirido mayor inclinación en latitudes bajas, por el avance del sistema en latitudes medias con una velocidad aproximada de 5 m/seg y el bloqueamiento por la alta semipermanente del Atlántico que provoca un retroceso del eje en latitudes bajas, con una velocidad aproximada de 4 m/seg.

La baja que estaba embebida en la vaguada ha desaparecido y se ha incorporado al sistema.

El eje de la vaguada que entra tiene una inclinación similar al eje de la vaguada principal en latitudes medias.

700 mb.

En este nivel, la vaguada entrante se ha incorporado a la vaguada principal, y la pequeña baja que parecía segregarse, permanece aún unida al sistema principal.

Superficie.

Se observan acoplamientos de frentes en las regiones correspondientes a las vaguadas observadas en niveles superiores. El primero en la parte central de E.U.A. y el segundo, en la costa atlántica de E.U.A.

Fotografía de Satélite.

En las regiones de acoplamiento de frentes se observa gran nubosidad. También se observa nubosidad asociada con la baja que parece segregarse.

.

ť

Fig. Bl. Análisis subjetivos de altura geopotencial en 500 mb,700 mb y superfície; fotografía de satélite correspondientes al día 9 de enero de 1984 a las 12:00 "Z".

· · · •

Fig. B3 Como en la figura Bl, pero para el día 11 de enero de 1984.

. -

Fig. B2. Como en la figura B1, pero para el día 10 de enero de 1984.

3

÷

APENDICE C

LISTADOS DE LOS PROGRAMAS UTILIZADOS EN LA TESIS

A continuación se presentan los listados de los programas utilizados para resolver el modelo barotrópico equivalente. E1 primero corresponde a la solución con el método de elemento fi nito y está basado en la referencia 11. El segundo programa corresponde al esquema de diferencias finitas y está tomado del programa que se utiliza en el Centro de Ciencias de la Atmósfe ra para pronósticos a corto plazo. En ambos casos los programas han sido corregidos para hacerlos más eficientes y para adaptarlos a las subrutinas de graficación y evaluación. El programa de diferencias finitas se corrigió, para que trabajara el modelo barotrópico equivalente, en lugar del barotrópico sim También se presenta el programa de análisis objetivo, ba ple. sado en la referencia 12.

Todos los programas están escritos en FORTRAN IV y se c<u>o</u> rrieron en el Sistema Burroughs 7800 del Programa Universitario de Cómputo de la UNAM.

DIAGRAMA DE FLUJO DEL PROGRAMA DE ELEMENTO FINITO

PROGRAMA DE ELEMENTO FINITO

```
$FR8LIST
$LINEINFO
FILE
      5=AGENE9, UNIT=DISK. RECORD=14. BLOCKING=30. AREA=15. SAVE=30
FILE
      3=ADODIALL.UNIT=DISK.RECORD=14.BLOCKING=30.AREA=15.SAVE=30
FILE
      4=LATITUD.UNIT=DISK.RECORD=14.BLOCKING=30.AREA=15.SAVE=30
FILE
      S=ESC.UNIT=REMOTE.RECORD=22
      DIMENSION CAMPO(27.38).P(1026).PM1(1026).PM2(900).PLAP(1026).
   * F1(900). CAMPD3(38.27).C(2).Al(2).C1(2).DBS(1026).GED10(27.38)
     DIMENSION GE0310(38,27), VICTOR(27,38), VIC(38,27), CAMPO4(38,27)
      DINENSION CORVIONAL CAMPATING ON COMPANYING YEAR (CONS
С
   CAMPO CONTIENE LOS VALORES A FREDECIR
£
   PHI GEOPOTENCIAL ACTUAL EN CADA PASO DE TIEMPO EN EL AREA DE
С
   PREDICCION.
   PH2 GEOPOTENCIAL EN EL PASO DE TIEMPO PRECEDENTE EN EL AREA
С
£
    PLAP FUNCION LAPLACIANA
ſ,
    P Y FI VARIABLES DE TRABAJO
C
    COR FUNCION DEL PARAMETRO DE CORIOLIS
T15T=2700
      NTIST=31
      EHE=0.3
0
    TIST PASD DE TIEMPO EN SEGUNDOS
C
    NTIST NUMERO DE PASOS DE TIEMPO A EFECTUAR MENDS 1
^
       NI)X =35
      NHY = 25
NUX+NUY NUMERO DE NODOS EN EL INTERIOR DEL AREA DE PREDICCION
 NUX2=BUX+2
       NUY 2=NUY+2
       NUSO=NUX +NUY
 LECTURA DE LOS DATOS DE LOS CAMPOS INICIAL Y OPSERVADO 24 HRS DESPUES
 ٢.
 C
   CALCULD DEL PARAMETRO DE CORIGLIS EN LOS NODOS DEL AREA
 C GRAFICA DEL GEOPOTENCIAL
 OMEGA=7.295E-5
       DELX=231.4E+3
        READ(5,44) (CAMP02(J),J=1,1026)
         READ(3.44) (OBS(J), J=1, 1026)
  44
        FORMAT(18(F3.0.1X))
        READ(4,211) (XLAT(J), J=1, 1028)
        FORMAT(13(F5.2.1X))
 211
        DO 223 I=1,1026
        XLAT(I)=(XLAT(I)*3.1416)/180.0
        EDR(1)=2.0+DHEGA+SIN(XLAT(I))
  223
        CONTINUE
        DO 8 I=1.NUY2
        DD 8 J=1.NUX2
        CAMPD(I,J)=(CAMPD2(NUX2*(I-1)+J) + 5000.0)
         VICTOR(1,J)=CAMPO(1,J)
        GED10(1.J)=(085(NUX2*(1-1)+J)+5000.0)
  8
        CONTINUE
```

```
CALL SUAVIZ(CAMP0,27,38,2)
       CALL ORDENA(27,38,CAMPO1.CAMPO)
       CALL ORDENA(27,38,VIC.VICTOR)
       CALL AUTASI(27,38,DIF2,YMIN,CAMPO,XMAX)
       WRITE(6.499)
499
       FORMAT(//. 10%. "MAPA DEL CAMPO INICIAL".//)
С
       CALL MAPA(CAMPO1,YHIN,DIF2,145,127)
CNAPA CEBRA DE LA ZONA ESPECIFICADA DEL AREA A PREDECIR
 ASIGNACION DEL ANALISIS EN LA ZONA DE PREDICCION
D0 21 J-1,RGH2
       DO 20 I=1.NUX2
       PM1(I+(J-1) +NUX2) =CAMF01(I.J)
       P(I+(J-1) ≠NUX2)=0.0
20
       CONTINUE
CALCULO DE LA VORTICIDAD ABSOLUTA
CALL CHLAP1(PH1.PLAP.NUY2.NUX2.DELX)
       DO 11 I=1.1026
       PLAP(I)=PLAP(I)*9.8/ONEGA+COR(I)
11
     CONTINUE
∁╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪┊╡╧╓╴┙╶┊┊╡┼┊╎┼┊╕╌╞┊╌┊┆╌┼┆┼╴┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼
CALCULO DEL DUAL DEL SEGUNDO NIEMBRO, PRIMER PASO DE TIEMPO
CALL DMDCJI(PH1, PLAP, F1, NUY, NUX)
     DO 12 J=1.NUY
     DO 12 I=1.NUX
     P(I+1+J+NUX2) = FI(I+(J-1)+NUX)+TIST
12
     CONTINUE
     A1(1)=1.0/6
     A1(2)=2.0/3
     C1(1)=1.0
     C1(2) = -2.0
     A=1.0/(A1(2)*C1(2)+C1(2)*A1(2)-ENE*A1(2)*A1(2))
     DO 1
         J=1.2
   C(J) = - (A1(1)+C1(J)+C1(1)+A1(J)-EHE+A1(1)+A1(J))+A
 1
     CONTINUE
     REL=1.5
     CV1=C(1)
     CV2=C(2)
C RESOLUCION DE LA ECUACION
CALL HSI1EF(P,FI,NUY,NUX,0.1,A,CV1,CV2)
     DO 22 J=1,NUY
     DO 22 K=1,NUX
     PM2(K+(J-1)*NUX)=PM1(K+1+J*NUX2)
     PM1(K+1+J+NUX2)=PM1(K+1+J+NUX2)-P(K+1+J+NUX2)
 22
     CONTINUE
PASOS DE TIEMPO POSTERIOPES AL PRIMERO
DO 21 NTIEM=1.NTIST
С
 CALCULO DE LA VORTICIDAD ABSOLUTA
```

```
CALL CHLAP1(PH1,PLAP,NUY2,NUX2,DELX)
     DO 13 I=1.1026
     PLAP(I)=PLAP(I)+9.8/OHEGA+COR(I)
       ETA=ETA+PLAP(T)
13
     CONTINUE
C
     WRITE(6./) ETA
       FTA=0.0
C CALCULO DEL DUAL DEL SEGUNDO MIENBRO.PASOS DE TIENPO
C
     POSTERIORES AL PRIMERO
CALL ONDCJI(FM1.PLAP.FI.NUY.NUX)
     DO 14 J=1.NUY
     DO 14I=1.NUX
     P(I+1+J+NUX2) = FI(I+(J-1)+NUX)+2+TIST
14
     CONTINUE
RESOLUCION DE LA ECUACION
CALL HSI1EF(P,FI,NUY,NUX,0.1,A,CV1,CV2)
     DO 27 J=1,NUY
     DO 27 K=1.NUX
     P(K+1+J*NUX2)=PN2(K+(J-1)*NUX)-P(K+1+J*NUX2)
    PH2(K+(J-1)+NUX)=PH1(K+1+J+NUX2)
     PM1(K+1+J+NUX2) = P(K+1+J+NUX2)
27
     CONTINUE
21
     CONTINUE
WRITE(6.334)
                (NTIST+1)*TIST
      FORHAT(//,30X," TIEHPD = ".F9.0)
 334
        WRITE(6,429) EME, TIST
429
      FORMAT(//,10X,"LA H UTILIZADA FUE ",F8.4,//,"Y EL PASO DE TIEMF
   *0 ES",F7.1," SEG",//)
     DO 28 I=1.NUY2
     DO 28 J=1.NUX2
     CAMPO(I.J)=PM1(I+(J-1)+NUY2)
 28
      CONTINUE
NAPA CEBRA DE LA PREDICCION EN LA ZONA ESPECIFICADA
CALL AUTASI(27,38,DIF3,XMIN,CAMPO,ZMAX)
       WRITE(6.599)
     FORMAT(//,10X,"HAPA DEL CAMPO PRONOSTICADO CON EL HETODO
599
   *DE ELENENTO FINITO".//)
     CALL HAPA(CAMPD, XHIN, DIF3, 145, 127)
С
     CALL SUAVIZ(GE010.27.30.2)
      CALL ORDENA(27,38,GEOS10,GEO10)
      CALL AUTASI(27,38,DIF4,YIMIN,GED10,XIMAX)
      WRITE(6.699)
      CALL NAFA(GEDS10, YIHIN, DIF4, 145, 127)
C
     FORMAT(//,10X,"MAPA DEL CAMPO OBSERVADO",//)
699
      CALL CDM(38,27,GEDS10,CAMPO,VIC)
     STOP
333
```

END

```
SUBROUTINE HSI1EF(P,Q,NX,NY,E,A,CB1,CB2)
CBASES Y DUALIZACION POR CHAPEAUS PO VECTOR TERMINO INDEPENDIENTE
C RODEADO POR LOS VALORES FRONTERA, DINENSION (NY+1)*(NX+1)
£
 SE DESTRUYE Y ES SUBSTITUIDO POR LA SOLUCION
C SE CORRIGE ITERATIVAMENTE CADA PUNTO SEGUN SUS INMEDIATOS VECINOS
 HASTA QUE UNA APROXIMACION DIFIERA DE LA ANTERIOR EN MENOS DE E
C
C
  QO VARIABLE DE TRABAJO DE DIMENSION NX*NY
DIMENSION P(1), 0(1), C(2)
        C(1)=CB1
        C(2) = CB2
         REL=1.5
       NYP1=NY+1
       NXP1=NX+1
       NYP2=NY+2
       DO 1 I=1.NY
       DO 1 J=1,NX
       Q(I+(J-1)*NY) = A*P(I+1+J*NYP2)
       P(I+1+J+NYP2)=Q(I+(J-1)+NY)
 1
       CONTINUE
       DO 18 ITER=1.20
       ISU=0
       DO 4 I=2,NYP1
       DO 4 J=2, NXP1
       IN=I+(J-1)+NYP2
       S=Q(I-1+(J-2)+NY)+C(1)+(P(IN-NYP2+1)+P(IN-NYP2-1)+P(IN+NYP2-1)
    *
        +P(IN+NYP2+1))+C(2)+(P(IN-1)+P(IN+1)+P(IN-NYP2)+P(IN+NYP2))
       S=(S-P(IN))*REL
       IF(ABS(S/P(IN)).GT.E) ISW=1
       P(IN)=P(IN)+S
       CONTINUE
 4
       IF(ISW .EQ. 0) RETURN
      WRITE(6,100) P(2+NYP2)
C
 18
       CONTINUE
 100
       FORMAT(1X,F27.4)
C
       WRITE(6,200)
       FORMAT(1X."SE HA LLEGADO A LAS 20 ITERACIONES SIN ALCANZAR EL
 200
             ERROR PEDIDO")
       RETURN
       END
       SUBROUTINE OMDCJI(P,Q,R,NX,NY)
C*******
                               C
 CALCULA. A PARTIR DE LOS COEFICIENTES EN ELEMENTOS FINITOS CHAPEAU,
C Y CARACTERISTICAS RESPECTIVAMENTE, DE DOS FUNCIONES P Y Q CON BASE
C DE DIMENSION (NX+2)*(NY+2)
C LA FUNCION DUAL R DE LA JACOBIANA, EN EL INTERIOR DEL ESPACIO, DIN
C NX+NY
C
     LA DUALIZACION SE EFECTUA CON FUNCIONES CHAPEAUS
                   C******
       DIMENSION P(1),Q(1),R(1)
       NM1=NY+1
       NH2=NX+1
       DO 1 M=2,NM1
        DO 1 N=2.8M2
       HCN=H+(N-1)+(NY+2)
       MCNH1=H+(N-2)*(NY+2)
```

```
HCNP1=M+N*(NY+2)
          R(H-1+(N-2)+NY)=((P(HCN+1)-P(HCNH1))+Q(HCNH1-1)+(2+P(HCNH1-1)
       *
                          -2*P(HCNN1+1)+P(HCN-1)-P(HCN+1))*Q(HCNH1) -
       ŧ.
                      +(P(HENH1)-P(HEN+1))+Q(HENH1+1)+(2*P(MENP1-1))
       ÷
                          +P(NCNP1)-2*P(HCNH1-1)-P(HCNH1))*Q(HCN-1)+
       *
                          (P(MCNH1)+2*P(MCNH1+1)-P(HCNP1)-2*P(MCNP1+1))*
       *
                         \Omega(MCN+1) + (P(MCNP1) - P(NCN-1)) + \Omega(MCNP1-1) + (P(MCN+1))
       *
                          +2*P(MCNP1+1)-P(MCN-1)-2*P(MCNP1-1))*D(MCNP1)+
۰.
       *
                          (P(HCN+1)-P(HCNP1))+D(NCNP1+1))/16
   t
          CONTINUE
          RETURN
          END
          SUBROUTINE CHLAPI(P.Q.NX.NY.Z)
  C CALCULA. A PARTIR DE LOS COEFICIENTES EN ELEMENTOS FINITAS CHAPEAUS
  C ALMACENADOS LINEALMENTE POR COLUKNAS, DE UNA FUNCION P. LOS
  C COEFICIENTES DE LA DUAL DE LA LAPLACIANA D, ALMACENADAS TAMBIEN
  C LINEALMENTE FOR COLUMNAS , ESPACIO HI LAS BASES CORRESPONDEN A
  C NX∗NY NODOS A DISTANCIA Z, DUALIZACION POR CHAPEAUS
  DIMENSION P(1), Q(1), A11(9), AJ1(9), AIJ(9)
          DATA A11/9+0./,AJ1/0.3333,-0.6667,0.3333,0.1667,-0.3333,
              0.1667.3+0./.AIJ/4+.3333.-2.6667.4+.3333/
       *
          NH1=NY-1
          NH3=NX-1
          D=Z++2
        NP2=NY+2
          NS0=NX+NY
          DO 2 I=1,NSO
          Q(1) = 0.0
  2
          CONTINUE
          DO 1 K=1.3
          DO 1 L=1.3
          Q(1)=Q(1)+A11(K+(L-1)*3)*P(K+(L-1)*NY)/D
          Q(NY) = Q(NY) + A11(K+(L-1) + 3) + P(NY+1-K+(L-1) + NY)/D
          Q(NSQ-NY+1)=Q(NSQ-NY+1)+A11(K+(L-1)+3)+P(K+(NX-L)+NY)/D
          0(NS0)=0(NS0)+A11(K+(L-1)+3)+P(NY+1-K+(NX-L)+NY)/D
          DO 3 J=2.NM1
          D(J) = D(J) + AJI(K + (L - 1) + 3) + P(K + J - 2 + (L - 1) + NY) / D
          Q(NSD-NY+J)=Q(NSQ-NY+J)+AJI(K+(L-1)+3)+P(K+J-2+(NX-L)+NY)/D
  3
          CONTINUE
          DO 1 J=2.NM3
          JN=J≠NY
          Q(JN-NY+1)=Q(JN-NY+1)+AJ1(K+(L-1)+3)+P(L+(J+K-3)+NY)/D
          Q(JN) = Q(JN) + AJ1(K+(L-1) + 3) + P(NY-L+1+(K+J-3) + NY)/D
          DO 1 1=2.0M1
          \Omega(1+(J-1)*NY)=\Omega(I+(J-1)*NY)+AIJ(K+(L+1)*3)*P(K+I-2+(L+J-3))
                          +NY)/1
   ۱
          CONTINUE
          RETURN
          END
                   SUBROUTINE MAPA (Z.BASE.CINT.NL.NC)
             DIMENSION Z(38,50),SINB (20),V(130)
         DATA SINB/"A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "H",
                   "N","0","F","0","E","5","T"/
       .
         DATA CRUZ, ASTER/ "+"."+"/
         DATA BLK, GUION/ " ","_"/
```

```
HCMP1=H+N+(NY+2)
       R(M-1+(N-2)*NY)=((P(MCN-1)-P(MCNM1))+Q(MCNM1-1)+(2*P(MCNM1-1)
                       -2+P(MCNN1+1)+P(BCN-1)-P(MCN+1))*P(MCNM1)
    *
                   + (P(HCNH1)-P(HCN+1))+Q(HCNH1+1)+(2+P(HCNP1+1)
    *
    *
                       +P(MCNP1)-2*P(MCNH1-1)-P(MCNH1))*D(MCN-1)+
    *
                       (P(MCNM1)+2*P(MCNH1+1)-P(HCNP1)-2*P(NCNP1+1))*
    *
                      Q(MCN+1)+(P(MCNP1)-P(MCN-1))+Q(MCNP1-1)+(P(MCN+1
    *
                       +2*P(MCNP1+1)-P(MCN-1)-2*P(MCNP1-1))*D(MCNP1)+
                       (P(MCN+1)-P(KCNP1))+D(NCNP1+1))/16
    z
       CONTINUE
 1
       RETURN
       END
       OURPOUTINE CHERCICE, C. NZ, RY, Z)
C CALCULA, A PARTIR DE LOS COEFICIENTES EN ELEMENTOS FINITAS CHAPEAUS
C ALMACENADOS LINEALMENTE POR COLUMNAS, DE UNA FUNCION P. LOS
C COEFICIENTES DE LA DUAL DE LA LAPLACIANA O. ALMACENADAS TAMBIEN
C LINEALMENTE FOR COLUMNAS , ESPACIO H1 LAS BASES CORRESPONDEN A
C NX*NY NOBOS A DISTANCIA Z. DUALIZACION POR CHAPEAUS
DIMENSION P(1), D(1), A11(9), AJ1(9), AIJ(9)
       DATA A11/9+0./.AJ1/0.3333.-0.6667.0.3333.0.1667.-0.3333.
            0.1667.3+0./,AIJ/4+.3333,-2.6667,4+.3333/
    *
       NM1=NY-1
       NH3=NX-1
       D=Z**2
      NP2=NY*2
       NSQ=NX*NY
       DO 2 I=1.NSQ
       0(I) = 0.0
 2
       CONTINUE
       DO 1 K=1.3
       DO 1 L=1.3
       Q(1)=Q(1)+A11(K+(L-1)*3)*P(K+(L-1)*NY)/D
       Q(NY) = Q(NY) + A(1)(K+(L-1)*3)*P(NY+1-K+(L-1)*NY)/D
       D(NSQ-NY+1) = D(NSQ-NY+1) + A11(K+(L-1)*3)*P(K+(NX-L)*NY)/D
       Q(NSQ)=Q(NSQ)+A11(K+(L-1)+3)+P(NY+1-K+(NX-L)+NY)/D
       10 3 J=2.NM1
       P(J) = P(J) + AJJ(K+(L-1) + 3) + P(K+J-2+(L-1) + NY) / D
       Q(NSQ-NY+J)=Q(NSQ-NY+J)+AJ1(K+(L-1)*3)*P(K+J-2+(NX-L)*NY)/D
 3
       CONTINUE
       DD 1 J=2.NH3
       JN=J*NY
       Q(JR-NY+1)=Q(JN-NY+1)+AJ1(K+(L-1)+3)*P(L+(J+K-3)*NY)/D
       Q(JN) = Q(JN) + AJ1(K+(L-1)*3)*P(NY-L+1+(K+J-3)*NY)/D
       DO 1 I=2.NH1
       D(I+(J-1)*NY)=D(I+(J-1)*NY)+AIJ(K+(L-1)*3)*F(K+I-2+(L+J-3)
    *
                       *NY)/D
       CONTINUE
 1
       RETURN
       END
                SUBROUTINE MAPA (Z.BASE,CINT,NL,NC)
          DIMENSION Z(38,50),SIMB (20),V(130)
      DATA SINB/"A","B","C","D","E","F","G","H","I","J","K","L","H".
                "N","0","P","Q","R","S","T"/
       DATA CRUZ. ASTER/ "+","*"/
       DATA BLK, GUION/ " ","_"/
```

```
NLM1 = NL-1
     NCM1 = NC-1
     CINT2= 2.0+CINT
     R17 = 26.0/NCM1
     R24 = 37.0/NLH1
     WRITE (6,121)
121 FORMAT(11X, "COTAS DE LOS SIMBOLOS", /, 7X, "SIMBOLO", 7X, "INFERIOR",
   * 4X,"SUPERIOR",//)
     DO 1 K=1.20
     CONTI = BASE + 2.0*CINT*(K-t)
     CONTS = CONTI + CINT
     URITE (5,101) SIMBING CONTLEGNES
101 FORMAT (10X,A1,6X,2E12.4)
 1
     CONTINUE
     WRITE (6,102)
102 FORMAT (" ",///,1X,"2",128X,"16")
     DO 2 J=2.NCM1
     V(J) = GUION
  2 CONTINUE
     WRITE (6,103) (V(J), J=2, NCH1)
     DO 10 LINEA = 2,NLM1
     RI = 1.0 + (LINEA - 1) + R24
      I = IFIX (RI)
      X = RI - FLOAT (I)
     J130W = IFIX (5.395527 + (LINEA - 2) + (4.225/2.5384) + 0.5 )
     DO 11 JCAR = 2.NCH1
         RJ = 1.0 + (JCAR - 1) * R17
          J = IFIX (RJ)
          Y = RJ - FLOAT (J)
         A1 = Z (I,J)
         A2 = Z (I+1,J) - A1
         A3 = Z (I, J+1) - A1
         A4 = Z (I+1, J+1) - A1 - A2 - A3
      ZINT = A1 + A2 + X + (A3+A4+X) + Y
     V(JCAR) = BLK
      DO 12 K=1.20
      CONTI = BASE + (K-1) * CINT2
      CONTS = CONTI + CINT
         IF ( ZINT.LE.CONTI.OR.ZINT.GT.CONTS) GO TO 12
     V(JCAR) = SIMB(K)
12
     CONTINUE
         IF (JCAR.EQ.J130W) V(JCAR) = CRUZ
11
     CONTINUE
     URITE (6.103) (V(J), J=2, NCH1)
103 FORMAT (1X, "I", 125A1, "I")
10
     CONTINUE
     DO 19 J= 2,NCM1
     V(J) = GUIDN
19
     CONTINUE
     WRITE (6,103) (V(J), J=2,NCH1)
     RETURN
     END
        SUBROUTINE AUTASI(N, H, DIF, WW, XVAR, XMAX)
       DIMENSION XVAR(N,M)
       VV = XVAR(1,1)
       WW = XVAR(1,1)
       DO 1 I=1,N
        DO 1 J=1.H
```

1

```
XHAX=AHAX1(VV.XVAR(I.J))
         XMIN=AMIN1(WW,XVAR(I.J))
         VV=XHAX
         UU=XMIN
 1
         CONTINUE
         DIF=(VV-UW)/39.0
         RETURN
         END
C
   ESTA SUBRUTINA ROTA LA MATRIZ DE N X M A UNA MATRIZ DE N X N . PARA
C
   FACILITAR SU NANEJO CUANDO SE IMPRINA (ORDENA)
C*****
      ***************
     SUBROUTINE ORDENA (N.H.TZ.Z)
     DIMENSION TZ(38,50), Z(27,38)
     K=N+1
     DO 80 I=1.M
     DD 80 J=1.N
  80
     TZ(I,J) = Z(K-J,I)
     RETURN
     FND
     SUBROUTINE SUAVIZ (Z.NI.NJ.M)
     DIMENSION Z(27,38), ZZ(27,38)
C
   EL OPERADOR SUAVIZ SE APLICA H VECES
DO 30 L=1,H
     S = 0.5
     DO 10 K=1,2
     DO 1 I = 2,NI-1
     DO 1 J = 2.NJ-1
    1 ZZ(I,J) = Z(I,J)+0.5*S*(1-S)*(Z(I+1,J)+Z(I-1,J)+Z(I,J+1)+
    *Z(I,J-1)-4.0*Z(I,J))+0.25*S*S*(Z(I+1,J+1)+Z(I-1,J+1)+
     *Z(I-1,J-1)+Z(I+1,J-1)-4.0*Z(I,J))
        DO 2 I = 2, NI - 1
        DO 2 J = 2,NJ-1
    2
        Z(I,J) = ZZ(I,J)
      S = -0.5
   10
. 30
       CONTINUE
      RETURN
      END
        SUBROUTINE CON(N, K, CANPO1, CANPO2, CANPO4)
      DINENSION CAMPO1(38,27), CAMPO2(38,27), RMSE(38,27), CAMPO4(38,27)
      DO 70 I=4,N-3
      DO 70 J=4,M-3
       RMSE(I,J)=(CAMP01(I,J)-CAMP02(I,J))**2
       DIF14=CAMPO1(I,J)-CAMPO4(I,J)
       BIF24=CANPO2(I,J)-CANPO4(I,J)
       IF(DIF14.LT.O .AND. DIF24.LT.O) L=L+1
       IF(DIF14.EQ.O .AND. DIF24.EQ.O) LL=LL+1
       IF(DIF14.GT.O .AND. DIF24.GT.O) LLL=LLL+1
       RMS=RMS+RMSE(I,J)
  70
       CONTINUE
        CONT=L+LL+LLL
        ERPOR=(CONT/((N-6)*(M-6)))*100.0
        ERROR=SORT(RMS/(N+H))
        WRITE(6.25) ERROR, ERPOR
        FORMAT(//, 10X, "EL ERROR CUADRATICO MEDIO QUE RESULTA DE COMPARA
  25
     *R",/,10X,"LAS MATRICES CAMPO1 Y CAMPO2 ES",//,15X,"ERROR=",F10.4
     *,//,10X,"Y EL ORDEN DE VALIDEZ ES",//,15X,"VALIDEZ = ",F5.2," X")
         RETURN
        END
```



```
ERRLIST
LINEINFO
• FILE
      3=AOENE9, UNIT=DISK, RECORD=14, BLOCKING=30, AREA=15, SAVE=30
FILE
      7=AOODIA11, UNIT=DISK, RECORD=14, BLOCKING=30, AREA=15, SAVE=30
- FILE
      2=LATITUD, UNIT=DISK, RECORD=14, BLOCKING=30, AREA=15, SAVE=30
 FILE
      6=ESC, UNIT=REMOTE, RECORD=22
      DIMENSION XLA(1026), GE5(1026), XLAT(27, 38), EFE(27, 38), TAN(27, 38)
      DIMENSION CAMPI(27,38), PDE(27,38), TG(27,38), ADVJ(27,38)
     *,GEOP(1026),BE1(27,38),VORG(27,38),GRA(27,38),PHI1(27,38)
      DINENSION GEOC(27,38), GEO50(27,38), VORA(27,38), GEO51(27,38)
     #,66(38,27),VV0RA(38,38),6E005(38,50),NIU(27,38),6E0C0(38,27)
      DIMENSION DDIF(27,38).DDIFF(38.27). CAMPIN(38.27).ICAM(1026)
      DIMENSION ARR(1026)
 LECTURA DE DATOS DEL GEOPOTENCIAL GEOS
 C
 r.
    Y DE LA LATITUD XLA
                       (ARREGLOS LINEALES)
 C****
           READ(3,1) (GE5(J), J=1,1026)
       READ(7,1) (GEOP(J), J=1,1026)
      READ(2,4) (XLA(J), J=1,1026)
   1
     FORMAT(18(I3,1X))
   4 FORMAT(13(F5.2.1X))
                           C******
       **************
: C
  NLS= NUMERO DE LINEAS (LATITUDINALMENTE)
   NGP= NUMERO DE COLUNNAS (LONGITUDINALMENTE)
 C
   PARA EL ARREGLO HATRICIAL DE LA LATITUD Y EL GEOPOTENCIAL
 NLN = 1
      NLS = 27
      NCO = 1
      NCP = 38
 DEFINICION DE LOS VALORES PARA LA GRAVEDAD=G, LA VELOCIDAD ANGULAR DE
 C
   LA TIERRA. DE VALORES A UTILIZAR EN EL PARAMETRO DE ESCALA : COL. TA,
 C
   P, FI, DEL PARAMETRO DE CORIOLIS=EFEO, DEL PASO DE TIEMPO= DELTAT, Y
 C
   DE LA DISTANCIA DE SEPARACION ENTRE LOS PUNTOS DEL ENREJADO= D .
 C
   TODAS LAS UNIDADES EN EL SITEMA H.K.S.
 С
 C###
             G = 9.8
      P = 0.716
      COL = 60.0 + (3.1416 / 180.0)
      TA = SIN (COL /2.0) / COS (COL / 2.0)
      OMEGA = 7.295 E-5
      D = 231.423E3
      FI = (30.0 + 3.1416) / 180.0
      EFEO = 2.0 + OMEGA + SIN (FI)
      DELTAT = 2700.0
      EPS = 1.0 E-6
     PI = 3.1416
         EME=82.7
                     C LA SUBRUTINA MATRIZ CREA UN ARREGLO MATRICIAL DE LOS VALORES GES DEL
 C GEOPOTENCIAL Y DEL GEOPOTENCIAL OBSERVADO 24 HORAS DESPUES.
 CALL MATRIZ (27,38,GE050,GE5)
      CALL MATRIZ (27,38,GEOC,GEOP)
      DO 300 J=1,1026
```

```
C TRANSFORMACION DE LOS VALORES DE LA LATITUD DE GRADOS A RADIANES -
300 \text{ XLA(J)} = (\text{XLA(J)} \times 3.1416)/180.0
ARREGLO MATRICIAL DE LOS VALORES DE LA LATITUD .
CALL HATRIZ (27,30,XLAT,XLA)
   DO 40 I=HLN.HLS
   DO 40 K=NCO.NCP
   GE050(I.K)-GE050(I.K)+5000.0
     GEOC(I.K)=GEOC(I.K)+5000.0
EVALUACION DE LA GRAVEDAD EN CADA PUNTO .
GRA(I,K) = 9.80616*(1.-0.0026373*COS(2.*XLAT(I,K))+0.0000059*(COS
  *(2.*XLAT(I.K)))**2)
   TAN(I.K) = SIN((3.1416/2.-XLAT(I,K))/2.)/COS((3.1416/2.-XLAT(I,K)
  *)/2.)
C CALCULO DEL PARAMETRO DE CORIOLIS EN CADA PUNTO .
EFE(I.K) = 2.*OMEGA*SIN(XLAT(I.K))
 40 CONTINUE
C FILTRAJE DE LAS ONDAS DE LONGITUD MENOR O IGUAL A 2D . (SUAVIZ)
CALL SUAVIZ(GE050,27,38,2)
   CALL SUAVIZ(GEOC, 27, 38, 2)
C ROTACION DE LA MATRIZ FARA FACILITAR SU MANEJO . (ORDENA)
CALL ORDENA (27,38,GG,GE050)
   DO 7 I=1,NCP
   DO 7 J=1.NLS
   CAMPIN(I,J)=GG(I,J)
 7
   CONTINUE
    CALL ORDENA(27,38,GEOCO,GEOC)
   CALL AUTASI(27,38,DDIF2,YYMIN,GEOC,XXMAX)
    CALL HAPA(GEOCO, YYHIN, DDIF2, 145, 127)
   WRITE(6,4002)
C DETERMINACION DE LOS VALORES MAXINO Y NININO PARA EL GEOPOTENCIAL
C (AUTASI)
<u>______</u>
   CALL AUTASI(27,38,DIF2,YMIN,GE050,XMAX)
GRAFICACION DE LOS VALORES INICIALES DEL GEOPOTENCIAL. (NAPA)
CALL HAPA(GG.YHIN.DIF2,145,127)
C TRANSFORMACION A METROS GEOPOTENCIALES
                     (METGE)
CALL METGE (27.38.GE050.GRA)
   DO 44 I=NLN,NLS
   DO 44 K=NCD,NCP
EVALUACION DEL PARAMETRO DE ESCALA .
C
```

```
95.
```

```
44 PDE (I,K) = (SIN(COL)/SIN(3.1416/2.-XLAT(I,K)))*((TAN(I,K)/TA)**P
  *)
   DO 42 I=NLN.NLS
   DO 42 K=NCO.NCP
 42 CAMPI (I,K) = GED50 (I,K)
   TIEMPO = DELTAT
   KF=1
   K_{2} = 1
   KL = 1
LA SUBRUTINA ADVEC CALCULA EL TERMINO CORRESPONDIENTE AL JACOBIANO
C
 DEL GEOPOTENCIAL Y DE LA VORTICIDAD ABSOLUTA. DESPUES DE QUE EVALUD
 EL LAPLACIANO DEL GEUTUTENCIAL .
201 CALL ADVECI(27,38,VORG,GE050,ADVJ,XLAT,BE1,D,PDE,AJ,30,)
C LA SUBRUTINA POISON RESUELVE UNA ECUACION DEL TIPO POISSON. MEDIANTE
C EL METODO DE RELAJACION. PERMITIENDO UNA DIFERENCIA EPSILON.
CALL POISON (27,38,TG,BE1,NIU,EPS,D,ITER,PHI1,1,PDE,EME)
   DO 57 N=NLN+1,NLS-1
   DO 57 M=NCO+1.NCP-1
SE CALCULAN LOS CAMBIOS DEL CAMPO DEL GEOPOTENCIAL AL AVANZAR UN PAS
C
ſ.
EN EL TIEMPO DELTAT .
r
EN EL PRIMER PASO DE TIEMPO SE UTILIZA UNA DIFERENCIA ADELANTADA
IF (K2.EQ.1) GEOSO(N.M) = CAMPI(N.M)+ DELTAT * TG(N.M)
C PARA LOS SIGUIENTES PASOS DE TIENPO SE UTILIZAN DIFERENCIAS CENTRADAS
IF(K2.GT.1) GEO50(N,H) = GEO51(N,H)+2*DELTAT*TG(N,H)
   GE051(N.M) = CAMPI(N.M)
   CAMPI(N.M) = GEO50(N.M)
 57 CONTINUE
C FILTRADD DE LONGITUDES DE ONDA L MENOR O IQUAL A D
                             (SUAVIZ)
CALL SUAVIZ(GE050,27,38,2)
   WRITE(6,333) TIEMPO
333 FORMAT(//.30X." TIEMPD= ".F9.0)
r
  AVANCE EN EL TIEMPO
789 TIEMPO = TIEMPO + DELTAT
   K2 = K2 + 1
C
  CONTROL DE LA LONGITUD DEL PERIODO DE PREDICCION
IF (TIEMPD.LE.48.+3600.) GD TD 201
C CAMBIO DE LA MATRIZ PARA FACILITAR SU HANEJO (ORDENA)
CALL ORDENA (27,38,66,66050)
MAPA DEL CAMPO PRONOSTICADO 24 HORAS DESPUES
                            (MAPA)
WRITE(6,19) EME
    WRITE(6.20) DELTAT
```

```
20
     FORMAT(7.6X," EL PASO DE TIEMPO ES = ",F6.1)
     FORMAT(//.SX,"LA H UTILIZADA FUE = ",F10.4,///)
19
    CALL NAPA(GG, YHIN, DIF2, 145, 127)
 449 URITE (6.450)
    DO 62 N=NLN, NLS
    DO 62 MENCO.NCP
C DIFERENCIA ENTRE EL CAMPO ORIGINAL Y EL PRONOSTICADO
DDIF(N.H)=GED50(N.H)-CAMPI(N.H)
  62 GED50 (N.H) = (GED50(N.M) * GRA (N.M))/7.8
AUTGASIGNACIUN DE VALUAES MAXING : MINING DE LA DIFERENCIA ENTRE EL
  CAMPO ORIGINAL Y PRONOSTICADO (AUTASI)
С
CALL AUTASI(27,38,CINT3,BASE3,DDIF,XXXHA)
    CALL ORDENA(27,38,DDIFF,DDIF)
C GRAFICA DE LAS DIFERENCIAS ENTRE LOS CAMPOS ORIGINAL Y PRONOSTICADO
CALL MAPA(DDIFF, BASE3, CINT3, 145, 127)
 4002 FORMAT (///,40X,"GEOPOTENCIAL DATOS LEIDOS ",///)
450 FORMAT(///,30X,"DIFERENCIA ENTRE EL PRONOSTICO E INICIAL")
     CALL COM(38,27,GEOCO.GG.CAMPIN)
  5 CALL EXIT
    END
    SUBROUTINE HATRIZ (N.M.VAG.VA)
C LA SIGUIENTE SUBRUTINA CREA ARREGLOS MATRICIALES DE N X M . A PARTIR
  DE ARREGLOS EN FORMA DE VECTOR. (MATRIZ)
DIMENSION VAG(N.N).VA(1026)
    DO 70 I= 1,N
    DO 70 K=1.M
    VAG(I,K) = VA(3B+(I-1)+K)
 70
    CONTINUE
    RETURN
    END
    SUBROUTINE HETGE (N', H, VG, VGRA)
C LA SUBRUTINA METGE TRANSFORMA LOS VALORES DEL GEOPOTENCIAL A ME-
 TROS GEOPOTENCIALES.
DIMENSION VGRA(27,38), VG(27,38)
    DO 72 I= 1.N
    DO 72 K= 1.M
   VG(I,K) = (VG(I,K)*9.8)/VGRA(I,K)
  72 CONTINUE
   RETURN
   END
C LA SUBRUTINA POISON RESUELVE LA EC. DE POISSON POR UN METODO DE RELA-
C JACION. EL PARAMETRO TAD ES EL QUE DA EL CARACTER DE EQUIVALENTE AL
C MODELO BAROTROPICO.
SUBROUTINE POISON(N, H, PHI, PSI, TAO, EPS. D, ITER, PHI1, ALFA, PDE1, EME)
```

DIMENSION PHI(N,H), PSI(N,H), PHI1(N,H), TAO(N,H), TRANS(38,50)

```
DIMENSION PDE1(27.38)
          EM=EHE+1E-14
           DO 23 I=1.N
           DO 23 J=1.H
           TAG(I,J)=EM/PDE1(I,J)
   23
           CONTINUE
       DXSO = D + + 2
       ITER = 0
     5 ITER = ITER + 1
       DO 10 I=2.N-1
       DO 10 J=2,M-1
       PHI1(I,J) = PHI(I,J)
       PHI(I,J) = ALFA * (PHI(I-1,J)+PHI(I+1,J)+PHI(I,J-1)+PHI(I,
    * #J+1)+PSI(I,J))/(4.0+(DXSQ)*(TAO(I,J)))
    10 CONTINUE
       IF (ITER.LE.1) GD TO 5
       DO 20 I=2.N-1
       DO 20 J=2.H-1
       DIF = ABS(PHI1(I,J)-PHI(I,J))
 C DETERMINACION DE LA CONVERGENCIA DEL METODO DE RELAJACION
 IF (DIF .GT.EPS) GO TO 5
    20 CONTINUE
      RETURN
      END
                    1
            SUBROUTINE ADVECI(N, M, VORG, GEOSO, ADVJ, XLAT, BE1, D, PDE, AJ, FI)
          DIMENSION VORG(N, M), GEOSO(N, M), ADVJ(N, M), XLAT(N, M)
          DINENSION BE1(N, H), PDE(N, H), EAP(50, 50)
FI =(FI+3.1416)/180.0
        DMEGA=7.295 E-5
        EFE0 =2.0+DHEGA+SIN(FI)
        RA = 6.37 E6
      DO 51 I=2,N-1
      DO 51 J=2, H-1
      VORG(I,J)=(GE050(I+1,J)+GE050(I-1,J)+GE050(I,J+1)+GE050(I,J-1)-
     # 4*GE050(1,J))/(EFE0*(D**2))
      VORG(I, J)=VORG(I, J)*(PDE(1, J)*+2)*9.8
 51
       ETA=ETA+VORG(I,J)+(2*OMEGA*SIN(XLAT(I,J)))
       WRITE(6,/) ETA
      DO 56 I=2,N-1
      D0 56 J=2.M-1
      ADVJ(I,J)=(VORG(I-1,J)*(GEO50(I-1,J+1)-GEO50(I-1,J-1))-VORG(I+1,
    * J)*(GE050(I+1,J+1)-GE050(I+1,J-1))-VORG(I,J+1)*(GE050(I-1,J+1)-
    * GE050(I+1,J+1))+VORG(I,J-1)*(GE050(I-1,J 1)-GE050(I+1,J-1)))/4.
      ADVJ(I,J)= ADVJ(I,J)+((2.*DMEGA+COS(XLAT(I,J)))*(D/RA))*(02000(I
    * J+1)-GE050(I,J-1))/2.0)
      BE1(I,J) = ADVJ(I,J)
           AJ = AJ + ADVJ(I_J)
 56
      CONTINUE
      RETURN
      END
```

1

PROGRAMA DE ANALISIS OBJETIVO

```
$SET ERRLIST
FILE 9=ESC.UNIT=PRINTER.RECORD=22
FILE
      3=ADDDIA10,UNIT=DISK.PECOPET14,BLDCKING=30,AREA=15,SAVE=30
FILE
      7=DATA, UNIT=REMOTE, RECORD=22
FILE 8=PROH910.UNIT=DISK.RECORD=14.BLOCKING=30.AREA=15.SAVE=30
      6=ENE10.UNIT=DISK.RECORD=14.BLOCKING=30.AREA=15.SAVE=30
FILE
FILE 4=ARCHFIX, UNIT=DISK, RECORD=14, BLOCKING=30, AREA=15, SAVE=30
       DIKENSION Z(38,27),X(110 ),A(110),U(110),V(110),NG(110),B(110),
     # H(78,54),CLAT(110),CLON(110),CI(110),CJ(110),FD(110),
     + MD(200),F(78,54),F1(78,54),FS1(78,54),VD(200),VGC(78,54).UGC(78.5
      * 4),C(78,54),DC(78,54),S(78,54),KE(200),KEV(200),VG(200),UG(200);
      * KEH(200).ZZ(1026).EHAY(200).ZO(27.38).DDD(110).EFF(110).ZZZ(1026
         REAL M, HO, H1, H2, H3, H4, HH, LO, LOT
        DATA NI, NJ/38, 27/
         CLA=0.0
        CL0=0.0
        DELX=340.0E3
        RAD=6371299.0
        OMEGA=7.292E-5
        CRG=3.14159/180.0
        FID=30.0
        PS10=(90.0-FI0)*CRG
        SPSID=SIN(PSID)
        TPSIO=TAN(PSIO)
        TPS102=TAN(PS10/2.0)
        R0=(RAD+TAN(PSID))/(TAN(PSID/2.0))++0.5
        READ(8.333)(ZZ(I),I=1.1026)
  333
         FORMAT(18(13.1X))
              DO 15 J=1,NJ
            DO 15 I=1.NI
            Z(I,J) = (ZZ(I-NI*(J-NJ)) + 5000.0)
             CONTINUE
 15
z
         CALL ESCRIB(1.38.Z)
          CALL AUTASI(38,27,DIF,XMIN,Z,XXMAX)
          CALL SUAVIZ(Z,NI,NJ)
         CALL HAPA(Z,XMIN,DIF,145,127)
  14
          READ(7,/)JJ, JK, JL
        READ(7./) PPP.PI.P2.EMAXI
        WRITE(9,56)JJ,JK,JL,PPP,P1,P2,EMAXI
        DO 1 I=1.NI
        10 2 J=1.NJ
        R=((I-8.25628)**2+(J-40.15151)**2)/(RAD/DELX)**2
        PSI(I,J)=2.0*ATAN(R*(TPSI02/(TPSI0)**2))
        FI(I,J)=90.0*CRG-PSI(I,J)
        F(I,J)=2.0+0HEGA+5IN(FI(I,J))
        N(I,J)=(SPSID/SIN(FSI(I,J)))*(TAN(PSI(I,J)/2.0)/TAN(PSID/2.0
      1 33110.5
   2
       CONTINUE
        CONTINUE
   1
        WRITE(9,8)
        READ(4,321)( NG(NDO),CLAT(NDO),CLON(NDO), NDO=1,110 )
321
        FORMAT(F3.0,1X,F5.2,1X,F6.2)
        READ(6,322)( X(NDO),DDD(NDO),FFF(NDO), NDO=1,110 )
 322
        FORMAT( 3(13,1X) )
        KOUNT=1
        ND0=1
         IF(NDO .EQ. 111 ) GO TO 44
  3
        IF(X(NDO) .NE. 0.0) A(NDO)=1.0
```

```
IF(FFF(NDD) .NE. 0.0) B(NDD)=0.2
      X(NDO) = X(NDO) + 10.0
       GO TO 16
     WRITE(9,9)NG(NDC),DDD(NDC),FFF(NDC),X(NDO),CLAT(NDO),CLON
    * (NDD).A(NDO).B(NDO)
     CONTINUE
     NDO=NDO+1
     60 TO 3
     CONTINUE
1000
     KOUNT=KOUNT+1
     NDO=NDO-1
     DO 4 K=1.NDO
     LOT=114.5-BDD(K)-0.5+CLCR(K)
     LOT=LOT*CRG
     FF=FFF(K)+0.515
     U(K) = -FF + COS(LOT)
     V(K)=-FF*SIN(LOT)
     SLL=SIN(CLAT(K)*CRG)
      EMAX(K)=ENAXI
     FO(K)=2.0+DHEGA+SLL
     COLAT=(90.0-CLAT(K)) + CRG
     R=R0*(TAN(COLAT/2.0))**0.5
     ARG=(325.5-0.5+CLON(K))+CRG
     CI(K)=(R/DELX)*COS(ARG)+8,25628
     CJ(K)=(R/DELX)*SIN(ARG)+40.15151
      IF(CI(K) .LT. 1.0 .OR. CI(K).GT. NI) GO TO 6
      IF(CJ(K) .LT. 1.0 .OR. CJ(K) .GT. NJ) GO TD 6
       GO TO 4
     WRITE(9,102)CI(K),CJ(K)
     WRITE(9,9)NG(K),X(K),U(K),V(K),CLAT(K),CLON(K),A(K),B(K)
     KE(K)=1
     CONTINUE
     ZORIG=XMIN
     DO 84 L=1,6
     BARRE=L
     DO 90 I=1.78
     DO 90 J=1,54
     C(I,J)=0.0
     DC(1.J)=0.0
     CONTINUE
     DO 81 K=1,NDO
     IF(KE(K) .ED. 1) GO TO 81
     P=CI(K)-IFIX(CI(K))
     Q=CJ(K)-IFIX(CJ(K))
      I=CI(K)
       J=CJ(K)
       Z1=Z(I,J)
       Z2=Z(I+1,J)
       Z3=Z(I+1,J+1)
       Z4=Z(1,J+1)
       IF(X(K) .EQ. 0.0) X(K)=FBIL(F,Q,Z1,Z2,Z3,Z4)
       ERROR=X(K)-FBIL(P,Q,Z1,Z2,Z3,Z4)
       IF(ABS(ERROR) .GE. ENAX(K)) GO TO 80
       EMAX(K)=EMAX(K)+0.B0
        ZM=X(K)-ERROR*0.5
       COLAT=(90.0-CLAT(K))+CRG
```

MO(K)=(SPSI0/SIN(COLAT))+(TAN(COLAT/2.0)/TAN(PSI0/2.0))**0.5

DR=BARRE**2 IBARRE=IFIX(BARRE)

16

44

÷ 6

4

90

```
TMIN=I-IRARBE
      INAX=I+IBARRE
         JHIN=J-IBARRE
         JMAX+2+IIARPE
         IF( IMIN_LE_1) IMIN=1
         IF(JHIN.LE.!) JHIN=*
         IF(IMAX.GE.34)IMAX=34
         IF(JMAX.GE.27) JMAX=27
         DO 41 I=IMIN.IMAX
         BO 41 J=JHIN.JHAX
          DD=(CI(K)-I)**2+(CJ(K)-J)**2
          IF(DD.GT.DR) GD T0 41
          C(I, J)=C(I, J)+W+A(K) *ERROR
          DC(I,J) = DC(I,J) + A(K)
          HH=(H(I*))+HO(K))*0*2
          FH=(F(I.J)+FO(K))+0.5
       CVIEN=U*B(K)*(ZH-Z(I,J)+((1.08*FH)/(9.81*HH))*(U(K)
     * *(CJ(K)-J)-V(K)*(CI(K)-I)))
        IF(CVIEN .GT. EMAX(K) )60 TO 80
        C(I,J)=C(I,J)+CVIEN
        DC(I,J)=DC(I,J)+B(K)
 41
        CONTINUE
          60 TO B1
 80
       WRITE(9,101) ERROR.L
      WRITE(9,9)NG(K),X(K),U(K),V(K),CLAT(K),CLON(K),A(K),B(K)
        KF(k) = 1
  81
       CONTINUE
       DO 5 I=1.NI
      DU 5 J=1.NJ
       IF(DC(I.J)) 5.5.85
  85
       C(I,J) = C(I,J) / UC(I,J)
       Z(1,J) = Z(I,J) + C(I,J)
   5
       CONTINUE
 B4
       CONTINUE
         CALL AUTASI(27,38,DIF2,YHIN,Z,XXHAX)
       CALL SUAVIZ(Z.NI.NJ)
       CALL MAPA(Z.YHIN, DIF2, 145,127)
      IF CRUDRE .LE. 67 60 TO 1000
      - DU 70 J=1.NJ
      DD 70 I=1.NI
      ZZZ(1-NI*(J-NJ))=IFIX(Z(I.J))-5000
 70
       CONTINUE
        WRITE(3.27) (222(J),J=1.1026)
 27
       FORMAT(18(13.1X))
       LOCK(3)
  55 FORMAT(12,12,14)
  57
      FORMA1(14,14,13,15,13,12)
  56 FORHAT(/, 3X, 'ANALISIS BEL DIA (,12, 1/, 12, 1/, 14, 15, " HILIBARS"
           , FI= (,13, F2= (,13, ChaXHI= (,13))
     ¥.
   8 FORMAT(//,5x, ESTACION', 3X, 'DIRECCION', 3X, 'INTENSIDAD', 3X,
     ** ALTURA*, 3X, *LATITUD*, 3X, *LONGITUD*, 5X, *A*, 57, *B*)
% 9
       FURMAI(1H+,131X,/,1H+,4X,15.6X,3(F5.0.4X),F2.1,6X,F5.1,3X,
               215.2.77.1h+,131X.//
Ζ
   - 1
         FORMAT(//.4X.15.6X.3(F6.0.4X).F7.1.6X.F5.1.3X.2F6.2.//)
   9
 99
         FORMA1(27F2.1)
```

```
100
      FORMAT(8F8.2.1x)
101
      FORMAT(/,1X, DATO ELIMINADU FOR ERROR DE ALTUKA=1,F5.0,215)
102
     FORMAT(/,1X, "ESTACION FUERA DE LA MALLA",265.1)
103
      FORMAT(F6.1)
105
     FORMAT(1X,/, 'DATO ELIMINADO POR ERROR DE VIENTO=',F5.0,215)
104
      FORMAT(17F6.1)
     FORMAT(1X,///,1X,'COMPONENTE U DE VIENTO GEOSTROFICO')
106
107
     FORMAT(+Y +755.2)
     FORMA)(1x,///,1x,"COMPONENTE V DE VIENTO GEOSTROFICO")
108
109
     FORMAT(1X,///,1X, 'PROMEDIO DE V. GEO ENTRE V. OBS =',F5.3)
      CALL EXIT
      END
```

BIBLIOGRAFIA

- 1.- Staniforth, A. N., y H. L. Mitchell, 1977: "A semi-implicit finite-element barotropic model". Mon. Wea. Rev., 105, pp. 154-169.
- 2.- Haltiner, George J. "Numerical Weather Prediction". John Wiley and Sons. Inc. U.S.A. 1971.
- Holton, James R. "An Introduction to Dynamic Meteorology"
 2ª Edición. Academic Press. U.S.A. 1972.
- 4.- Thompson. P. D. "Numerical Weather Analysis and Prediction" The McMillan Company. U.S.A. 1961.
- 5.- Adem, Julián. 1956: "A series solution for the barotropic vorticity equation and its application in the study of atmospheric vortices." Tellus VIII, 3, pp. 364-372.
- 6.- Pinder, G. F. "Finite Element Simulation in Surface and Subsurface Hydrology". Academic Press. U.S.A. 1977.
- 7.- Porras, Víctor 1982. "Introducción al Método de Elemento finito". Fac. de Ingeniería. U.N.A.M.
- 8.- Lectures on Numerical Short Range Weather Prediction.
 W.M.O. Regional Training Seminar. Moscú 17 Nov.-14-Dic.
 1965. B. R. Döös. "Numerical Weather Forcasting with the Barotropic Model". pp. 189.
- 9.- Haltiner, G. J. y R. T. Williams. "Numerical Weather Prediction and Dynamic Meteorology". 2^a Edición. John Wiley and Sons. U.S.A. 1980.
- 10.- Barreto, Fco. Javier. "Solución de la ecuación de Helmholtz usando Análisis de Fourier con Reducción Cíclica Recursiva y su aplicación en la Predicción Numérica". Tesis Licenciatura. Fac. de Ciencias. U.Ν.Λ.Μ.
- 11.- Hortal, M. et al. "Modelo Barotrópico de Predicción para 500 mb utilizando elementos finitos". Publicación Serie G Núm. 26, Madrid. Nov. 1978.
- 12.- Revilla, D. R. y Morales, T. 1980: "Resultados Preliminares de un esquema de Análisis Objetivo." Rev. Geofísica I.P.G.H. Núm. 12 pp. 27-35 México.
- Han Ru Cho, Mary Ann Jenkins y Joseph Boyd. 1983: "A first order vorticity equation for tropical easterly waves". Vol. 40 pp. 958-968.