

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE CIENCIAS

Estudio de Estructura Porosa por Medio de las Isotermas de Adsorción

OUE EL TITULO DE : OBTENER PARA F 1 S Ï C S P R F E Martínez Carlos Javier Gómez

MEXICO D. F.

1984

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

<u>``</u> •	
ſ	PAGINA
Introducción	1
CAPITULO 1	
FENDMENDS SUPERFICIALES " ADSORCION " .	
	-
1.2 Adsorcion fisica y quimica	
1.3 Potencial de adsorcion	•••4
1.4 ISDTERMAS de adsorcion	
1.5 Jermodinamica de la adsorción	9
1.5.1 Descripcion del sistema	9
1.5.2 Equilibrio de adsorcion	
1.5.3 Ecuaciones para la capa superficial	
Formula de adsorción de Gibbs	
CAPITULO 2 .	
AREA ESPECIFICA Y ESTRUCTURA POROBA DE LOS SOLIDOS	
2.1 Introducción	23
2.2 Area específica .	
"Método de Brunauer Emmett y Teller"	23
2.3 Condensación capilar	29
2.4 Distribución de diámetro de poro (D.D.P.)	32
CAPITULO 3	
HISTERESIS DE LA CONDENSACION CAPILAR .	
3. i - Introducción	40
3.2.1 Rizo de histéresis tipo A	41
3.2.2 Rizo de Histéresis tipo F	44
3.3 Area acumulada 8	44
3.3.1 Casos donde 8 (ACUM) = 8 (BET)	45
3. 3. 2 Casos donde S (ACUM) > S (BET)	46
3.3.3 Casos donde S (ACUM) < S (BET)	47

111

CAPITULO 4

MATERIAL Y EQUIPO UTILIZADO .

	· · · · · · · · · · · · · · · · · · ·	10
4.1	Introducción	18
4. 2	Método volumétrico estático	52
4.3	Descripción y caracterización del motore	53
4. 3. 1	La estructura de la boehmita	54
4. 3. 3	2 La estructura de la alúmina	55
A 4	Preparación de las muestras	

CAPITULO 5

RESULTADOS EXPERIMENTALES

		57
5.1 Introducción		58
5.2 Resultados de 1	os estudios de ausorcian	. 58
5.2.1 Isoterma de ad	orción	. 65
5.2.2 Forma de la is	terma	. 65
5.2.3 Forma del rizo	de histéremis	, 66
5.3 Resultados de	Las D. D. P	. 74
5.4 Termogravimetr	[a	. 76
a a Estudios de Ra	yos X	

CAPITULO 6 .

DISCUCION DE RESULTADOS Y CONCLUCIONES .

6. 1	Discución de	esultados
6.2	Concluciones	
BIBL	IDGRAFIA	
APEN	DICES	
1	Entropía	
2	Datos experio	rentales
3	Programa de (alculos utilizado 1000 antes 100
	i istados de 1	Vetricador new high

INTRODUCCION

En las últimas decadas la importancia de los procesos catalíticos se ha incrementado dada su gran aplicación en la industria química y petroquímica.

Esto constituye una fuerte motivación, para el estudio de los fenómenos involucrados en la reacción propiamente dicha. En la que uno de los aspectos más importantes es la adsorción, puesto que al iniciarse una reacción el primer fenómeno que se presenta es la adsorción de las moléculas sobre la superficie del catalizador.

La adsorción se realiza bajo la influencia del campo de fuerzas atómicas de las capas externas del catalizador.

La magnitud y la accesibilidad de la superficie de un catalizador tienen una gran influencia en la actividad catalítica. De aquí que éste se deposite muy fragmentado sobre una substancia supuestamente ''inactiva'' que recibe el nombre de soporte catalítico.

En el presente trabajo se estudian las características morfológicas de los soportes, que pueden favorecer o afectar la actividad del catalizador. El estudio se realiza en un monohidrato de alumínio (boehmita) la cual al ser sometida a tratamiento térmico se transforma en un óxido de alumínio (alúmína- p) de gran importancia como soporte catalítico y que se emplea además para catalizar reacciones de hidrocarburos, tales como polimerización, la isomerización y la desintegración de moléculas de alto peso molecular.

La experimentación se lleva a cabo, utilizando la isoterma de adsorción (ramas de adsorción y desorción)y la ecuacion de Kelvin por medio de las cuales se determinan las caracteristicas más importantes de las muestras, tales como el área específica, la distribución de diámetro de poro, el área de cada grupo de poro y el volumen total de los poros entre otras. Por medio de los estudios de adsorción se determina el cambio de fase cristalina de la boehmita al ser tratada a diferentes temperaturas, los que se comparan con otras tecnicas, difracción de rayos X y análisis termogravimétrico.

CAPITULOI

FENDMENOS BUPERFICIALES

ADSORCION

1.1 INTRODUCCION .

En una gran cantidad de procesos fisicoquímicos los fenómenos que en ellos se realizan ocurren en la superficie de separación entre las fases, las cuales pueden ser de diversos tipo, por ejem plo : sólido-líquido, sólido-gas, sólido-sólido, líquido-líquido o líquido-gas.

Si se considera un sólido en contacto con un gas o un vapor en la estructura interna del sólido, el orden y el equilibrio persisten, no así en la superficie donde las interacciones entre las partículas no están equilibradas. La substancia en la superficie de separación se encuentra en un estado diferente al que tiene en el seno de las fases volumétricas debido a la diferencia de los campos de fuerzas moleculares en las. distintas fases. Esta diferencia, origina fenómenos de superficie en el límite de separación de las fases.

El fenómeno de adsorción se presenta cuando la concentración de un gas sobre la superficie de separación es mayor que en el seno del mismo gas. De esta manera la adsorción se puede considerar como una concentración de substancia en la superficie de separación de las dos fases.

La adsorción se distingue de la absorción, la cual envuelve la penetración volumétrica del gas dentro de la estructura del sólido o del líquido por el proceso de difusión. Puesto que la absorción es gobernada por las leyes de difusión éste es la diferencia con la adsorción. La substancia en cuya superficie se produce la adsorción se denomina adsorbente y la substancia que es adsorbida de la fase gaseosa se llama adsorbato.

1.2 ADSORCION FISICA Y GUIMICA.

Bo pueden clasificar de acuerdo a las fuerzas de interacción entre el adsorbato y adsorbente dos tipos de adsorción. La adsorción física o fisisorción y la adsorción química o quimisorción. Las fuerzas responsables de la fisisorción son las fuerzas de disperción y las de repulsión de corto alcance, las primeras son producidas por el movimiento continuo de los electrones de las moléculas. Como consecuencia de esta movimiento se presenta fluctuaciones de las componentes del momento dipolar las cuales originan campos eléctricos. Las fuerzas de repulsión de corto alcance se presentan cuando la distancia entre las moléculas es muy corta y éstas se repelen debido al translape de las capas electrónicas y a la repulsión nuclear.

La explicación a estas fuerzas se ha obtenido por medio de la teoría cuántica.

La fisisorción es también conocida como adsorción de van der Waals a continuación se enumeran algunas características más importantes de ésta [1] .

a) El fenómeno es general y ocurre en cualquier sistema sólido-fluido, aunque es evidente que pueden ocurrir interacciones particulares, debidas en particular a la forma geométrica o a las propiedades electrónicas del adsorbato y/o el adsorbente.

b) Las perturbaciones de los estados electrónicos del adsorbente y el adsorbato es mínima.

c) La fisisorción no provoca cambios en la composición química del adsobato

d) La energía de interacción entre las moléculas del adsorbente y el adsorbato es del mismo orden de magnitud, pero es generalmente mayor que, la energía de condensación del adsorbato

 e) El proceso de adsorción física, no envuelve una energía de activación

f) En condiciones apropiadas de presión y temperatura las moléculas de la fase gaseosa pueden adsorberse en exceso sobre aquellas que se encuentran en contacto directo con la superficie (llenado de microporos, adsorción de multicapas y/o condensación capilar).

En la quimisorción las fuerzas involucradas son las fuerzas de valencia del mismo género de aquellas que aparecen en la formación de un compuesto químico .

La forma en que se distinguen la fisisorción y la químisorción es básicamente la misma de como distinguir entre interacciones físicas y químicas

Aunque en adelante nos concretaremos exclusivamente a fisisorción se enumeran a continuación algunas características de la quimisorción [1]

a) El fanómeno se caracteriza por su especifidad química .

b) Los cambios electrónicos de los componentes involucrados en la quimisorción pueden ser detectados por técnicas físicas adecuadas por ejemlo; espectroscopias tales como, ultravioleta, infrarrojo, microondas etc, o por cambios en la conductividad electrica y susceptivilidad magnética.

c) La naturaleza química del adsorbato puede ser alterada tanto por reacción como por disociación superficiales de tal forma que al adsorberse no se puedan recuperar las especies originales ; en este sentido la quimisorción puede no ser reversible.

d) La energía de quimisorción es del mismo orden de magnitud que la energía de cambio en la reacción química entre el solido y un fluido de modo que la quimisorción es semejante a las reacciones químicas en general, puede ser exotérmica o endotérmica.

e) El proceso de quimisorción frecuentemente involucra una energía de activación .

1.3 POTENCIAL DE ADSORCION .

Lennard-Jones [2], [3] demostró on el año de 1932 que sí se calculan los campos de van der Waals en la vecindad de las superficies de los sólidos, es posible estimar la magnitud de los calores de adsorción física de ciertos gases sobre la superficie de los sólidos.

El potencial de interacción que en principio y para la mayoría de los sistemas, es el responsable de la adsorción física, puede representarse por una ecuación similar a la que uso Lennard-Jones para el potencial entre moléculas de gas cuando una molécula se aproxima a otra .

 $E = ar + br^{n}$

donde a, b, m y n son constantes y r es la distancia de separación .

1. 1

El primer término produce una fuerza atractiva y el segundo una fuerza repulsiva entre las especies que interactuan, Lennard-Jones propuso valores de 6 y 12 para m y n respectivamente. El primer exponente fue justificado teóricamente por London E4J en su trabajo sobre fuerzas de dispersión, el segundo exponente (m = 12) es debido a que matemáticamente se tiene una representación satisfactoria de la interacción entre moléculas esféricas no polares, sin embargo este valor no es único E5J.

La constante a se determina calculando su valor a partir de propiedades tales como la susceptibilidad eléctrica y polarizabilidad atómica. Para el cálculo de la constante repulsiva b existe aún mucha incertidumbre. El procedimiento usual es el de ajustar el valor de b de forma tal que se obtenga un valor correcto para la separación de dos moléculas en la condición de equilíbrio, cuando las fuerzas atractivas y repulsivas entre las moléculas sean iguales. Por lo tanto a la distancia de equilíbrio r se tiene que :

$$\left(\int_{r_{e} \to 0}^{r_{e} \to 0} \right)^{r_{e} \to 0}$$

por lo tanto la ecuación (1.1) queda :

$$mar_0^{m-1} - nbr_0^{n-1} = 0$$

de donde-

$$b = (mn)^{-1} ar_0^{n-m}$$
 1.2

El valor de E_odel potencial a la distancia de equilibric estará dada por :

$$E_0 = [((mn)^{1} - 1)]ar_0^{m}$$
 1.3

El valor de E_ose hace coincidir con la energía de disociación de la molécula ajustando el valor de b por medio de las ecuaciones (1.1) y (1.3). Cuando la molécula del adsorbato se aproxima a una superficie, interacciona con un gran número de átomos simultaneamente, y la energía potencial total de las interacciones es una serie infinita compuesta por términos similares a los que contiene la ecuación (1.1) utilizando el valor apropiado de r en cada caso.

Las conclusiones a las que se puede llegar con respecto a las fuerzas de adsorción física que actuan entre un sólido (adsorbente) y una molécula de adsorbato (gas o vapor), son las siguientes : las fuerzas de dispersión estarán siempre presentes; ; cuando la molécula posée un momento dipolar permanente las fuerzas de dispersión representan la mayor contribución a la energía total de adsorción. La dependencia con la distancia es tal que la primera capa de moléculas adsorbidas estará fuertemente fijada a la superficie, en tanto que las capas superiores se fijarán más debilmente. Las fuerzas de dispersión serán considerablemente más fuertes dentro de microporos y prominencias que sobre superficies planas.

1.4 ISOTERMAS DE ADSORCION .

Experimentalmente se ha observado que el fenómeno de adsorción depende de la presión, de la temperatura, de la naturaleza y área del adsorbente así como de la naturaleza del adsorbato. La información útil para el estudio del fenómeno se obtiene a través de relaciones de estos parametros las cuales dan lugar a curvas experimentales, a saber : la isoterma de adsorción que muestra como la cantiúad adsorbida depende de la presión de equilibrio del gas a temperatura constante; la isobara de adsorción que relaciona la variación de la cantidad adsorbida con la temperatura a pretión constante y la isostera de adsorción que relaciona las variaciones de la presión de equilibrio de un gas con la temperatura para una cantidad adsorbida constante. Experimentalmente se trabaja con la isoterma ya que es posible controlar adecuadamente la temperatura mejor que cualquiera de los otros parametros (presión de equilíbrio o la cantidad adsorbida), y tener una descripción conveniente del equilibrio termodinámico del proceso de adsorción .

En general sí A es la cantidad adsorbida :

A 🖙 F (p, T), gas, sólido

Para el caso de la isoterma se tiene :

A ≕ F(p), T, gas, solido 1.5

1.4

si el gas se encuentra por debajo de su temperatura crítica, esto es, si el gas es un vapor podemos escribir la relación (1.4) como

A = F (p/p_), T, vapor, sólido 1.6

en la que p es la presión de vapor saturado del adsorbato a temperatura T

Cada una de las relaciones mencionadas tiene una utilidad específica Así tenemos que la isoterma proporciona una descripción conveniente del equilibrio de adsorción .

En la literatura existen una gran cantidad de isotermas de muy variadas formas, la mayoría de las cuales pueden clasificarse en cinco tipos figura 1.1. Esta clasificación fue propuesta por Brunauer y colaboradores [6] en 1940, la cual no es totalmente general pues habra isotermas que no puedan clasificarse en ninguno de estos cinco tipos, así como otros que seán clasificados dentro de dos tipos o más. De hecho muchas curvas determinadas experimentalmente y que quedan dentro de la clasificación presentan pequeñas discrepancias con las cinco isotermas de la clasificación, por ejemplo las isotermas de los tipos I, II y V; en algunos casos al encentrarse en la vecindad de la presión de saturación del gas, muestran una desviación hacia arriba (lineas punteadas en la figura 1.1) las curvas IV y V siempre presentan histéresis.

Esta clasificación está relacionada con distintos fenómenos :

La isoterma del tipo I esta relacionada con adsorción monomolecular en el material después de la cual ya no hay adsorción. En fisisorción este tipo de isotermas son obtenidas por materiales microporosos tales como las ceolitas.

La isoterma del tipo II en bajas presiones presenta un comportamiento parecido al tipo I hasta el punto 8 por lo cual Emmett y Brunauer [6] consideran que en este punto la superficie del material esta cubierta totalmente con una monocapa de aisorbato después de este punto la adsorción es paulatina lo cual corresponde indudablemente a la formación de multicapas. Este tipo de isotermas las producen los óxidos de aluminio.

La isoterma del tipo III esta caracterizada por un calor de adsorción igual o menor que el calor de licuefacción del adsorbato como se vera en el capítulo siguiente. Esta isoterma es poco común, sin embargo, se ha obtenido en limaduras metálicas utilizando nitrógeno como adsorbato a -76 K.

Las isotermas del tipo IV y V son debidas a los fenómenos que caracterizan a las isotermas II y III respectivamente, además de que se presentan poros en la muestra, la existencia de éstos se determina como se verá en el capítulo III por el fenómeno de histéresis.

Figura 1.1 Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT Los cinco tipos de isotermas de la clasificación BDDT

8

1.5 TERMODINAMICA DE LA ADSORCION .

El estudio de los fenómenos de adsorción por medio de la termodinámica no data de mucho tiempo. Antes de 1940 las relaciones entre los calores de adsorción y las isotermas de adsorción a través de la entropía, eran solo comprendidos vagamente y de ahí que las relaciones entre las diferentes energías, llamadas "calores de adsorción " no eran claras. No está por demás señalar la importancia tan grando que desempeña la termodinámica en el tratamiento teórico de los fenómenos de adsorción, ya que es a través de ella como pueden ser comprendidos y estudiados conceptos tan importantes dentro del fenómeno como son : la entropía de adsorción, la presión de dispersión, el trabajo diferencial de adsorción, los caloregade

El avance actual de la termodinámica de la adsorción física se debe en gran parte a los trabajos de Hill [7] y Everett [8] .

La validez de las ecuaciones termodinámicas usuales para la fase adsorbida descansan en tres suposiciones que son :

a) El adsorbente se considera termodinámicamente inerte, es decir, que el cambio en una propiedad termodinámica del adsorbente (por ejemplo, su energía interna) es despreciable durante el proceso de adsorción a temperatura constante, comparado con el cambio de la misma propiedad del adsorbato

b) El adsorbente posée un área invariante con la temperatura, la cual es la misma para todos los adsorbatos. Esta suposición puede no ser válida por ejemlo, para un adsorbente microporoso en el cual el área disponible para la adsorción depende del tamaño de la molecula del adsorbato.

c) Se aplica la definición de Gibbs de la adsorción, la definición corresponde a la técnica volumétrica usual para obtener isotermas de adsorción, la que se basa en medir el volumen de gas adsorbido o desorbido en condiciones de equilibrio termodinámico a temperatura constante.

Esta tres suposiciones se encuentran implicitas en casi todas las teorías de adsorción física. Se ha hecho hincapió en ellas, para indicar la generalidad de la teoría que será discutida a continuación.

1. 5. 1 DEBCRIPCION DEL SISTEMA .

Uno de los problemas para la aplicación de la termodinámica al fenómeno de la adsorción es la elección adecuada del sistema termodinámico. El sistema más práctico es el que considera una transición abrupta entre el adsorbato a una densidad relativamente alta del gas. Si esta región de transición se toma de espesor despreciable, se tendrá una superficie que encierra al adsorbente y al adsorbato. Esta combinación de adsorbente-adsorbato puede ser tratada como un sistema de dos componentes en equilibrio con una fase gaseosa, por los métodos de la termodinámica de soluciones desarrolladas por Everett [9].

Otra aproximación, propuesta por Gibbs, consiste en introducir una superficie de separación en la superficie del adsorbente, y tratar al gas y al adsorbato como un solo sistema, introduciendo excesos superficiales en la frontera.

De acuerdo a Gibbs, el sistema considerado es el siguiente : una capa superficial entre dos fases volumétricas homogéneas ; en esta capa superficial se origina una variación de la concentración de los componentes en comparación con las fases homogéneas, por lo que en esta capa se originan ciertos excesos. El caso más general, es cuando los excesos pueden ser positivos o negativos, se considera que el exceso es negativo cuando la cantidad de componente qué se encuentra en el volumen de la capa superficial es menor que la cantidad que se encuentra en un volumen igual dentro de las fases volumétricas, mientras que se considera un exceso positivo cuando el componente se encuentra fundamentalmente en la superficie de separación .

El sistema se encuentra esquematizado en la figura 1.2 en donde se observa lo siguiente : dos fases volumétricas homogéneas denotadas por I y II ; una capa heterogénea (en la dirección perpendicular a la superficie da separación), de superficie a y espesor t = t'+ t"que se encuentra entre las fases volumétricas I y II. Los espesores t'y t"en ambos lados, de la superficie de separación se eligen de tal

Figura 1,2 Esquema de la capa superficial entre dos fases homogéneas .

manera que fuera de sus límites, las dos fases volumétricas I y II sean completamente homogéneas. El espesor t no es grande ya que las fuerzas moleculares que provocan el desbalance son de corto alcance i.e. disminuyen rápidamente con la distancia (sección 1.3). Las variaciones de la energía interna en las fases volumétricas I y II que están en contacto con la capa superficial, se pueden escribir de acuerdo a la termodinámica clásica de la siguiente manera :

$$dE' = T'dS' - p'dV' + \sum_{i}^{r} \mu_{i} dn_{i}'$$
 1.7

$$dE'' = T''dG'' - p''dV'' + \sum_{ji}^{c} \mu_{j} dn_{j}^{ij} \qquad 1.8$$

1. 5. 2 EQUILIBRIO DE ADSORCION .

Las condiciones de equilibrio del sistema presentado en la figura 1.2 son una generalización de las condiciones de equilibrio heterogéneo para un sistema compuesto de fases homogéneas. En esta generalización se tomara en cuenta la presencia de la capa superficial intermedia entre las fases homogéneas.

Como se desean incluir los efectos de la superficie, es nacesario introducir alguna variable característica de ésta, por ejemplo el área, la cual sera una más de las variables independientes. Se tiene que la energía del sistema, incluyendo la interfase sera una función de S, V, n; y & que es el área de la interfase. Si se introduce el símbolo γ , llamada tensión superficial para representar($\partial E/\partial C$) entonces la ecuación para la interfase resulta :

$$dE = TdS - pdV + \gamma de + \sum_{i}^{c} \mu_{i} dn_{i} \qquad 1.9$$

En virtud de la definición de γésta es una propiedad intensiva . Como las fases I y II son estables γ es positiva . Para sistemas heterogéneos en equilibrio las variaciones de la energía interna se describen por la ecuación 1.7 $dE = TdS - pdV + \sum_{i}^{c} \mu_{i} dn_{i}$

De acuerdo con la descripción hacha del sistema se considerara a éste como un sistema heterogéneo aislado del exterior y que se encuentra formado por un conjunto de sistemas homogéneos, los cuales están separados entre sí por paredes que pueden ser o no restrictivas.

Debido al hecho de que un sistema aislado del exterior, aquél que tiene todas las restricciones sobre su frontera, no impone restricción sobre otro sistema vecino, es posible estudiarlo en forma independiente.

En el tratamiento que se realizará, por simplicidad se supondra que un sistema heterogéneo esta formado por subsistemas que no se encuentran aislados entre sí pero recordando que el sistema total se esta aislando del exterior.

Para cada uno de los sistemas homogéneos existe una relación de Gibbs del tipo (1.9) con sus propios parametros termodinámicos . Como cada uno de estos sistemas homogéneos no esta aislado del exterior, existen paredes sin restricción entre cada subsistema, estas paredes sin restricción obligan a que las variables termodinámicas de los diversos subsistemas homogéneos, estén relacionados entre sí. Bupongase que el sistema ha llegado a la situación más estable y se encuentra en equilibrio, entonces se vera cuales son las condiciones que se imponen a las variables termodinámicas. Se estudiará el caso de un conjunto de componentes presentes en las fases de un sistema aislado del exterior, en donde no ocurren reacciones químicas. Las fases están separadas por las interfases, las cuales son diatérmicas, no rígidas y permeables a todas las componentes. Las fases son sistemas homogéneos.

Las interfases son superficies de suparación entre fases diferentes. Sean : E la energía interna de la fase j. Vi el volumen que ocupa la fase j, n' el número de moles de la componente i en la fase j y Si la entropía de la fase j ; en donde j = 1,2,...,f, i = 1,2,...,c.

El caracter del recipiente impone las restricciones siguientes

i) La energía total es constante.

 $\delta E = \sum_{i=1}^{I} \delta E^{i} = 0$

ii) El volumen total es constante.

$$\delta V = \sum_{j=1}^{f} \delta V^{j} = 0$$

iii) El número de moles de cada componente es constante

$$\delta n_{i} = \sum_{j=1}^{f} \delta n_{i} = 0 \quad (i = 1, 2, \dots, c) \qquad 1.2e$$

De la relación (1.9) se obtiene para cada fase

$$\delta S = (\delta E^{J} / T^{J}) - (p^{J} / T^{J}) \delta V - \sum_{i=1}^{c} (\mu_{i}^{i} / T^{J}) \delta n_{i}^{J} = 1.13$$

donde las variables termodinámicas T^J, p^J, μ_1^J son la temperatura, la presión y el potencial químico de la componente i en la fase j

Dado que la entropía es una variable extensiva, tiene un carácter aditivo entonces la entropía total es

1.14

1.15

$$s = \sum_{j=1}^{t} \delta s$$

La condición de máxima estabilidad (máxima entropía) puede establecerse como (ver apendice 1) .

> Ø **2** δΒ

sujeta a las restricciónes 1.10, 1.11, 1.12 .

Con el fin de considerar como independientes las variaciones de. E. V. n. se introducen 2+c multiplicadores de Lagrange que toman en cuenta las restricciones sobre esas variaciones .

$$\delta S = \theta \delta E + \xi \delta V - \sum_{i=1}^{c} \lambda_i \delta n = 0 \qquad 1.16$$

en donde θ, ξ, λ_i , (i = 1, 2, ..., c) son los multiplicadores de

Lagrange .

Al substituir en (1.16) las ecuaciones (1.10),(1.11), (1.12), (1.13) y (1.14) se tiene : $\sum_{i}^{l} \delta E^{i} / T^{i} + \sum_{i}^{l} (p^{i} / T^{i}) \delta V^{i} - \sum_{i}^{l} \sum_{i}^{c} (\mu_{i}^{i} / T^{i}) \delta n_{i}^{i} =$ 1. 17 $= \theta \sum_{i}^{\dagger} \delta E^{i} + \xi \sum_{i}^{\dagger} \delta V^{i} - \sum_{i}^{\dagger} \sum_{i}^{c} \lambda_{i} \delta n_{i}^{i}$ $\frac{1}{\Sigma_{i}}(1/T^{1} - \theta)\delta E^{i} + (p'/T^{1} - \xi)\delta V^{i} - \Sigma(\lambda_{i} - \mu'/T^{1})\delta m_{i}^{i} = 0$ 1.18 obteniendose 1.19 $(j = 1, 2, ..., \ell)$ $1/T^{J} = \theta$ 1.20

$$p_{j}^{J}T^{J} = \xi$$
 (j = 1,2,..., f)
 $\mu_{j}^{J}T^{J} = \lambda_{j}$ (j = 1,2,..., f), (i = 1,2,...,c) 1.21

De acuerdo con 1,19 la temperatura de todas las fases es <u> 1</u>#

misma

 $(j = 1, 2, \ldots, f)$

T^J = T por 1.19 y1.20 la presión en todas las fases es la misma 1.23

1.22

1.24

$$(j = 1, 2, \dots, r)$$

y facilmente por 1.19 y 1.21 el potencial químico de componente en todas las fases es el mismo د = د_α una

 $\mu_1^J = \mu_1$

de la antorior y para dos fases se tiene

T'		1 u	≖ T
µ 'i	açî	μ ⁿ i	$= \mu_i$
р'	12	p "	≈ p

La igualdad en la presión se cumple cuando la interfase es plana / la demostración se verá con mayor detalle más adelante .

1.25

Es conveniente tener expresiones que involucren efectos superficiales únicamente, para esto se debe tomar en cuenta los excesos superficiales, los cuales quedan definidos de la forma siguiente

$$E^{0} = E - E' - E''$$

 $S^{0} = S - S' - S''$
 $n_{j}^{0} = n_{j} - n_{j}''$
1.20

En las cuales E es la energía superficial total de la capa, S es la entropía superficial de la capa y las magnitudes n_j^s son los excesos de los componentes i en la capa .

En la ecuación (1.26), E es le valor real de la energía de la interfase, mientras que E' se refiere a la fase hipotética de espesor t' y E" a la fase hipotética de espesor t" en las fases I y II respectivamente .

El valor de V[®]es cero: por lo cual no se toma en cuenta. La ecuación que representa las variaciones de la energía interna en la superficie, tomando en cuenta que la superficie si cambia :

$$dE^{s} = TdS^{s} + \gamma de + \sum_{i}^{c} \mu_{i} dn_{i}^{s}$$
 1.29

El término y de representa el trabajo reversible que se hace sobre el sistema para crear una superficie adicional de área de

En el equilibrio, la variación total de la energía interna asociada al desplazamiento de la superficie es igual a cero, por lo tanto, la condición de equilibrio mecánico del sistema, compuesto de dos fases (I y II) homogeneas y de una capa superficial entre las mismas es la siguiente :

$$-p'dV' - p''dV'' + \gamma de = 0$$
 1.30

puesto que dV' = dV'' entonces :

Esta ecuación establece que en .1 una CASO variación en la superficie de separación ę, las presiones hidrostáticas en las fases volumétricas no son iguales entre **\$1**. Así mismo establece la relación entre las variaciones del volumen y la superficie .

Figura 1.3

Desplazamiento del elemento de superficie @ a lo largo de la normal N

Considerese una superficie de separación que no plana, figura 1.3 entonces :

$$\mathbf{k} = \mathbf{R}_1 \mathbf{\Theta}_1 * \mathbf{R}_2 \mathbf{\Theta}_2 \qquad 1.32$$

donde R₁y R₂son los radios principales de curvatura / Θ_1 y Θ_2 los angulos correspondientes y D_1 y D_2 los centros de curvatura.

Un aumento dV' en el volumen V' : se puede considerar como un desplazamiento dN de @ en la fase II, por lo tanto :

$$dV' = -dV'' = -dV''$$

1.33

la

1.38

1.39

para la cual N es el vactor de desplazamiento normal a superficie .

Si de es la diferencial de área del elemento desplazado entonces,

1.34 $d\mathbf{e} = (R_1 + dN)\Theta_1 (R_2 + dN)\Theta_2 - R_1\Theta_1 + R_2\Theta_2$

de donde :

$$d\theta = \{(R_1 + R_2)dN + (dN)^2\} \Theta_1 \Theta_2$$
 1.35

como (dN) << ($R_1 + R_2$) dN, ya que es un término infinitesimal de segundo orden, entonces :

$$d\mathbf{e} = (\mathbf{R}_1 + \mathbf{R}_2) d\mathbf{N} \boldsymbol{\Theta}_1 \boldsymbol{\Theta}_2$$
 1.36
de la definición de e se tiene $\boldsymbol{\Theta}_1 \boldsymbol{\Theta}_2 = \mathbf{e} / \mathbf{R}_1 + \mathbf{R}_2 as \mathbf{f}$

= $(R_1 + R_3)$ @dN/R₁ + R₂ = $(R_1^1 + R_2^1)$ dV 1.37 d@

Definiendo $K_1 = R_1 y$ $K_2 = R_2^{\dagger}$ como curvaturas principales de la superficie **Q** : entonces 1.37 quedará como :

$$d\Phi = (K_1 + K_2) dV'$$

de la condición de equilibrio mecánico, ecuación 1.31 y la de ecuación 1.38 se tendra que :

$$(p' - p'') = \gamma(K_1 + K_2)$$

en esta ecuación se observa que sí p' = p" entonces ($K_1 + K_2$) = 0 puesto que $\gamma \neq 0$ entonces K₁ + K₂= 0 lo cual sólo se cumple

cuando K = Ke= 0 lo que corresponde a una superficie plana (el otro caso no tiene significado físico)

Esta ecuación se utilizará posteriormente para determinar la ecuación que rige el llenado y vaciado de un poro de radio r .

1. 5. 3 EQUACIONES PARA LA CAPA SUPERFICIAL .

" Formula de adsorción de Gibbs " .

Si se integra la ecuación 1.29 sobre las variables extensivas, manteniendo las intensivas (${\rm T},\gamma,\mu_{\rm i}$) ; constantes se obtiene, para la energía interna :

$$E^{s} = TS^{s} + \gamma R + \Sigma \mu_{i} n_{i}^{s}$$
 1.40

Por lo tanto la diferencia total de la energía interna tiene la forma

$$dE^{\dagger} \propto TdS^{\dagger} + S^{\dagger}dT + \gamma dQ + Qd\gamma + \sum_{j}^{c} \mu_{j} dn_{j}^{\dagger} + \sum_{j}^{c} n_{j}^{\dagger}d\mu_{j} = 1.41$$

para que 1.27 y 1.41 séan compatibles es necesario que se cumpla la relación de Gibbs-Duhem :

$$\mathbf{s}^{\mathbf{T}}_{\mathbf{T}} + \mathcal{Q}d\gamma + \sum_{i}^{n} \mathbf{n}^{\mathbf{T}}_{i} d\mu_{i} = 0 \qquad 1.42$$

* Por lo tanto para un proceso isotérmico se tendre que :

$$(2d\gamma + \sum_{i}^{c} n_{i}^{*} d\mu_{i}) \approx 0$$
 1.43

Les ecuaciones 1.40 y 1.29 son las ecuaciones fundamentales de Gibbs para la capa superficial interfásica

Las cantidades E[°], B[°], n[°] dependen de la magnitud de la superficie Q, lo cual dificulta la comparación entre distintos sistemas por lo que es conveniente definir las cantidades específicas como :

 $E^{2}/dt = E_{s}$

donde **F**i es el número de moles por unidad de superficie de 1a componente "i" en la capa superfícial y es denominada "magnitud absoluta de adsorción de Gibbs " o simplemente " adsorción de Gibbs"

٩.

Es conveniente définir, ahora la energía libre de exceso de la capa superficial denominada " energía libre superficial " en forma anéloga a como se hace con la energía libre en la fase volumétrica, es decir,

$$F^{*} = E^{*} - TS^{*} = \gamma e + \sum_{i}^{c} \mu_{i} n_{i}^{*}$$
 1.45

de esta definición y de la ecuación 1,29 se ve que :

$$dF = G^{\dagger}dT + \gamma de + \sum_{i}^{s} \mu_{i} dn_{i}^{\dagger} . \qquad 1.46$$

Esta ecuación permite interpretar a la tensión superficial como la energía libre superficial por unidad de superficie

$$\gamma = (\partial F'/\partial e)$$
 i.47

Asímismo γ se puede tomar como la fuerza ejercida por unidad de longitud del contorno de la superfície de separación entre las fases .

Combinando las ecuaciones 1.43 y 1.44 se obtiene :

$$d\gamma = -\sum_{i}^{6}\Gamma_{idn_{i}}$$
 1.48

a esta ecuación se le danomina. " ecuación de adsorción de Gibb ".

Esta ecuación de adsorción, da las funciones termodinámicas de exceso que caracterizan a la interfase en términos de las derivadas de la tensión superficial .

La energía libre superficial por unidad de área es :

$$F_{a} = \gamma + \sum_{i}^{c} \mu_{i} \Gamma_{i} \qquad 1.49$$

De manera análoga se puede definir las funciones termodinámicas entalpía y energía libre de Gibbs para la capa superficial como :

$$H^{s} \approx E^{s} - \gamma e^{s} = TS^{s} + \sum_{i}^{s} \mu_{i} n_{i}^{s}$$
 1.50

$$\phi^* = E^* - TB^* - \gamma e = \sum_{j}^{c} \mu_{j} n_{j}^{*}$$
 1.51

y sus diferenciales :

$$dH^{s} = TdS^{s} - Qd\gamma + \sum_{i}^{s} \mu_{i} dn_{i}^{s}$$

$$dQ^{s} = S^{s} dT - Qd\gamma + \sum_{i}^{s} \mu_{i} dn_{i}^{s}$$

$$1.53$$

En el tratamiento termodinámico efectuado anteriormente no se han hecho consideraciones sobre la relación que existe entre las tensiones superficiales del adsorbente puro, sin partículas adsorbidas y el adsorbente con una película adsorbida. Para la obtención de dicha relación véase la figura 1.4.

La tensión superficial del adsorbente limpio es γ , y la tensión superficial del adsorbente con adsorbatoss γ como se muestra en la figura 1.4. γ tiende a disminuir e, mientras que γ tiende a aumentarla. Por otro lado desde el punto de vista molécular, las moléculas en "e" tienden a esparcirse en toda el área que les es posible las fuerzas del sólido limpio (las fuerzas de dispersión) son mayores en magnitud que las fuerzas de tensión superficial del adsorbato, esto es, $\gamma_{\rm c} > \gamma$. La presión bidimensional se define como $\psi = \gamma_{\rm S} - \gamma$; resultando $\psi > 0$, de manera análoga a la presión hidrostática p.

El término de trabajo en dos dimensiones, análogo al trabajo tridimensional pdV.[®] resulta :

Sí se introduce el término de trabajo – $\gamma_{\rm S}$ (d@) en la ecuación 1.29 se tiene que :

$$dE^* = TdS^* - \gamma_S dQ + \gamma dQ + \sum_{i=1}^{c} \mu_i dn_i^* \qquad 1.55$$

SUPERFICIE CON PAR-1 SUPERFICIE LIMPIA

Figura 1.4 Moléculas adsorbidas en una superficie

substitugendo 1.54 en 1.55

 $dE^{*} = TdS^{*} - \Phi d\Phi + \sum_{i=1}^{9} \mu_{i} dn_{i}^{*}$

Para la fase adsorbida, como ya se merciono. el termino análogo al trabajo mecánico pdV para un fluído tridimensional es 🜒(dæ). La presión bidimensional es el negativo de la tensión superficial común y tiene unidades de Edina/cml. En adsorción física, 🗘 es positiva (aun para adsorción de multicapas) ; - Ų A que el sistema efectúa trabajo sobre los alrededores durante el proceso conceptual de incrementar el área del adsorbente. Es posible expreser las funciones termodinámicas definidas anteriormente ; entalpía, energía libre, energía interna, etc, en función de la presión bidimensional 🕸 substituyendo el trabajo correspondiente a la tensión superficial - \$(de) .

Es importante hacer notar que a pesar de no existir una tecnica experimental para la presión bidimensional medir directamente, similar a las medidas mecánicas de la tensión superficial, la presión bidimensional 89 ហោង variable

termodinámica fundamental, como lo son la entropía o la energía interna .

CAPITULO 2

AREA ESPECIFICA Y ESTRUCTURA POROSA DE SOLIDOS

2.1 INTRODUCCION .

[®]Una de las más importantes aplicaciones de la adsorción física es, para la determinación del área (superficie) específica de un sólido, esto es, el área contenida en un gramo del sólido. La adsorción física proporciona un método sencillo cuya importancia científica e industrial es de gran relevancia por ser este un método fácil y confiable para determinar el área de un sólido.

Sin embargo otra propiedad física tan importamte como el area específica es la estructura porosa del material, que sí bien contribuye al área efectiva del material, debe considerarse como un factor aparte.

La distribución de diámetro de poro (D. D. P.), constituye una de las formas más eficientes para comprender el comportamiento y la evolución de un catalizador proporcionando también cierta información relacionada con la previsión de su actividad.

2.2 AREA ESPECIFICA .

Método de BRUNAUER EMMETT Y TELLER (BET) .

Esta teoría trata de explicar cuantitativamente las isotermas de adsorción, con el objeto de encontrar el volumen de la monocapa que cubre a un sólido y que es utilizado para calcular el valor del área específica. Esta teoría también proporciona información acerca de los valores promedio de los calores de adsorción en la primera capa

Brunauer, Emmett y Taller [1] se basaron en un modelo con determinadas características físicas para obtener la ecuación general de las cinco isotermas de adsorción mencionadas en la sección I.4 del capitulo anterior Utilizaron las características del modelo propuesto por Langmuir [2] para la adsorción monomolecular y que,son :

a) La superficie del sólido es plana .

b) El gas se encuentra en equilibrio interno y con la superficie a la temperatura T . La cual implica que la densidad del gas es uniforme y que la distribución de moléculas es maxuelliana .

c) Entre las moléculas del gas adsorbido y la fase adsorbida se supone un equilibric dinámico a una presión p es decir, el número de moléculas adsorbidas es constante en el tiempo .

d) Se considera además que independientemente del tipo de fuerzas que intervienen en la adsorción ésta es localizada, esto es, las moléculas no pueden desplazarse libremente sobre la superficie y no interactúan con las moléculas adsorbidas vecinas. Las características adicionales propuestas por BET son:

e) El calor de adsorción para todas las capas superiores a la primera capa es igual al calor de licuefacción.

E = E para i 2

f) las constantes de evaporación y condensación en todas las capas superiores a la primera son idénticas.

g) Cuando p es igual a la presión de vapor saturado p el vapor se condensa como si fuése un líquido ordinario sobre la capa adsorbida por lo tanto el número n de capas moleculares que se forma sobre la superficie se vuelve infinito.

El tratamiento desarrollado por BET fué desde el punto de vista cinético, enfocando su atención al proceso de intercambio entre las moléculas en la fase gaseosa y las moléculas adsorbidas.

El estado del sistema cuando se ha alcanzado el equilibrio para una presión dada se representa en la figura 2.1.

24

Figura 2.1 Representación gráfica del modelo de adsorción de BET.

Para deducir la ecuación de BET se considera inicialmente lo que sucede en S_o: En equilibrio se tiene que la cantidad de moléculas que se adsorben sobre S_oes igual al número de moléculas que se evaporan de S_t, esto es :

$$A_{ip}S_{i} = b_{i}S_{i}exp[-E_{i}/RT]$$

A y b son los coeficientes de condensación y evaporación respectivamente.

En S:

La cantidad de moléculas que se adsorben S_1 más la cantidad de moléculas que se evaporan de S_1 es igual a la cantidad de moléculas que se condensan en S_0 más la cantidad de moléculas que se evaporan de S_2

$$A_2 p S_1 + b_1 S_1 exp[- E_1/RT] = A_1 p S_0 + b_2 S_2 exp[E_2/RT]$$

hadiendo uso de 2.1 se tiene

$$A_{p} S_{i} = b_{p} S_{j} exp[- E_{o}/RT]$$

similarmente para S.

$$A_{3}p S_{2} = b_{3}S_{3}exp[- E_{3}/RT]$$

2.1

2.2

para S_i

4

$$A_i p S_{i...} = b_i S_i exp[- E_i / RT] 2.4$$

La superficie S total está dada por

$$S = \sum_{i=0}^{i=\infty} S_{i}$$

$$Va/Vm = \sum_{i=0}^{i=\infty} iS_{i}/S$$
2.5

de donde Va y Vm son el volumen adsorbido y el volumen de la monocapa por gramo de muestra respectivamente.

Para la deducción BET supusieron que

E 2 =	E3 =	Ei =	Ez
a 2 =	a ₃ =	aj	
b 2 ≕	b3 ==	b ;	

intodujerón las siguientes cantidades

g = b¦/A; = constante i>2 y = [A₁ /b₁] p exp[E₁/RT] x = [p /g] exp [E₂ /RT] 2.7

2.8

2.9

de modo que las ecuaciones 2.1 a 2.5 pueden escribirse como

8₀ = y 8₁ 6₂ = x 8₁

$$S_3 = x S_2 = x^2 S_1$$

 $S_1 = x^{i-1}S = x^{i-1}y S_0$

0

$$S_{I} = C x^{i} S_{o} para i > 0$$
 2.10

donde

$$C = C A_i / b_j] [g] exp [(E_i - E_i)/RT] 2.11$$

La ecuación 2.6 se puede escribir como

$$V_{a}/V_{m} = C S_{o_{1}} \sum_{i=1}^{i=1}^{\infty} i x^{i} / ES_{o} (1+C \sum_{i=1}^{i=1}^{i=1} x^{i}) 1$$
 2.12

La suma en el denominador es una progresión geométrica dada por

$$\sum_{i=1}^{i=0} x^i = x / [1-x]$$

y el numerador puede ser transformado por

$$\sum_{i=1}^{i=\infty} x^{i} = \chi(d/dx) \sum_{i=1}^{i=\infty} x = x/(1-x)^{2}$$

Substituyendo estos resultados en la ecuación 2.12 se obtiéne

Va/Vm = C X/[1-x][1+(c-1)] 2.13

£

Para la determinación de las constantes Vm y C. la ecusción 2.13 se escribe de la siguiente forma

x /Va[1-x] = 1/VmC + ([C-1]/VmC)x 2,13a

Una vez conocido Vm, el área específica de la muestra (S/W) se calcula por medio de la relación :

$$S/W = N \sigma_0 V m/V_0$$
 2.14

donde S es el área total de la muestra entre el peso de la misma. N es el número de Avogadro, σ_0 el área de la molécula del adsorbato y V_0 el volumen molar del gas a condiciones normales de presión y temperatura (22414 cc).

En este estudio el adsorbato utilizado es el nitrógeno cuya molécula tiene un área de 16.2 Å, si se llama $S_{BET} = S/W$ entonces la ecuación 2.14 dará :

Por medio de la ecuación 2.11 se puede obtener la diferencia entre el calor de adsorción de la primera capa y el calor de licuefacción del adsorbato y que es conocido como el calor neto de adsorción (E_-E_).

Sin embargo para este cálculo se hace la siguiente suposición :

$$A_1b_1/A_2b_1 \approx 1$$

por lo tanto :

$$C = exp(EE_1 - E_2)/RT$$
)

¥

$$(E_1 - E_2) = RTInC$$

La ecuación de BET es capaz de describir los tipos II y III de las isotermas de adsorción (sección 1.4) dependiendo solamente de los valores de la constante C.

2.16

La isoterma del tipo II se obtiene cuando $E_{\rm p}>E_{\rm p}$ y las del tipo III cuando $E_{\rm p}<E_{\rm p}$ Estos dos tipos de isotermas con completamente reversibles.

Para explicar los tipos IV y V se ha sugerido que las muestras que presentan este comportamiento llevan a cabo no solo una adsorción de multicapas sino también la condensación del gas en los poros dei adsorbente. Los dos tipos surgen de nuevo de las magnitudes relativas de Ej y E Cuando E >E se obtienen isotermas del tipo IV mientras que cuando E < c resultan las del tipo V [3].

Para valores pequeños de x y C>>1 la ecuación 2.13a se reduce a la ecuación de Langmuir .

La determinación de la ecuación de BET está basada en un modelo muy simplificado, sin embargo esta ecuación proporciona valores de la superficie específica más precisos que los obtenidos con la ecuación de Langmuir o cualquier otra de las teorías utilizadas para este tipo de determinaciones.

2.3 CONDENSACION CAPILAR.

En la adsorción física el análisis de la isoterma de adsorción es usado para el estudio de la estructura de materiales porosos. Tal análisis es posible, ya que la cantidad adsorbida a cierta presión sobre el área de un material poroso es mayor que la cantidad adsorbida sobre un material no poroso que contenga la misma área específica, pues los poros se llenan simultaneamente con líquido condensado por capilaridad y por adsorción de multicapas [4]

Para la posible condensación de un vapor en la superficie do una película. líquida de adsorbato en los poros es necesario determinar la presión de vapor en función de la curvatura de la superficie del líquido. Utilizando la condición de equilibrio mecánico de la superficie de separación líquido-vapor expresada en las ecuaciones (1.30) y (1.31) y suponiendo que en la fase I en la cual se encuentran los centros de curvatura es gaseosa y la fase II es una película líquida (figura 1.3).Entonces la diferencia de las presiones hidrostáticas en 1ª fase I y II es

$$\left(p' - p''\right) = \gamma \left(K_1 - K_2\right) \qquad 1.39$$

La presión del vapor sobre esta superficie en la fase I se determina por la magnitud del potencial químico del vapor

Cuando el vapor está en equilibrio con el líquido en la fase II, $\mu' = \mu''$, por lo tanto, d $\mu' = d\mu'' = RTd(ln p)$. Por otro parte ($\partial \mu'' / \partial p''$) = vm donde vm es el volumen molar del líquido. Por esto

$dp^{"} = (1/v_m) d\mu = (RT/v_m) d(lnp)$ 2.18

Para la fase líquida se integra desde una presión p correspondiente a la curvatura ($K_1 + K_2$) hasta la presion p correspondiente a una curvatura nula (superfície plana).Para la fase gaseosa la integración se realíza desde una presión de vapor p hasta la presión de saturación p y considerando a vm constante se tiene

 $p = p_0^{"} = (RT/vm) \int_{0}^{s} d(\ln p) = (RT/vm) \ln(p/p) = 2.19$

como para la superficie plana p_o "= p_o ' y la presión total en la fase gaseosa (vapor + gas inerte) no varía, esto es, p_o '= p'. De las ecuaciones (1.39) y (2.19)

$$(RT/vm)lnEp/p_3 = \gamma (K_1 + K_2)$$
 2.20

de donde

$$p = p_{s} \exp[-\gamma vm(K_{i} + K_{g})]/RT$$

De esta manera, con el aumento de la curvatura de la superficie concava del líquido, la presión del vapor sobre éste disminuye. Por lo consiguiente, sobre el menisco concavo el vapor se condensa a $(p/p_{p}) < 1$, es decir, en los capilares con superficies concavas, que tiene películas de líquido adsorbido, la condensación del vapor ocurre a presiones menores que en películas líquidas, planas. Esta circunstancia es la causa del fenómeno llamado condensación capilar

Para un menisco concavo esferoide de radio r_o, donde r_o es la distancia del centro de la semiesfera a la pared del poro, ambos centros de curvatura coinciden, es decir,K₁ = K₂ = $1/r_{o}$, de modo que K₁ + K₂ = $2/r_{o}$ figura 2.2a. Substituyendo esto en la ecuación 2.21 se tiene

$$(p_{p}) = exp(-2\gamma vm/RTr_{p})$$
 2.22

Para un sistema como el esquematizado en la figura 2.2b (poro cilindrico abierto en sus extremos) se forma una película de adsorbato de forma cilíndrica, donde una de las curvaturas principales es igual a cero, esto se debe a que uno de los radios de curvatura es infinito (el que va a lo largo del poro) y la otra que va del cilindro a la pared es $1/r_c$ figura 2.2b de aquí que K, $+ K_2 = 0 + 1/r_c = 1/r_c$ Substituyendo esto en 221 se tiene que

$$(p_c / p_a) = exp(-\gamma vm/RT r_c)$$
 2.23

De las ecuaciones 2.22 y 2.23 se tiene que la presión de vapor sobre un menisco esférico es menor que en una película de forma cilíndrica que tenga el mismo radio, por lo tanto $(p_{\phi} \to /p_{\phi}) < (p_{\phi} \to /p_{\phi})$.

En base a esta diferencia entre las presiones, para determinadas formas de meniscos puede conocerse las formas de los poros, como se verá en el capítulo siguiente .

Figura 2.2

Menisco esférico formado en un poro cilindrico cerrado en un extremo) Menisco cilindrico formado en un poro abierto en sus dos extremos

2.4 DISTRIBUCION DE DIAMETRO DE PORO (DDP) .

Como la cantidad de adsorbato condensado por capilaridad a una presión dada depende de las dimensiones del poro, interpretaciones adecuadas de la isoterma de adsorción y desorción pueden conducir a estimaciones bastante precisas de la distribución del diámetro de los poros.

El método experimental consiste en medir primero la isoterma de adsorción en la cual la presión se incrementa desde la región de bajas presiones hasta la presión de saturación $p_{\rm c}$ (una atmósfera para $N_{\rm p}$ a -76 K).

A la presión de saturación p. la estructura porosa se llena completamente por condensación capilar, por lo tanto el volumen adsorbido en ese punto proporciona una medida del volumen total de los poros. Posteriormente disminuyendo la presión en pequeños intervalos, se traza la rama de desorción.

En el año de 1945 Wheeler [5] propuso una teoría basada en la adsorción de multicapas, para obtener la distribución del tamaño de los poros. En primer lugar propuso que en cualquier punto de la rama de desorción de la isoterma,
todos los poros mayores que un cierto radio r_e están cubientos por una capa adsorbida de espesor " t ", mientras, que todos los poros menores que r_e, se llenan ροτ condensación capilar.En segundo lugar, ya que todas las paredes de los poros no llenos tienen una capa adsorbida de espesor " t ", sobre ellos, propuso que el radio del menisco en un poro lleno, no fuese el radio del poro r_c sino un radio menom r ≕r_c-t.En otras palabras, en la adsorción no se está tratando_econ poros de radio físico verdadero, sino con poros cuyo radio ha sído reducido por el espesor de la multicapa adsorbida t figura 2.3.Por esta razón Wheeler utilizó la ecuación de Kelvin para el radio efectivo del tubo interior que queda después la adsorción de multimolecular.

El tamaño del poro verdadero máximo, $r_{\rm c}$,que se llena por condensación capilar a una presión (p /p_) está dado por

2.24

 $= (-2 \gamma Vm/RTin(p/p_g)) + t$

Esto se obtiene apartir de la ecuación de Kelvin ecuación 2:14 substituyendo r, por (r, - t)

Figura 2.3

Esquema de un poro de radio real $\tau_{\rm c}$, reducido por el espesor multimolecular t dando el radio $\tau_{\rm k}$ de Kelvin

Los valores para la capa adisorbida de espesor tde gas de nitrógeno, requeridos para el cálculo de la distribución de poro se calculan como función de la presión relativa $(p/p_{\rm c})$.

En 1948 Schull y culaboradores [6] demuestran que las isotermas de adsorción para sólidos no poroso en los cuales no hay indicios de condensación capilar el cociente Va/Vm es función de la presión relativa donde Va es el volumen adsorbido y Vm es el volumen de la monocapa del material.

Los estudios de Schull sirvieron a de Boer y colaboradores [7] y E8] quienes agregaron al modelo de éste la suposición que la moléculas adsorbidas se acomódan en un empaquetamiento cerrado, esto es, asignáron la misma densidad que tiene el nitrógeno líquido a la capa adsorbida.

Bajo estas consideraciones t se calcula como.

t = (= /B)+104A = (MVESP/22414)[Ve/S]+10 A

2:15

donde

t es el espesor de la capa adsorbida.

🔳 es el volumen del líquido adse/bido en ml.

8 es el área específica del adsorbente en mº /g.

M es el peso molecular del adsorbato.

Vesp es el volumen específico del adsorbato en ml/g.

Va es el volumen adsorbido en mil de gas a condiciónes normales de presión y temperatura/g, de adsorbente.

Para el nitrogeno como adsorbato se tiene

E = 15.47+€Va/8] Á

Si se toma el árem BET (ecuación 2.15) el espesor es igual a

t = 3.54 + [Va/Vm] Å

En el presente trabajo se proporcióna un método para determinar la distribución de tamaño de poro.Las características de este método son las siguientes.

a) Se utilíza la isoterma de desorción.

b) Be supone que los poros son de forma cilíndrica.

c) Se supone como lo hizo Wheeler [5];que el volumen desorbido>

→ Va en cualquiér punto de la isoterma, calculado como volumen líquido, es

Va = Vc + V1

donde Vc es el volumen líquido que se desorbe capilarmente de poros de radio $r_{\rm c}$ y Vl es el volumen desorbido por multicapas de las paredes de los poros con vadios mayores que $r_{\rm c}$.

d) Cuando se inícia la desorción todos los poros se encuentran llenos de tal forma que Va = Vc.

e) El espesor t en cualquier punto de la isoterma se calcula por medio de la ecuación 2.18.

4) El cálculo de la DDP se realíza hasta un radio mínimo de 15 A E91

g) Los poros se clasifican en diferentes grupos en función de la presión.

El número j de grupos de poro que se calculan para una isoterma depende de la forma de la misma. El radio representativo del grupo j—esimo es el promedio aritmético de los extremos del intervalo, es decir,

2.26

$$f = (\overline{g}_{max} + \overline{g}_{min})/2$$

Tomando en cuenta que el volumen total desorbido durante el decremento j de presión Vaj es la suma del volumen desorbido capilarmente Voj y el volumen desorbido de las multicapas VI,

$$V_{a_1} = V_{c_1} + V_{1_{j-1}}$$
 2.27

Cuando se inícia la desorción, esto es, (p/p) = 1 todos los poros están llenos. Al bajar la presión a una presión (p/p), los poros de radio r, se vacían quedando en sus parades una capa adsorbida de espesor t_j . Como ya se menciono, en este paso Val = Vcl de tal forma que el volumen total del poro de radio r, es:

$$Vp = R_{ii} Vc_i = R_{ii} Va_{ij}$$
 2.29

donde R₁₁ está definido como

$$R_{11} = C \overline{r}_1 / \overline{r}_1 - t_1 2$$

de aquí

$$V\rho_1 = C \overline{\tau}_1 / \overline{\tau}_1 - t_1^2 Va_1$$

En el siguiente paso: al pasar a (p/p) con (p/p), con (p/p), p p p el volumen Vp_2 se calcula como

$$V_{P_2} = R_{22} V_{C_2} = C \bar{r_2} / \bar{r_2} - t_2 J^2 V_{C_2}$$
 2.32

pues en las paredos del poro permanéce una capa adsorbida de espesor t_o .

2.28

donde VI $_4$ es la cantidad desorbida de los poros de radio \overline{r}_4 al reducirse la capa adsorbida en ellos de un espesor t_4 al nuevo espesor t_2 figura 2.4 VI $_4$ se calcula como :

$$V_{i} = V_{p_{i}} (E_{p_{i}}^{2} - t_{2} / \bar{r}_{1}^{2} - E_{p_{i}}^{2} - t_{1} / \bar{r}_{1}^{2})$$

dă aqui

$$V_{p_2} = R_{22}(V_{p_2} - V_1) = R_{RE}(V_{p_2} - V_P \Gamma_1 - L_2/\Gamma_1 J^2 - \Gamma_1 - L/\Gamma_1 J^2 - 2.3)$$

Al reducirse la presión n veces (p/p) el volumen de poro Vpn sera

$$Vpn = R_{np} Vcn$$
 2.39

con.

$$Vcn = Van - V1_{n-1}$$

VI n- $_i$ es la cantidad que se desorbe de todos, los poros mayores que el radio τ_n al reducirse sus espesores t_{n-1} a un espesor t_n . EL volumen es entonces

$$V_{n-i} = \sum_{j=1}^{n-1} (LF_j - t_{j+1} / F_j)^2 - (F_j - t_j / F_j)^2)V\rho_j \qquad 2.37$$

y así la ecuación 2.36 queda como

$$V_{pn} = R_{n_{p}}^{2} (V_{an} - \sum_{i=1}^{n} F_{i} - t_{i} / F_{i+1}^{2} - E_{i} - t_{i} / F_{i}^{2} V_{p}$$

Al graficar Vpn contra $\tilde{\tau}_n$ se obtienen la distribución de diámetro de poro del material, $\tilde{\tau}_n$ según sea el caso se calcula por medio de las ecuaciones 2.22 o 2.23.

2. 36

2.38

Figura 2.4 Representación esquematica del mecánismo de desorción en poros de diferentes radios y el espesor adsorbido en cada una de las presiones correspondientes a esos radios.

El área de los poros de radio 🐈 es

8acum ≖ ∑Spj j=1

La medida Sacum sirve para determinar que tan exacto es el modelo empleado. Sacum se compára para ésto con el área BET (S_{BET}) la cual se considéra como el área real de la muestra.

El volumen total acumulado Vacum es la suma de todos: los Vpn.es decir.

2.40

2.41

2.42

vacum ≖ ΣVpj J=i

Como las medidas se realizan en terminos de volúmenes de gas adsorbido en condiciones normales de presión y temperatura, se deben convertir estos valores de volumen de gas a valores de volumen líquido

Viig = 0.001558V Ad CNPT

lo cual sólo se aplíca al nitrógeno.

CAPITULO 3

HITERESIS DE LA CONDENSACION CAPILAR.

3. 1 INTRODUCCION.

Un proceso presenta histéresis cuando al invertir la dirección de cambio de la variable independiente x y la variable dependiente toma valores diferentes a los obtenidos en el proceso inicial (figura 3.1 a).

Es usual encontrar, que cuando la variable independiente oscila entre un valor mínimo x_0 y un valor máximo x_m , la variable dependiente efectúa un rizo cerrado.

La histéresis puede observarse en todo el intervalo de valores de la variable independiente (figura 3.1 c) o estar confinada a un intervalo de valores limitado (figura. 3.1 d). En ambos casos el rizo que corresponde al intervalo máximo de valores de x sobre los cuales ocurre la histéresis es denominado rizo principal.

Los rizos de histéresis aquí estudiados son parecidos a los de la figura 3.1 d.

El fenómeno de histéresis del proceso de adsorción-desorción de la isoterma de adsorción se explíca si se supone que los poros del material son de forma cilíndrica abiertos en sus extremos (figura 2.2 b).

El llenado de este tipo de poros está gobernado por la ecuación 2.23

$$\ln x = -\gamma \sqrt{n/RTr}$$

después de alcanzada la presión de saturación, al disminuir la presión en la desurción en los poros se forma un menisco esférico (figura 2.2 a) y la ecuación que gobierna el vaciado de éste es la ecuación 2.22

2.23

Esta diferencia en las presiones a las que se efectúa el llenado y vaciado para un poro abierto del mismo radio explíca el fenómeno de histéresis de la condensación capilar.

Figura 3.1 Histéresis.

En base a dicha diferencia, de Boer [1] propuso varios grupos de poros que pueden generar ciertos tipos de rixos de histéresis. En la figura 3.2 se presente la clasificación de dicho rizos así como las formas de poros que los producen.

 Dado que de los rizos obtenidos en la experimentación sólo se encuentran rizos del tipo A, únicamente se describirá este tipo de rizo.

3.2 a RIZO DE HISTERESIS TIPO A.

Se caracteríza porque ambas ramas de la isoterma (adsorción-desorción) son perpendiculares al eje de la presión, la adsorción ocurre antes de que se alcance la presión de saturación y la desorción se efectúa a presiones

Una muestra que contenga poros cilíndricos cuyas entradas séan todas de las mismas dimensiones presentarán este tipo de isoterma.

El llenado y el vaciado están gobernados por las ecuaciones 2.23 y 2.22 respectivamente. La relación existente entre las presiones a la que ocurre el llenado y el vaciado para este tipo de poros es la siguiente

$$x_{des} = \left(x_{ads}\right)^2 \qquad 3.$$

1

En la figura 3.3 se presentan los tipos de poro que generan este tipo de rizo.

Formas de poro que generan un rizo de histéresis de tipo A.

3.2 b RIZO DE HISTERESIS TIPO F .

Este rizo que no pertenece a la clasificación de de Boer es el más común de encontrar y se caracteríza porque sus dos ramas adsorción-desorción son inclinadas como se muestra en la figura 3.4.

En el presente trabajo, cuando se tengan estos tipos de rizo se supondra⁻ que existe una distribución de poros cilíndricos abiertos de varios radios.

Figura 3.4 Rizo de histéresis del tipo F.

3.3 AREA ACUMULADA Sacum.

1

En la sección 2.4 se definió el area acumulada y como se calcula, también se mencionó la importancia que tiene para determinar la validaz del modelo de poro empleado para el cálculo de la DDP. En base a irregularidades en algunas formas de los poros mencionadas en el paragrafo anterior puede explicarse la igualdad o diferencia entre las áreas B_{BET} y Sacum.

3.3.1 CASOS DONDE Sacum = S

Si los capilares en consideración fueran realmente de forma cilíndrica, tendríamos

Sacum = SBET .

Sin embargo, los capilares de sección transversal poligonal, aquellos de la forma del grupo I, pierden durante la desorción el volumen condensado capilarmente a la presión correspondiente al radio del círculo inscrito :

3.11

donde no es el radio del cilindro inscrito y 1 la longitud del cilindro. El área real expresada en términos del radio del cilindro inscrito es :

Sreal = $2nlr_n$ (tan (180/n)

donde n es el número de lados del polígono, la razón entre ambas superficies es :

Scil/Sreal =
$$\pi/n(cotg(180/n))$$

para valores grandes de n cot [180/n] \longrightarrow n/ π entonces se tiene

Scil ~ Sreal

puesto que, para todo caso práctico Sreal = S_{BET} por lo que

Sacum ~ S BET

esta igualdad también puede ser válida para poros de los grupos III y V y en algunos casos para los grupos II y IV.

3.3.2 CASOS DONDE Sacum > S

Si se tienen capilares cilíndricos o de sección transversal poligonal pertenecietes a los grupos de poro mencionados anteriormente que produzcan o no histéresis. Los cuales se intersectan como se muestra en la figura 3.5 e y b

Figura 3.5 Esquema de un material cuyos poros se intersectan: a)poros cilíndricos b)poros de sección transversal poligonal.

hay aquí una cantidad de volumen al que no se le puede asociar una superficie, éste incrementa el valor de Sacum de tal forma que

Sacum > SBET

3.13

3.12

3.3.3 CASOS DONDE Sacum < S BET.

En este caso se consideran los grupos de poros II,IV,VI,y VII, en los que la parte esférica es considerablemente mayor que el cuello entonces, el valor de Sacum será menor (figura 3.6) debido a que la superficie de la esfera es

Figura 3.6

S = 3Vp / r

y na

8 = 2Vp/ т

por lo que

Sacum < SBET

3.14

CAPITULO 4

MATERIAL Y EQUIPO UTILIZADO .

4.1 INTRODUCCION

Entre los métodos empleados para medir el área específica, el volumen de poro y la distribución de diámetro de poro, se encuentran los métodos volumétricos, los que se basan en determinar el volumen de gas adsorbido o desorbido en condiciones de equilibrio termodinámico a temperatura constanta. Hay varios métodos experimentales para obtener isotermas de adsorción-desorción y estos se basan en las distintas técnicas empleadas.

Las isotermas que se estudian en el presente trabajo fueron determinadas por el método volumétrico estático, razón por lo que sólo se detallará este método.

4.2 METODO VOLUMETRICO ESTATICO .

Este método se denomina estático por que los puntos de la isoterma presión relativa (p/p_g) vs volumen adsorbido por gramo de adsorbente (Va/W) se obtiene al estar en equilibrio termodinámico un volumen determinado de gas en contacto con el adsorbente.

Las isotermas se determinan con un equipo automático cuyo diagrama se muestra en la figura 4.1.

Para describir con mayor claridad los pasos experimentales se usará un diagrama esquematizado en la figura 4.2

TUBO PARA MEDIR LA PRESION DE VAPOR

Figura ¥.1

Esquema del equipo utilizado para la determinación de las isotermas de adsorción.

Se tiene el siguiente procedimiento experimental.

a) La muestra se calienta y desgasifica, antes de colocar el baño, con el objeto de limpiar la superficie de esta de cualquier substancia que se encuentre fisisorbida, que afecte la porosidad, el área de la muestra y además haga que la interacción adsorbato-adsorbente no séa directa. Para tal efecto, se abren las valvulas VI y V2 se hace vacío a través de la válvula V2 y se mantienen cerradas las válvulas V3 y V4 ; al mismo tiempo la muestra se calienta, entre 100 y 400 C. La desgasificación se considera adecuada cuando se llega a uma presión final de 10⁻⁴ mmHg.

b) El volumen Vd (volumen de la tubería)es siempre el mismo y se calcula al momento de fabricarse el aparato.

El volumen Vi (el volumen comprendido entre el baño de nitrógeno líquido y la válvula V1) se determina por expansión de una cantidad conocida de He a temperatura constante.

c) Una vez que la muestra se ha limpiado se cierran las vélvulat Vi y V2, y se abre la válvula V4 para introducir He en el espacio Vd hasta una cierta presión (generalmente es la presión atmosférica) y luego se cierra la válvula. Estos tres primeros pasos son los de preparación.

d) Después se abre la válvula VI y el He se expande hasta ocupar el espacio Vd+Vi+Vs (éste último es el volumen de la celda sumergido en el nitrógeno. líquido) a una nueva presión. Bi se considera al He como gas ideal, es fácil calcular el volumen Vs a partir de las temperaturas, de los volumenes Vd y Vi, asi como de la presiones medidas.

En el volumen Vs no se incluye al volumen de la muestra .Esta determinación siempre se lleva a cabo al iniciar el experimento.

e) Se limpia de nuevo todo el sistema, ahora del He que se uso en la determinación de Vs.

f) Las válvulas V1,V2,V3 y V4 están cerradas y se introduce a través de la válvula V3 una cantidad de adsorbato (nitrógeno) en el espacio Vd que se encuetra a la temperatura Td ahí se mide la presión que tiene p: La cantidad de gas se determina a través de la relación p; Vd = nRTd. R es latonstante de los gases. Se abre ahora la válvula Vi que comunica a la tubería de distribución con la celda de la muestra y el gas se expande en el nuevo volumen teniendo una nueva presión p. Parte de este gas se adsorbe en la muestra la cual se encuentra a una temperatura baja Ts, en este caso la del nitrógeno líquido. En esta etapa el gas se encuentra ahora parte en la tubería de interconexión a una temperatura intermedia Ti, parte en el espacio sobre la muestra a temperatura baja, y parte adsorbido. Un balance de material para comprender el cambio de la primera condición a la segunda es:

 $(p_1 Vd/Td) = (p_2 Vd/Td_) + (p_2 Vs/Ts) + (p_2 Vi/Ti) + (760Va/273)$

74. 1

en la cual Vs. Vi. Va són respectivamente, el volumen del espacio libre sobre la muestra, el volumen de la tubería interconectora y el volumen del gas adsorbido, este último expresado en condiciones normales de presión y temperatura 760 mmHg y O C respectivamente.

Cuando el proceso se repite con una segunda cantidad de gas, la presión p_c que fue la presión final en el paso anterior se convierte anora en la presión de equilibrio p_c ; con lo cual la ecuación para el balance del material queda como

 $p_e V s/T s + p_e V i/T i + (p_i V d/T d)$

Debido a que el nitrógeno no se comporta como gas ideal a la temperatura del nitrógeno líquido (76 K) es necesario introducir un factor de corrección . La precisión adecuada se obtiene al multiplicar el volumen del gas que se encuentra sobre la muestra por el factor (1+kp) en donde k es el factor de corrección de la ley de los gases perfectos y pes la presión de equilibrio.

Después de introducir dicho factor en la ecuación 4.2 y haciendo el cálculo para la unidad de masa se obtiene

 $V_{a/W} = [273/W 7603[((p_{i} - p_{f})(Vd/Td) - (p_{f} - p_{g})((Vs/Ts) + (Vi/Ti)) - (kVs/Ts)(p_{f}^{2} - p_{g}^{2})]$ $= (kVs/Ts)(p_{f}^{2} - p_{g}^{2})$ $= (kVs/Ts)(p_{f}^{2} - p_{g}^{2})$

donde W es el peso de la muestra en gramos . El factor de corrección adecuado para el nitrógeno es de 6.6 * 10⁸ E11.

Por medio de la ecuación 4.3 se pueden calcular cualquier número de puntos experimentales de Va en función de p. La isoterma de adsorción, la da una grafica de Va/W vs. p_f/p_s , donde p_c es la presión de saturación del adsorbato.

4. 3 DESCRIPCION Y CARACTERIZACION DEL MATERIAL UTILIZADO.

Dado que el proposito del presente trabajo está enfocado a la caracterización de las propiedades morfológicas de la boehmita la cual es el punto de partida en la obtención de la alúmina-y se proporciona en esta sección una breve explicación de la estructura de ambas.

Los diferentes tipos de alúminas, son el producto final de la deshidratación de hidróxidos de aluminio tratados a diferentes temperaturas y atmosferas . Las de mayor importancia en la catálisis son cinco, las cuales se mencionan en el siguiente ésquema

TRIHIDROXIDOS	MONOHIDROXIDOS
Gibbsita	Boehmite
Bayerita	Diaspora
Nordstradita	

Existe una variedad de boehmitas las cuales dependen de la cristalinidad y esta a su vez depende de la historia de la preparación y el secado de la muestra . Lippens [2] hace una clasificación general de las bohemitas y distingue las siguientes clases .

a) Boehmita gelatinosa –

b) Boehmita microcristalina

c) Boehmita bien cristalizada

d) Boehmita pseudocristalina

La boghmita utilizada en este trabajo es una boghmita comercial microcristalina la cual fue sometida a varios tratamientos térmicos que se describiran posteriormente.

4. 3. 1 LA ESTRUCTURA DE LA BOEHMITA.

Las estructuras de los monohidratos de aluminio son muy parecidos entre sí . Cada aítomo de aluminio se encuentra rodeado en forma octahédrica por átomos de oxígeno .

Existe un método sencillo para describir las estructuras.

En la dirección del eje X hay una cadena HO-AlO-O como muestra la figura 4.3 a y b .

Ņ

HIDROXILO

Dos de estas cadenas pueden ser puestas en posición antiparalela una con otra de tal manera que los átomos de O de la segunda cadena esten en el mismo nivel de los átomos de Al de la primera cadena figura 4.3 c. De esta manera se obtiene un tipo de polímero de molécula doble esquematizada en la figura 4.3 d y e . Las cademas dan en ambas modificaciones una distancia de 2.85 A en la dirección del eje X.

La diferencia entre las dos modificaciones es debida a un arreglo de las moléculas dobles como se muestra en la figura 4.4 en ambos casos el eje X es perpendicular al plano que se ha pintado . El plano s, está dado por la posición del hidrógeno de únion.

Representación esquemática de la estructura cristalina de la boshmita

4. 3. 2 LA ESTRUCTURA DE LA ALUMINA

Los óxidos de aluminio conocidos comúnmente como alúminas han sido caracterizadas según su fase cristalográfica. En el presente trabajo sólo se trataran aquellas que se obtienen de la deshidratación de algún hidróxido de aluminio

La clasificación es la siguiente :

 a) Alúminas de baja temperatura obtenidas de la deshidratación de un hidróxido a una temperatura que no exceda a los 600 C a esto grupo pertenecen las alúminas ρ: χ : η y γ

b) Alúminas de alta temperatura (las cuales son casi oxidos de aluminio Al $_2$ D $_3$) obtenidas a temperaturas entre 900 y 1000 C, se distinguen en este grupo las alúminas θ_a ay δ

De estas fases cristalográficas la de mayor importancia industrial es la alúmina- γ por presentar baja actividad catalítica, área espécífica y porosidad mayores.

La red cristalina de la alúmina-γ es muy parecida en su estructura a la red de una espinela de MgAL O E33 .

La celda principal de una espinela se forma como resultado de un empaquetamiento cúbico compacto de 32 átomos de oxígeno con 16 de aluminio a la mitad de las configuraciones octahédricas y 8 átomos de magnesio en los huecos tetrahédricos, lo cual quiere decir que la espinela cuenta con 24 posiciones catiónicas. El óxido de aluminio-7 tiene 21 1/3 posiciones catiónicas y según Verwey [4] la celda elemental de la alúmina-7 tiene 2 2/3 de posiciones octahédricos en concordancia con la siguiente representación de la celda elemental

$$A1_{8} \langle A1_{13} \rangle \langle 2 \rangle \langle 3 \rangle \langle 3 \rangle \rangle O_{32}$$

4. 4 PREPARACION DE LAS MUESTRAS.

Como sólido de partida para este estudio, se empleo un monohídrato comercial (las especificaciones dadas por el fabricante a temperatura ambiente aparecen en la tabla 4.1)

TABLA 4.1

Características de la boehmita catapel S.B.

superficie específica	290	m ∕g
perdida por ignición	25	%
810	0. 0003	%
FeO	0.005	%
Na D	0.004	%
8	0. 01	%
Carbón	0. 01	%
Tamaño de partícula	120	mesh

El tratamiento térmico de la muestra se llevo a cabo en un horno de programación linemi de temperatura esquematizado en la figura 4.5

Figura 4.5

1. - Horno. 3. - Placa porosa. Jabón). 2.- Reactor . 4.- Medidor de flujo (pélícula de

5. - Termopar. 6. - Controlador programador de temperatura.

7. - Dispositivo electrico para girar el reactor.

8. - Válvula de control de flujo.

9.- Sistema de secado del gas portador.

10. - Sistema de alimentación del gas portador.

En cada caso se tomaron alicuotas de 30 g cada una, antes de iniciar el tratamiento se ajusto el flujo de aire seco cuya velocidad espacial fue 76.9 h (GHVS); estabilizado el paso de gas a través de la muestra se procedio a elevar a la temperatura deseada; las muestras fueron tratadas a diferentes temperaturas durante el mismo intervalo de tiempo en este caso 20 horas. El enfriamiento se llevo a cabo en presencia del mismo gas y a la misma velocidad espacial.

CAPITULO 5

RESULTADOS EXPERIMENTALES

5. 1 INTRODUCCION.

En este capítulo, se presentan los resultados de los estudios realizados, a nueve muestras, las ocho muetras mencionadas en la sección 4.4 y una alúmina comercial.

Los análisis se dirigieron al estudio de los cambios en las propiedades estructurales de la boehmita con respecto a la temperatura de tratamiento, a través de estudios de adsorción.

También se presentan resultados de estudios termogravimétricos y rayos X, los cuales complementan los de adsorción. A través del análisis termogravimétrico se obtuvo la temperatura a la cual ocurre el cambio de fase cristalina. Este se realizó con un analizador térmico modelo 990 aunado con el módulo de análisis termogravimétrico modelo 951 (marca Dupont).

En base a los resultados obtenidos con las isotermas de adsorción y de termogravimetría, se realizaron los estudios de rayos X a temperaturas menores y mayores al cambio de fase para corroborar éste. Dicho análisis se llevo a cabo con un difractómetro D-500 (marca Biemens). La interpretación de las lineas de difraccion obtenidas en el análisis de las muestras se efectuó de acuerdo al manual Powder Diffraction File Bearch ; publicado por Noit Commite on Powder Diffraction Standards en 1975.

En la table 5.1 se presentan, las características estructurales estudiadas y el método utilizado, para la medida de éstas. TABLA 5.1

PROPIEDAD ESTRUCTURAL

METODO DE MEDIDA

Area específica

Morfología de poros

Distribución de diametro de poro

Cambio de estructura

estructura cristalina

Isoterma de nitrógeno (Método de BET) Isoterma de nitrógeno (Forma del rizo de histéresis) Isoterma de nitrógeno

Análisis termogravimétrico Isoterma de nitrógeno

Difracción de rayos X

5. 2 RESULTADOS DE LOS ESTUDIOS DE ADSORCION .

En esta sección se presentan las isotermas de adsorción, así como las distribuciones de diámetro de poro de las muestras mencionadas en la tabla 4.2, se agregan la isoterma y la distribución de una alúmina comercial con el fin de comparar sus propiedades con las de las boehmitas. En el apendice 2 se muestran los valores experimentales de las isotermas obtenidas (Presión relativa ve Volumen adsorbido) correspondientes a las isotermas de las muestras estudiadas.

En el apendica 3 se proporcionan los resultados del programa utilizado para el cálculo de la distribución de diámetro de poro cuyos listados aparecen en el apendice 4

Además se presentan los resultados de termogravimetría así como los de rayos X.

5.2.1 ISOTERMA DE ADSORCION.

Puesto que las isotermas de adsorción representan diversos fenómenos estas pueden dividirse en varias secciones, las que se muestran en la figura 5.1

Figura 5.1

Secciones de una isoterma de adsorción del tipo IV.

La sección DA, donde A=0.35 en presión relativa es considerada como el límite hasta el cual puede aplicarse el método BET y lo cual corresponde a la formación completa de la monocapa. Otros autores entre los cuales destaca Dubinin fil considera que en esta sección de la isoterma se efectúa, en el caso de existir, el llenado de microporos.

En esta sòcción el fenómeno es siempre reversible, y es función exclusiva del potencial de adsorción. El punte A=0.35 es el límite inferior al punto de cerradura del rixe de históresis.

La sección AD corresponde à adsorción multimolecular y/a. condensacion capilar.

La sección DE evidencia el llenado complete de los pores en los cualos se puede formar un radie de curvatura finito.

La socción EF corresponde al llenado de poros de dimensionas grandos, que para propositos prácticos poséen un radio de curvatura infinito, es decir, se consideran como uma superficie plana, de aquí que en esta sección el proceso de adsorción-desorción ses reversible. Cuendo se alcania el punto D y hasta el punto D, la cantidad duserbido previene de peros en los que se forad un menisco.

Dubinin E23 clasificó estas secciones en función de las eigensiones de los poros. En la table 5.2 se presenta esta división y se relaciona con las secciones antes mencionadas de la isoterma.

....

00°c. З

TABLA 5.2

Radio en A

Grupo

Intervalo de presión

Microporosr < 15DAMesoporos15 < r < 400ADmacroporosr - > 400DF

A continuación se presentan las isotermas obtenidas para cada una de las muestras estudiadas .

El análisis de las isotermas experimentales, para una mejor comprensión de las propiedades obtenidas, se hace de la siguiente manera :

5.2.2 FORMA DE LA ISOTERMA.

Las isotermas reportadas se clasifican debido a su forma de acuerdo a BDDT (sección 1.4) como isotermas del tipo XV observandose entre ellas dos grupos característicos.

Las muestras tratadas entre los 100 y 400 C componen el primer grupo y las que fueron tratadas arriba de 400 C formaran el segundo grupo.

La muestra prueba queda comprendida en el segundo grupo.

5. 2. 3 FORMA DEL RIZO DE HISTERESIS.

Los rizos de histéresis se agrupan de acuerdo à la clasificación descrita en el capítulo 3 como se muestra en la tabla 5.3.

MUESTRA

TIPO DE RIZO

F

F

F

F

A

A

A

A

A

Boehmita en aire 100 C Boehmita en aire 200 C Boehmita en aire 300 C Boehmita en aire 400 C Boehmita en aire 450 C Boehmita en aire 500 C Boehmita en aire 600 C Boehmita en aire 700 C Alúmina comercial

El cambio en la forma del rizo ocurre a la temperatura de 450 C.

5. 3 DISTIBUCION DE DIAMETRO DE PORO.

Esta se calcula utilizando el método propuesto en la sacción 2.4 suponiendo que los poros del material son de forma cilíndrica para todas las muestras. A continuación se presentan las distribuciones de las muestras estudiadas,

Las distribuciones de las muestras anteriores son muy paracidas entre sí : en adsorción presentan una forma de exponencial decreciente y en desorción todas presentan la misma forma irregular . A través de su isoterma, no puede asociarse un grupo específico de poros, sin embargo las distribuciones de estas muestras se pueden asociar a una forma específica de poro que se muestra en la figura 5.2 a y b.

Figura5.2

Esquemas del tipo de poro que pueden generar las distribuciones de las muestras tratadas entre 100 y 400 C.

Este tipo de poro proporciona una distribución parecida a las de las muestras tratadas a 100, 200, 300 y 400 C, dado que esta estructura se empieza a llenar a la presión correspondiente a r, en donde se llena la parte más estrecha completamente y después se va llenando paulatinamente hasta alcanzar el radio r, ; en este caso, el volumen de la parte más angosta es el que contribuye en mayor cantidad en todas las distribuciones, así se explica la forma exponencial decreciente en la rama de adsorción.

Si se supone que las bocas de estos poros son de tamaño intermedio, figura 5.2 5, entonces pueden explicarse los picos que aparecen en las distribuciones. Estas entradas tienen dimensiones similares en las muestras tratadas a 100, 200 y 300 C y se encuentran entre los radios 21.25 A (el máximo principal) y 28.75 A (el máximo secundario).

Para la muestra tratada a 400 C las dimensiones $T_1 \cdot T_2$ y T_3 se han incrementado tal vez por la perdida de agua estructural.

• •

La muestra tratada a 450 C presenta cambios notables en la forma de sus distribuciones con respecto a las de menor temperatura de tratamiento. En admorción se observan cuatro picos cuyos máximos están en 26.25 A, 33.75 A, 41.25 A y 52.5 A en estos el volumen de poro decrece conforme aumenta el radio, se observa un corrimiento en el inicio de la distibución hasta un radio de 23.75 A.

En desorción se presentan solo dos picos cuyos máximos están en los radios 36.25 A y 57.5 A, en el primero se encuentra contenido aproximadamente el 90 % del volumen total de poro. La distribución sigue corriendose a radios mayores, esta inícia en 31.25 A.

Si se supone que la distribución la origina una sola forma de poro en la muestra, como se esquematiza en la , figura 5.3

Figura 5.3

Esquemas del tipo de poro que pueden generar las distribuciones de las muestras tratadas entre 450 y 700 C.

donde r_2 y r_2 tienen dimensiones muy parecidas. Este tipo de poro se llena primero el radio r_2 y después se llenan completamente cuando se alcanza la presión correspondiente al radio r_2 . La suposición de que r_2 y r_3 son muy parecidos se corrobora en la distribución ya que en ésta los picos que presentan en desorción también aparecieron en adsorción.

Para las muestras tratadas a 500, 600 y 700 C puede aplicarse la misma forma de poro solo que los radios, r_4 , r_2 y r_3 reducen el intervalo de variación en sus dimensiones y son muy cercanas entre sí.

La distribución de diámetro de poro de la alúmina comercial es similar a la de la muestra tratada a 450 C salvo que en la alúmina los picos que corresponden a los radios r_i y r_i en adsorción están muy cercanos entre sí y el pico en desorción cuyo radio corresponde a r₃ (ver figura 5.3) esta en medio de estos lo que implica.

que se puede interpretar como un poro cilíndrico.

El pico que aparece a 52.5 A es casi el mismo en adsorción y desorción, lo que corrobora la idea que esta muestra posee poros de forma cilíndrica.

5.4 TERMOGRAVIMETRIA.

El análisis termogravimétrico (TGA) es uno de los métodos pertenecientes a una técnica más general conocida con el nombre de análisis térmico el que permite la detección y medición de los cambios en las propiedades físicas y/o químicas de un material como función de la temperatura.

El TGA consiste en medir la variación de masa en función de la temperatura de tratamiento.

La figura 5.4 corresponde al termograma de la muestra empleada, en ella se observan dos lineas, la superior (línea I) proporciona la variación porcentual en peso en función de la temperatura de tratamiento; la inferior (línea II) da información de la variación de peso con respecto a la variación de la temperatura (dP/ dT).

Le muestra empleade en este análisis fue la boehmita a 100 C y el intervalo de temperatura de tratamiento fue E 30 C a 1100 C J con un flujo constante de nitrógeno de 25 ml/ mim.

La linea II (la derivada) presenta tres picos, el primero, situado entre E 30 C y 90CJ corresponde en la línea I a una perdida del 10 % en el peso total.

En el intervalo E 90 C \sim 430 C 3 la velocidad de perdida es uniforme (línea II) y ésta corresponde al 11 % del peso total (línea I).

El segundo pico E 430 C - 520 C 3 en la línea II presenta un cambio en la velocidad de perdida de peso, sin embargo en la línea I no se detecta perdida en el peso en este intervalo de temperatura.

Termògrama de la Boshmita en aire 100°c.

El segundo pico [430 C - 520 C] en la línea II presenta un cambio en la velocidad de perdida de peso lo que corresponde como se observa en la línea I a una zona de estabilidad térmica, esto es, se mantienen constantes sus propiedades al aumentar la temperatura en este caso el peso no varía.

El tercer pico [520 C - 590 C] de la línea II corresponde en la línea I a una variación del 3 % del peso total.

Entre E 590 C - 1100 C] este intervalo se considera de estabilidad térmica.

5. 5 RAYOS X.

En base a los cambios detectados en la forma de las isotermas, de las DDP y en el termograma se realizaron los estudios de rayos X.

En la figura 5.5 se presentan los difractogramas de las siguientes muestras :

El difractograma I corresponde a la boehmita tratada a 300 C, los picos de esta muestra corresponden de acuerdo al manual Powder Diffraction File Search a una boehmita, la anchura de sus picos evidencian el carácter microcristalino de la muestra.

El difractograma II corresponde a la boehmita tratada a 450 C el número de picos es insificiente para caracterizar la muestra.

El difractograma III es el de la boehmita tratada a 700 C, de acuerdo a la posición de su picos y al historial de su preparación este corresponde a una alúmina-y

CAPITULO 6

DISCUCION DE RESULTADOS Y CONCLUSIONES.

6. 1 DISCUCION DE RESULTADOS .

En la tabla 6.1 se presentan las propiedades estructurales que se obtuvieron por medio de la isoterma de adsorción así como de la DDP.

En la columna II se presenta el área específica de cada muestra medida utilizando el método BET (sección 2.3). En la figura 6.1 se presenta la gráfica de la superficie específica como función de la temperatuya de tratamiento.

Figura 6.1

Se observan dos cambios pronunciados de área entre los intervalos de temperatura (200 C-300 C) y (450 C-500 C).

El área específica de la alúmina comercial esta comprendida entre los valores de las muestras £450 C-500 CJ.

ŝŧ.

I	II AREA BET MHH 2/g	ଆମ (ମ୍ପ୍ରୁ)HISTE	IV (E _I - E _L) Col/mol	V total X CC/g	V ** CC/g	V1 deet. CC/g	YIII Vt edet. CC/g	DC V micro CC/g	T V *** CC /g	TEC V macro CC/y
				÷				**		
BOEHMITA - 100°c	284.56	0.3666	736.1	0.3745	0.3367	0.3224	0.30 98	0.1493	0.1566	0.0368
BOEHMITA - 200°c	283.02	0.3533	690.8	0.4233	0.3499	0.3389	0.3207	0.1490	0.1546	0.0718
BOEHMITA - 300°c	243.14	0.3866	735.6	0.3522	0.2936	0.2862	0.2710.	0.1227	0.1325	0.05 67
BOEHMITA - 400°c	231.32	0.3633	624.0	0.3901	0.3233	0.3064	0.2906	0.1276	0.1274	0.0756
BOEHMITA ~ 450 c	233.75	0.5500	893.8	0.5410	0.4746	0,4454	0.4056	0. 1228	0.1708	0.0654
BOEHMITA - 500°c	. 189,74	0.6333	708.6	0.5414	0.4745	0,4508	0.3882	0.1042	0.1687	0.0662
BOEHMITA - 600°c	197.84	0.6333	683.0	0.5980	0.6485	0.4678	0.4407	0.0917	0,1620	0.0569
BOEHMITA - 700°c	189.35	0.6400	666.3	0.5677	0.4903	0,4659	0.4070	0.0955	0.158 9	0.0865
AI - COM-	219.14	Q.5100	896.8	0.5725	0.5113	0.4665	0.4245	Q.1147	0. 1436	0,0583

TABLA 6.1

ın.

* VOLUMEN TOTAL CALCULADO HASTA LA SATURACION

(P/B

HH VOLUMEN CON EL CUAL SE CALCULA LA DISTRIBUCION DE DIAMETRO DE PORO A UNA

*** VOLUMEN HASTA EL PUNTO DE CERRADURA DEL RIZO DE HISTEREDIS

T ESTOS VOLUMENES SE CALCULARON AL ANOSTAR EL AREA ACUMULADA DE GADA MEETRA CON SU ANEA B.E.T. (APENDICE # 4)

En la columna III están reportadas las presiones del punto de cerradura del rizo de histéresis, los cambios aparecen entre las temperaturas de tratamiento de 450 C el primero y el segundo en 500 C estos valores se grafican en la figura 6.2.

El valor de este punto para la muestra prueba es muy cercano al de la muestra tratada a 450 C.

En la columna IV se da la diferencia entre las energías de adsorción E₄ y la energía de condensación del adsorbato E₉ que se obtienen por medio del método BET (ecuación 2.16). Estos valores no varian notablemente entre sí lo cual esta de acuerdo con que el fenómeno que se presenta es el mismo en todas las muestras.

En la figura 6.3 se presenta la gráfica del volumen total adsorbido hasta la saturación (columna V) línea I.

El que se obtiene al convertir el volumen de gas adsorbido a volumen líquido (ecuación 2.42).

En esta gráfica se distinguen dos tipos de comportamiento

a) El comprendido entre las temperaturas de 100 C -400 C.

b) El comprendido entre las temperaturas de 450 C -700 C.

Este volumen para la muestra prueba, queda comprendido entre las temperaturas [500 C-600 C].

A su vez en esta figura se presentan los valores del volumen utilizado para calcular la DDP columna VI de la tabla 6.1 y ésta se representa por la línea II.

Las lineas III y IV de la misma gráfica son los volúmenes totales acumulados de desorción y adsorción (columnas VII y VIII) respectivamente y que se obtienen al ajustar el área total acumulada que es obtenida por la ecuación 2.40 con el área BET.

Estas últimas lineas II, III y IV presentan el mismo comportamiento que la linea I.

El círculo que aparese en cada linea es el valor obtenido para la muestra prueba en el proceso correspondiente.

A continuación en la tabla 6.2 se presentan los errores porcentuales del volumen total acumulado para cada rama, con respecto al volumen utilizado para calcular la DDP

....

TABLA 6.2

Muestra	error % Vacum (De	s)error % Vacum (Ads)
Boehmita en aire 10	DC 4.24	7. 9
Boehmita en aire 20	OC 3.14	8. 3
Boehmita en aire 30	OC 2.52	7.6
Boghmita en aire 40	0 C 5.22	10. 11
Boehmita en aire 45	OC 6.15	14. 53
Boshmita en aire 50	DC 4,99	18. 18
Boshmita en aire 60	0 C 10.76	18.46
Boshmits en aire 70	OC 4.97	16. 98
Alúmina comercial	8.76	16. 97

VOLUMEN DE MICROPOROS .

Las columnas IX y X de la tabla 6.1 proporcionan los volumenes de microporos (volumen adsorbido hasta el punto 0.35 en presión relativa) y el volumen adsorbido hasta el punto de cerradura del rizo de histéresis respectivamente los que se grafican el la figura 6.4

La línea I representa el volumen de los microporos y la línea II el volumen adsorbido hasta el punto de cerradura del rizo de histéresis. Tienen un comportamiento similar en el intervalo E 100 C- 400 CJ, estas lineas evidencian una reducción en sus valores, conforme aumenta la temperatura; hay un cambio pronunciado entre los 200 C y 300 C el cual se observó en sus distribuciones (ver sección 5.3). En el intervalo 400 C - 450 C hay un cambio notable: mientras que el volumen de microporos conserva el mismo comportamiento, el otro volumen aumenta considerablemente.

Arriba de 450 C ambos volumenes se reducen conforme se incrementa la temperatura, aunque esta reducción es más notable para los microporos.

Para la alúmina de prueba, estas propiedades medidas quedan esquematizadas por círculos en cada una de las lineas y están comprendidas entre los 400 C y los 500 C.

6. 2 CONCLUSIONES.

Por medio de la forma de las isotermas, de la DDP, del punto de cerradura del rizo de histéresis y el volumen de microporos, se pudo comprobar el cambio de estructura porosa en la boehmita al ser sometida a diferentes tratamientos térmicos, este cambio se puede establecer entre los 450 C y 500 C, esto se corroboro por las técnicas de termogravimetría y difracción de rayos X que en este trabajo se emplearón como técnicas auxiliares.

Se observó así mismo que este cambio en la estructura porosa coincidio con un cambio en la fase cristalina.

Se encontro^r una gran similitud en las propiedades estructurales medidas de la alúmina comercial (testigo) y la boehmita tratada a 450 C.

El corrimiento del punto de cerradura del rizo dø histéresis así como el corrimiento de la distribución de diámetro de poro explican la reducción del volumen de microporos, "esímismo esta reducción explica el decremento en el área ospecífica, ésto último puede comprobarse fácilmente si se piensa en un rollo de repuestos de boligrafo en el que el radio interno del repuesto sería el radio del microporo, en conjunto estos repuestos contienen una mayor área que la de todo el cilindro formado por la agrupación de estós, sin embargo, el volumen del conjunto es mayor que el volumen de todos los microporos y esto se debe a : que las paredes de los microporos ocupan un volumen determinado ver figura 6.4

Figura 6.64

Sistema de poros que explica como al aumentar el volumen de poro se reduce el área específica a)microporos ('mayor área menor volumen'' b)mesoporos (macroporos) '' menor área mayor volumen''.

El modelo de poros cilíndricos, es adecuado utilizarlo para isotermas del tipo IV de la clasificación de BDDT, además de acuerdo a los resultados obtenidos al ajustar el área acumulada con el área BET se puede decir que en general los poros contenidos en todas las muestras pueden representarse por un modelo cilíndrico.

Para el cálculo de la DDP el programa utilizado proporciona mejores resultados en la rama de desorción para todas las muestras. En general puede decirse que cuando se tienen isotermas del grupo IV puede emplearse indistintamente el modelo de poros cilíndricos en adsorción o desorción dando buenos resultados.

La fisisorción proporciona un método adecuado para detectar cambios de estructura porosa, además en algunos casos puede utilizarse como un método complementario para detectar cambios de fase cristelina. Por medio de este método se pueden observar cambios graduales de muestra a muestra que por medio de termogravimetría y rayos X no se observan.

Finalmente y de acuerdo con la DDP se determinó una cota mínima para la validez de la ecuación de Kelvin, ésta se encontro a una presión relativa cercana a 0.35 lo que proporciona un radio de 10 A.

REFERENCIAS

CAPITULO # 1

1	Infor	rmatior	n Bulleti	in # 37	IUPAC	part II	august	1974.	
2	J. E.	Lennar	rd-Jones	Trans.	Faraday	Soc 28,	333, 193	2.	
з	J, E.	Lennar	d-Jones	Trans.	Faraday	Soc 24,	92, 1928		
4	F. Lo	ondon 7	Z physik Z, Physil	63, 245 Chem 1	, 1930 (1, 222, 1	930.			
5	Appli Gubbi	ied Sta ins Mo	tistical Graw Hil	Mechan 1 1973	ics, The pag 97 (om <mark>as m. f</mark> y siguien	Reed and I	Keith I	E. .
6	S. Dr Soc.	unauer 62, 17	L. S. D. 723, 1940	nming W.∶).	S. Demii	ng y E. 1	Teller J.	Amer.	Chem.
7	P. H.	Emmet	ty 8.J.	Brunaue	r J. Am	er. Chem	Soc. 59,	1553,	1937
8	T. L.	Hill .	J. Chem.	Phys. 1	7, 520,	1949.			8° .
9	D. H.	Evere	tt Trans	Faraday	Soc. 4	5, 453, 19	750.		
10	T. L.	Hi11 .	J. Chem.	Phys. 4	, 211, :	1952.			
		·		.*	,				
	CAF	TULO		2					β
1	S. Br		r, P.H. E	Emmett y	E. Tel:	ler J. A	ner. Chem	Soc.	60,
-	3041	1738.		-					
2.	it. La	ingmu 11	r J. Amei	. Chem.	80C. 31	, 226/,), 1361,	1916 y 1918.		
3	Funda págir	imentos 14 830	v de fisi V siguio	coquimi ntes:	ca Maron	1 y Pruti	ton Limus	a 1973	
4. –	B. F. 1967.	Robert	ts Journa	l of Co	loid and	i Interfa	se Scien	c# 23,	266,
5	A. Wh A. A. A	.S. Co	Presènta Inferenci	tion at s junio	Catalys 1945 y	is Simpo Junio 19	osia Gibs: 746.	on Isla	ind
6	C. G. S 1948.	Shull,	P. B. E1k	in y L.C	Roess .	J. Amer.	Chem. Bo	c. 70,	1405
7	B. C. 3, 32	Lipper 2, 1964	s. 9. G.	Linsen	y J. H. a	le Boer .	Jounal of	Catal	ys i *
8	B.C. 4, 64	Lipper 13, 196	187 J. H. 55.	de Boer	y T. Di	singa Jo	unal of (Catalys	Bis [°]
9	M. M. 309,	Dubini 1966.	in 20 Th	Congres	s of I.	U. Pure	and Appl.	Ch em	10,

CAPITULO # 3

 J.H. de Boer "The Shapes of capillares" in D.H. Everet y F.S. Stone "The Stucture and Properties of Porous Materials" Butterworth London 1958.

4 CAPITULO

- 1. CRC Handbook of Chemistry and Physics 59th Edition 1978-1979 CRC Press.
- 2. B.C. Lippens Thesis Doctoral, Thecnological University of Delft 1961.
- 3. C. Kittel Introduction Solid State Physics paginas 474-476 5th Edition J. Wiley and Sons Inc.

4. - E.J.W. Verwey, Z. Kristallogr. 110, 197, 1958.

86

5 CAPITULO 4

1. - Referencia # 9 del capítulo 2

Kadlec y M.M. Dubinin Jounal of Colloid Interfase Science 4, 1969. 0. 31. 2. -

APENDICE 1

LA ENTROPIA

Si se considera para un ciclo arbitrario la desigualdad

en donde la igualdad funciona para un ciclo reversible y dG/T se identifica con la diferencial de la función de cestado entropía. Si asi_mismo se considera la siguiente desigualdad

$$S(B) = \int_{0}^{B} dG / T$$
 2

1

A

5

siendo O un estado de equilibrio llamado estado de referencia es posible mostrar que: S(C) - S(B)=∫dQ/T B

ya que de la definición (2) se tiene:

$$S(C) = \int_{0}^{C} dQ/T$$

y de (3) se tiene:

$$\int_{B}^{c} dQ/T = \int_{C}^{c} dQ/T + \int_{C}^{c} dQ/T = \int_{C}^{B} dQ/T + \int_{C}^{c} dQ/T + \int_{C$$

Para un proceso en general formado por una parte reversible y otra irreversible se tiene:

donde I y R denotan los procesos irreversible y reversible respectivamente, de (3) se tiene:

$$\int_{C}^{B} dQ/T = [S(C) - S(B)]$$

por lo tanto substituyendo (6) en (5) se tiene:

$$\int_{B}^{C} dQ/T < (S(C) - S(B))$$

*si el sistema se encuentra aislado entonces dQ = Q.

O & S(C)~S(B) o análogamente S(B)≥S(C) de donde se puede inferir que la entropía de un sistema aislado siempre aumenta, en caso de que la transformación sea reversible, la entropía puede permanecer constante.

6

7

Cuando un sistema aislado se encuentra, en el estado de minima entropía, no puede sufrir otra transformación ya que cualquier transformación producira un decremento en la entropía. Así, se tiene que el estado de máxima entropía es el estado más estable para un sistema aislado.

BUEHMITA TRATADA EN AIRE-100 C

	Peso	DE	LA	MUESTRA	:	0. 1744	Q
RE	SICN	DE	SAI	TURACION	:	578.48	mmHg

ISOTERMA	DE ADSORCION	ISOTERMA DE DESORCION			
P/P8	VOL. ADSORBIDD CCC/G CNPT1	P/P8 V	OL. DESORBIDO ICC/0 CNPTJ		
	•	1.0016	240. 38		
0. 9849	215.06	0. 9853	216.71		
0. 9841	214. 78	0. 9759	216. 43		
0. 9776	214.64	0. 9678	216. 18		
0. 9710	214.26	0. 9596	215.83		
0. 9645	213.87	0. 9572	215.38		
0, 9580	213.54	0. 9486	215, 79		
0, 9396	212.83	0. 9335	215. 59		
0. 9249	212. 18	0. 9180	215. 25		
0. 9041	211.17	0. 8956	215.00		
0. 8784	207. 12	0. 8707	214. 64		
0. 8474	204. 97	0.8430	214.08		
0. 8070	197.15	0. 8038	213. 27		
0. 7615	185.23	0. 7659	211.76		
0, 7039	168. 16	0. 7015	207. 35		
0, 6309	148.29	0. 6325	200. 62		
0. 5489	129, 69	0. 5523	190. 31		
0. 4569	113.32	0. 4547	132. 55		
0. 3618	99. 30	0. 3499	97.18		
0. 2059	80.12	0. 2006	78.62		
0. 1463	73. 32	0. 1393	71.60		
0.0756	64. 93	0. 0798	64.25		

APENDICE 2

DATOS EXPERIMENTALES

La exactitud en las medidas de presión es del 0.002 % en medidas de 0 a 800 mmHg.

La precisión en las medidas de peso es del 0.0001 g.

La desviación estandar estimada entre medidas realizadas, con el mismo equipo sobre la misma muestra no excedio del 2%.

89.

BOEHMITA TRATADA EN AIRE-200 C

PES	DE LA MUESTRA :	0. 0863	G
PRESIC	IN DE SATURACION :	600.86	mmHg
ISOTERMA	DE ADSORCION	ISOTERM	A DE DESORCION
P/PS	VOL ADSORBIDO ECC/G CNPTJ	P/PS	VOL. DESORBIDO ICC/G CNPTI
		0.9992	271.73
0. 9848	223. 24	0. 7848	225.64
0. 7856	223. 21	0. 9768	224.91
0, 9788	222. 84	Q. 9684	224. 58
0. 9720	222. 46	0. 9596	224.65
0. 9652	222. 07	0. 9512	224.31
0. 9584	221.69	0. 9584	224.29
0. 9401	220. 95	0. 9304	223. 83
0. 9253	220. 29	Q. 9184	223.77
0. 9053	219. 57	0. 8956	223. 21
0. 8801	217.27	0. 8704	222.88
0. 8530	213. 22	0. 8424	222. 47
0. 8098	203. 94	0. 8020	222. 09
0. 7639	190. 77	0. 7636	21 9. 61
0. 7063	170.47	0. 7008	21 4. 74
0. 6382	150.68	0. 6299	206. 91
0, 5612	131.62	0. 5545	178. 29
0. 4662	114.06	0. 4564	129. 12
0. 3779	100.69	0. 3510	97.30
0. 2103	79.43	0. 2026	78. 51
0, 1526	72. 70	0. 1357	70.36
0. 0797	63. 40	0. 0830	63.69

BOEHMITA TRATADA EN AIRE-300 C

PESO	DE LA MUESTRA	0.0926 (3
PRESION	DE SATURACION	: 590.64	mmHg
ISOTERMA D	E ADSORCION	ISOTERM	A DE DESORCION
P/PS Va (L. ADSORBIDO CC/G CNPTI	P/PS	VOL. DESORBIDO CCC/G CNPTJ
	•	0. 9969	226. 08
0. 9854	187. 22	0. 7899	190. 28
0. 9845	187. 43	0. 9764	198. 81
0. 9780	187.10	0. 9682	188. 53
0. 9719	186. 39	0. 9601	188. 25
0. 9649	186. 44	0. 9516	188. 34
0.9584	186, 11	0. 9586	188. 30
0. 9399	185. 80	0. 9303	188. 01
0. 9257	185. 15	0. 9187	197. 81
0. 9056	184. 38	0. 8950	197. 79
0.8806	182. 64	0. 8703	187. 29
0. 85 36	179. 90	0. 8424	187. 03
0.8112	172.07	0. 8040	186. 05
0.7662	161.45	0. 7661	184. 62
0.7081	145. 27	0. 6991	180. 34
0.6402	128. 47	0. 6278	173. 83
0.5627	112.76	0. 5508	152.42
0. 4670	97.77	0. 4546	109, 63
0. 3806	86. 56	0. 3495	80. 18
0. 2114	68. 98	0. 1983	63.88
0. 1539	63.45 🍍	0. 1351	57.65
0. 0817	56. 20	0. 0821	51.92

BOEHMITA TRATADA EN AIRE-400 C

PESO	DE	LA MUESTRA	:	0. 0931 [,]	G
PRESION	DE	SATURACION	:	601.83	តា៣អព្វ

ISOTERMA	DE ADSORCION	ISOTERMA D	E DESORCION
P/PS V	OL. ADSORBIDO ECC/G CNPTJ	P/PS VO C	L. DESORBIDO CC/G CNPT1
		1.0120	256. 81
0. 9890	205. 99	0. 9886	208.28
0. 9820	205. 54	0. 9767	207.48
0. 9796	205.27	0. 9681	207.64
0. 9727	205.00	0. 9599	207.05
0. 9653	205. 08	0. 9567	207.09
0. 7599	204. 43	0. 9488	207.29
0. 9397	203. 90	0. 9328	206. 99
0. 9258	203.06	0. 9177	206. 92
0. 9054	202.36	0. 8951	206. 55
0. 8793	200. 10	0. 8705	206. 23
0. 8549	196. 20	0. 8462	205. 93
0. 8086	186.08	0. 8061	204. 95
0. 7602	171.09	0. 7586	202. 45
0. 7044	151.69	0. 7021	197.85
0. 6372	131.30	0. 6305	188. 05
0. 5623	113.08	0. 5542	149. 81
0. 4657	95.86	0. 4561	105. 70
0. 3771	82. 59	0. 3505	78. 56
0.2105	61.89	0. 2029	60.40
0. 1540	55. 80	0. 1350	52. 98
0. 0781	47. 77	0. 0828	47. 39

BOEHMITA TRATADA EN AIRE-450 C

PESO	DE	LA MUESTRA	:	0.1110 G	
PRESION	DE	SATURACION	;	591.94 mmHg	

ISOTERIA	DE ADSORCION	ISOTERMA I	DE DESORCION
P/PS V	OL. ADSORDIDO LCC/0 CNPT1	P/P8 V0	DL. DESORBIDO
•		0. 9 980	347. 27
0. 9847	303. 91	0. 9851	305. 50
0. 9847	304. 06	0. 9765	305. 25
0. 9781	303. 34	0. 9682	304. 70
0. 9707	303. 30	0. 9596	304. 39
0. 9641	302. 57	0. 7583	303. 75
0. 9571	302. 15	0. 9513	304. 17
0. 9406	301.03	0. 9303	303, 59
0. 9249	300. 49	0. 9187	302. 99
0. 9027	298. 90	0. 8748	302. 76
0. 8738	294.06	0. 8704	302.29
0. 8462	285. 03	0. 8423	301.61
0. 8091	261. 85	0. 8031	299.26
0. 7569	214. 51	0. 7594	293.40
0.7014	169.79	0. 7059	272.04
0. 6293	132.56	0. 6370	164.83
0. 5558	110.79	0. 5542	114.87
0. 4644	93. 42	0.4508	92.61
0. 3770	82.09	0. 3465	79.26
0. 2101	65, 65	0. 1945	64. 39
0. 1516	59. 96	0. 1369	58.79
0. 0805	52. 61	0. 0843	53. 07

BOEHMITA TRATADA EN AIRE-500 C

P	ESO DE LA MUESTRA :	0. 1132	Q
PRES	ION DE SATURACION :	595. 97	mmHg
ISOTER	MA DE ADSORCION	ISOTERM	A DE DESORCION
P/PS	VOL ADSORBIDO ECC/G CNPTI	P/PS	VOL. DESORBIDO [CC/G CNPT]
		1.0045	347. 52
0.9913	304. 98	0. 9837	304.82
0.9843	306. 79	0. 9763	304.67
0.9773	306. 59	0. 9674	304. 62
0.9707	306. 08	0. 9631	304.48
0. 9642	305.55	0. 9407	302. 66
0. 9576	305.03	0. 9497	302. 51
0, 9419	304.22	0. 9345	302.39
0. 9252	302.48	0. 9122	302.01
0. 9025	301.48	0. 8962	302. 61
0. 877i	297.26	0. 8683	302. 52
0. 8433	285.06	0. 8424	302. 71
0. 8047	242. 19	0. 8043	300. 45
0. 7571	176.88	0. 7661	293. 12
0. 7011	134.05	0. 6942	185. 41
0. 6351	108.70	0. 6433	121. 61
0. 5604	91.82	0. 5479	92.01
0. 4687	78. 51	0. 4505	77. 59
0. 3819	66.66	0. 3440	66.10
0. 21 13	53. 54	0. 1943	52. 96
0. 1537	49. 13	0. 1357	47. 71
0. 0803	43.06	0. 0841	42. 49

BOEHMITA TRATADA EN AIRE-600 C

PESO	DE LA MUESTRA	0. 1269	G
PRESION	DE SATURACION	596. 94	mmHg
ISOTERIJA I	E ADSORCION	ISOTERM	A DE DESORCION
P/PS VI	DL.ADSORBIDO (CC/G CNPT]	P/P8	VOL. DESORBIDO [CC/0 CNPT]
		0. 9996	384. 34
0. 9877	345. 67	0. 9857	347. 80
0. 981 1	345.10	0. 9763	347. 55
0. 9807	34 4 . 97	0. 9681	347.00
0. 9741	344. 40	0. 9595	346. 72
0. 9 6 68	343. 81	0. 9565	346. 73
0. 9598	343. 51	0. 9491	346. 43
0. 9396	342, 21	0. 9335	346. 05
0. 9232	340. 96	0. 9175	345. 52
0. 8791	337. 37	Q. 8774	345. 01
0. 8719	321.34	0. 8703	344. 01
0. 8474	295.23	0.8444	342. 34
0. 8039	221.26	0. 8129	335. 33
0. 7579	159.13	0. 7606	295. 32
0. 7007	124.44	0. 7098	156. 58
0. 6352	104.42	0. 6332	103. 79
0. 5597	87. 56	0. 5484	84. 18
0. 4692	77.70	0. 4558	71, 43
0. 3791	68. 93	0. 3448	59. 79
0. 2103	55.46	0. 1954	46. 95
0. 1520	50. 55	0. 1368	41.81
0. 0805	44. 24	0. 0845	36. 62

BOEHMITA TRATADA EN AIRE-700 C

PESO	DE LA MUESTRA :	0. 1083	G
PRESION	DE SATURACION :	593. 16	mmHg
ISOTERMA	DE ADSORCION	ISOTERM	A DE DESORCION
P/PS V	OL. ADSORBIDD [CC/G CNPT]	P/PS	VOL DESORBIDO ICC/G CNPTI
		1.0000	357. 99 🕏
0. 9877	312. 93	0. 9807	315. 31
0. 9852	312. 75	0. 9745	314. 92
0. 9786	312. 25	0. 9712	314. 99
0. 9721	311.76	0.9630	314, 66
0. 9633	310. 60	0.9547	314.16
0. 9604	311.35	0, 7518	314. 13
0. 9399	310.06	0, 9325	313. 77
0. 9247	308. 81	0. 9210	313. 60
0. 8979	305.35	O . 8946	312. 79
0. 8749	295. 73	0. 8708	312.00
0. 8446	270. 51	0. 8432	310. 47
0. 8039	212. 43	0.8102	302. 45
0. 7569	157.71	0.7662	277.35
0. 7008	123. 44	0. 7117	160.95
0. 6371	102.87	0. 6316	106. 43
0. 5654	88. 12	0. 5527	86. 93
0. 4675	75.05	0. 4518	73. 37
0. 3821	66. 52	0. 3439	62.80
0. 2108	52. 91	0. 1934	50, 86
0.1545	49. 17	0. 1360	46.15
0. 0773	41.48	0, 0839	41.38

ALUMINA COMERCIAL-SE-C

PESC	DE LA MUESTRA :	0. 0957	G
PRESION	N DE SATURACION :	, 594. 67	mmHg
ISOTERMA	DE ADSORCION	ISOTERM	A DE DESORCION
P/PS \	VOL. ADSORBIDO ICC/G CNPTI	P/PS	VOL. DESORBIDO [CC/G CNPT]
		0. 9988	367. 48
0. 9938	326. 97	0. 9850	330. 02
0. 7854	326. 70	0. 9761	329. 81
0. 9812	326. 20	0. 9688	328. 24
0. 9731	325. 61	0. 9641	328. 11
0. 9670	324. 63	0. 9529	327.86
0.9612	323. 76	0. 9509	327. 31
0. 9424	323. 61	0. 9350	326. 98
0. 9285	322. 99	0. 9170	326. 78
0. 9073	321. 36	0. 8770	326. 71
0.8776	318. 20	0. 8676	326. 43
0. 8286	286. 08	0.8448	325. 16
0. 7888	215.26	0. 8028	323. 89
0. 7535	170. 76	0. 7585	302. 87
0. 7040	136.86	0. 7044	243. 87
0. 6412	115.50	0. 6345	148. 15
0. 5612	99. 11	0. 5517	107. 18
0.4707	86. 87	0. 4547	88, 63
0. 3795	76. 65	0. 3479	74. 78
0. 2105	61. 62	0. 1995	59.35
0. 1526	56.40	0. 1370	53, 55
0. 0786	47.18	0. 0785	47.18

97

į

A P C E Э ε M D ĭ

.

CCC	PR	OGRAMA PARA EL CALCULO DE LA DISTRIBUCION DE DIAMETRO DE POP	20
č		MODELO DE PUROS CILINDRICOS "CARLOS MARTINEZ"	
č		X=P/PS PRESION RELATIVA	
č		V=VOLUMEN DESORVIDO	
č		VO=V EN X=0.9666 EN DESORCION	
C ·	•	DIMENSION XA(20), VA(20), XIA(36), VIA(36), DIF(36), T/(36), VPA(36), SUMVA(36), SUMSA(36), SA(36), R(36), RDAD(36), REXP(36) DIMENSION XD(20), VD(20), XID(36), VID(36), TD(36), VPD(36), SUMVD(36), SUMSD(36), SD(36), RD(36), RMA(36), RMD(36) CHARACTER*30 NMUEST COMMON /VM/VM	
C C		LECTURA DE DATOS LEE EL NOMBRE DE LA MUESTRA Y LA ISOTERMA DE ADSORCION.	
C 808 807		READ(5,809, END=4000)NMUEST, VM FORMAT(A30, F10, 0) D0 10 I=1,19 READ(5,*)XD(I), VD(I) CONTINUE	
Ĉ		GENERA 33 PRESIONES PARA LA INTERPOLACION DE DESORCION	n an
C		DO 40 J=1, 33	
40 12		READ(5,*) RDAD(J) CONTINUE DO 12 I≂1,19 READ(5,*)XA(I),VA(I) CONTINUE	
C		GENERA 33 PRESIGNES PARA LA INTERPOLACION DE ADSORCION	
C 42		DO 42 J=1,33 READ(5,*) RDAD(J) CONTINUE	
00000		GENERA 33 VOLUMENES INTERPOLADOS EN DESORCION DE LOS DATOS EXPERIMENTALES.	
Č Č	+	CALL CDDPD(XD, VD, XID, VID, -9. 53, RMD, RD, VPD, SUMVD, SD, SUMSD, TD, RDAD, 1)	DIF
C C C		GENERA 33 VOLUMENES INTERPOLADOS EN ADSORCION DE LOS DATOS EXPERIMENTALES.	
с. с	+	CALL CODPA(XA, VA, XIA, VIA, -4. 765, RMA, R. VPA, SUMVA, SA, SUMSA, TA, ROAD)	DIF
Č		GENERA 33 VOLUMENES INTERPOLADOS EN DESORCION	
2020	•	SE DETERMINA EL ESPESOR TA QUE ES IQUAL AL ESPESOR TO EN EL DE LA ECUACION DE KELVIN.	LIMIT
~ ·	+	CALL CODPD (XD, VD, XID, VID, -9. 53, RMa, RD, VPD, SUMVD, SD, SUMSD, Ta , RDAD, 2)	DIF
č		SE IMPRIMEN RESULTADOS	
u ·		WRITE(6,620)NMUEST WRITE(8,#)32 WRITE(6,600) DD 120 I=1,32 WRITE(6,615)RMA(I),YPD(I),SUMYD(I),SD(I),SUMSD(I),I	
Ć		WRITE(6.610)HMA(1), VPA(1), SUMVA(1), SA(1), SUMSA(1)	
		Pu -	

.

C	SE IMPRIME EL ARCHIVO PARA GRAFICACIÓN
U .	IF (VPA(I), LE. 0. 0000001)THEN WRITE(8,*)L.0
	WRITE(8, *)I+1,0. ELSE
	WRITE(8,*)I, VPA(I) WRITE(8,*)I+1, VPA(I)
	END 1F IF (VPD(I), LE. 0.0000001)THEN WRITE(8, *)I, 0. WRITE(8, *)I+1, 0.
	ELSE WRITE(8,*)I, VPD(I) WRITE(8,*)I+1, VPD(I) END IF
120	
	IF (VPD(1), LE. 0. 0000001) THEN WRITE(8, *) I, 0. WRITE(8, *) I+1, 0. FISE
	WRITE(8,*)I,VPD(I) WRITE(8,*)I+1,VPD(I) END IF END DO
C C	FORMATOS
600 600	FORMAT(1H1,11(/),43X,A30,4(/),25X, 'RAMA DE ADBORCION',29X, + 'RAMA DE DESORCION') FORMAT(1X,2(/),10X, 'RM',9X, 'VP',6X, 'VPACUM',5X, 'SP',5X, + 'SPACUM',5X, 'RM',7X, 'VP',6X, 'VPACUM',6X, 'SP',5X, 'SPACUM'
	+ ,2X,'GRUPD DE',/ + ,10X,'A',9X,'CC/G',6X,'CC/G',4X,'M**2/G',3X,'M**2/G'
610	+ / 5%, 'A', /%, 'CC/G', 6%, 'CC/G', 5%, 'M##2/G', 3%, 'M##2/G', + 4%, 'PORO', //) FORMAT(144-8%, 55 2, 2%, 58 4, 2%, 58 4, 2%, 57 3, 2%, 57 3)
615	FORMAT(56X, F6. 2, 2X, F8. 6, 2X, F8. 6, 2X, F7. 3, 2X, F7. 3, 5X, 12) FORMAT(2X, /)
4000	GO TO BOB WRITE(6;*)'SALIDA DEL PROGRAMA' CALL EXIT END
Č.	SUBROUTINE INTER(X, XI, V, VI, NDAT)
CCCC	SUBRUTINA DE INTERPOLACION LINEAL PARA DETERMINAR Los volumenes para el calculo de la distribución de Diametro de Poro.
Č.	VARIABLE :
CCCCC	X - PRESION RELATIVA EXPERIMENTAL XI - PRESION RELATIVA DE INTERPOLACION V - VOLUMEN ADSORBIDO EXPERIMENTAL VI - VOLUMEN ADSORBIDO INTERPOLADO NDAT - NUMERO DE DATOS
C	DIMENSION X(20), V(20), XI(36), VI(36)
	DO 30 I=1, 19 IF (XI(J), LE, X(I)) GO TO 20
10	$\begin{array}{l} X1 = X(I-1) \\ X2 = X(I) \end{array}$
	Enter (XOM XI(J) F1= V(I-1)
¥	VI(J)= ((X2-X0)*F1 + (X0-X1)*F2)/(X2-X1) GD TO 40
50	IF (XI(J).NE.X(I)) GO TO 25 VI(J)=V(I)
25	GU 10 40 IF(I.EG.18)GO TO 10 CONTINUE
4ŏ	ČONTINUE RETURN
· · ·	END SUBROUTINE PRESIA(XA, VA, XIA, TA, RDAD, REXP)
C C C	SE CALCULAN LAS PRESIONES DE INTERPOLACION DE ADSORCION

VARIABLE PRESION RELATIVA EXPERIMENTAL RADIO CALCULADO EN ADSORCION POR MEDIO DE LA ECUACION DE KELVIN PARA ADSORCION VOLUMEN ADSORBIDO EXPERIMENTAL RADIO EXPERIMENTAL CON EL QUE SE CONSTRUYE LA DISTRIBUCION DE DIAMETRO DE PORO EN ADSORCION ESPESOR DE LA CAPA ADSORBIDA XA RA -VA REXP TA DIMENSION XA(20), VA(20), XIA(36), TA(36), RDAD(36), REXP(36) COMMON XO, TO COMMON XV, TO REAL LNXAI DD & I=1, JJ LNXAI=ALDG(XA(I)) REXP(I)=-4.765/LNXAI+(VA(I)/VM)*3.54 IF ((REXP(I)-RDAD(J)))2,2,6 XIA(J)=EXP(4.765/((VA(I)/VM)*3.54-RDAD(J))) TA(J)=(VA(I)/VM)*3.54 GO TO 5 CONTINUE CONTINUE CONTINUE XIA(34)=XO TA(34)=TO RETURN END SUBROUTINE PRESENT. SUBROUTINE PRESID(XD, VD, XID, TD, RDAD, REXP, iop) SE CALCULAN LAS PRESIONES DE INTERPOLACION DE DESORCION VARIABLE : PRESION RELATIVA EXPERIMENTAL RADIO CALCULADO EN ADSORCION POR MEDIO DE LA ECUACION DE KELVIN PARA ADSORCION VOLUMEN ADSORBIDO EXPERIMENTAL RADIO EXPERIMENTAL CON EL QUE SE CONSTRUYE LA DIGTRIBUCION DE DIAMETRO DE PORO EN ADSORCION ESPESOR DE LA CAPA DESORBIDA OPCION PARA DETERMINAR EL ULTIMO ESPESOR DE DESORCION EL CUAL ES IGUAL AL ULTIMO DE ADSORCI VD REXP •-----TD I OP DIMENSION XD(20), VD(20), XID(36), TD(36), RDAD(36), REXP(36) COMMON XO, TO COMMON /VM/VM REAL LNXDI REAI K=0 LEAD LAND A H=0 D0 5 J=1,33 D0 6 I=1,19 LNXDI=ALD0(XD(I)) REXP(I)=-9.53/LNXDI+(VD(I)/VM)*3.54 IF ((REXP(I)-RDAD(J)))2,2,6 XID(J)=EXP(9.53/(VD(I)/VM)*3.54-RDAD(J))) if(iop.eq.1)TD(J)=(VD(I)/VM)*3.54 GONTINUE CONTINUE CONTINUE X0=XID(33) T0=TD(33) T0=TD(33) T0=TD(33) FETURN END SUBROUTINE CDDPA(XA, VA, XIA, VIA, XC, RM, R, VPA, SUMVA, SA, SUMSA, TA, DIF, RDAD) bğ

 SUBROUTINE CDDPA(XA, VA, XIA, VIA, XC, RM, R, VPA, SUMVA, SA, SUMSA, T, DIF, RDAD)

 DIF, RDAD)

 DIF, RDAD)

 DIMENSION XA(20), VA(20), XIA(36), VIA(36), RM(36), R(36), VIA(36), SUMSA, TA(36), DIF(36), RDAU(36)

 REAL LNXIA

 CALL PRESIA(XA, VA, XIA, TA, RDAD, REXP)

 CALL INTER(XA, XIA, VA, VIA, 34)

 DO 60 I=1, 33

 LNXIA=ALOQ(XIA(I))

 R(I)=xC/LNXIA +TA(I)

 CONTINUE

 DO 70 I=1, 32

 I1=I+1

 RM(I)=(R(I)+R(I1))/2.

100

65

2

2

70 C

C CALCULO DE LA DISTRIBUCION DE DIAMETRO DE PORO ADSORCION' VO=VIA(1) DU 90 I=1,31 J=I+1 DIF(I)=(VIA(I)-VIA(J))*0.001558 CONTINUE DIF(32)=(VIA(32)-VIA(34))*0.001558 PRINT *, 'DIF(',32,')=',DIF(32) VPA(1)=DIF(1)*((RM(1)/(RM(1)-TA(1)))**2) DU 100 I=2,32 TA(32)=6.2 J1=I-1 90 TA(32)=6.2 J1=I-1 SUV=0 DD BC J=1,J1 SUV=SUV+VPA(J)*(((RM(J)-TA(I))/RM(J))**2-(((RM(J)-TA(J1)) /RM(J)))**2) CONTINUE VPA(I)=(DIF(I)-SUV)*(RM(I)/(RM(I)-TA(I)))**2 CONTINUE DD 101 I=1,32 SUMVA(I)=0. CONTINUE SUMVA(I)=0. CONTINUE SUMVA(I)=2PA(1) SA(1)=2.E+04*VPA(1)/RM(1) DD 110 I=1,32 J=I-1 SUMVA(I)=SUMVA(J)+VPA(I) 80 100 101 J=1-1 SUMVA(J)+VPA(I) SA(I)=2.E+04*VPA(I)/RM(I) SUMSA(I)=SUMSA(J)+SA(I) CONTINUE 110 RETURN Relown
END
SUBROUTINE CDDPD(XD,VD,XID,VID,XC,RM,RD,VPD,SUMVD,SD,SUMSD,TD,
DIF,RDAD,iop)
DIMENSION XD(20),VD(20),XID(36),VID(36),RM(36),RD(36),VPD(36),
SUMVD(36),SD(36),SUMSD(36),TD(36),DIF(36),RDAD(36)
REAL LIXID
CALL INTER(XD,XID,VD,XID,TD,RDAD,REXP,XLIM,TDLIM,iop)
CALL INTER(XD,XID,VD,VID,33)
V0=VD(1)
D0 60 I=1,33
LNXID=ALOG(XID(I))
RD(I)=XC/LNXID +TD(I)
CONTINUE
if(iop.eq.1)then
D0 70 I=1,32
I1=I+1
RM(I)=(RD(I)+RD(I1))/2.
CONTINUE
end if 60 . 70 end if CCC CALCULO DE LA DISTRIBUCION DE DIAMETRO DE PORO DESORCION' VO=VID(1) DO_90 I=1,31 DO 90 I=1,31 J=I+1 DIF(I)=(VID(I)-VID(J))*0.001558 CONTINUE DIF(32)=(VID(32)-VID(33))*0.001558 VPD(1)=DIF(I)*((RM(1)/(RM(1)-TD(1)))**2). DO 100 I=2,32 J1=I-1 SUV=0 ED 90 (-1 11) 90 D0 80 J=1, J1 SUV=SUV+VPD(J)*(((RM(J)-TD(I))/RM(J))**2-(((RM(J)-TD(J1))/RM(J))**2) CONTINUE UBD(I)=(D)=(I)+(PM(I)+(PM(I)-TD(I)))**2 2 80 VPD(I)=(D1F(I)-SUV)*(RM(I)/(RM(I)-TD(I)))**2 CONTINUE 100 CDNTINUE DD 101 I=1,32 SUMSD(I)=0. SUMVD(I)=0. CONTINUE SUMVD(I)=VPD(1) SD(1)=2.E+04*VPD(1)/RM(1) DD 110 I=1,32 J=I-1 SUMVD(I)=SUMVD(.)+VPD(I) 101 \$ SUMVD(I)=SUMVD(J)+VPD(I) SD(I)=2.E+04*VPD(I)/RM(I) SUMSD(I)=SUMSD(J)+SD(I) CONTINUE 110 RETURN 101

APENDICE 4

Listados del programa utilizado.

RAMA DE ADSORCION

RAMA DE DESORCION

RM	90 91 20	VPACUM CC/Q	SP M**2/G	Spacum M##2/g	RM A	4V 9\33	CC/G	5P M**2/G	SPACUM M*#2/Q	GRUPO DE PORO
00000000000000000000000000000000000000	$\begin{array}{c} 0. \ 001269\\ 0. \ 000387\\ 0. \ 000387\\ 0. \ 000387\\ 0. \ 000387\\ 0. \ 000329\\ 0. \ 000329\\ 0. \ 000392\\ 0. \ 000392\\ 0. \ 000392\\ 0. \ 000392\\ 0. \ 000392\\ 0. \ 000392\\ 0. \ 000392\\ 0. \ 000399\\ 0. \ 000399\\ 0. \ 0009747\\ 0. \ 000399\\ 0. \ 0009747\\ 0. \ 0. \ 0009747\\ 0. \ 0. \ 0009747\\ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. $	$\begin{array}{c} 0. \ 001249\\ 0. \ 002136\\ 0. \ 002516\\ 0. \ 002906\\ 0. \ 002906\\ 0. \ 002906\\ 0. \ 002906\\ 0. \ 002906\\ 0. \ 003721\\ 0. \ 0040134\\ 0. \ 0040334\\ 0. \ 0046477\\ 0. \ 0055341\\ 0. \ 0055341\\ 0. \ 0055341\\ 0. \ 00655341\\ 0. \ 00655341\\ 0. \ 006766\\ 0. \ 0007365\\ 0. \ 006766\\ 0. \ 0007365\\ 0. \ 006766\\ 0. \ 0007365\\ 0. \ 006766\\ 0. \ 000797\\ 0. \ 0132792\\ 0. \ 014873\\ 0. \ 00257790\\ 0. \ 0257790\\ 0. \ 02176239\\ 0. \ 048893\\ 0. \ 064911\\ 0. \ 0605539\\ 0. \ 131621\\ 0. \ 169057\\ 0. \ 215695\\ 0. \ 00755\\ 0. \ 00557\\ 0. $	0.000000000000000000000000000000000000	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	00000000000000000000000000000000000000	$\begin{array}{c} 0. & 0.00483\\ 0. & 000753\\ & 0000471\\ & 0000235\\ 0. & 0002335\\ 0. & 000238\\ 0. & 000238\\ 0. & 000238\\ 0. & 000239\\ 0. & 000239\\ 0. & 000239\\ 0. & 000239\\ 0. & 000239\\ 0. & 000239\\ 0. & 0000414\\ 0. & 0000478\\ 0. & 0000414\\ 0. & 0000478\\ 0. & 0000414\\ 0. & 0000478\\ 0. & 0000478\\ 0. & 0000413\\ 0. & 0000478\\ 0. & 0000413\\ 0. & 0000478\\ 0. & 0000478\\ 0. & 0000413\\ 0. & 0000478\\ 0. & 0000413\\ 0. & 0000478\\ 0. & 0000413\\ 0. & 0000478\\ 0. & 0000478\\ 0. & 0000413\\ 0. & 0000413\\ 0. & 0000413\\ 0. & 00000478\\ 0. & 0000413\\ 0. & 000043\\ 0. & 000004\\ 0. & 000004$	$\begin{array}{c} 0.000483\\ 0.001277\\ 0.000805\\ 0.000754\\ 0.000754\\ 0.000754\\ 0.001172\\ 0.001172\\ 0.001430\\ 0.001643\\ 0.002402\\ 0.002402\\ 0.002280\\ 0.002280\\ 0.003274\\ 0.003274\\ 0.003274\\ 0.003274\\ 0.003281\\ 0.003281\\ 0.003281\\ 0.003281\\ 0.005110\\ 0.003281\\ 0.003281\\ 0.003281\\ 0.003281\\ 0.003281\\ 0.003281\\ 0.003281\\ 0.003281\\ 0.003281\\ 0.003281\\ 0.003281\\ 0.003281\\ 0.003284\\ 0.003281\\ 0.015155\\ 0.012975\\ 0.015155\\ 0.012975\\ 0.030284\\$	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	123456789011234567890123 456789 012
BOEHMITA TRATADA EN AIRE-200 C

RAMA DE ADSORCION

RM A	CC/Q	VPACUM CC/G	SP M##2/Q	SPACUM M##2/G	RM	CC/G	CC/0	8P M##2/Q	SPACUM	ORUPO DI Poro
27572725555555555555555555555555555555	$\begin{array}{c} 0. \ 001324\\ 0. \ 000484\\ 0. \ 000376\\ 0. \ 000376\\ 0. \ 000324\\ 0. \ 000322\\ 0. \ 000337\\ 0. \ 000337\\ 0. \ 000337\\ 0. \ 000339\\ 0. \ 000393\\ 0. \ 0003974\\ 0. \ 0003458\\ 0. \ 0003974\\ 0. \ 0003974\\ 0. \ 0003974\\ 0. \ 0003974\\ 0. \ 0003974\\ 0. \ 0003974\\ 0. \ 0003974\\ 0. \ 0003974\\ 0. \ 0003974\\ 0. \ 0003974\\ 0. \ 0003974\\ 0. \ 0003974\\ 0. \ 0003933\\ 0. \ 0118748\\ 0. \ 0032417\\ 0. \ 032417\\ 0. \ 031324\\ 0. \ 031444\\ 0. \ 031444\\ 0. \ 0. \ 031444\\ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. $	$\begin{array}{c} 0. \ 001326\\ 0. \ 001735\\ 0. \ 002235\\ 0. \ 002235\\ 0. \ 002235\\ 0. \ 002414\\ 0. \ 003733\\ 0. \ 003733\\ 0. \ 0044023\\ 0. \ 0044023\\ 0. \ 0044023\\ 0. \ 0044023\\ 0. \ 0044923\\ 0. \ 005360\\ 0. \ 005360\\ 0. \ 005360\\ 0. \ 005360\\ 0. \ 005360\\ 0. \ 005360\\ 0. \ 005360\\ 0. \ 005360\\ 0. \ 005360\\ 0. \ 005360\\ 0. \ 005360\\ 0. \ 005360\\ 0. \ 013716\\ 0. \ 013716\\ 0. \ 013716\\ 0. \ 013716\\ 0. \ 013726\\ 0. \ 023975\\ 0. \ 023975\\ 0. \ 023975\\ 0. \ 023975\\ 0. \ 023975\\ 0. \ 023976\\ 0. \ 036606\\ 0. \ 047649\\ 0. \ 036626\\ 0. \ 0366666\\ 0. \ 0366666\\ 0. \ 0366666\\ 0. \ 0366666\\ 0. \ 0366666\\ 0. \ 0366666\\ 0. \ 0366666\\$	$\begin{array}{c} 0.0270\\ 0.0270\\ 0.0458\\$	0.0.0000000000000000000000000000000000	00000000000000000000000000000000000000	$\begin{array}{c} - & 000092\\ 0. & 000214\\ 0. & 000214\\ 0. & 000214\\ 0. & 000297\\ 0. & 000174\\ 0. & 000050\\ 0. & 000174\\ 0. & 000374\\ 0. & 000374\\ 0. & 000374\\ 0. & 000347\\ 0. & 000347\\ 0. & 000345\\$	006092 0. 000743 0. 000759 0. 001256 0. 001364 0. 001364 0. 001364 0. 0017469 0. 002842 0. 003950 0. 003950 0. 003950 0. 004296 0. 004443 0. 005965 0. 004443 0. 005965 0. 011373 0. 011373 0. 011373 0. 0114305 0. 022627 0. 02390	$\begin{array}{c} -0.007\\ 0.019\\ 0.023\\ 0.037\\ 0.023\\ 0.04\\ 0.028\\ 0.0693\\ 0.079\\ 0.079\\ 0.078\\ 0.079\\ 0.105\\ 0.079\\ 0.007\\ 0$	$\begin{array}{c} -0.0072\\ 0.00739\\ 0.007$	12345678901234567890123456789012

BOEHMITA TRATADA EN AIRE-300 C

RAMA DE ADSORCION

RAMA DE DESORCION

RM	VP CC/G	VPACUM CC/G	SP M**2/G	SPACUM M**2/G	RM	CC/G	VPACUM CC/G	6P M##2/0	SPACUM M##2/G	GRUPO DE PORO
00000000000000000000000000000000000000	$\begin{array}{c} 0. \ 001110\\ 0. \ 000744\\ 0. \ 000788\\ 0. \ 000788\\ 0. \ 000288\\ 0. \ 000285\\ 0. \ 000285\\ 0. \ 000251\\ 0. \ 000225\\ 0. \ 000752\\ 0. \ 000745\\ 0. \ 000528\\ 0. \ 0005528$	$\begin{array}{c} 0. \ 0011110\\ 0. \ 001854\\ 0. \ 002441\\ 0. \ 003072\\ 0. \ 003072\\ 0. \ 003079\\ 0. \ 003407\\ 0. \ 003457\\ 0. \ 003797\\ 0. \ 003797\\ 0. \ 0037973\\ 0. \ 0037973\\ 0. \ 0037973\\ 0. \ 0037973\\ 0. \ 0037973\\ 0. \ 0037973\\ 0. \ 0037973\\ 0. \ 0037973\\ 0. \ 0037973\\ 0. \ 0037973\\ 0. \ 0037973\\ 0. \ 0037973\\ 0. \ 0037973\\ 0. \ 0037973\\ 0. \ 0037972\\ 0. \ 0059722\\ 0. \ 0059722\\ 0. \ 0059722\\ 0. \ 0059722\\ 0. \ 0059722\\ 0. \ 0059722\\ 0. \ 0059722\\ 0. \ 0059722\\ 0. \ 0059722\\ 0. \ 0059722\\ 0. \ 0059722\\ 0. \ 0059723\\ 0. \ 005972\\ 0. \ 00597$	0.083 0.055 0.0043 0.043 0.043 0.0444 0.0443 0.04440 0.04440 0.04440 0.04440 0.04440 0.04440 0.044400000000	0.081 0.1439 0.222716 0.222716 0.23583 0.235814 0.235814 0.235814 0.235814 0.235814 0.235814 0.235814 0.23590 0.11974559 0.33581 0.33581 0.33581 0.33581 0.33581 0.335824 0.3559244 0.35592400000000000000000000000000000000000	00000000000000000000000000000000000000	$\begin{array}{c} 0. & 000397\\ - & 0000333\\ 0. & 000130\\ 0. & 000135\\ 0. & 0001135\\ 0. & 0001125\\ 0. & 0001128\\ 0. & 0000128\\ 0. & 0000226\\ 0. & 0000226\\ 0. & 0000236\\ 0. & 000036\\ 0. & 0$	$\begin{array}{c} 0.000397\\ 0.000364\\ 0.000494\\ 0.000814\\ 0.000814\\ 0.000814\\ 0.0001243\\ 0.001243\\ 0.001269\\ 0.001269\\ 0.001269\\ 0.002331\\ 0.00330\\ 0.003331\\ 0.00330\\ 0.003331\\ 0.00330\\ 0.003331\\ 0.003331\\ 0.0033254\\ 0.0033255\\ 0.0033254\\ 0.0033254\\ 0.0033254\\ 0.0033254\\ 0.0033254\\ 0.0033254\\ 0.0033254\\ 0.0033255\\ 0.0033254\\ 0.0033254\\ 0.0033255\\ 0.0033254\\ 0.0033255\\ 0.0033254\\ 0.0033255\\ 0.003255\\ 0.00355\\ 0.00355\\ 0.00355\\ 0.00355\\ 0.00355\\ 0.00355\\ 0.00355\\ 0.00355\\ 0.00355\\ 0.00355\\ 0.003$	9324436700455093998885885858594557508 000124000000000000000000000000000000000	0.000000000000000000000000000000000000	123456789011234567890123456789012

BOEHMITA TRATADA EN AIRE-400 C

RAMA DE ADSORCION RAMA DE DESORCION CC/G VPACUM CC/Q RM VP VPACUM SP SPACUM M##270 RM SP SPACUM GRUPO DE CC/Q M##2/0 cčze M##2/G A M##2/0 PORO C. 001250 O. 000270 D. 000203 O. 000109 -. 000105 C. 000404 O. 000355 O. 000244 O. 000309 O. 00030404 $\begin{array}{c} 0.001250\\ 0.001540\\ 0.001743\\ 0.001852\\ 0.001743\\ 0.001743\\ 0.001743\\ 0.002783\\ 0.002783\\ 0.0031382\\ 0.003691\\ 0.003691\\ 0.003691\\ 0.003691\\ 0.003691\\ 0.003691\\ 0.003691\\ 0.004095\\ 0.003691\\ 0.004095\\ 0.003691\\ 0.004095\\ 0.003691\\ 0.004095$ 0.071 0.024 0.019 0.012 -0.013 0.060 0.069 0.000843 0.000911 0.000550 0.0005703 0.001049 0.001049 0.001045 0.001149 0.061 0.059 0.034 0.061 1234567 -0. 024 0.050 0.093 0.097 0.107 Õ. 016 0.0043 0.0048 0.023 0.048 0.048 0.046 0.075 0.109 0.074 149 001293 0. 130 0. 178 Ô. Õ. 0. 244 0. 319 0. 428 0. 502 ŧÓ Ö. Ö. Ő. 000404 0000000 001163 000721 000504 005258 005979 006483 007109 009189 0.000463 0.000297 0.000386 Ō. Ö 0 Ô 018 0. 0. 608 0. 852 1. 179 1. 892 ō. 106 **3404** Ő. Ó 0.000626 0.001660 0.002472 0.003208 0.003208 0.000823 244 327 713 002 Õ. Ő. 17 17 18 Ö Õ. 010661 ŏ. 002051 007300 Õ. 1.892 3.272 4.0555 5.7955 7.996 9.555 1.22.343 122.343 1300.173 144.256 290.943 144.256 290.943 144.256 290.836 290.836 290.836 290.836 290.836 290.836 290.836 290.836 290.836 290.836 290.836 200.856 200.956 200.8566 200.8566 200.8566 200.8566 200.8566 200.8566 200.8566 Ô. 1. 222 0.003620 379 0. Q, 0.783 1.741 2.201 1.562 ō. 017535 Ō 12222222222222222 1. 963 1. 903 3. 637 5. 444 7. 447 8. 308 004541 022075 0. 004025 Õ Ô. Ó 026238 033739 044297 0.004915 0.003222 0.010199 0.013952 004815 004163 Õ. ÔŽ Ô. Ö. 0.007501 0.010548 0.013478 Õ. Ô Ô: 035 264 698 177 088 742 230 313 442 138 057785 Õ Ø. -17093951 049743 - 000299 014020 ō. Ö. 0. 0.026700 0.097316 -.038365 0.110810 0.080157 4590 126.695 0. 022588 Ô 094393 Ő 018052 Ō. ō Ő 034439 176077 Ö. Ő 0 113. 152. 208. Õ. 0. ĝ Ö Ö. 041790 0. 047942 0.052148 0.086126 272015 0 16.25 314 042401 -52 ÖÖ Ö 106.

BOEHMITA TRATADA EN AIRE-450 C

RAMA DE ADSORCION

· .;

RM A	CC/Q	VPACUM CC/G	SP M**2/G	SPACUM M##2/G	RM	CC/0	VPACUM CC/G	SP M**2/G	SPACUM M*+2/G	ORUPO DE PORO
00000000000000000000000000000000000000	$\begin{array}{c} 0. & 002040\\ 0. & 000813\\ 0. & 000029\\ 0. & 000370\\ 0. & 000370\\ 0. & 000370\\ 0. & 000370\\ 0. & 000370\\ 0. & 000370\\ 0. & 000370\\ 0. & 000370\\ 0. & 000370\\ 0. & 000370\\ 0. & 000370\\ 0. & 000370\\ 0. & 000316\\ 0. & 000316\\ 0. & 0003338\\ 0. & 00338$	0.002040 0.002854 0.002883 0.002883 0.002883 0.004756 0.004756 0.005204 0.005204 0.005204 0.005204 0.005204 0.005274 0.005874 0.007574 0.002871 0.007574 0.007574 0.007574 0.0029410 0.010711 0.012360 0.014877 0.0229641 0.049955 0.063564 0.1052894 0.1052894 0.155101 0.155101 0.155101 0.155101 0.155101 0.155101 0.155101 0.155101 0.155101 0.155101 0.155101 0.277981 0.255570 0.297283 0.443824 0.443824 0.524989 0.560153	$\begin{array}{c} 0.148\\ 0.023\\ 0.023\\ 0.0254\\ 0.051\\ 0.051\\ 0.0667\\ 0.172\\ 0.246\\ 0.355\\ 0.746\\ 1.000\\ 7.731\\ 3.5326\\ 1.3664\\ -7.453\\ 3.369\\ 2.3532\\ 1.3664\\ -7.343\\ 2.9.012\\ 1.3582\\ 2.369\\ 2.3528\\ -7.345\\ 2.369\\ 2.3582\\ 1.3582\\ 2.369\\ 2.3582\\ -7.345\\ 2.369\\ 2.3582\\ -7.345\\ 2.369\\ 2.3582\\ -7.345\\ 2.369\\ 2.3582\\ -7.345\\ 2.369\\ 2.3582\\ -7.345\\ 2.369\\ 2.3582\\ -7.345\\ 2.369\\ 2.3582\\ -7.345\\ 2.369\\ 2.3582\\ -7.345\\ 2.369\\ 2.3582\\ -7.345\\ 2.369\\ 2.3582\\ -7.345\\ 2.369\\ 2.3582\\ -7.345\\ 2.369\\ 2.3582\\ -7.345\\ 2.369\\ 2.3582\\ -7.345\\ -$	0.1487 0.22451 0.22451 0.44528 0.44528 0.44528 0.44528 0.1110 1.13584 1.13584 1.135857 1.1553767 1.1358579 21153767 1.135897 1.1553767 1.1553777 1.1553767 1.1553777 1.155777 1.155777 1.155777 1.155777 1.155777 1.155777 1.155777 1.155777 1.155777 1.155777 1.155777 1.155777 1.155777 1.155777 1.155777 1.155777 1.157777 1.1557777 1.1557777 1.1557777 1.1557777777777	000 000 000 000 000 000 000 000 000 00	$\begin{array}{c} 0. \ 000639\\ \ 000225\\ 0. \ 000225\\ 0. \ 000647\\ 0. \ 000647\\ 0. \ 000647\\ 0. \ 000647\\ 0. \ 000647\\ 0. \ 000647\\ 0. \ 0006428\\ 0. \$	$\begin{array}{c} 0, 000639\\ 0, 001220\\ 0, 000995\\ 0, 000995\\ 0, 0002711\\ 0, 0002711\\ 0, 0002711\\ 0, 0002711\\ 0, 0003295\\ 0, 00046275\\ 0, 004693\\ 0, 00469$	0.046 0.047 0.021 0.087 0.0827 0.0827 0.081 0.087 0.087 0.081 0.2225 0.081 0.2225 0.081 0.2225 0.081 0.2225 0.081 0.2225 0.081 0.2225 0.081 0.2225 0.081 0.2225 0.081 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 151 0.2225 0.085 11.570 11.570 11.5772 11.5772 11.5772 12.225 334 155 2.534 155 2.095 1.5772 1.572 1.572 1.572 1.572 1.572 1.572 1.552 1.552 1.552 1.552 1.5572 1	$\begin{array}{c} 0.046\\ 0.075\\ 0.074\\ 0.121\\ 0.203\\ 0.374\\ 0.400\\ 0.436\\ 0.517\\ 0.669\\ 0.517\\ 0.669\\ 0.517\\ 1.869\\ 2.815\\ 4.903\\ 31.694\\ 7.399\\ 20.123\\ 31.694\\ 7.399\\ 123\\ 31.694\\ 7.399\\ 123\\ 31.694\\ 1.869\\ 1476\\ 7.399\\ 123\\ 35.603\\ 1476\\ 895\\ 1476\\ 895\\ 1476\\ 147$	123454789011234547890123454789012

BOEHMITA TRATADA EN AIRE-500 C

RAMA DE ADSORCION

RM	CC/0	VPACUM CC/G	SP M**2/G	SPACUM M**2/Q	RM	CC/G	VPACUM CC/Q	SP M*#2/0	Spacum M##2/C	ORUPO DE PORO
00000000000000000000000000000000000000	$\begin{array}{c} 0.02229\\ 0.001197\\ 0.000518\\ 0.000519\\ 0.000573\\ 0.000573\\ 0.000573\\ 0.000573\\ 0.0005737\\ 0.0002634\\ 0.0001379\\ 0.002634\\ 0.002476\\ 0.0011027\\ 0.0026938\\ 0.0024893\\ 0.00248938\\ 0.00248938\\ 0.00248938\\ 0.0075532\\ 0.0075532\\ 0.0075532\\ 0.0075532\\ 0.0075532\\ 0.0075739\\ 0.0031335\\ 0.1607155\\ 0.1607155\\ 0.0314593\\ 0.0316978\\ 0.0316978\\ 0.0316978\\ 0.0316978\\ 0.0316978\\ 0.054598\\ 0.054888\\ 0.05488\\ 0.05488\\ 0.05488\\ 0.05488\\ 0.05488\\ 0.05488\\ 0.05888\\$	$\begin{array}{c} 0.0022229\\ 0.0039443\\ 0.0039443\\ 0.0039443\\ 0.0057183\\ 0.0052834\\ 0.0052834\\ 0.0057183\\ 0.0057183\\ 0.0057183\\ 0.005731\\ 0.0095237\\ 0.0124519\\ 0.0124519\\ 0.0124519\\ 0.0124519\\ 0.0242155\\ 0.024519\\ 0.024519\\ 0.024519\\ 0.0357659\\ 0.076191\\ 0.1259553\\ 0.076191\\ 0.1259553\\ 0.024519\\ 0.0357659\\ 0.076191\\ 0.1259553\\ 0.0352129\\ 0.3521290\\ 0.3521290\\ 0.5521299\\ 0$	0.162 0.000 0.1308 0.0255 0.025583 0.025755 0.025788 0.025788 0.025	232886411770471116978847252177785394 12233554781725940645522521777857 12235981981796477116994064552264 17259406645522607481768526 122594517242177557 122594664552261777857 122594517242177557	00000000000000000000000000000000000000	$\begin{array}{c} 0. \ 000859\\ 0. \ 001043\\ 0. \ 001043\\ 0. \ 001043\\ 0. \ 0000283\\ 0. \ 0000283\\ 0. \ 0000283\\ 0. \ 0000283\\ 0. \ 0000045\\ \ 0000000\\ \ 0000000\\ \ 0000000\\ \ 0000000\\ \ 0000000\\ \ 0000000\\ \ 0000000\\ \ 00000\\ \ 00000\\ \ 000000\\ \ 000000\\ \ 00000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 00000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 00000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 00000\\ \ 00000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 000000\\ \ 00000\\ \ 00000\\ \ 000000\\ \ 0000\ \ 0000\\ \ 00000\ \ 0000\ \ 0000\ \ 0000\ \ 0000\ \ 0000\ \ 0000\ \ 0000\ \ 0000\ \ 0000\ \ 0000\ \ 0000\ \ 0000\ \ 0000\ \ 0000\ \ 000\ \ 0000\ \ 0000\ \ 00$	$\begin{array}{c} 0. \ 000839\\ 0. \ 0012696\\ 0. \ 0012696\\ 0. \ 0012696\\ 0. \ 0012696\\ 0. \ 0012696\\ 0. \ 001144\\ 0. \ 001208\\ 0. \ 001144\\ 0. \ 001208\\ 0. \ 00111\\ 0. \ 001208\\ 0. \ 00111\\ 0. \ 001208\\ 0. \ 0013208\\ 0. \ 0$	0.009699 0.009699 0.009699 0.009699 0.009699 0.009699 0.00969 0.00000 0.00000 0.00000 0.000000	$\begin{array}{c} 0. \ 062\\ 0. \ 1228\\ 0. \ 2276\\ 0. \ 3776\\ 0. \ 5724\\ 0. \ $	1234567890123456789012322222222333

BOEHMITA TRATADA EN AIRE-600 C

RAMA DE ADSORCION

.

RM S	CC/G	VPACUM CC/G	SP M**2/G	SPACUM M**2/G	RM A	CC/G	VPACUM CC/G	8P M**2/G	SPACUM M**2/G	GRUPO DE PORO
00000000000000000000000000000000000000	$\begin{array}{c} 0.001453\\ 0.000451\\ 0.000581\\ 0.000745\\ 0.000745\\ 0.000745\\ 0.000745\\ 0.000748\\ 0.000748\\ 0.00078\\ 0.000788\\ 0.00078\\ 0.000788\\ 0.00078\\ 0.000788\\ 0.00078\\ $	$\begin{array}{c} 0.001653\\ 0.002104\\ 0.0024849\\ 0.0024855\\ 0.003449\\ 0.004555\\ 0.0059207\\ 0.0059207\\ 0.008294\\ 0.0104655\\ 0.01978252\\ 0.0197853\\ 0.0197853\\ 0.0197853\\ 0.0239753\\ 0.0493553\\ 0.0493553\\ 0.0493553\\ 0.0493553\\ 0.1203458\\ 0.319765\\ 0.1203458\\ 0.553458\\ 0.5524877\\ 0.5524877\\ 0.55248772\\ 0.55248772\\ 0.55248772\\ 0.55248772\\ 0.55248772\\ 0.5529106\\ 0.648102\\ 0.618102\\$	$\begin{array}{c} 0.00000000000000000000000000000000000$	0.0.0.0.0.0.0.1.1.2.3.4.5.5.8.9.1.1.0.3.0.4.5.7.8.9.5.7.9.3.6.9.3.4.5.4.5.2.9.3.4.5.4.5.2.9.3.5.2.1.1.6.0.5.2.9.3.5.2.1.1.6.0.5.2.9.3.5.2.1.1.6.0.5.2.9.3.5.2.1.7.0.1.1.8.8.7.4.8.7.8.9.5.2.9.3.5.2.1.7.0.1.1.8.8.7.4.8.7.8.9.3.3.6.0.7.0.3.5.5.1.1.6.0.5.8.7.8.9.3.3.5.2.9.3.5.2.1.7.0.1.2.2.2.2.2.2.3.3.5.2.1.7.0.5.5.2.1.7.0.5.3.5.2.1.7.0.5.3.5.2.1.7.0.5.3.5.2.2.3.3.5.2.2.3.5.2.2.2.2.3.3.5.2.2.3.5.5.2.2.2.2	00000000000000000000000000000000000000	$\begin{array}{c} 0. \ 000371\\ 0. \ 000457\\ 0. \ 000457\\ 0. \ 000452\\ 0. \ 0004819\\ 0. \ 0005420\\ 0. \ 0005430\\ 0. \ 0005431\\ 0. \ 0007331\\ 0. \ 0007331\\ 0. \ 0007331\\ 0. \ 0007331\\ 0. \ 0007344\\ 0. \ 000544\\ 0. \ 000544\\ 0. \ 000544\\ 0. \ 00054\\ 0. \ 0$	$\begin{array}{c} 0.000371\\ 0.000438\\ 0.001095\\ 0.001257\\ 0.002373\\ 0.002363\\ 0.002363\\ 0.004951\\ 0.004951\\ 0.004952\\ 0.004952\\ 0.004953\\ 0.0226252\\ 0.0049783\\ 0.0226252\\ 0.004953\\ 0.0226252\\ 0.0226$	$\begin{array}{c} 0.027\\ 0.0243\\ 0.0049\\ 0.0049\\ 0.0049\\ 0.0077\\ 0.1057\\ 0.12549\\ 0.0077\\ 1.55259\\ 1.55259\\ 1.55259\\ 1.55259\\ 1.55259\\ 1.55259\\ 1.55259\\ 1.5559\\ $	$\begin{array}{c} 0.027\\ 0.049\\ 0.0922\\ 0.09422\\ 0.09423\\ 0.09423\\ 0.09423\\ 0.09423\\ 0.09423\\ 0.09423\\ 0.09423\\ 0.09423\\ 0.09423\\ 0.09423\\ 0.09423\\ 0.09423\\ 0.09423\\ 0.09423\\ 0.09423\\ 0.0943\\ 0$	123456789011234567890123456789012 1111111111111200123456789012

BOEHMITA TRATADA EN AIRE-700 C

RAMA DE ADSORCION

RAMA DE DESORCION

RM	CC/Q	VPACUM CC/G	SP M##2/Q	SPACUM M##2/9	RM	CC/G	VPACUM CC/9	8P M##2/G
57272555555555555555555555555555555555	$\begin{array}{c} 0. \ 002286\\ 0. \ 000581\\ 0. \ 000581\\ 0. \ 001095\\ 0. \ 001095\\ 0. \ 001092\\ 0. \ 001092\\ 0. \ 000704\\ 0. \ 0. \ 000704\\ 0. \ 0. \ 0. \ 000704\\ 0. \ 0. \ 000704\\ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. $	$\begin{array}{c} 0.0022867\\ 0.0023878\\ 0.003378\\ 0.003378\\ 0.003378\\ 0.003378\\ 0.003542\\ 0.005731\\ 0.005731\\ 0.005731\\ 0.005731\\ 0.004734\\ 0.014241\\ 0.014241\\ 0.014241\\ 0.0217933\\ 0.0217933\\ 0.0217933\\ 0.0354223\\ 0.0354231\\ 0.089489\\ 0.100350\\ 0.14241\\ 0.0217933\\ 0.0219733\\ 0.0219733\\ 0.0219733\\ 0.0219733\\ 0.0294899\\ 0.100350\\ 0.14241\\ 0.0354223\\ 0.0376320\\ 0.14241\\ 0.0354223\\ 0.0376320\\ 0.14241\\ 0.0594899\\ 0.100350\\ 0.376320\\ 0.376320\\ 0.561944\\ 0.504507\\ 0.552633\\ 0.552$	$\begin{array}{c} 0.1649\\ 0.0498\\ 0.04174\\ 0.1351\\ 0.0833\\ 0.011372\\ 0.011372\\ 0.011372\\ 0.011372\\ 0.0000\\ 0.12573\\ 0.0000\\ 0.12573\\ 0.0388\\ 73174\\ 0.0388\\ 73174\\ 0.0388\\ 734.0388\\ 1.24.071\\ 1974.3394\\ 0.0348\\ 904.2052\\ 122.5223\\ 122.5222\\ 122.522$	$\begin{array}{c} 0.1665\\ 0.2260\\ 0.380\\ 0.380\\ 0.554\\ 0.554\\ 0.554\\ 0.554\\ 0.554\\ 0.554\\ 0.555\\ 0.554\\ 0.555\\ 0.552\\ 0.555\\ 0.552\\ 0.555\\ $	00000000000000000000000000000000000000	$\begin{array}{c} 0.000734\\ 0.000423\\ 0.000423\\ 0.0000223\\ 0.0000233\\ 0.0000233\\ 0.0000233\\ 0.0000233\\ 0.0000233\\ 0.0000232\\ 0.0000235\\ 0.0001189\\ 0.0000235\\ 0.0001189\\ 0.002037\\ 0.001189\\ 0.002359\\ 0.002977\\ 0.0029778\\ 0.0029778\\ 0.0029778\\ 0.0029773\\ 0.0029778\\ 0.0029773\\ 0.0029775\\ 0.0029773\\ 0.0029773\\ 0.0029773\\ 0.0029773\\ 0.0029773\\ 0.0029773\\ 0.0029773\\ 0.0029773\\ 0.0029773\\ $	$\begin{array}{c} 0.000734\\ 0.001201\\ 0.001201\\ 0.001232\\ 0.002423\\ 0.002425\\ 0.002425\\ 0.002425\\ 0.002453\\ 0.003410\\ 0.003443\\ 0.00343\\ 0.003443\\ $	$\begin{array}{c} 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.003$

123 8

ORUPO DE

SPACUM M##2/0

0.0114925334051937206365924792534051927937206365924924708897477032243965119597837468499947576391135978321135978274685111923124788978746853111923124788978766334897468534897931247889787668534

ALUMINA COMERCIAL-BE-C

RAMA DE ADSORCION

RM A	cč/o	VPACUM CC/G	SP M**2/G	SPACUM M**2/g	RM	VP CC/G	VPACUM CC/Q	8P M**2/G	SPACUM M**2/G	ORUPO DE PORO
00000000000000000000000000000000000000	$\begin{array}{c} 0, 001345\\ 0, 000355\\ 0, 000455\\ 0, 001320\\ 0, 001320\\ 0, 001921\\ 0, 000488\\ 0, 000078\\ 0, 000078\\ 0, 000079\\ 0, 000000\\ 0, 0000\\ 0, 0000\\ 0$	$\begin{array}{c} 0. \ 001345\\ 0. \ 001700\\ 0. \ 002165\\ 0. \ 002165\\ 0. \ 0021486\\ 0. \ 0021486\\ 0. \ 0021486\\ 0. \ 0021486\\ 0. \ 0021486\\ 0. \ 006133\\ 0. \ 0061335\\ 0. \ 0062334\\ 0. \ 0062334\\ 0. \ 0066649\\ 0. \ 00677028\\ 0. \ 007728\\ 0. \ 007728\\ 0. \ 007728\\ 0. \ 007728\\ 0. \ 007728\\ 0. \ 007728\\ 0. \ 007728\\ 0. \ 007728\\ 0. \ 007728\\ 0. \ 0077728\\ 0. \ 0077728\\ 0. \ 0077728\\ 0. \ 0077728\\ 0. \ 0077728\\ 0. \ 0077728\\ 0. \ 0077728\\ 0. \ 0077728\\ 0. \ 0077728\\ 0. \ 0077728\\ 0. \ 0077728\\ 0. \ 0077728\\ 0. \ 0077728\\ 0. \ 0077728\\ 0. \ 0077728\\ 0. \ 007778\\ 0. \ 007778\\ 0. \ 007778\\ 0. \ 007778\\ 0. \ 007778\\ 0. \ 007778\\ 0. \ 007778\\ 0. \ 0078\\ 0. \ 0078\\ 0.$	0.00441 0.00441 0.00000000000000000000000000000000000	0.0.0.0.0.0.0.0.1.1.2.3.5.0.9.4.7.0.9.2.3.2.8.8.2.2.9.4.3.5.3.6.4.8.8.2.7.0.9.9.2.7.1.1.3.5.6.6.6.4.6.8.7.9.4.9.5.7.3.8.3.2.4.6.7.0.8.7.3.2.7.9.5.3.7.0.9.9.4.7.0.9.2.3.7.0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	00000000000000000000000000000000000000	0. 000318 0. 000270 0. 000350 0. 000352 0. 000352 0. 000137 0. 000137 0. 000132 0. 000132 0. 0003157 0. 0003157 0. 001315 0. 001315 0. 001315 0. 001378 0. 001378 0. 001378 0. 001378 0. 001378 0. 001378 0. 001378 0. 001578 0. 0005551 0. 0005551 0. 0005551 0. 0005551 0. 0005551 0. 0005552 0. 0005552 0. 000576 0. 0005551 0. 0005552 0. 0005552 0. 000532 0. 000552 0. 000576 0. 0005551 0. 0005552 0. 0005578 0. 0007578 0. 0007578 0. 001578 0. 005551 0. 005550 0. 005550 0. 005550 0. 005550 0. 0055500 0. 0055500 0. 005550000000000	$\begin{array}{c} 0. \ 000318\\ 0. \ 0001830\\ 0. \ 0001830\\ 0. \ 0002150\\ 0. \ 0002502\\ 0. \ 0002502\\ 0. \ 0002985\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 0002988\\ 0. \ 000996\\ 0. \ 0000\ 0. \ 0000\ 0. \ 000\ 0. \ 000\ 0. \ 000\$	0.023 0.01207 0.00202 0.00207 0.00202 0.00207 0.00202 0.00207 0.00202 0.00207 0.00202 0.00207 0.00202 0.00202 0.00202 0.00207 0.00202 0.0000 0.00202 0.00000 0.00000 0.00000 0.00000 0.000000	0.00.000000000000000000000000000000000	12345478901234547890123454789012