CONTENIDO

	 •
Introducción	 _1
-	

CAPITULO I

I.1	Descripción del Sistema 13C	3
I.2	Descripción del Equipo	7
I.3	Extinción Atmosférica	8
I.4	Ecuaciones de Transformación	10
I.5	Procedimiento de Observación	12
I.6	Reducción de los datos	13

CAPITULO II	•	
Procedimiento	 	18
Re-reducciones	 	19
Análisis de los residuos	 	20

CAPITULO III

Las	estrellas	Be		39
-----	-----------	----	--	----

CAPITULO IV

IV.1 Aplicación de las Correcciones a estrellas	
Be	48
1V.2 frectos de la rinea en emisión ha en el color (52-63)	59
IV.3 Variabilidad de estrellas Be en 13C	
IV.3.1 Estudio estadístico	70
IV.3.2 Variabilidad en estrellas individuales.	80
IV.4 Excesos intrínsecos	92
CONCLUSIONES 10	00
REFERENCIAS 10	01
•	
ANEXO 1	.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Introducción

Los propósitos del presente trabajo fueron dos: el prime ro consistió en determinar la calidad de la fotometría obtenida con los nuevos filtros de l3 colores recientemente adquiridos por el Instituto de Astronomía y de uso en el Obser vatorio Astronómico Nacional en San Pedro Mártil. B.C., y el segundo, hacer un estudio fotométrico de las estaellas Be clásicas, utilizando para ello los resultados obtenidos en la primera parte, así como las observaciones que Schuster y Alvadez (1983) hicieron de estos objetos.

La primera parte de este trabajo se basó para su realización en la reducción de 98 noches de observación tomadas por el Dr. W. Schuster entre 1980 y 1983, usando el sistema fotométrico de 13 colores (El3C), de los cuales en 28 ocasiones se utilizó el juego #1 de nuevos filtros 13C recientemente adquiridos. Del análicas de estas reducciones de encontró que no existe una transformación lineal al Sistima estándar de Johnson y Mitchell (1975) para este nuevo juego, princi palmente para el color (37-52) y estrellas con tipos espectrales cercanos a AOV, por lo que se determinaron las correcciones a las ecuaciones de transformación para que los datos obtenidos con este juego de filtros puedan pasarse al sistema de Johnson y Mitchell de manera más precisa.

En la segunda parte se hace un estudio fotométrico de estrellas Be clásicas. Se determinaron el efecto del espectro de emisión en los filtmos 13C, en particular el filtro [63], la variabilidad de estos objetos estelares y los excesos intrínsecos en el continuo.

A continuación se da un resumen del contenido de este trabajo por capítulos: En el capítulo I se da una descripción general del sistema 13C, del equipo utilizado para realizar las observaciones y los procedimientos de observación y reducción.

En el capítulo II se discuten las correcciones a las ecuaciones de transformación, y se dan las soluciones para difere<u>n</u> tes intervalos de luminosidad y tipo espectral.

En el capítulo III se hace un breve estudio de las estrellas Be y de sus propiedades.

En el capítulo IV se discuten los siguientes temas:

a) Aplicación de las correcciones a las ecuaciones de transformación a un grupo de estrellas Be poco variables.

b) Efectos de la línea H α en el filtro [63] del juego or<u>i</u> ginal, muy notables en estrellas con emisión en H α intensa.

c) Análisis estadístico de variabilidad de estrellas Be, usando observaciones de Echuster y Alvarez (1983) entre 1977 v 1979, y de Schuster y Guichard (1984b) entre 1980 y 1983. Este análisis se hizo con las desviaciones estárdar para magnitudes y colores obtenidas a partir de varias observaciones de las estrellas estudiadas, que luego se compararon con las desviaciones estándar para estrellas O y B normales (Schuster 1982).

d) Análisis de variabilidad de estrellas Be Individuales que mostraron cambios significativos entre 1980 y 1983.

e) Excesos intrínse:os en el continuo de estrellas Be,

(2)

Capitulo I

I.1 Descripción del Sistema 13C

El sistema fotométrico 13C fué desarrollado originalmente con el propósito de estudiar estrellas de tipos tempranos, enrojecimiento interestelar y clasificación estelar (Johnson, Mitchell y Latham 1967; Mitchell y Johnson 1969, Johnson y Mitchell 1975). Es un sistema de banda intermedia definido por 13 filtros elegidos de tal forma que midan las propiedades del continuo de estrellas tempranas entre 3300 y 11000 Å, excepto los filtros 37 y 86, que miden las líneas convergentes de Balmer y Paschen, respectivamente (Ver Tabla 1.1), y evitando las líneas espectrales más conspicuas de estos obje tos estelares. Sus longitudes de onda y anchos modios se muestran en la Tabla 1.1. Los siete filtros más azules fueron escogidos de tal manera que se asemejaran a los filtros del sistema de Borgmanr (1960, 1963); los seis filtros rojos e infrarrojos fueron seleccionados con respecto a la discontinuidad de Paschen. En la figura 1.1 se muestra el sistema 13C comparado con el UEVRI. En la figura también se muestran las características estelares o atmosféricas más notables.

Por razones de orden instrumental, al sistema 13C se le dividió en dos partes: el sistema de 8 colores (8C), definido por los filtros [33], [35], [37], [40], [45], [52], [58], [63] y por la celdilla RCA IP2L, y el sistema de 6 colores (6RC). definido por los filtros [58], [72], [80], [86], [99], [110], y por la celdilla RCA 7102. El hecho de que el filtro [58] se encuentre en los dos sistemas es con el fin de que haya un traslape para unir a los mismos para una transformación de color y así tener un sistema único desde el utravioleta hasta el infrarrojo cercano.

Merced al gran número de bandas con que cuenta, el sistema 13C permite una descripción muy completa de la distribución espectral de energía de una estrella en el intervalo de longitud de onda que cubre, por lo que ha sido utilizado para estudiar problemas interesantes desde el punto de vista astrofísi-Aparte de las referencias antes mencionadas, podemos co. citar el trabajo de Johnson (1977), que estudió la extinción interestelar de algunas regiones del cielo para complementar observaciones de banda accha; el de Johnson y Mitchell (1968), quienes examinaron el fenómeno de encubrimiento ("blanketing") en base a las curvas de energía espectral de las subenanas; los de Mendoza (1969, 1971 a, b, c), quien usó la parte 8C para investigar las Nubes de Magallanes, la Asociación Escorpio-Centauro, las estrellas brillantes del Sur y la binaria eclipsante V Puppis; los de Underhill (1979) y Underhill et al (1979), donde usaron la fotometría 13C, unas medidas del flujo ultravioleta desda satélite y modelos atmosféricos ETL (Equilibrio Termodinámico Local) de Kurucz para determinar temperaturas efectivas, diámetros angulares, distancias y diámetros lineales para estrellas O y B.

En 1973 llegaron al Observatorio de San Pedro Mártir los dos fotómetros 13C originales que definieron al sistema, y entre los trabajos emprendidos allí podemos mencionar el de Schuster (1976<u>a</u>), quier estudió los efectos de luminosidad y metalicidad en estrellas de Tipo Solar y en el Sol; asimismo, este autor emprendió ur estudio sobre estrellas subenanas (Schuster 1976 <u>b</u>, 1979 <u>a</u>, <u>b</u>, <u>c</u>, 1981), en el que obtiene conclusiones acerca de la composición química, temperatura, metalicidad y gravedad superficiales en estas estrellas, y discute la inferencia de sus resultados sobre los procesos evolutivos relacionados con ellas. Carrasco et al. (1979), estudiando Nova Cygni, encuentran que el sisteme 13C es muy útil para medir variabilidad en el continuo, tales como variaciones en la discontinuidad de Balmer. Alvarez y Schuster

(4)

(1978, 1981, 1982) y Schuster y Alvarez (1983) estudian estre llas Be y estrellas "shell", encontrando que estos objetos son más variables en aquellas longitudes de onda donde sus excesos intrínsecos son más grandes. Schuster (1984a) estudia estrellas B, presentando cocientes de enrojecimiento estelar, colores intrínsecos, temperaturas efectivas, magnitudes absolutas, etc.

En los trabajos arriba mencionados se encuentra que la fotometría 13C no sólo es útil para el estudio de estrellas tempranas, sino que también es apropiado para estudiar estrellas tardías (F, G y K) En particular, Schuster (1979 <u>a</u>, <u>b</u>, <u>c</u>) encuentra que puede obtenerse una buena separación entre temperatura, composición química y gravedad superficiales a partir de los índices derivados del sistema 13C, para estrellas de los tipos F y G, encontrando, por ejemplo, que (45-63) y (58-99) son buenos índices de temperatura, (37-45) es muy sensible a la composición química y G=(33-52)-(37-45) es un buen índice de gravedad.

Para los propósitos de clasificación espectral de estrellas O y B, el sistema .3C tiene muchas ventajas, pues los filtros están localizados en longitudes de onda tales que los índices de color derivados de ellos están afectados por fenómenos relacionados con la clasificación espectral de estas estrellas, tales como:

a) El tamaño de la discontinuidad de Balmer,

b) La absorción producida por las líneas de Balmer cerca de 3750 Å,

c) La diferencia entre los gradientes intrínsecos en el ultravioleta y el azul (Borgmann 1960).

La experiencia ha mostrado que, por ejemplo el color (33-35) es un buen indicador de la temperatura de color en lo<u>n</u> gitudes de onda inferiores a la discontinuidad de Balmer; el

(5)

(35-40) mide la intensidad de la discontinuidad de Balmer; el (37-45) es una medida de la intensidad de las líneas de Balmer; el (40-58) nos mide la temperatura de color en longitudes de onda por arriba de la discontinuidad de Balmer, lo mismo que el (40-80); el (80-99) mide la intensidad de la discontinuidad de Paschen y el (86-99) de las líneas de Paschen; el (99-110) es sensible a la temperatura de color en longitudes de onda mayores que la de la discontinuidad de Paschen y, finalmente, los índices (58-80) y (58-99) pueden servir para medir excesos en el infrarrojo cercano (Schuster 1983).

Por la posición misma de las bandas que lo constituyen, el sistema 13C abarca las propiedades de otros sistemas fotométricos, tales como el uvby (Strömgren 1963) y el sistema de Borgmann (1960, 1963) antes mencionado. Las ventajas que tiene este sistema sobre los otros son:

l) Como ya se dijo antes, por el número de candas con que cuenta, puede obtenerse una descripción más completa del continuo de una estrella.

 Los filtros son le banda lo suficientemente estrecha como para comportarse, aproximadamente, como melidores monocro máticos (King 1952 a, k).

3) No se necesitan telescopios muy grandes para observar estrellas hasta de magnitud 10 (Mitchell y Johnson 1969).

 4) El sistema 13C es muy lineal y homogéneo (Johnson y Mitchell 1975).

Una desventaja del sistema es que no mide líneas (como H α y H β , por ejemplo), En consecuencia, las estrellas que presentan variabilidad en sus líneas espectrales, como las Be, no pueden estudiarse de manera tan completa como podría hacerse teniendo una forma de medir cambios en esas líneas.

Otra desventaja es que se requiere de dos datectores de características muy distintos entre Sí y de un filtro de traslape para hacer las observaciones.

I.2 Descripción del Equipo.

El equipo utilizado para la obtención de datos en 13^C es el usual del Observatorio de San Pedro Mártir. Consiste esen cialmente en dos fotómetros (8^C y 6^{RC}), y su correspondiente equipo periférico, que en nuestro caso es un equipo D.C., y que consta de un amplificador, un convertidor voltaje-frecuen cia, un contador, un impresor y un reloj digital. También usamos un graficador como apoyo.

Los dos fotómetros son esencialmente iguales, excepto que utilizan fototubos sensibles a intervalos de longitud de onda diferentes. El fotómetro 8° opera con un fotomultiplicador RCA 1P21, sensible a longitudes de onda entre 3600 y 6500 Å, mientras que el 6RC tiene un fotomultiplicador 8°CA 7102, cuyo intervalo de sensibilidad está entre 6000 y 11 000 Å.

Los dos fotómetros están consituídos por una cabeza y una caja fría. En la cabeza hay cinco componentes:

 Un ocular ajustable para localizar el objeto a observar y centrarlo en el diafragma.

2) Una rueda con disfragmas de diferentes d'ametros para aislar debidamente el objeto que se va a observor.

3) Una lente de campo o de Fabry, que es la que proyecta la imagen del espejo primario sobre el fotocátodo.

4) Una rueda de filtros, que es un disco giratorio en cuya periferia se colocan los filtros seleccionados para la observación.

5) Una fuente estándar, que se mide rápidamente después de cada observación; se usa para la reducción de los datos a la escala de magnitudes.

La caja fría es un aditamento importante que se usa para refrigerar el fototubo, de manera que éste se mantenga a una temperatura constante, independientemente de las condiciones

(7)

ambientales exteriores, y para reducir la corriente obscura.

En San Pedro Mártir los detectores han sido enfriados siempre con hielo seco (CO₂) con el cual se logran temperaturas alrededor de -70°C. con lo cual basta para los propósitos requeridos.

I.3.- Extinción Atmosférica.

Es un hecho bien conocido que la luz sufre una pérdida al pasar a través de la atmósfera de la Tierra o de cualquier otro material, por absorción y por dispersión. Por consiguie<u>n</u> te, la magnitud Mo de una estrella tal como la nediría un observador fuera de la armósfera está dada por:

mc = m - KX, (1.1),

donde m es la magnitud aparente de la estrella, medida desde la Tierra, X es la masa de aire con respecto al cenit del observador y K es el coeficiente de extinción, que viene a ser la medida de la extinción de la luz de una estrella en el cenit, expresada en magnitudes.

La masa de aire X está dada en buena aproximación por SecZ, donde Z es el ángulo subtendido por la estrella con respecto al cenit, considerando un modelo plano-paralelo de la atmósfera (Ver Fig. 1.2) y SecZ está dada por:

SecZ = (Sen ϕ Sen δ + Cos ϕ Cos δ Cos AH)⁻¹, (1.2),

donde

 ϕ = latitud del observatorio δ = declinación de la estrella observada

AH = ángulo horario de la estrella al momento de su

(8)

observación; esto as,

AH = T.S. - α , donde T.S. es el tiempo sideral de la observación y α es la ascensión recta de la estrella.

fig. I.2

Modelo plano-paralelo de la atmósfera

La ecuación (1.2) determina con suficiente precisión la masa de aire. Sin embargo, cuando se tiene un intervalo grande en declinación y en ángulo horario, la masa de aire está dada con más precisión por una aproximación polinomial en la forma:

X = SecZ - 0.0018167 (SecZ-1) - 0.002875 (SecZ-1)² - 0.0008083 (SecZ-1)³, (1.3),

ya que así se corrige empíricamente por la curvatura de la atmósfera terrestre. Los coeficientes del polinomio se obtienen por una interpolación cúbica a los datos de Bemporad (Hardie 1962). Es un hecho bien establecido que la atmósfeita no sólo di<u>s</u> minuye la luz que pasa a través de ella, sino que también la enrojece. Además es sabido que las longitudes de onda más largas son menos atenuados que las más cortas. Hay tres factores principales causantes de la extinción atmosférica: a) absorción en bandas y líneas moleculares, b) la debida a polvo, y c) dispersiór por moléculas, que es aproximadamente proporcional a λ^{-4} (Hardie 1962).

Cuando se trabaja con un sistema de muchas bandas a la vez, es conveniente hacerlo en términos de una magnitud simple y varios índices de color, y tratar a la extinción en forma diferencial:

Co = C - KcX (1.4),

donde el color se define como la diferencia de πagnitudes medidas en diferentes longitudes de onda según la expresión (l.l), y Kc es la diferencia entre los correspondientes coef<u>i</u> ficientes de extinción para magnitudes:

> $C = M\lambda_2 - M\lambda_1$ (1.5) $Kc = K\lambda_2 - K\lambda_1$

I.4.- Ecuaciones de Transformación.

En fotometría de banda intermedia, las medicas relativas de magnitud y color dependen principalmente de los filtros particulares escogidos. Cada combinación de filtros (y detectores) desarrolla y define su propio sistema de magnitudes y

colores, llamado sistema "natural". Para fines de uniformidad entre los distintos sistemas naturales y facilitar la comparación de resultados entre varios observadores, es necesario que todos los sistemas naturales estén referidos a un sistema estándar. Si se observa un número suficiente de estrellas estándar (en un buen intervalo de tipo espectral y clase de luminosidad) cuyas magnitudes y colores hayan sido medidos en el sistema al cual se quiere transformar un sistema natural dado, y si en este sistema natural los filtros han sido bien escogidos y además es posible determinar los valores de las llamadas constantes de escala y puntos cero de la trans formación, de manera que las magnitudes y colores obtenidos reproduzcan bien las magnitudes y colores estándar, entonces las ecuaciones de transformación de un sistema a otro son linéales. De acuerdo a este criterio, las ecuaciones de transformación pueden escribirse como:

 $Cs = \xi c + \mu cCn$ $Ms = \xi + Mn + \mu Cs$

donde Ms y Cs son las magnitudes y colores en el sistema estándar; Mn y Cn son las magnitudes y colores "naturales" o, dicho de otra forma, las magnitudes y colores instrumentales ya corregidos por extinción atmosférica; ξ y ξ c son los puntos cero, mientras que μ y μ c son las constantes de escala o términos de color. El punto cero de magnitudes, ξ , es el que ofrece más problemas, dobido a cambios en la sensibilidad del equipo, por lo que en su determinación es conveniente un calcu lo preciso de la extinción para minimizar efectos debidos a ésta (Hardie 1962).

(1.6)

La necesidad del uso de los términosµyµc se debe al hecho de que, por ejemplo, los filtros del sistema natural no concue<u>r</u> den exactamente con aquellos del sistema estándar o, si se está

(11)

observando con los filtros originales con los que se creó un sistema dado, estos estén deteriorados. En principio, observando con los filtros originales en perfecto estado, debe tenerse que $\mu c = 1.00$ y $\mu = 0.00$

.I.5.- Procedimiento de observación.

Por las condiciones de observación en San Pedro Mártir y el uso de un equipo D.C., creemos que el procedimiento de ob servación más conveniente es el siguiente: Para cada filtro se toman integraciones de 10 segundos cada una, en secuencia estrella-cielo-estrella ...; para estrellas bri lantes por lo géneral basta con una secuencia. Siempre buscamos que la lec tura numérica repita dentro del 3% de error. Para estrellas débiles se hacen más integraciones por lo general, y al obser var estrellas estándar a grandes masas de aire, generalmente se les hace rápidamente dos de los ciclos consecutivamente. Es conveniente observar por lo menos 10 estándaves durante. cada noche, procurando subrir un buen intervalo de tipo espec tral y clase de luminos dad, para obtener una buena reducción. Puede observarse un par de extinción (una estrella azul y otra roja, no muy separadas entre sí), a masa de aire pequeña, mediana y grande, y otras estándares a masa de aire pequeña; así se obtienen buenos coeficientes de extinción y de transformación. La costumbre es observar, en promedio, 4 estándares a masa de aire pequeña (Y < 1.3), 4 a masa de aire intermedia (1.3 < X < 1.8) y entre dos y cuatro a masa de aire grande (X > 1.8).

Generalmente empezanos la noche observando 2 ó 3 estándares, que pueden ser el par de extinción y otra estándar; es preferi ble que esta última esté en la región del cielo donde se tienen las estrellas del programa. Si se tienen estándares del mismo

(12)

tipo espectral y clase de luminosidad que las estrellas del programa, mejor. En el sistema 13C, que en principio fue creado para estudiar estrellas tempranas, paradójicamente tenemos pocas estándares principales tempranas (alrededor de 10). Esta carencia puede suplirse fácilmente usando estánd<u>a</u> res secundarias, cuando sea necesario.

I.6.- Reducción de datos.

De (1.1 y 1.4) tenemos que

Mn = m - KXCn = C - KCX

(1.7)

donde m y C son la magnitud y color instrumentales respectivamente; Mn y Cn son la magnitud y color naturales. Sea $K = \overline{K} + \Delta K$, donde \overline{K} es el coeficiente de extinción promedio de muchas noches, y ΔK es una corrección a la extinción para una noche dada. Por lo tanto, si hacemos

$$M' = m - \bar{K}X$$

$$C' = C - \bar{K}CX$$
(1.8)

entonces

$$Mn = M' - \Delta KX$$
(1.9)

$$Cn = C' - \Delta KCX$$

sustituyendo (1.9) en (1.6) tenemos que

(13)

$$Ms = M' - \Delta KX + \xi + \mu Cs$$

$$Cs = \xi c + \mu c (C' - \Delta KcX)$$
(1.10)

Nuestro programa de reducción utiliza la observación de estrellas estándar para dar solución por cuadrados mínimos al sistema de ecuaciones (1.10) y así obtener las constantes ξ , μ , ΔK , ξ c, ξ c y ΔK c de la noche particular que se está reduciendo.

El procedimiento de reducción de datos es el usual para estos casos. Se tiene un archivo que contiene los datos geográficos y del equipo amplificador del Observatorio Astronómico Nacional, así como los valores de las estrellas estándar, y otro archivo que contiene los datos de la noche: el nombre de las estrellas observadas, las deflexiones de las observaciones, la ganancia del amplificador, el filtro y la hora en que se hizo la observación.

El programa de reducción es versátil, lo que nos permite hacer las soluciones mas adecuadas, dependiendo de las condiciones del equipo y del período observacional. Se pueden hacer soluciones con o sin las medidas de la fuente estándar, coeficientes medios de transformación y/o coeficientes medios de extinción para cada una de las magnitudes o colores. Εn general, se tiene un criterio, dado por la práctica, de que un intervalo de masa de aire mayor o igual que 0.80 es el adecuado para buscar correcciones a la extincióo AK, y de que con un intervalo de color mayor o igual que 0.50 es conveniente calcular los coeficientes de color µ y µc para la noche. Si no se cumple alguno de estos criterios, se utilizan los valores medios de la temporada o del lugar. También se usa otro criterio (normalmente ± 0.15 magnitud), para definir el nivel de aceptación o no aceptación de una estrella estándar, y es que el punto cero calculado para esa estrella esté cercana al punto cero promedio de todas las estrellas estándar dentro de un márgen de ± 0'.15 X, donde X es la masa de aire a la que se hizo la observación.

También pueden hacerse soluciones forzadas, es decir, dar un intervalo de color o de masa de aire muy alte como criterio para solución por cuadrados mínimos y así usar los valores que uno desee para la reducción.

Después de solucionar por cuadrados mínimos, el Programa imprime tablas de residuos para cada magnitud y color de las estrellas estándar. Cada residuo es la diferencia entre el color estándar 13C (Johnson y Mitchell 1975) y color calcu lado usando las ecuaciones de transformación. Por medio del examen de estos residuos como función de la masa de aire, color y tiempo, podemos decidir si la noche fué fotométricamente puena, si la fuente estándar se mantuvo constante, si los coeficientes medios (si se usaron) fueron adecuados, etc. Una saliua típica de datos reducidos por el programa se muestra en el Anexo 1.

Siempre hemos reducido 52 y 58 como magnitudes, y las mediciones en los otros filtros han sido reducidas como colores referidos a 52 y 58. Esto debido a que el coeficiente de extinción para un color Kc es menos variable que el de magnitud K.

TABLA 1.1

.

Calibración Absoluta del Sistema 190

Filtro	Longitud de onda monocromática equivalente (Å)	Paso de banda del filtro (A)	Energía rela tiva de una estrella ΔΟV* media (mag)
33	3371	100	+0.263
35	3536	100	+0.302
37	3751	100	+0.005
40	4030	200	-0.640
45	4571	230	-0.381
52	5183	230	0.000
58	5827	200	+0.363
63	. 6356	200	+0.670
72	7241	600	+1.087
80	8000	450	+1.436
86	8584	510	+1.652
99	9831	570	+1.973
110	11084	700	+2.384

* La densidad de flujo para una estrella ΔOV media para el filtro [52] es 4.30 x 10⁻¹² Watt cm⁻² µ⁻¹

Fig. 1.1

El Sistema 13C comparado con el UBVRI y con algunas características estelares o atmosféricas (Johnson y Mitchell 1975).

CAPITULO II

En este capítulo nos abocamos a encontrar las correcciones a las ecuaciones de transformación para el juego #1 de nuevos filtros 13C, que, como se dijo antes, tieren problemas de transformación al sistema de Johnson y Mitchell (1975), principalmente de color 37-52.

El procedimiento seguido fué el siguiente:

De las primeras reducciones, en las que se calcularon puntos cero, coeficientes de color y correcciones de extinción media para cada noche, se obtuvieron coeficientes de color (µ y µc) promedio para cada uno de los colores y magnitudes, que luego se usaron para re-reducir todas las noches forzando las soluciones, es decia, obligando al programa a tomar estos valores promedio en el cálculo de magnitudes y colores. Esto se hizo con el fin de que los residuos obtenidos en las re-reducciones estuvieran referidos a la misma constante de escala y no dependieran del conjunto particular de estrellas estándar en cada noche.

En 6RC se observó a diferentes altos voltajes, dependiendo del telescopio y de la brillantez de las estrellas (con el fin de mantener una señal lineal del fototubo 7102). En este caso se calcularon coeficientes de color promedio separando por voltajes (850 ó 9007). Es decir, si había alguna estándar observada a un voltaje diferente que las demás, se reducía como programa, para obtener coeficientes de color para la noche únicamente con estándares observadas al mismo voltaje. La extinción se calculaba con todas las estándares. En 8C siempre se observó a 700 V. En la tabla 2.1 se muestrar los coeficientes de color promodio para 8C y 6RC, anuales y totales. En la parte inferior de dicha Tabla puede verse que los coeficientes de color dependen ligeramente del alto voltaje.

Re-reducciones.

Las re-reducciones se hicieron de manera que el programa usara los coeficientes de color promedio de la Tabla 2.1 para recalcular magnitudes y colores, así como nuevos residuos. En el sistema 80 se forzó la solución sólo con los coeficientes de color promedio, y se recalcularon los puntos cero y las correcciones a la extinción media para cada noche. En 6RC se forzó la solución con los coeficientes de color promedio correspondientes al alto voltaje de las estrellas programa en particular utilizado. Solamente se usaron las estrellas estándar observadas al mismo voltaje que las estrellas programa para recalcular los puntos cero, y la extinción se forzó tam bién, usando, según el caso, coeficientes de exalución promedio o de cada noche, olvenidos en las primeras reducciones. Para 1981 y 1983 todas las noches se re-redujeron con los valores de extinción promedio anuales, ya que para la fotometría GRC la extinción se mantuvo muy constante para estos dos años. En 1982 la extinción fué más variable, debido probable mente a la erupción de El Chichón, por lo que la mayoría de las noches se re-redujeron con los valores encontrados en la primera reducción para cada noche particular. En la Tabla 2.2 se muestran los valores de la extinción promedio anuales entre 1980 y 1983, así como la extinción promedio entre 1973 y 1983 (Schuster y Guichard 1984a).

En abril de 1983 se observó también un grupo de estrellas estándar secundarias, con el fin de tener una muestra más grande para un análisis estadístico. Estas estrellas se eligieron de tal forma que la mayoría de ellas tuvieran tipos espectrales cercanos a AO, cubriendo todo el intervalo de clases de luminosidad, y que además hubieran sido bien medidas con el

(19)

juego original de filtros (Johnson y Mitchell 1975, Schuster 1976a, 1979a, 1984b). Se les observó en el sistema 8C, de tal modo que cada estrella fuera medida 1 ó 2 veces, en forma independiente.

Análisis de los residuos.

De las re-reducciones se obtuvieron residuos promedio para cada magnitud o color de las estrellas estándar. Sólo se consideraron los residuos de las noches que se utilizaron para calcular los coeficientes de color promedio. Para las estrellas estándar principales se tomaron solamente los resi duos con masas de aire menores que 1.5, cuando se tenían varias observaciones de una estrella durante la noche, o se usaba el residuo con masa de aire mínima cuando ésta estaba entre 1.5 y 2.0. No se asaron residuos con masas de aire mayores o iguales que 2.0. Los residuos a los que hacemos mención son los discutidos en el Capítulo I.

Para el grupo de las estrellas estándar se andarias se tomaron los residuos de todas las noches, a todas las masas de aire. En este caso el residuo es la diferencia entre los colores obtenidos con los filtros originales y los encontrados con los filtros nuevos.

En los dos casos el promedio se calculó en la forma

$$\overline{\text{Res}} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sum_{i=1}^{n} \frac{1}{\sum$$

donde n es el número de residuos seleccionados.

En la Tabla 2.3 se dan los residuos promedio para las estrellas estándar principales, así como su tipo espectral, clase de luminosidad y el número de observaciones tomadas para el promedio, en el sistema 8C. En la Tabla 2.4 se tiene lo mismo para las estrellas estándar secundarias, y en la Tabla 2.5 se muestran los resultados para el sistema 6RC. En 1. Tabla 2.6 se muestran los residuos promedio anuales para 1.5 estrellas estándar principales en el sistema 8C, y en la Tabla 2.7 se dan los residuos promedio totales para todas las estrellas estándar, principales y secundarias, agrupadas por tipo espectral y clase de luminosidad, tanto en 3C como en 6RC.

De estas Tablas vemos que hay algunos residuos que no son estadísticamente significativos, por tenerse pocas estrellas y mediciones, como es el caso de las supergigantes (AO - A2, Ib), que podrían explicarse por variabilidad fotométrica o errores de observación, pero en el caso del color (37-52) para las estrellas tempranas concluímos que los altos residuos definitivamente son reales y debidos a problemas de la transformación.

Una vez calculados los residuos promedio se procedió a hacer un análisis de cuadrados mínimos para encontrar las correcciones a las ecuaciones de transformación. Para ello se dividieron las estrellas en tempranas y tardíar, ya que el análisis se hizo utilizando diferentes índices fotométricos, sensibles a luminosidad, composición y temperatura. Para el grupo de las estrellas tempranas se eligieron dos índices, uno sensible a luminosidad y otro sensible a temperatura (Schuster 1984<u>a</u>). Para las estrellas tardías se eligieron otros índices, sensibles a gravedad, composición y temperatura. En lo que sigue nos restringiremos al caso de las estrellas tempranas (O, B, A) y al Sistema 8C. El caso de las estrellas tardías se discutirá en una próxima publicación (Schuster y Guichard 1984a).

Las magnitudes y colores en el sistema estándar 13C puedan describirse por medio de una función que depende de la luminosidad, la composición, la temperatura, el campo magnético, etc., digamos F(L, T, C, ...). Las magnitudes y colores del sistema natural definidos por el juego original de fil-

(21)

tros pueden pasarse al sistema estándar linealmente mediante las ecuaciones de transformación, y ser descritas por F(L, T, C ...). De los resultados discutidos antes se tiene que las magnitudes y colores del sistema natural definido por el juego nuevo de filtros no son descritos por F(L,T,C ...)mediante las ecuaciones de transformación, sino por otra función que, en principio, depende de los mismos parámetros, digamos G(L,T,C ...), ya que si las longitudes de onda efectivas de los filtros nuevos son distintas a las de los filtros originales lo que se esta haciendo es medir regiones diferen tes de la misma curva de distribución de energía de la estrella, que es función de la luminosidad, la temperatura, la composición, etc. Por lo anterior, podemos especar que los residuos sean función de los mismos parámetros:

Res(L,T,C, ...) = F(L,T,C ...) - G(L,T,C ...). (2.2)

Los filtros 13C están diseñados para estudiar, entre otras cosas, las discontinuidades de Balmer y Paschen, que para estrellas tempranas son indicadores de temperatura (Schuster 1984a). El filtro 37 mide las líneas convergentes de Balmer, siendo por lo tanto un buen indicador de luminosidad para estrellas tempranas (Schuster 1984a). A nosotros nos interesan las estrellas tempranas, y principalmente la región de la discontinuidad de Balmer y la zona donde convergen las líneas de Balmer, que es donde encontramos los mayores problemas para la transformación. Además, para las estrellas tempranas los parámetros físicos que más afectan su distribución de energía son la luminosidad y la temperatura (Johnson y Mitchell 1969; Schuster 1984a). De lo anterior, podemos suponer que los residuos para las estrellas tempranas sean función de la luminosidad y la temperatura principalmente, por lo que las correcciones que se buscan deben ser tales que dependan esencialmente de esos parámetros, algo de la forma

$$corrección = al + br + c, \qquad (2.3)$$

donde l es un índice sensible a la luminosidad y τ es sensible a la temperatura. La experiencia ha mostrado que l = (37-45) - 0.467(40-58) y $\tau = (35-40) - 0.304(40-58)$ son buenos indicadores de luminosidad y temperatura respectivamen te, y están libres de enrojecimiento interestelar (Schuster 1964a). Por estas razones se eligieron estos dos índices para cl análisis subsiguiente. En la Tabla 2.8 se dan los índices l y τ para las estrellas estudiadas, a partir de valores publicados (Johnson y Mitchel 1975; Schuster 1976a, 1979a, 1984b).

Con las correcciones queremos encontrar nuevos residuos entre los valores estândar y los valores calculados con el nuevo juego de filtros:

$$\overline{\text{NRes}} = | \overline{\text{Res}} - \text{Corrección} |, \qquad (2.4)$$

donde Res es el residuo obtenido en las re-reducciones y las correcciones están dadas según (2.3, siendo a, b y c constantes a determinar. De (2.3) y (2.4) tenemos que

$$\overline{NRes} = |\overline{Res} - al - bt - c|. \qquad (2.5)$$

Para determinar a, b y c se usó el método de cuadrados mínimos. De acuerdo a östo, tenemos que minimizar la canti dad

(23)

$$q = \sum_{i=1}^{n} (\overline{\text{Res}}_{i} - a\ell_{i} - b\tau_{i} - c)^{2}$$

donde N = número de estrellas estándar.

De (2.6), haciendo

 $\frac{\partial q}{\partial a} = 0, \ \frac{\partial q}{\partial b} = 0, \ \frac{\partial q}{\partial c} = 0,$

se obtiene un sistema de 3 ecuaciones con 3 incógnitas para a, b y c, que puede resolverse por cualquier método conocido. Resolviéndolo, se encontraron a, b y c para cada color, y para diferentes grupos espectrales y clases de luminosidad. En cada caso se hicieron regresiones lineales y se obtuvo el coe ficiente de correlación entre las correcciones encontradas y los residuos promedio para cada una de las estrellas. En todos los casos se encontró que para el color (37-52) hay correlaciones significativas, lo cual quiere decir que los altos residuos son reales. En la Tabla 2.9 se presentan los resultados finales para los diferentes casos. En la primera columna se da el color tratado, en la segunda el grupo espectral para el cual se calculó la solución, en la tercera el interva lo de clase de luminosidad, en la cuarta los índices fotométricos utilizados; en las columnas 5, 6 y 7 se dan los valores de las constantes a, b y c, respectivamente. En la octava se da el número de estrellas utilizado en la solución y en la novena el coeficiente de correlación entre las correcciones y los residuos promedio, vara cada solución. Sólo se da la solución para los colores (33-52), (35-52), (37-52) y (40-52). En los otros colores los valores encontrados no son significa-

(24)

(2.6)

tivos. En la Tabla 2.1) se presentan los residuos corregidos promedio (N Res), para diferentes grupos espectrales y clases de luminosidad, usando diferentes soluciones. En general se observa que los residuos mejoran (compárese con la Tabla 2.7). Solamente en la solución 2 para el grupo AO-A2, Ib se nota un aumento en los residuos corregidos, pero dado que sólo se ti<u>e</u> nen 2 estrellas con 3 observaciones en total, los resultados no tienen significado estadístico.

En las Tablas 2.9 y 2.10 puede verse que las mejores soluciones se dan cuando se limitan los intervalos de tipo espectral y clase de luminosidad, y cuando sólo se usa el índice τ en la solución. También se ve que las supergigantes se analizan mejor cuando se las separa de las clases de luminosidad V-III. Lo mismo pasa para las estrellas B cuando se las separa de las A.

Esto puede entenderse mejor graficando $l y \tau$ vs. tipo espectral (gráficas 2.1 y 2.2). En la gráfica 2.1 vemos que para estrellas en el intervalo Al-A9, V-III, l no es un buen indicador de luminosidal. En la gráfica 2.2 se tiene, para el mismo intervalo (Al-A9, V-III), que τ se vuelve un indicador menos eficiente de temperatura y se hace más sensible a gravedad superficial, pies vemos que para las supergigantes cambia rápidamente con el tipo espectral. Por otra parte, es sabido que la temperatura efectiva varía con el tipo espectral pero las clases II-V (Underhill et. al. 1979). En la gráfica 2.2 vemos que τ representa muy bien esta variación en el intervalo 09-A0, V-III. En las gráficas 2.1 y 2.2 se ve que -las supergigantes definen una rama aparte, siendo $l y \tau$ muy sensibles a la luminosidad para estas estrellas, por lo que se hizo una solución (la 4), tratándolas de manera especial.

De los resultados anteriores se concluye que el color (37-52) debe ser corregido; para (35-52) no son necesarias las correcciones; para (33-52) tal vez sean necesarias, pues los residuos podrían tener algún significado físico, como se ve en la Tabla 2.9. Para (40-52) probablemente se necesiten correcciones para estrellas de clase V-III, ya que los residuos se correlacionan bien con la temperatura (Sol. 5, Tabla 2.9). En los otros colores no se encontraron problemas.

Se encuentra que las mejores correcciones se dan cuando sólo se usa el índice τ y cuando se limitan los intervalos de tipos espectrales y clases de luminosidad.

Para mejorar las correcciones hay que separar las supergigantes de las otras clases de luminosidad. También deben separarse las estrellas A de las B (comparar soluciones 3 y 5, Tabla 2.9). Para una mejor corrección en el intervalo 09-A9, V-Ib, usando tanto ℓ como τ , habría que buscar correcciones con más términos (corr.= c + a ℓ + b τ + d ℓ^2 + e τ^2 + ...), pero p<u>a</u> ra eso son necesarias más observaciones de estrellas supergigantes, que en estos momentos no tenemos.

Resumiendo, se reconienda a los usuarios del juego #1 que apliquen las correcciones al menos para el color (37-52). También se recomienda observar estrellas estándar del mismo tipo espectral y clase de luminosidad que las estrellas programa para estudiar y colcular bien las correcciones.

(26)

TAE	LA	2.	.1

COEFICIENTES DE COLOR PROMEDIO - JUEGO #1 DE NUEVOS FILTROS

										•
Año	52	33-52	35-52	37-52	40-52	45-52	52-58	52-63	58	Noches
1981	-0.0064	1.0164	0.9984	1.0184	1.0580	0.9902	0.9265	1.1122	0.0464	34
1982	-0.0075	1.0155	0.9985	1.0194	1.0628	0.9894	0.9235	1.1144	0.0365	3
1983	-0.0030	1.6152	1.0120	1.0114	1.0497	0,9839	0.9363	1.1300	0.0492	7
Promedio	-0.0059	1.0162	1.0007	1.0173	1.0570	0.9892	0.9279	1.1152	0.0461	44
-										
Ano	58	58-72	58-80	58-86	5890	58-110	58	Noches		
1981	0.0387	1.0334	1.0293	1.0103	1.0158	1.0283	0.0553	13		
1982	0.0344	1.0295	1.0245	1.0043	1.0064	1.0160	0.0493	11		
1983 ·	0.0491	1.0454	1.0345	1.0143	1.0160	1.0318	0.0694	3		
	0.0361	1.0331	1.0279	1.0083	1.0120	1.0237	0.0544	27		
Alto	58	58-72	58-80	58-86	5899	58-110	58	Noches	1999 - 1997 - 1977 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 -	
vortaje				· · · · · · ·						
850 VDC 900 VDC	0.0381 0.0334	1.0333 1.0439	1.0288 1.0347	1.0097 1.0157	1.0147 1,0173	1.0256 1.0295	0.0545 0.0479	19 9		

EXTINCION PROMEDIO - VALORES ANUALES

Año	33	35	37	40	45	52	58	63	Noches
1980	0.616	0.493	0.396	0.295	0.197	0.137	0.120	0.079	5
1931	0.665	0.533	0.449	0.335	0.227	0.169	0.146	0.122	27
1982	0.807	0.673	0.607	0.469	0.370	0.315	0.267	0.250	3
1983	0.693	0.580	0.488	0.394	0.288	0.235	0.222	0.202	7
Promedio	0.674	0.546	0.461	0.350	0.244	0.186	0 165	0.140	02
Promedio 1973-83	0.647	0.523	0.424	0.320	0.214	0.159	0.144	0.107	161
Año	58	72	80	86	99	110	Noches		
1980	0.120	0.062	0.043	0.027	0.029	0.010	11	Normaliza	da a 8c.
1981	0.147	0.088	0.074	0.061	0.061	0.042	16		
1982	0.197	0.128	0.103	0.093	0.075	0.047	10		
1983	0.246	0.171	0.165	0.157	0.160	0.150	3		
Promedio	0.160	0.097	0.079	0.067	0.063	0.042	40		
Promedio 1973-83	0.135	0.073	0,056	0.045	0.049	Q.040	133 '		

(28)

RESIDUOS PROMEDIO (8C). ESTRELLAS ESTANDAR PRINCIPALES

BS	T.E.	Res(52)	Res(33-52)	Res (3552)	Res (37-52)	Res (40-52)	Fes(58)	Res (52-58)	Res (52-63)	Res (45-52)) N
4 5	M2 III	-0.0175	0.0204	0.0793	0.0167	-0.0383	-0.0119	-0.0070	0.1242	0.0247	2
617	K2 III	0.0179	-0.0131	-0.0014	0.0099	-0.0022	0.0184	-0.0009	-0.0030	-0.0096	13
718	B9 III	0.0169	-0.0079	0.0095	-0.0353	0.0196	0.0069	0.0047	-0.0017	0.0002	13
875	A1 V	0.0166	-0.0027	0.0160	-0.0397	0.0176	0.0183	-0.0069	-0.0072	-0.0052	3
1084	K2 V	-0.0208	-0.0119	-0.0080	0.0137	-0.0052	-0.0115	-0.0055	-0.0184	-0.0010	3
1855	BO V	-0.0132	0.0155	-0.0116	0.0308	-0.0065	-0.0189	0.0025	-0.0004	-0.0091	3
2852	FO V	C.0184	0.0033	0.0125	0.0043	0.0028	0.0060	0.0118	0.0128	-0.0003	ş
2890 .	Al V+AM	0.0143	-0.0163	-0.0117	-0.0515	0.0126	0.0108	0.0000	~0.0004	0.0047	٠,
2990	KO III	0.0302	-0.0256	-0.0135	0.0070	0.0003	0.0094	0.0201	0.0329	-0.0124	1
3249	K4 III	-0.0010	0.0159	0.0423	-0.0053	-6.0230	-0.0155	0.0141	0.0261	0.0026	16
3454	B3 V	-0.0109	0.0217	-0.0013	0.0289	0.0035	-0.0265	0.0153	0.0180	0.0023	18
4456	B3 V	-0.0004	0.0032	-0.0027	0.0202	-0.0130	0.0057	-0.0049	-0.0036	-0.0045	21
4534	A3 V	-0.0105	-0.0118	0.0000	-0.0405	0.0232	-0.0166	0.0024	0.0107	0.0188	18
4550	G8 VP	0.0020	0.0242	0.0350	0.0357	0.0042	0.0055	0.0015	-0.0021	0.0030	13
5634	F5 V	-0.0118	-0.0079	0.0177	0.0110	0.0030	-0.0019	-0.0078	-0.0012	0.0037	4
5685	B8 V	0.0050	-0.0039	0.0022	0.0208	-0.0051	0.0076	-0.0037	-0.0064	-0.0054	24
5854	K2 III	0.0037	-0.0086	-0.0226	0.0005	-0.0055	0.0042	0.0004	-0.0105	-0.0072	29
5947	K3 III	0.0036	-0.0066	0.0089	0.0055	-0.0007	0.0054	-0.0009	0.0028	-0.0029	22
6092	B5 IV	0.0202	-0.0057	-0.0130	0.0036	-0,0088	0.0185	0.0005	0.0012	-0.0045	22
6603	K2 III	-0.0045	-0.0018	-0.0181	0.0042	0.0018	0.0023	-0.0055	-0.0033	-0.0043	36
6629	V OA	0.0020	-0107	0.0088	-0.0519	0.0071	~0.0005	-0.0018	-0.0086	-0.0007	36
8622	09 V	-0.0093	0.0105	-0.0051	0.0301	~0.0226	-0.0070	-0.0064	0.0066	-0.0079	13
8832	K3 V	-0.0230	0.0192	0.0027	0.0044	0.0195	-0.0164	-0.0022	-0.0143	0.0224	22

(29)

1

RESIDUOS PROMEDIO (8C). ESTRELLAS ESTANDAR SECUNDARIAS

BS	T.E. °	Res(52)	Res(33-52)	Res(35-52)	Res(37-52)	Res (40-52)	Res(58)	Res(52-58)	Res (52-63)	Res (45-52)
2831	A2 İb	-0.0184	0.0110,	0.0055	0.0420	0.0220	0.0045	0.0235	0.0185	.0.0000
2874	A5 Ib	· -0.0095	-0.0260	-0,0410	0.0185	0.0365	-0.0310	0.0150	0.0195	0.0020
3309	G5 V	-0,0150	0.0045	0.0245	-0.0060	0.0055	-0.0180	0.0025	0.0020	-0.0005
3569	A7 V	0.0465	0.0005	0.0060	-0.0160	0.0255	0.0335	0.0105	0.0150	-0.0005
3662	A5 V	0.0175	-0.0135	0.0105	-0.0265	0.0130	0.0190	-0.0100	-0.0145	-0.0025
3706	G8 III	-0.0200	-0.0125	0.0095	0.0530	0.0200	-0.0280	0.0085	-0:0075	-0.0100
3974	A7 V	-0.0240	0.0165	0.0510	-0.0060	0.0385	0.0030	-0.0295	-0.0450	0.0105
3975	AO Ib	0.0180	-0.0010	-0.0300	0.0590	-0.0120	-0.0090	0.0240	0.0190	-0.0030
3981	AO III	-0.0140	-0.0040	0.0190	-0.0240	0.0370	-0.0020	-0.0160	-0.0530	0.0200
3982	B7 V	0.0520	-0.0350	-0.0500	-0.0090	-0.0120	0.0580	-0.0080	-0.0150	-0.0100
4030	dG 2	0.0010	0.0120	0.0220	0.0780	0.0160	0.0480	-0.0450	-0.0500	0.0200
4005	A2 IV	0.0180	0.0060	-0.010U	-9.0500	0 0310	0.0200	-0.0150	-0 0100	0.0000
4132	A7 IV	0.0150	-0.0260	0.0200	-0.0280	0.0320	0.0160	-0.0030	-0.0050	0.0200
4357	A4 V	0.0430	-0.0090	-0.0010	-0.0310	0.0210	0.0420	-0.0030	-0.0170	-0.0010
4496	G8 V	0.0103	-0.0400	0.0013	0.0187	-0.0073	-0.0210	0.0350	-0.0357	-0.0007
4789	AO III	0.0130	-0.0200	-0.0130	-0.0360	0.01.40	0.0150	-0.0070	-0.0280	-0.0020
5019	G6 V	-0.0030	0.0080	0.0120	0.0440	0.0150	-0.0010	0.0010	-0.0170	0.0000
5127	A7 III	-0.0270	-0.0100	-0.0090	-0.0270	0.0010	-0.0140	-0.0160	-0.0160	0.0020
5148	df 9	0.0150	-0.0160	0.0190	0.0200	-0.0190	0.0240	-0.0070	-0.0200	-0.0080
5235	GO IV	0.0050	-0.0130	0.0410	0.0290	0.0190	0.0000	-0.0030	-0.0040	-0.0110
5435	A7 III	0.0300	-0.0140	0.0110	0.0040	0.0220	0.0300	-0.0330	-0.0460	0.0080
5659	G5 V	0.0140	-0.0220	0.0110	0.0500	0.0010	0.0030	0.0130	-0.0010	-0.0040
5968	G2 V	0.0100	-0.0080	0.0370	0.0420	-0.0080	0.0010	0.0120	-0.0000	0.0050
5996	G4 IV-V	-0.0420	-0.0020	0.0090	0.0310	-0.0140	-0.0550	0.0150	0.0140	-0.0100
5081	A5 II	-0.0470	-0.0820	-0.0100	-0.0190	-0.0200	-0.0200	-0.0280	-0.0190	-0.0070
· 6095	A9 III	0.0320	-0.0480	-0.0060	-0.0100	-0.0140	-0.0450	-0,0150	-0.0300	-0.0170
6144	A7 Ib	-0.0250	-0.0270	-0,0200	5.0000	0.0010	-0.0100	-0.0100	-0.0210	-0.0100
+25°3344		0.0270	-0.0270	-0.0150	-0.0310	-0.0160	0.0290	-0.0060	-0.0010	-0.0120
+25°1981		-0.0230	-0.0020	0.0200	0.0080	-0.0130	-0.0330	0.0100	0.0510	-0.0020
+21°2247		0.0995	-0.0270	0.0120	0.0185	-0.0130	0.0805	0.0220	0.0185	-0.0075
-09°3595		-0.0205	0.0220	0.0210	0.0435	0.0295	-0.0080	-0.0080	-0.0140	0.0250
-10°4149		-0.0220	0.0135	0.0740	0.0325	-0.0145	-0.0065	-0.0125	-0.0065	0.0055
-21°4009		-0.0635	0.0280	0.0270	0.0275	0.0085	-0.0610	0.0005	-0.0115	0.0000
									· · ·	

RESIDUOS PROMEDIO (GRC). ESTRELLAS ESTANDAR PRINCIPALES

BS	T.E.	<u>R</u> es(58)	Res(58-80)	Res(58-86)	Res(58-99)	Res(58-110)	Res (58)	Res(58-72)	N
45	M2 III	-0.0566	0.0268	0.0224	0.0210	0.0106	-0.0571	0.0226	3
617	K2 III	0.0739	-0.0019	0.0062	-0.0087	0.0242	0.0737	0.0030	3
718	B9 III	0.0370	-0.0033	-0.0070	-0.0173	-0.0198	0.0371	-0.0006	9
753	K3 V	0.0310	-0.0072	0.0066	-0.0093	0.0161	0.0304	-0.0020	7
875	Al V	0.0317	0.0037	0.0036	-0.0170	-0.0057	0.0320	-0.0006	5
1084	K2 V	0.0112	8800.0	0.0133	-0.0025	0.0084	0.0110	0.0130	4
1855	BO V	-0.0128	-0.0004	0.0047	0.0107	0.0099	-0.0132	0.0153	4
2852	FO V	0.0037	-0.0013	-0.0033	-0.0089	-0.0043	0.0042	-0.0101	1
3249	K4 III	0.0112	-0.0060	-0.0004	-0.0013	0.0101	0.0109	-0.0088	12
3454	B3 V	0.0074	-0.0156	-0.0119	0.0086	-0.0100	0.0077	-0.0161	3
4456	. B3 V	-0.0140	0.0030	0.0008	0.0082	-0.0029	-0.0139	0.0013	12
4534	A3 V	-0.0010	-0.0114	-0.0076	0.0143	-0.0160	-0.0005	-0.0153	11
4550	G8 VP	-0.0030	0.0012	0.0023	-0.0021	-0.0056	-0.0034	0.0004	10
5634	F5 V	-0.0340	0.0017	0.0118	0.0078	-0.0134	-0.0343	0.0085	3
5685	B8 V	0.0207	0.0052	0.0009	-0.0051	0.0076	0.0208	0.0090	13
5854	K2 III	0.0212	-0.0079	-0.0104	-0.0002	-0.0067	0.0213	-0.0098	13
5947	K3 III	0.0137	-0.0022	-0.0003	0.0019	-0.0077	0.0134	0.0021	18
6092	B3 IV	-0.0044	-0.0059	-0.0060	-0.0032	0.0008	-0.0040	-0.0082	19
6603	K2 III	0.0220	-0.0022	-0.0043	-0.0076	-0.0264	0.0221	0.0010	17
6629	AO V	0.0042	-0.0009	-0.0005	-0.0036	-0.0182	0.0040	0.0008	26
7906	B9 V	0.0095	0.0144	0.0158	-0.0053	0.0023	0.0094	0.0219	2
8622	09 V	-0.0394	-0.0009	0.0017	0.0121	0.0194	-0.0390	-0.0066	19
8832	кз V	-0.0662	0.0113	0.0007	0.0127	0.0367	-0.0660	0.0029	19

(31)

RESIDUOS PROMEDTO PARCIALES (8C). ESTRELLAS ESTANDAR PRINCIPALES

BS	T.E.	Res(52)	Res(33-52)	Res(35-52)	Res(37-52)	Res(40-52)	Res(58)	Res(52-58)	Res(52-63)	Res(45-52)	N	Año
718	B9 III	0.0169	-0.0079	0.0095	-0.0353	0.0196	0.0069	0.0047	-0.0017	0.0002	13	1981
3454	B3 V	-0.0010	0.0112	-0.0032	0.0284	0.0042	0.0012	-0.0011		-0.0033	7	
4456	B3 V	-0.0017	0.0029	-0.0004	0.0232	-0.0143	0.0039	-0.0043	• .	-0.0040	17	
4534	A3 V	-0.0097	-0.0114	0.0010	-0.0376	0.0217	-0.0155	0.0023	b.onlo	0.0183	13	
5685	B8 V	0.0040	-0.0006	0.0061	0.0235	-0.0051	0.0031	-0.0002	-0.0020	-0.0047	18	•
6092	B5 IV	0.0136	-0.0043	-0.0107	0.0055	-0.0094	0.0121	0.0036	0.0044	-0.0046	14	
6629	AO V	0.0004	-0.0100	0.0104	-0.0510	0.0057	-0.0049	0.0009	-0.0049	-0.0014	30	
8622	09 V	-0.0067	0.0094	-0.0054	0.0311	-0.0218	-0.0062	0.0011	0.0086	-0.0086	15	
3454	B3 V	-0.0171	0,0284	-0.0001	0.0291	0.0030	-0.0441	0.0257	0.0306	0.0058	11	1983
4456	B3 V	0.0050	0.0046	-0.0123	0.0075	-0.0072	0.0129	-0.0074	-0,0099	-0.0064	4	
4534	A3 V	-0.0126	-0.0126	-0.0020	-0.0479	0.0271	-0.0195	0.0025	0.0035	0.0202	5	
5685	B8 V.	0.0036	-0.0112	-0.0149	0.0125	0.0039	0.0318	-0.0282	-0.0367	-0.0063	3	
609 2	B5 IV	0.0278	-0.0182	-0.0322	-0.0087	-0.0119	0.0489	-0.0198	-0.0211	-0.0066	4	
6629	AO V	0.0093	-0.0234	-0.0106	-0.0641	0.0111	i.0357	-0.0288	-0.0450	-0.0069	3	
617	K2 III	0.0179	-0.0131	-0.0014	0.0099	-0.0022	0.0184	-0.0009	-0.0030	-0.0096	13	1981
3249	K4 III	-0.0009	0.0088	0.0256	-0.0074	-0.0275	0.0054	-0.0052	0,0046	0.0023	8	
4550	G8 VP	-0.0015	0.0275	0.0364	0.0384	0.0026	0.0004	0.0031	-0.0018	0.0033	9	
5854	K2 III	0.0016	-0.0063	-0.0251	0.0034	-0.0059	-0.0027	0.0052	-0.0042	-0.0066	21	
5947	K3 III	0.0037	0.0011	0.0122	0.0114	0.0021	0.0036	0.0012	0.0050	-0.0007	14	
6603	K2 III	-0.0064	-0.0002	-0.0189	0.0062	0.0019	-0.0027	-0.0025	-0.0003	-0.0037	30	
8832	кз V	-0.0197	0.0187	0.0030	0.0049	0.0185	-0.0141	-0.0016	-0.0155	0.0219	19	
3249	K4 III	-0.0012	0.0229	0.0590	-0.0033	-0.0185	0.0364	0.0334	0.0476	0.0029	8	1983
4550	G8 VP	0.0100	0.0168	0.0317	0.0295	0.0079	0.0168	-0.0023	-0.0028	0.0022	4	
5854	K2 III	0.0144	-0,0206	-0.0185	-0.0109	-0.0071	0.0323	-0.0163	-0.0339	-0.0102	5	
5947	K3 III	0.0036	-0.0066	0.0089	0.0055	-0.0007	0.0054	-0.0009	0.0028	-0.0029	4	
6603	K2 III	0.0086	-0.0152	-0.0138	-0.0087	-0.0021	0.0450	-0.0331	-0.0336	-0.0124	3	

(32)

RESIDUCE PROMEDIO TOTALES

э

Grupo Espectral	ó Estrel	Res(52)	Res(33-52)	Res(35-	52) Res(37-	-52) Res (40-	-52) Tes(45	-52) Res(52	-58) Res (52	-63) Kes(58)	Estr 11as	e Medi das
09-B3	V	-0.013	0.016	-0.006	0.030	-0.009	-0.002	0.006	0.008	-0.017	3	39
68-A3	V-III	0.007	-0.008	0.002	-0.034	0.017	0.003	-0.005	-0.012	0.008	9	104
A4-FO	V-III	0.017	-0.011	0.011	-0.015	0.016	0.002	-0.010	-0.016	0.010	9	16
AO-A2	Ib	0.000	0.005	-0.012	0.050	0.005	-0.004	0.024	0.019	-0.002	2	3
F2-Kl	VI (Sub-er	nanas)-0.005	0.010	0.032	0.028	0.000	0.004	0.002	0.006	-0.004	6	22
F9-G8	V y IV	-0.001	-0.003	0.020	0.034	0.001	-0.001	0.003	-0.004	-0.002	9	12
К2 у КЗ	V	-0.022	0.004	-0.003	0.009	0.007	0.011	-0.004	-0.016	-0.014	2	25
G8-K4	III	0.004	-0.007	0.001	0.011	-0.001	-0.006	0.005	0.005	-0.001	7	119
B5 3249	K4 III	-0.001	0.016	0.042	-0.005	-0.023	0.003	0.014	0.026	-0.016	1	16
BS 45	M2 III	-0.013	0.020	J.C79	0.017	-0.038	0.025	-0.007	0.124	-0.012	ר.	?

Grupo Espectral	ó Estrella	Res(58)	Res(58-72)	Res(58-80)	Res(58-86)) Res (58-99)	Res(58-110)	Estre- llas	Medi- das.
09-A3	V-III	0.004	0.000	-0.001	-0.001	-0.004	-0.003	11	128
F0-K4	VI-III	0.008	0.000	-0.001	0.002	-0.002	0.003	11	107
BS 45	M2 III	-0.057	0.023	0.027	0.022	0.021	0.011	1	3

BS	т.е.	l	τ	
718	B9 TII	-0.0904	-0.0971	
875	Al V	-0.0044	+0.0039	
1855	BOV	-0.7687	-1.1160	
2890	AlV+AM	-0.0012	-0.0760	
3454	B3 1	-0.5487	-0.7961	
4456	B3 V	-0.4606	-0.7118	
4534	A3 V	+0.0349	-0.0917	
5685	B8 V .	-0.3407	-0.3035	
6092	B5 IV	-0.4244	-0,6032	
6629	AO V	+0.0342	-C.0071	
8622	09 V	-0.7853	-1.1379	
2831	A2 Ib	-0.4366	+0.0923	
2874	A5 1b	-0.2673	+0.3598	
3569	A7 V	-0.0347	-0,2025	
3662	A5 V	-0.0227	-C.1584	
3974	A7 V	-0.0178	-0.1628	
3975	AO Ib	-0.4406	-0.1338	
3981	AO III	-0.1254	+0.0249	
3982	B7 V	-0.3135	-0.3414	
4033	A2 IV	+0.0370	+0.0513	
4132	A7 IV	-0.0584	-0.1800	
4357	A4 V	+0.0313	-0209	
4789	AO III	-0.0237	+0.0295	
5127	A7 III	-0.0994	-0.1502	
5435	A7 III	+0.0028	-0.0441	
6081	A5 II	-0.1104	+0.4637	
6095	A9 III	-0.0138	-0.0374	
6144	A7 Ib	-0.2359	+0.4067	
+25°3344		-0.1238	+0.1276	

INDICES FOTOMETRICOS

ď

÷

I

i

.
TI	ABL	Α	2		9
			_	-	-

SOLUCIONES PARA LOS RESIDUOS

Color	Clase Espectral	Clase de Luminosi- dad	Indices Fotomé- tricos	a	b	С	N	Coeficier te de co- rrelación	l Solu- ción
			•						_
33-52	09-A9	V-Ib	l,T	0.0061	-0.0349	-0.0155	29	0.59	1
35-52	09-A9	V-Ib	l,T	0.0582	-0.0277	0.0035	29	0.51	1 ;
37-52	09-A9	V-Ib	l ,τ	-0.1322	0.0247	-0.0309	29	0.85	1
40-52	09-A9	V-Ib	l,τ	0.0417	-0.0064	0.0165	29	0.52	1
33-52	09-A3	V-Ib	ℓ ,τ	-0.0237	-0.0031	-0.0099	17	0.55	2
35-52	09-A3	V-Ib	l,τ	-0.0179	0.0201	-0.0030	17	0.27	2
37-52	09-23	V-Ib	l.T	-0.1043	0.0080	-0.0294	17	0.72	2
40-52	09-A3	V-Ib	l,τ	-0.0194	0 0469	0.0168	17	0.75	2
33-52	09-A9	V-III	τ	, 1754 gaint	-0.0247	-0.0141	24	0.54	3
35-52	09-A9	V-III	τ		0.0105	0.0028	24	0.21	3
37-52	09-A9	V-III	τ		-0.0623	-0.0312	24	0.83	3.
40-52	09-A9	V-III	τ		0.0275	0.0161	24	0.54	3
33-52	A0-A7	II-Ib	τ		-0.1084	0.0008	5	0.76	4
35-52	AO-A7	II-Ib	τ		-0.0012	-0.0188	5	0.02	4
37-52	A0-A7	II-Ib	τ	النور فلنبة	-0.1185	0.0483	5	0.95	4
40-75	AO-A7	II-Ib	τ		0.0054	0.0042	5	0.06	4 .
33-52	09-A3	V-III	τ		-0.0202	-0.0110	15	0.59	5
35-52	09-A3	V-III	τ		0.0095	-0.0009	15	0.25	5
37-52	09-A3	V-III	ά	· • • • •	-0.0699	-0.0377	15	0.90	5
40-52	09-A3	V-III	т		0.0328	0.0178	15	0.79	5

(35)

TABLA 2.10

RESIDUOS CORREGIDOS PROMEDIO

Grupo Espectral		o Espectral NRes(33-52)		NRes(37-52)	NRes (40-52)	Estrellas	Solución
<u> </u>		0 0003	0 0031	-0.0067	-0 0023		1
B8-A3	V-TTT	0.0049	-0.0013	-0.0097	-0.0023	.,, C)	1
A4-A9	V-III	-0.0020	0.0036	0.0092	-0.0019	9	ī
A0-A2	Ib	0.0225	0.0092	0.0240	0.0066	2	ī
•							
09-B3	Ŷ	0.0051	0.0045	-0.0057	0.0038	3	2
B8-A3	V-III	0.0006	0.0054	-0.0100	0.0020	9	2
A0-A2	Ib	0.0104	-0.0126	0.0565	-0.0146	2	2
09-B3	V	0,0049	0.0019	-0.0022	0.0033	3	3
B8-A3	V-III	0.0049	0.0001	-0.0063	0.0028	9	3
A4-A9	V-III	-0.0079	0.0058	0.0101	-0.0014	9	3
A0-A2	Ib	0.0020	0.0065	-0.0003	0.0009	2	4
09-в3	v	0.0064	0.0046	-0.0034	0.0070	3	5
B8-A3	V-III	0.0020	0.0037	-0.0002	0.0013	9	5

(36)

• • • •

CAPITULO III

Las estrellas Be.

Las estrellas Be han sido objeto de estudios exhaustivos desde su descubrimiento, hace más de 100 años (véanse, por ejemplo, las memorias de los Simposia 70 y 98 de la UAI, y el excelente libro de Underhill y Doazan (1982) como fuentes de referencias). A pesar de ello, a la fecha no se tiene todavía una concepción clara de los mecanismos que gobiernan las atmósferas y envolventes de tales estrellas para explicar las propiedades que possen.

Como una primera definición podemos decir que una estrella Be es aquella que presenta líneas en emisión en la serie de Balmer, y frecuentemente líneas de metales ionizados (prin cipalmente Fe II) y que tienen un espectro de absorción tipo B. Se cree que las estrellas Be son rotadores rápidos, y que están rodeadas por una envolvente circunestelar que es donde se producen las líneas en emisión. Esta envolvente está formada por material eyectado por la estrella, y determinar cuál es el mecanismo responsable de esta eyección es uno de los principales problemas con los que se enfrentan actualmente quienes estudian estos objetos.

Las estrellas Be como grupo están localizadas en la parte superior del diagrama A-R, 0.5 5 l magnitudes arriba de la secuencia principal (Mendoza 1958; Schild 1965; Slettebak 1968). Sin embargo hay pruebas de que también pueden encontrarse en la secuencia principal. Así, por ejemplo, Bond (1973), Schild y Romanishin (1976), y Abt y Levato (1977) han encontrado que algunas estrellas Be en cúmulos pueden localizarse cerca de la base de la secuencia principal (edad cero). La posición de las estrellas Be en el diagrama H-R ha s<u>i</u> do interpretado por algunos como un efecto evolutivo. Crampin y Hoyle (1960), basados en la posición de Pleione en el diagrama H-R de las Pléyades, han interpretado esta posición como la correspondiente a la fase de contracción secundaria, siguiente al agotamiento del hidrógeno en el núcleo. Esta hipótesis, sin embargo, enfrenta serias objeciones que la ha cen poco confiable (Underhill y Doazan 1982). Etres han dicho que la posición de las estrellas Be en el diagrama H-R debe explicarse solamente como un efecto de rotación, sin r<u>e</u> currir a argumentos evolutivos (Collins 1966; Coilins y Sonneborn 1977).

Si bien las estrellas Be son rotadores rápidos, parece ser que no rotan con una velocidad cercana a la velocidad de rompimiento, para que por este solo mecanismo pierdan el material requerido para formar la envolvente circunestelar (Slettebak 1976). Por lo tanto, hay que buscar un mecanismo alternativo o complementario que haga posible el transporte de material. En este punto y a la fecha no hay acuerdo: Marlborough y Snow (1975) encuentran correlación entre la pérdida de masa determinada a partir de observaciones ultravioletas, y la velocidad rotacional proyectada, sugiriendo que el flujo ultravioleta es suficientemente grande como para producir vientos estelares de alta velocidad, siempre y cuando la rotación reduzca la gravedad efectiva cerca del ecuador. Limber (1976), por otra parte, piensa que efectos combinados de rotación diferencialy campos magnéticos podrían producir inestabilidadas suficientemente grandes como para que haya un flujo intermitente de masa, que es el que parece darse en las estrellas Be. Roxburgh (1970) sugiere que cuando la gravedad y la temperatura en las regiones ecuatoriales de las estrellas Be son iguales que las de las estrellas pulsantes, una inestabilidad en la pulsación podría producir eyección de materia. Por su parte, Harmanec y Kriz (1976)

(40)

sugieren que todas les estrellas Be son binarias, y que la envolvente se forma demo resultado de intercambio de masa.

En conclusión, no Jay acuerdo acerca del mecanismo responsable de la envolvente de las estrellas Be, ya que no se tienen argumentos físicos específicos que permitan descartar algunos de los mecanismos sugeridos.

.

Las estrellas Be han sido clasificadas en varios tipos, dependiendo de las características espectrales que presenten. Para evitar confusiones con previas y ambiguas clasificaciones, vamos a definir lo que nosotros entendemos por cada tipo, de acuerdo a los criterios de Jaschek et at. (1981):

Estrella Be: Una estrella no supergigante que tiene o ha tenido alguna vez una o más líneas de hidrógeno en emisión. Su espectro se caracteraza por tener líneas anchas de HeI en absorción. También muestran frecuentemente Fe II y/o HeI en emisión. Un perfil de línea típico se muestra en la Fig. 3.1, y consiste en una línea de uno o dos picos con una parte central con absorción, todo ello superpuesto a una línea de absorción muy ancha. El ancho de esta última línea es causado por la rápida rotación de la estrella, y el resto del perfil es debido, supuestamente, a la envolvente circunestelar.

Fig. 3.1

 <u>Estrella "shell" tipo B</u>: Estrella Be cuyo espectro está caracterizado por la presencia simultánea de líneas anchas en absorción y líneas agudas también en absorción que surgen de estados base y niveles metaestables (Fe II, Ti, II y Cr II prin

(42)

cipalmente). En la Figura 3.2 se muestra un perfil "shell" típico, que es una línea ancha en absorción sobre la que está superpuesta una línea muy aguda y profunda en absorción, bordeada por alas en emisión.

Fig. 3.2

Estrella "Polo de frente": Estrella Be cuyo espectro se caracteriza por tener líneas de hidrógeno en emisión con alas anchas de absorción, y por líneas en absorción ajudas de He I. Son llamadas así porque se supone son estrellas vistas en dirección del polo de rotación. Es decir, el ángulo que forma el eje de rotación con la línea de visión es muy pequeño. Es ta suposición se hace en base a que, si pensamos que las estrellas Be son rotadores rápidos y las líneas de He I son tan agudas, entonces se requiere una velocidad rotacional proyectada muy pequeña. Para explicar las líneas anchas del hidrógeno, primero se pensó que el ensanchamiento era debido a el efecto Stark, pero también puede ser el resultado de dispersión por electrones en la envolvente (Burbidge y Burbidge 1953). Un perfil "polo de frente" sería como el de la Figura 3.3.

continuo

Figura 3.3

•.

•

Estrellas Be "extrema". (Schild 1973): Son estrellas Be con emisión fuerte de hidrógeno en Hα y Hβ, con líneas anchas en absorción de hidrógeno en los términos superiores de la serie de Balmer, muestran grandes excesos infrarrojos, tienen una velocidad ecuatorial proyectada moderada, y las líneas de HeI (y a veces de Mg II son líneas agudas en absorción. Este tipo de estrella siempre ha sido considerado como "polo de frente", pero Schild las separa de las estrellas "polo de fren te verdaderas", diciendo que éstas vendrían a ser aquellas estrellas con velocidad rotacional proyectada baja pero con perfiles de línea de hidrógeno normales. El término "Be extrema" no es muy usado en la literatura.

Estrellas [Be]: Estrella de ti - B caracterizada por la presencia de líneas en emisión promitas de Felli, N II y 3 II, y por un exceso infrarrojo. Estas estrellas son general mente más débiles en su brillo intrínseco que las Be "clásicas" (Underhill y Doazan 1983). Estos objetos también pueden emitir en radio. Se cree que tienen envolventes circuncistelares muy extendidas (Jaschek et al. 1981).

Las supergigantes tipo B con líneas de emisión en su espectro se consideran aparto, ya que en ellas el fenómeno Be no se debe a la rotación rápida, sino a efectos fuera de equilibrio termodinámico local en una atmósfera extendida, similares a los observados en las estrellas O. Son estrellas más masivas y evolucionadas que las estrellas Be descritas arriba.

Una característica fundamental de las estrellas Be es que son variables, espectroscópicas y fotométricas, en escalas de tiempo que van desde las decenas de años hasta algunos minutos. Las variaciones son generalmente irregulares, aunque algunas veces son cíclicas o cuasi-periódicas. Las causas de la variabilidad son desconocidas (Slettebak 1979).

(44)

Variabilidad espectroscópica.

Espectroscópicamente las estrellas Be pueden presentar los siguientes tipos de variabilidad:

La transformación de un espectro normal en uno peculiar
(Be o "Shell") y viceversa.

2) La transformación de un espectro Be en un espectro "Shell" y viceversa.

3) Cambios dentro de una fase dada. Un espectro "Be" ó "Shell" puede sufrir variaciones en intensidad, perfil, corrimiento de las líneas en longitud de onda, etc.

Los cambios indicados en l) y 2) pueden presentarse varias veces en una misma estrella, sin importar el orden (Underhill y Doazan 1982). Lo anterior sugiere que los espectros Be, "Shell" ó B normal, en una estrella dada, son solamente manifestaciones distintas del mismo objeto físico.

Variaciones del cociente emisión a continuo (E/C).

Una característica general de las estrellas Be es la varia ción E/C, que es el cociente de la emisión de las líneas al continuo adyacente, y que puede ser diferente para cada estrella. Las escalas de tiempo para estas variaciones puede ser de años (Underhill y Doazan 1982) o hasta de minutos (Bahng 1976).

Variaciones V/R.

Otro hecho característico de las estrellas Be es la variabilidad V/R. En un perfil típico como el de la Rig. 3.1, hay una absorción central que divide la línea de emisión en dos componentes: la violeta (V), y la roja (R). Se ha observado que las intensidades de estas componentes varían con el tiempo

(45)

(Slettebak 1979), así como las velocidades de las orillas de emisión y la absorción central, que muestran desplazamien tos en longitud de onda. Las variaciones V/R intentado explicarse mediante modelos geométricos, como er del anillo elíptico de Huang (1975).

Variabilidad fotométrica.

La variabilidad de las estrellas Be en el continuo ha si do estudiada principalmente por medio de fotometría de banda ancha, en la región visible e infrarroja. Como en el espectro de líneas, aquí también las estrellas tienen comportamien tos altamente individuales y cambios generalmente irregulares (Slettebak 1979), y la escala de tiempo de las variaciones puede ser de años o de horas. Ferrer y Jaschak (1971), y Feinstein (1975), por ejemplo, encuentran que las estrellas Be comúnmente presentan variaciones en su brillo que van de 0.1 a 0.2 magnitudes en escalas de años, mientras que Percy et al. (1981) detectan variaciones en escalas de tiempo de ho Este doble aspecto de variabilidad de corto y largo ras. "periodo" podría debersa a dos fenómenos diferences (Underhill y Doazan 1982): las variaciones de escalas grandos de tiempo podrían ser debidas a cambios en la opacidad de la envolvente (por flujo de masa, por ejemplo), mientras que las variaciones rápidas podrían estar relacionadas con los fenómenos observados en las variables de corto periodo (pulsaciones, por ejemplo), o estar relacionadas con efectos de rotación (Percy et al. 1981).

Alvarez y Schuster (1981, 1982), y Schuster y Alvarez (1983), estudian estrellas Be con el sistema 130, encontrando que estas estrellas son más variables en aquellos longitudes de onda donde sus excesos intrínsecos son más grandes. En particular, Alvarez y Schuster (1982) encuentral que 16 estrellas tienen variaciones mayores que 0.15 magnitudes en la discontinuidad de Balmer, en las magnitudes visuales o en el in-

(46)

frarrojo cercano. Tomando observaciones desde 1977 a 1983, Schuster y Guichard (1934 <u>b</u>) amplian esta lista a 22 estb = 1.1.2.

Fotométricamente también se in encontrado que las estrellas Be tienen excesos ultravios stas e infrarrojos. Mendoza (1981) encuentra que de una muestra de 56 estrellas el 60% tiene dichos excesos, a partir de observaciones en 4 diferen tes sistemas fotométricos. Feinstein y Marraco (1979), de una muestra de 76 estrellas observadas en el sistema UBV, en cuentra que casi todas ellas tienen excesos ultravioletas.

En el siguiente capítulo, analizamos algunos casos de variabilidad en estrellas Be observadas entre 1980 y 1983, así como sus excesos intrínsecos.

CAPITULO IV

FOTOMETRIA 13C DE ESTRELLAS Be.

IV. 1.- Aplicación de las Correcciones a Estrellas Be.

En el capítulo II se discutió la necesidad de hacer correcciones a las ecuaciones de transformación del sistema natural 13C definido por los nuevos filtros al sistema están dar, y se encontró que hay que aplicarlas, al menos para el color (37-52). En esta sección nos abocamos a aplicar dichas correcciones a un grupe de 16 estrellas Be con observaciones comunes con el juego original (Schuster y Alvarez 1933) y con el juego nuevo (Schuster y Guichard 1984 b). Las observacio nes con los filtros originales se realizaron entre 1977 y 1979, y con los nuevos entre 1980 y 1983. Se eligieron estrellas que no han variado significativamente (más de 0.1 magnitudes) durante este intervalo de tiempo, en el sistema 8C, y esperando que, si variaron algo, las variaciones se cancelen estadísticamente. Las estrellas muy variables reportadas por Alvarez y Schuster (1982) no se incluyeron.

À pesar de que las correcciones se calcularon usando sólo estrellas B normales, creemos que pueden usarse para corregir los datos de las estrellas Be, ya que las líneas en emisión sólo afectan ligeramente el color (37-52) y los índ<u>i</u> ces ℓ y τ , aún para estrellas con líneas en emisión muy fue<u>r</u> tes (Schuster y Guichard 1984 b).

Lo que se hizo fué comparar los colores calculados con los filtros originales con los correspondientes para los filtros nuevos. Para ello se usaron colores promedio, obtenidos de las distintas noches en que se observaron las estrellas, y fueron pesados con el inverso de la masa de aixe. La compar<u>a</u> ción se hizo para los colores (33-52), (35-52), (37-52) y (40-52). En la Tabla 4.1 se muestran los colores promedio ob

tenidos con los dos juegos de filtros, así como el número de noches usadas para calcularlos. Utilizamos el sufijo "O" para los filtros originales y "N" para los nuevos. Los tipos espectrales fueron tomados del catálogo de espectros seleccionados de Jaschek (1981), con excepción de les marcados con asterisco, que fueron tomados del trabajo de Jaschek et al. (1980). Con estos datos graficamos los colores nuevos contra los originales (gráficas 4.1, 4.2, 4.3 y 4.4), y ajustamos una recta de cuadrados mínimos (línea continua), que se compara con una línea de pendiente l (línea punteada). En la tabla 4.2 se muestran los resultados de las regresiones lineales que se hicieron para cada color, dándose en cada caso la pendiente de la recta (m), la ordenada al origen (b) y el coeficiente de correlación (r). De la Tabla 4.2 y las gráficas 4.1 - 4.4 vemos que para los colores (33-52), (35-52) y (40-52) las correcciores son pequeñas. En cambio, para el color (37-52) se notan exoblemas en la transformación (ver Tabla 4.2 y gráfica 4.3), por lo que se procedió a aplicar correcciones para este color.

Para eso se calcularon los índices $l \ y \ t$ para las estrellas a partir de los valores encontrados por Schuster y Alvarez (1983) y decidimos usar la solución 5 para 15 estrellas y la solución 1 para HD 91316 (ver Tabla 2.9). Se escogió la solución 5 porque pensamos que es la mejor para el intervalo de tipo espectral y clase de luminosidad de nuestra muestra (09-A3, V-III). Para 3D 91316 se usó la solución 1, ya que, por ser supergigante (31 Ib), no cae dentro del intervalo de validez de la solución 5, ni de la 4 (AO-A7, II-Ib). Con los índices $l \ y \ \tau$, y usando la Tabla 2.9, se encontraron correcciones para cada una de las estrellas, en la forma

 $C(37-52) = a_{37}-52\ell + b_{37}-52\tau + C_{37}-52\epsilon \qquad (4.2)$

(49)

TABLA 4.1

•

COLORES FROMEDIO - ESTRELLAS Be

•					1							
Bs	НD	T. E.	(33-52)0	(35-52)0	(37-52)0	(40-52)	N	(33-52),	(35-52)N	(37-52)N	(40-52)+	N
•												
2568	50658	B8 III	-0.692	-0.646	-0.508	-0.124	3	-0.7030	-0.6403	-0.5173	-0.1373	3
	51480	A PEP	-0.559	-0.550	-0.254	0.310	5	-0.5688	-0.5512	-0.3474	0.3006	3
	53367	BO IV: e	-0.622	-0.645	-0.164	0.400	. 5	-0.6817	-0.7107	-0.2313	0.3828	3
2817	58050	B2 V e	-1.306	-1.217	-0.785	-0.263	7	-1.3707	-1.2448	-0.8303	-0.2616	3
2921	60855	B2Ve.	-1.140	-1.048	-0.700	-0.175	3	-1.1216	-1.0321	-0.7385	-0.1457	2
	62367	B6 III*	-0.727	-0.673	-0.486	-0.132	.3	-0.7653	-0.6953	-0.4890	-0.1452	3
3135	65875	B2.5 V e	-1.277	-1.223	-0.709	-0.146	4	-1.2249	-1.1428	-0.7371	-0.1611	3
	71072	B7 IV e	-0.955	-0.878	-0.648	-0.201	3	-0.9371	-0.8420	-0.6581	-0.1912	3
	89884	B6 V 🕓	-0.930	-0.868	-0.610	-0.167	8	-0.8959	-0.8180	-0.6144	-0.1673	5
4123	91120	B9 Vn	-0,226	-0.199	,-0.272	-0.055	8	-0.2230	-0.1996	-0.2340	-0.0831	5
4133	91316	Bl Ib Sb	-1.474	-1.379	-0.885	-0.217	11	-1.4905	-1.3689	-0.9508	-0.1990	5
5778	138749	B6 Vnn	-0.892	-0.820	-0.560	-0.178	8	-0.8887	-0.8024	-0.5766	-0.1723	5
	141569	AOV*	0.061	0.070	0.103	0.093	8	0.0876	0.0771	0.1911	0.0956	2
5938	142926	BOV	-0.612	-0.562	-0.444	-0.152	9	-0.6200	-0.5720	-0.4487	-0.1570	4
6023	145389	B9 Pmn	-0.414	-0.389	-0.299	-0.098	7	-0.4047	-0.3929	-0.2700	-0.0949	4
6175	149757	09,5 V	-1.243	-1.190	-0.656	-0.039	6	-1.2379	-1.1639	-0.7225	-0.0165	2

Las correcciones se aplicaron a $(37-52)_N$, y se obtuvo el valor corregido:

(37-52) corr. = $(37-52)_{N}$ + C(37-52). (4.2)

Hechas las correcciones, graficamos (37-52)corr. VS. (37-52), (gráfica 4.5), e hicimos un ajuste de cuadrados mínimos (Tabla (2). De estos resultados se nota una mejoría en la transfer ación. En la misma Tabla 4.2 se muestra una comparación para (37-52) con y sin correcciones, para distin tos grupos espectrales. Vemos que para la muestra total las diferencias en valor absoluto entre los colores son menores cuando se han aplicado las correcciones. Lo mismo pasa para el grupo 09.5-A0. Para el grupo B6-A0, las diferencias aumentan un poco con las correcciones, pero siguer siendo pequeñas. En la Tabla 4.3 se muestran los resultados para (37-52), dándose los colores originales y los ruevos, con y sin correcciones. También se dan los índices l y t, así como las diferencias en color entre los filtros originales y los nuevos, con y sin correcciones. A(37-52) es la diferencia sin correcciones, y $\Delta^{+}(37-52)$ es la diferencia cuando ya se han aplicado aquéllas.

Para concluir, podemos decir que, al menos ostadísticamente, el uso de las correcciones es útil para mejorar los valores del color (37-52) para estrellas Be observadas con el juego nuevo de filtros. Esto no quiere decir que dichas correcciones no puedan hacerse para estudiar estrellas individuales, de hecho esto lo haremos más adelante. Además, en la Tabla 4.3 se ve que, en general, las correcciones mejoraron los colores para cada estrella individual, a excepción de 3, pero las diferencias no son muy grandes.

Del análisis anterior, no podemos decir nada definitivo referente a las correcciones a los colores (33-52) y (40-52), como se vió en el capítulo II. Para (37-52 la necesidad de correcciones es obvia.

(50)

TABLA 4.2

COMPARACION DE RESULTADOS

Estrellas Be I.- Sin aplicar contecciones $(33-52)_{\rm C} = -0.8130$ (33-52): m = 1.0046(33-52)n = -0.8154b = 0.0013 r = 0.9972m = 0.9730 $(35-52)\circ = -0.7636$ (33-52): (35-52)r = -0.7560b = -0.0133r = 0.9967m = 1.0886 $(37-52) \circ = -0.4923$ (37-52): b = 0.0250(37-52)n = -0.5109r = 0.9903 $(40-52) \circ = -0.0715$ m = 0.9696 (40-52):(40-52)r = -0.0721b = -0.0027r = 0.9968II.- Con correcciones (37-52) = -0.4923 (37-52): m = 1.0399 (37-52)corr = -0.5011b = 0.0108 r = 0.9968III.- Comparación de $\Delta(37-52)$ con y sin correcciones. $\Delta(37-52) = (37-52)o - (37-52)n$ $\Delta^{*}(37-52) = (37-52)o - (37-52)corr.$ 09.5-A0: $< |\Delta(37-52)| > = 0.0380$ $<|\Delta'(37-52)|> = 0.0194$ 09.5 - B2.5: $<\Delta(37-52)> = 0.0452$ $<\Delta'(37-52)> = 0.0173$ B6 - AO: $<\Lambda(37-52)> = -0.0020$ $<\Delta'(37-52)> = 0.0045$

CORRECCIONES AL COLOR (37-52) - ESTRELLAS Be

HD	Τ.Ε.	ĵ,	Ţ	(37–52) _o	N	(37-52) _n ·	N	∆(37-52)	c(37-52)	(37-52)corr	∆*(37-52)
		0 1200	0 101 6			0 5130	2	0.0000	0.0040	0 5010	0.0100
50658	BS III	-0.4389	-0.4816	-0.508	ک	-0.51/3	3	0.0093	-0.0040	-0.5213	0.0133
51480	A Pep.	-0.7474	-1.0217	-0.254	5	-0.3474	3	0.0934	0.0337	-0.3137	0.0597
53367	BO IV: e	-0.7815	-1,2386	-0.164	5	-0.2313	3	0.0673	0.0489	-0.1824	0.0184
58050	32 V e	0.5104	- v. 8540	-0 785	7	-0.8303	Ċ,	0.0453	9.0220	- 018083	0.0233
60855	B2 V e	-0.2045	-0.8128	-0.700	З	-0.7385	2	0.0385	0.0191	-0.7194	0.0193
62367	BG III*	-0.3959	-0.4908	-0.486	3	-0.4890	3	0.0030	-0.0034	-0.4924	0.0064
65875	B2.5 Ve	-0.6482	-1.0335	-0.709	4	-0.7371	3	0.0281	0.0345	-0.7026	-0.0064
71072	B7 IV e	-0.5049	-0.6046	-0.648	.3	-0.6581	3	0.0101	0.0046	-0.6535	0.0055
89884	BG V	-0.5017	-0.6435	-0.610	8	-0.6144	5	0.0044	0.0073	-0.6071	-0.0029
91120	B9 Vn	-0.1590	-0.1303	-0.272	8	-0.2340	5	-0.0380	-0.0286	-0.2626	-0.0094
91316	Bl Ib sb	-0.7462	-1.0820	-0.885	11	-0.9508	5	0.0658	0.0410	-0.9098	0.0248
138749	B6 Vnn	-0.4169	-0.5736	-0.560	8	-0.5766	5	0.0166	0.0024	-0.5742	0.0142
141569	AOV*	-0.0224	-0.0701	0.103	8	0.1911	2	-0.0881	-0.0328	0.1583	-0.0553
142926	BOV	-0.3311	-0.3580	-0.444	9	-0.4487	4	0.0047	-0.0127	-0.4614	0.0174
145389	B9 Pmn	-0.3290	-0.2585	-0.299	7	-0.2700	4	-0.0290	-0.0196	-0.2896	0.0094
149757	09.5 V	-0.7294	-1.1474	-0.656	6	-0.7225	2	0.0665	0.0425	-0.6780	0.0240

(53)

IV. 2.- Efectos de la línea en emisión H α - el color (52-63).

Los filtros 13C originales, con los cuales se definió el sistema, son de interferencia, a excepción del filtro [63], que es un cristal rojo sin corte hacia longitudes de onda largas, y cuya función de respuesta en esta parte está determinada únicamente por la caída de la sensibilidad del fototubo 1P21. En este filtro el nivel de lo% de la función de respuesta se encuentra aproximadamente a 6700 Å. El filtro [63] nuevo es de interferencia, por lo que su función de respuesta se corta más rápidamente en la parte de longitud de onda larga; el nivel de lo% cae alrededor de 6450 Å para este filtro.

De lo anterior, es de esperarse que para estrellas con emisión Ha(6562 Å) intersa, el color (52-63) de los filtros originales contenga efectos notables causados por esta línea, mientras que el color (52-63) de los filtros nuevos no.

Al hacer las correcciones a las ecuaciones de transformación en el Capítulo II no encontramos nada notalle para el color (52-63), debido a que las estrellas estándar usadas en el análisis no tienen emisión Ha intensa. Por lo tanto se decidió usar estrellas Be para estudiar la posible influencia de esta línea, ya que las estrellas Be por lo general tienen Hα en emisión. Para ésto, se tomaron todas las estrellas Be (26) con observaciones comunes con el juego de filtros original (Schuster y Alvarez 1983) y con el juego nuevo (Schuster y Guichard 1984 b) y se graficó el color (52-63) "original". contra el (52-63) "nuevo", con respecto a una línea de pendiente 1, para ver si hay algún efecto sistemático. En la Tabla 4.4 se muestran los valores (52-63), y (52-63), utiliza dos, así como la diferencia $\Lambda(52-63) = (52-63)o - (52-63)n$. Los tipos espectrales flueron tomados del catálogo de espectros seleccionados de Jaschek (1981), excepto los marcados con asterisco, que se obtuvieron del trabajo de Jaschek et al. (1980). Los valores tabulados son promedios de observaciones individuales pesados con el inverso de la masa de aire.

En la Tabla 4.4 y en la gráfica 4.6 se ve una tendencia de que el color (52-63)o es más rojo que el (52-63)n (Δ (52-63)>0), lo cual inplica que la magnitud 63 del filtro original es más brillante que la del filtro nuevo, lo cual nos indica la influencia de la linea H α en el filtro original. Haciendo una regresión lineal obtenemos la relación

 $(52-63)_n = 0.845(52-63)_c - 0.012,$ (4.3)

que también nos indica este problema. El efecto es más notable para las estrellas con líneas fuertes en emisión (Δ), como se ve en la Tabla 4.4 y en la gráfica 4.6, excepto para HD 109387 y HD 148184, pero estas son estrellas que presentan alta variabilidad de acuerdo con Alvarez y Schuster (1982).

El siguiente paso fué tomar estrellas con líneas fuertes en emisión (Hubert-Delpiace y Hubert 1979), y graficar las diferencias entre los colores originales (Schuster y Alvarez 1983) y los nuevos (Schuster y Guichard 1984 b) contra longitud de onda, para ver el efecto antes mencionado en estrellas individuales. De los trabajos citados se obtuvieron colores promedio (pesados con el inverso de la masa de aire). Para el color (37-52)n se aplicaron correcciones, usando la solución 5 (Tabla 2.9). Er la Tabla 5 se presentan las diferencias en color para las estrellas seleccionadas, así como las correctiones al color (37-52) y los $\Delta(37-52)$ corregidos (NA(37-52)), además de los índices t usados para las correcciones, que se obtuvieron del trabajo de Schuster y Alvarez (1983). Las diferencias son el color original menos el color nuevo. Los valores de la Tabla 4.5 se graficaron contra longitud de onda (gráficas 4.7 - 4.11), notándose claramente el efecto de Hα en la forma de una deficiencia para el filtro

(60)

[63] nuevo con respecto del original. En las grificas el va lor correspondiente a (37-52) sin correcciones se denota con "x" para comparación.

Como conclusión, podemos decir que hay un efecto claro de la línea Ha en el color (52-63) para el juego original de filtros, por lo que hay que tener cuidado cuando se comparen observaciones de los dos juegos de filtros, sobre todo en el caso de estrellas variables con Ha en emisión, pues no se po dría discernir si los cambios observados son reales o debidos al efecto de la línea. Por lo mismo, es mas complejo interpretar observaciones cor el juego original para (52-63), pues no se puede separar la variación del continuo de la línea Hα. Por otra parte, de ninguna manera debe considerarse la ecuación (4.3) como una ecuación de transformación entre los dos juegos de filtros, por las pocas estrellas utilizadas en su derivación, y porque la amisión en H α es variable. Este problema de transformación no se puede corregir fácilmente, ya que el sistema estándar 13C fué definido y calibrado con estrellas para las cuales el efecto de la línea Hu no se nota.

(61)

TABLA 4.4

·

•

COMPARACION DEL COLOR (52-63) PARA ESTRELLAS Be

HD	BS	T.E.	(52-63)0	(52-63) n	۵ (52 63)	
∆ □ 45314		09:P,e	0.192	0.005	0.187	
O 50658	2568	B8 III	0.013	-0.027	0.040	
∆O 51480		A Pep	0.532	0.406	0.126	
∆ 53367		Во ІУ:е	0.471	0.402	0.069	
∆ 58050	2817	B2 Ve	-0.099	-0.122	0.023	
O 60855	2921	B2 Ve	-0.021	-0.000	-0.021	
∆ 62367		B6 III*	-0.013	-0.066	0.053	
Δ 65875	3135	B2.5 Ve	0.117	-0.031	0.148	
O 71072		B7 IVe	-0.042	-0.058	0.016	
O 89884		B6 V.	0.010	-0.030	0.040	
O 9].120	4123	B9 Vn	0.031	0.015	0.016	
O 91316	4133	Bl Ib Sb	-0.053	-0.064	0.011	
Δ 🗖 109387	4787	B6 IIIp	-0.064	-0.023	-0.041	
0 138749	5778	B6 Vnn	-0.064	-0.052	-0.012	
0 141569		AO V [*]	0.100	0.121	-0.021	
0 142926	5938	B9 Pec	-0.016	-0.031	0.015	
1 42983	5941	B5 I7.Ip	-0.002	-0.012	0.010	•
0 145389	6023	B9 P.mn	-0.012	-0.008	-0.004	
A 🖸 148184	6118	B2 IVp	0.376	0.386	-0.010	•
0 149438	6165	BO V		-0.120		
0 149757	6175	09.5 V	0.054	0.063	~0.009	
D 162428		B7 V*n	0.023	0.000	0.023	
D 162732	6664	BPec Sh	-0.030	-0.034	-0.004	
O 171780	6984	B5 Vn	-0.016	-0.024	0.008	
ü 173731		B9 III	0.042	0.064	-0.022	
[] 174638	7106	A8:V comp,Sb	0.124	0.102	0.022	
0 184279	-	BO.5 IV	0.108	0.149	-0.041	

Δ:	Lineas f	Euertes en emisión	m	= 0.8449
10:	De las l	l6 más variables	b	=-0.0121
0:	Estrella	as Be	r	= 0.9483

(62)

TABLA 4.5

EFECTOS DE H, EN EL FILTRO [63] ORIGINAL

Ŧ

НД	D(52)	A(33-5)	x) A(35-5)) <u> </u>	16(40-52)) <u> </u>	8(22-28)	1(52-63)	<u>A(52-72)</u>	1(52-80)	D155-86)	185-90	1) 1(22-110) T	<u>(37-52)</u>	NA (37-52
45314	-0.395	0.053	0.012	0.124	0.101	0,067	0.091	0.187	-0.002	0.039	0.039	0.054	0.116	-1,2682	0.051	0.073
51480	C.C34	0.010	0.001	0.003	0.009	0.010	0.037	0.126	0.107	0.120	0.123	0.116	0.146	-1.0217	0.034	0.059
53367	-0.023	0.060	0.066	0.067	0.017	0.011	0.027	0.069	0.007	-0.011	0.008	0.002	0.031	-1.2386	0.049	0.018
62367	-0.011	0.038	0.022	0.003	0.013	0.004	0.015	0.053	0.011	0.020	0.022	0.016	0.011	-0.4908	-0.003	0.000
65875	0.037	-0.052	-0.080	0.028	0.015	0.016	0.046	0.148	0.048	0.060	0.055	0.056	0.065	-1.0335	0.034	-0.006

Erafica 4.6

IV.3.- Variabilidad de estrellas Be en 13C. IV.3.1.- Estudio estadístico.

Con los datos de Schuster y Alvarez (1983), y Schuster y Guichard (1984 b), se hizo un análisis estadístico de variabilidad de estrellas Be. En el primer caso se utilizaron 84 estrellas observadas con los filtros originales, y en el segundo, 27 observadas con los filtros nuevos, encontrándose que las estrellas estudiadas, en promedio, muestran más variabilidad en la discontinuidad de Balmer, en las magnitudes visuales y en el infrarrojo cercano (~8000 Å).

El método usado fué el de tomar las desviaciones estándar de las observaciones para cada estrella y hacer un promedio con todas ellas, para todos los colores. Las desviaciones estándar promedio se dividieron luego por desviaciones estándar a masa de aire unitaria para estrellas O y B normales (Schuster 1982); de esta manera, se tienen razones $\overline{\delta Be} | \overline{\delta OB}$, que nos dan idea de cómo difieren las desviaciones de las estrellas Be con respecto a las estrellas O y B normales, y por ende, de dónde son más variables estadísticamente las estrellas Be, ya que las desviaciones estándar son una medida directa de los cambios en color de una estrella en diferentes noches de observación. El criterio usado fue que una razón $\overline{\delta Be} | \overline{\delta OB} > 1.5$ indica variabilidad en un color dalo. Creemos que este criterio cubre cualquier efecto por errores probables de observación, es decir, que indica un cambio real.

El análisis se hizo para diferentes grupos: la muestra total, estrellas "shel)", estrellas con líneas fuertes en em<u>i</u> sión y estrellas muy variables. Los grupos de estrellas "shell" y estrellas cor líneas fuertes en emisión fueron sele<u>c</u> cionados de acuerdo a los criterios de Hubert-Delplace y Hubert (1979), y el grupo de las muy variables es el reportado por Alvarez y Schuster (1982). Una vez calculadas las de<u>s</u> viaciones estándar promedio para los diferentes grupos, se
obtuvieron las razones $\overline{CBe} \mid \overline{\delta OB}$ y se graficaron contra longitud de onda. El promedic se calculó en la forma

$$\bar{\delta} = \frac{\sum_{i=1}^{N} (n-1) \delta i^{2}}{\sum_{i=1}^{N} (n-1)}, \qquad (4.4)$$

donde n es el número de observaciones para cada estrella, N el número de estrellas incluidas en el promedio y Si la desviación estándar de cada estrella, para cada color. Para las estrellas O y B normales se usó la Tabla 4.6, que es la Tabla 10 revisada del trabajo de Schuster (1982), proporcionada por él mismo (Schuster 1983).

Los resultados se muestran en las Tablas 4.7 y 4.8, y en las gráficas 4.12- 4.15, donde además se han graficado las razones $\delta Be \left| \delta OB \right|$ para las magnitudes 52 y 58 según el caso (80 ó 6RC) para comparación.

De estos resultados se ve que, en general, las variaciones más grandes se encuentran para la discontinuidad de Balmer (colores (33-52) y (35-52), que la miden), en las magnitudes visuales (52 y 58) y en el infrarrojo cercano (alrecedor de 8000 Å y en la discontinuidad de Paschen, medida por el color (58-86)). Otra conclusión inmediata es que los colores (40-52), (52-58) y (52-63) no son muy variables; (45-52) aparentemente indica variabilidad, aunque el pico que aparece allí podría deberse a que \overline{cOB} para ese color (Ver Tabla 2.6) es muy pequeña, en otras palabras, a que este valor estuviera subestimado.

En la parte 6RC se encuentra que el color (58-110) no es variable, pero en este caso lo que pasa es que $\overline{\xiOB}$ es grande, debido a la baja sensibilidad del fototubo 7102 y a la debilidad relativa de las estrellas B a l.1 μ (Schuster 1982). De los resultados anteriores hay que dar más peso a los obtenidos a partir del trabajo de Schuster y Alvarez (Tabla 4.7, gráficas 4.12 y 4.14) por dos razones:

 La muestra de estrellas es más grande, por lo que los resultados de un análisis estadístico son más confiables.

2) Los valores de la Tabla 4.6 para estrellus normales son para el juego original de filtros; Schuster (1982) dice que algunos de estos valores deben usarse con cuidado en estudios estadísticos de variabilidad con el nuevo juego de filtros, en particular para el color (52-63), ya que el filtro [63] original no es de interferencia, por lo que habría que revisar el valor de $\overline{\delta OB}$ para el color (52-63) en el ju<u>e</u> go nuevo de filtros.

En los resultados anteriores también se ve el efecto de la línea H α discutido en la sección anterior. Comparando las Tablas 4.7 y 4.8 vemos que para los filtros originales δ Be para el color (52-63) es más grande (excepto para el último grupo, pero allí δ Be $|\delta$ OB<1 en ambos casos y no puede decirse nada), debido probablemente a que en el juego original las variaciones en (52-63) son una combinación de cambios en el continuo y en H α , mientras que en los filtros nuevos las varia ciones son debidos solamente a cambios en el continuo. De es ta manera tendríamos que para los filtros nuevos δ Be $\sim \delta$ conti nuo, mientras que para los filtros nuevos δ Be $\sim \delta$ conti

(72)

	О,В		A,F,G		K,M	
Color	e.p.	δ	e.p.	δ	e.p.	δ
52	0.0097	0.0144	0.0117	0.0173	0.0121	0.0179
33-52	0.0074	0.0109	0.0103	0.0153	0.0121	0.0179
35-52	0.0088	0.0130	0.0112	0.0165	0.01.18	0.0220
37-52	0.0073	0.0166	0.0034	0.0124	0.0094	0.0140
40-52	0.0079	0.0118	0.0069	0.0102	0.0073	0.0108
45-52	0.0043	0.0063	0.0040	0.0060	0.0042	0.0062
52-58	0.0076	0.0112	0.0069	0.0102	0.0052	0.0092
52-63	0.0037	0.0129	0.0091	0.0134	0.0076	0.0112
58	0.0115	0.0171	0.0128	0.0189	0.0126	0.0187
58	0.0105	0.0156	0.0106	0.0158	0.0148	0.0219
5872	0.0065	0.0096	0.0076	0.0112	0.0076	0.0112
58-80	0.0065	0.0097	0.0069	0.0102	0.0077	0.0114
53-86	0.0062	0.0092	0.0061	0.0091	0.0077	0.0115
58-99	0.0085	0.0126	0.0081	0.0120	0.0100	0.0148
58-110	0.0232	0.0344	0.0146	0.0217	0.0143	0.0212

ERRORES PROBABLES Y DESVIACIONES ESTANDAR A MASA DE AIRE UNITARIA PARA ESTRELLAS O Y B NORMALES (SCHUSTER 1983)

İ

DESVIACIONES ESTANDAR PROMEDIO PARA ESTRELLAS Be (1977-1979)

Grupo 1		0													•	
Modas las estrellas. Filtros viejos (1977-79)	Color δBe δUB δBe δGB	52 0.0487 0.0144 3.3819	33-52 0.0430 0.0109 3.9450	35-52 0.0412 0.0130 3.1692	37-52 0.0184 0.0116 1.5862	40-52 0.0135 0.0118 1.1441	45-52 0.0144 0.0063 2.2857	52-28 0.0169 0.0112 1.5089	52-63 0.0197 0.0129 1.5271	58(8c) 0.0466 0.0171 2.7251	58(GRC) 0.0657 0.0156 4.2115	58-72 0.0169 0.0096 1.7604	58-80 0.0246 0.0097 2.5361	58-86 0.0200 0.0092 2.1739	58-99 0.0230 0.0126 1.8254	58-110 0.0411 0.0344 1.1948
Grupo 2 16 más va- riables F.Viejos (1977-79)	Color SBe CoB SBe SoB	52 0.0759 0.0144 5.2708	33-52 0.0817 0.0109 7.4954	35-52 0.0792 0.0130 6.0923	37-52 0.0307 0.0116 2.6466	40-52 0.0229 0.0118 1.9407	45-52 0.0248 0.0063 3.9365	52-58 0.0309 0.0112 2.7589	52-63 0.0324 0.0129 2.5116	58(8C) 0.0746 0.0171 4.3626	58(6RC) 0.0713 0.0156 4.5705	58-72 0.0252 0.0096 2.6250	58-80 0.0372 0.0097 3.8350	58-86 0.0304 0.0092 3.3043	58-99 0.0331 0.0126 2.6270	58-110 0.0530 0.0344 1.5407
Grupo 3 Estrellas "shell" ".vlujos (1977-79)	Color SBe SOB SBo{SOB	52 0.0519 0.0144 3 6042	33-52 0.0710 0.0109 G.2138	35-52 0.0687 0.0130 5.2846	37-52 0.0270 0.0116 2.3276	40-52 0.0168 0.0118 1.4227	45-52 0.0223 0.0063 3.5397	52-58 0.0277 0.0112 2.4732	52-63 0.0274 0.0129 2.1240	58(8C) 0.0454 0.0171 2.6550	58(GRC) 0.0466 0.0156 2.9872	58-72 0.0173 0.0096 1.8021	58-80 0.0231 0.0097 2.3814	58-86 0.0168 0.0092 1.8261	58-99 0.0180 0.0126 1.4286	58-110 0.0335 0.0344 0.9738
Grup 5-6 Estreilas con líneas fuertes en emisión. F.viejos (1977-79)	Color δBe δoB δBe δoB	52 0.C318 0.0144 2.2083	33-52 0.0271 0.0109 2.4862	35-52 0.0217 0.0130 1.6692	37-52 0.0143 0.0116 1.2328	40-52 0.0072 0.0118 0.6102	45-52 0.0174 0.0063 2.7619	52-58 0.0092 0.0112 0.8214	52-63 0.0098 0.0129 0.7597	58(80) 0.0330 0.0171 1.9298	58(6RC) 0.0349 0.0156 2.2372	58-72 0.0129 0.0096 1.3438	5880 0.0176 0.0097 1.8144	58-86 0.0128 0.0092 1.3913	58-99 0.0138 0.0126 1.0952	58-110 0.0379 0.0344 1.1017

DESVIACIONES ESTANDAR PROMEDIO PARA ESTRELLAS Be (1980-1983)

Grupo 5 Todas las estrellas F.nuevos	Color óBe óOB ôBe ôOB	52 0.0929 0.0144 6.4514	33-52 0.0371 0.0109 3.4037	35-52 0.0393 0.0130 3.0231	37-52 0.0201 0.0116 1.7328	40-52 0.0113 0.0118 0.9576	45-52 0.0096 0.0063 1.5238	5258 0.0103 0.0112 0.9196	52-63 0.0145 0.0129 1.1240	58(8c) 0.0268 0.0171 1.5672	58(6Rc) 0.0777 0.0156 4.9808	58-72 0.0189 0.0096 1.9688	58-80 0.0257 0.0097 2.6495	58-86; 0.0251 0.0092 2.7283	58-99 0.0275 0.0126 2.1825	58-110 0.0385 0.0344 1.1192
Grupo 6 Estrellas Be mis Variables	Color éEe éOB éBe <mark>éO</mark> B	52 0.1401 0.0144 9.7292	33-52 0.0538 0.0109 4.9358	35-52 0.0591 0.0120 4.5462	37-52 0.0169 0.0116 1.4569	40-52 0.0160 0.0118 1.3559	45-52 0.0109 0.0060 1.7302	52-58 0.0126 0.0212 1.1250	52-63 0.0187 0.0129 1.4496	58(8c) 0.0210 0.0171 1.2281	58(6Rc) 0.1105 0.0156 7.0833	58-72 0.0162 1.0096 1.6875	58-80 0.0208 0.0097 2.1443	58-86 0.0216 0.0092 2.3478	58-99 0.0254 0.0123 2.0159	58-110 0.0421 0.0344 1.2238
Grupo 7 Estrellas "shell"	Color င်Be င်ဝB င်Be ဝ်ဝB	52 0.0299 0.0144 2.0764	33-52 0.0681 0.0109 6.2477	35-52 0.0717 0.0130 5.5154	37-52 0.0094 0.0116 0.8103	40-52 0.0083 0.0118 0.7034	45-52 0.0046 0.0063 0.7302	52-58 0.0105 0.0112 0.9375	52-63 0.0124 0.0129 0.9612	58(Sc) 0.0343 0.0171 2.6058	58(GRC) 0.0352 0.0156 2.2564	58-72 0.0149 0.0096 1.5521	58-30 0.0170 0.0097 1.7526	58-86 0.0162 0.0092 1.7609	58-99 0.0193 0.0126 1.5317	58-110 0.0268 0.0344 0.7791
Grupo 8 Estrellas con 11- neas fuer tos en emisión	Color င်Be င်ဝမ င်Be စ်ဝB	52 0.0317 0.0144 2.2014	33-52 0.0240 0.0109 2.2018	35-52 0.0270 0.0130 2.0769	37-52 0.0141 0.0116 1.2155	40-52 0.0064 0.0116 0.5517	45-52 0.0040 0.0063 0.6349	52-58 0.0065 0.0112 0.5804	52-63 0.0113 0.0129 0.8760	58-(8c) 0.0333 0.0171 1.9474	58(6Rc) 0.0692 0.0156 4.4359	5872 0.0328 0.0096 3.4167	58-80 0.0485 0.0097 5.0000	58-86 0.0479 0.0092 5.2065	58-99 0.0451 0.0126 3.5794	58-110 0.0613 0.0344 1.7820

(75)

Eracico 4.15

التتحالم فمعر والمراجع والمراجع

IV.3.2.- Variabilidad en estrellas individuales.

En esta sección se analizan seis estrellas Be para las cuales se detectó variabilidad a partir de observaciones tom<u>a</u> das entre 1980 y 1983 (Schuster y Guichard 1984 <u>b</u>). Se enco<u>n</u> tró que tres variaron en 8C y tres en 6RC. Lo que se hizo fué tomar todas las observaciones para una estrella dada y compararlas entre sí, con el criterio de que una diferencia en color mayor que 0.1 magnitudes entre dos noches es indicativa de variabilidad.

En la parte 8C, se tomaron las observaciones hechas con el juego #1 de nuevos filtros, entre 1981 y 1983, y se compararon las dos noches en que las diferencias fueran más notables, cal culándose a partir de ellas las diferencias en color (Δ C), como se muestra en la Tabla 4.9. Los resultados de dicha Tabla se graficaron contra longitud de onda. La variación en la magnitud 52 también se muestra en las gráficas.

A continuación se analiza brevemente cada estrella, dándose también un breve resumen de sus características espectroscópicas principales (Hubert-Delplace y Hubert 1979).

HD-51480.- Ha sido observada espectroscópicamente en forma irregular entre 1955 y 1973. Muestra muchas líneas en emisión. Hα es brillante, intensa y ancha; Hβ es intensa. Las otras líneas de hidrógeno siempre muestran un perfil P Cygni (Hubert-Delplace y Hubert 1979). Fotométricamente, fue observada por Schuster y Alvarez (1983) entre 1977 y 1979. Ellos la reportan como variable en ese período.

En la gráfica 4.16 puede verse un cambio en el ultravioleta (filtros 33 y 35) debido probablemente a absorción del continuo de Balmer en la envolvente. La variación fué rápida, pues el intervalo de tiempo entre las observaciones es de dos días.

(80)

BS 5941; HD 142983; 18 Lib. Es una de las estrellas Be más estudiadas. De observaciones espectroscópicas entre 1953 y 1975 se ve que ha mostralo grandes cambios en su espectro de líneas (Delplace y Chambon 1976). Ha aparece muy intensa y ancha en emisión; H β es fuerte y H δ moderadamente intensa, superpuesta a una ancha línea de absorción. El perfil de H β es muy complejo, cambiando de P Cygni a P Cygni inverso; las líneas de hidrógeno siempre muestran un centro obscuro (característica del espectro "shell") de intensidad variable, mientras que las líneas "shell" metálicas no siempre se ven; las líneas de absorción de NaI y CaII varían mucho y tienen un origen circunestelar (Hubert-Delplace y Hubert 1979). Asimi<u>s</u> mo, ha mostrado grandes cambios en velocidad radial con vari<u>a</u> ciones cuasi-periódicas de 10 años (Slettebak 1979). Sus características "shell" soa fuertemente variables.

Fotométricamente, Feinstein y Marraco (1979) reportan un exceso ultravioleta para esta estrella a partir de observación UBV y de líneas (Hc, H β , H δ), con observaciones que cubren un intervalo de 15 años. Schuster (1984 b) reporta una deficiencia ultravioleta y un exceso en el infratrojo cercano, a partir de observaciones tomadas entre 1966 y 1968 (Alvarez y Schuster 1982), época en que esta estrella sufrió un episodio "shell".

En la gráfica 4.17 puede verse una gran variación en el ultravioleta (filtros 33 y 35), debida probablemante a emisión en el continuo de Balmer, o a una disminución en la actividad "shell" entre las dos noches comparadas. El intervalo de tiem po entre las dos observaciones es de dos años aproximadamente.

BS 7106; HD 174638; B Lyr. Es también una estrella muy estudiada, y por sus características especiales ha requerido un trato aparte (Ver, por ejemplo, Sahade 1980 para referencias). Es un sistema múltiple, y las componentes principales (A y B), forman un sistema binario eclipsante que continuamente está intercambiando masa. El espectro del sistema muestra

(81)

líneas que lo identifican con una estrella B7-B8, y un corrimiento Doppler del cual se deduce una curva de velocidad radial con un período de 15 días. En el espectro aparecen mezcladas líneas obscuras y brillantes, que no pertenecen a la componente tipo B (pues no muestran el corrimiento Doppler de ésta), y que se supone pertenecen a una compañeia A tardía bastante débil, pues su espectro no puede observarse, pero se infiere de los eclipses del sistema. Se supone que el material está fluyendo de las dos estrellas, formando un anillo que rodea al sistema, (Struve 1958), y que es el que produce las líneas de absorción y emisión no estelares.

Por las características especiales que tiene, este sistema siempre está mostrando variaciones en el continuo y en las líneas. Fotométricamente, Alvarez y Schuster (1982) la reportan variable entre 1977 y 1973.

En la gráfica 4.18 se muestra la comparación de dos noches entre las cuales encontramos variabilidad, entre 1981 y 1983. Puede verse que hay variaciones en el ultravioleta y en el con tinuo de Paschen.

En la parte 6RC, se hizo algo parecido que en 8C. La única diferencia fué que se juntaron las observaciones hechas con los filtros originales (1980). Esto pudo hacerse porque, como se dijo en el Capítulo JI, para la parte 6RC no hay problemas de transformación, y por lo tanto pueden mezclatse las observaciones para tener un intervalo de tiempo más grande para las comparaciones, y más noches para buscar variabilidad.

En la Tabla 4.10 se presentan los resultados de las comparaciones. Como en 8C, se graficaron contra longitud de onda, marcándose también la diferencia en la magnitud 58 en cada gráfica.

A continuación se analiza brevemente cada estrella.

HD-45314.- Esta es una estrella que ha mostrado grandes cambios en sus líneas de emisión, y por épocas ha tenido un

(82)

espectr "shell". Entre 1954 y 1972 tuvo un espectro "shell" con una intensidad variable en sus líneas. En 1972 las carac terísticas "shell" desaparecieron y la emisión se veía débilmente en H β , mientras que H δ se veía en absorción. En 1975 H β volvió a ser brillance y las líneas estrechas en absorción de Na y Call (características de la "shell"), se veían en el espectro (Hubert-Delplace y Hubert 1979).

Fotométricamente, fué observada por Alvarez y Schuster (1982), quienes la reportan como muy variable (cambios de más de 0.15 magnitudes).

En la gráfica 4.19 se muestran los resultados para esta estrella. Puede verse que tuvo un cambio en el continuo de Paschen y en el infrarrojo cercano. Asimismo, se ve una varia ción en el filtro 86, dobida probablemente a un aumento en la emisión de las líneas convergentes de Paschen, modidas por este filtro.

ES 2817; HD 58050. Esta estrella, considerada como clase "polo de frente" debido a su baja velocidad rotacional proyectada (\sim 140 km/s.), propente fuertes líneas de emisión. Ha generalmente es muy fuerte y ancha. H β , ... H δ son líneas estrechas de intensidad decreciente, superpuestas en el centro de líneas anchas de absorción. Las líneas de FeTI son brilla<u>n</u> tes (Hubert-Delplace y Hubert 1979).

Entre 1977 y 1979 fué observada fotométricamente por Schuster y Alvarez (1983), quienes la reportan como probablemente variable.

En la gráfica 4.20 vemos que entre 1980 y 1983 esta estrella varió en el continuo de Paschen y en el infrarrojo cercano. Puede notarse una variación extra en el filtro 80, debida probablemente a Procesos H⁻ (Schild 1978; Schild et al. 1974); Milkey y Dyck 1973).

BS 2921; HD 60855. Esta estrella tuvo una fase Be entre 1954 y 1961, y una fase B entre 1970 y 1974. Al final de este año Hα estaba muy débil en emisión, y apenas se distinguía del continuo, mientras que las otras líneas de Balmer aparecieron en absorch? (Hubert-Delplace y Hubert 1979).

Alvarato y Schuster (1982) la reportan como variable fotométrica, con observaciones entre 1977 y 1979.

En la gráfica 4.21 se muestra un cambio en cl continuo de Paschen y en el infrarrojo cercano para esta estrella.

Del análisis anterior, vemos que nuestras estrellas presentan principalmente cuatro clases de variabilidad: cambios en la discontinuidad de Balmer, medidos por Los colores (33-52) y (35-52), en las magnitudes visuales (52 y 58), y en el infrarrojo cercano, donde encontramos dos clases de variabilidad. Una se manifiesta como una variación conciente con longitud de onda hasta 1.1 μ (límite de la fotometría 13C), debida probablemente a procesos libre-libre (Allen 1975; Milkey y Dyck 1973). La otra se manifiesta como variaciones ad<u>i</u> cionales en los filtros 80 y 85, y es debida probablemente a emisión del continuo de Faschen o a Procesos H⁻(Schild 1978).

(84)

ESTRELLAS BE VARIABLES (8c)

Nombre	Δ(52)	∆(33-52)	∆(35–52)	∆(37-52́)	Δ(40-52)	∆(45-52)	Δ(52-58)	Δ (52-63)	∆t(D.J 2.430.000)
HD 51480	-0.159	0.182	0.140	0.017	-0.028	-0.012	0.013	-0.017	15444.6595- 15446.6761
BS 5941	-0,056	-0.228	-0.253	-0.017	-0.011	-0.010	-0.017	-0.023	1.4691,9794- 15443,9201
BS 7106	-0.033	-0.171	-0.182	-0.065	-0.046	-0.034	-0.020	-0.055	14780.8446- 15447.0295

TABLA 4.10

ESTRELLAS BE VARIABLES (6RC)

Nombre	Δ(58)	∆(58-72)	Δ (58-80)	∆(58-86)	∆(58-99)	Δ(58-110)	Δt(D.J 2,430.000)
HD 45314	-0.115	0.122	0.149	0.186	0.161	0.263	14657.8205- 15447.7040
BS 2817	-0.303	-0.170	0.241	0.214	0.227	0.313	14669.8345- 15449.7175
BS 2921	-0.041	-0.082	-0.111	-0.110	-0.122	-0.133	14658.8027- 15449.6384

(85**)**

Gráfica 4.18

IV.4.- Excesos intrinsecos.

En esta sección presentamos los excesos intrínsecos calcu lados para las estrellas variables de la sección anterior, con el fín de tener una idea más clara de cuál fué su distribución de energía promedio durante la época en que se obtuvieron los resultados de la sección anterior. Más que una distribución de energía, lo que se muestra son las desviaciones que tuvieron estas estrellas con respecto a la distribución de energía de una estrella B normal del mismo tipo espectral.

El método seguido fué el delineado por Schuster (1984 a), utilizando las Tablas de esa publicación. De acuardo con este método, se tomaron los colores promedio de las observaciones de las estrellas entre 1930 y 1983. Usando los colores medios desenvojecidos dados por Schuster en el trabajo antes citado, se encontraron los excesos totales, restando el color observa do del color intrínseco para una estrella B normal del mismo tipo espectral y clase de luminosidad de la estrella estudia-Estos excesos tienan una parte debida a enrojecimiento da. interestelar, y otra decida a enrojecimiento intrínseco, por reemisión libre-libre producida por la envolvente. El siguien te paso fue eliminar la parte debida a enrojecimiento interestelar, usando para ello la Tabla 1 del trabajo antes mencionado, y haciendo la misma suposición que el autor, en el sentido de que el exceso en (40-45) es debido solamente a enrojecimien to interestelar. En la Tabla 4.11 se dan los excesos intrínse cos calculados en esta forma, así como el tipo espectral usado para cada estrella. Para BS 2817, 2921 y 5941 se usaron los tipos espectrales dados por Lesh (1968), para BS 7106 se usó como fuente el catálogo B.S. (Jaschek 1982), y para HD 51480 el tipo espectral dado por Schuster y Alvarez (1983). Para HD 45314 no se encontró en la literatura la clase de luminosidad que le corresponde, y su tipo espectral es dudoso, por lo que no se le incluyó en este análisis.

Los excesos de la Tabla 4.11 se graficaron contra longitud de onda, y los resultados se muestran en las gráficas 4.22 - 4.26. Para HD 51480 se encuentra un exceso ultravioleta y un gran exceso infrarrojo, el primero debido probable mente a emisión en el continuo de Balmer, y el segundo a emisión libre-libre de la envolvente. Para el filtro 80 se nota un exceso extra que podría deberse a procesos H° como presume Schild (1978). Para BS 5941 vemos una gran deficiencia ultra violeta (filtros 33 y 35), debida a absorción del continuo de Balmer por la envolvente (Schuster 1984 a). También se nota un exceso en el infrarrojo cercano. Para BS 7106 encontramos algo similar que para HL 51480, es decir, excesso ultravioletas e infrarrojos. Para BS 2817 y BS 2921 se ven grandes excesos infrarrojos. En particular, para BS 2817 se nota muy bien el pico a 8000 A. Estas dos estrellas no presentan nada importante en el ultraviolcta.

(93)

EXCESOS INTRINSECOS EN ESTRELLAS Be

Estrella	T.E.	E(33-52)	E(35-52)	E(37-52)	E(40-52)	E(45-52) E(52-58)	E(52-63)	E (52-72)	E(52-80) E (52-86)	: E(52-99)	E(52-110
HD 51480	85.5 V	-0.3184	-0.3097	-0.2772	0.061	0.061	0.0628	0.1778	0.3106	0.4117	0.3903	0.5653	0.7189
BS 5941	85 JIIp	0.4023	0.5633	-0.0251	0.0464	0.0464	0.0302	0.0473	0.0545	0.0686	0.1675	0.2228	0.2476
BS 7106	B7 V + A8p	-0.1572	-0.2112	-0.2132	0.0532	0.0532	0.1048	0.1214	0.2697	0.2957	0.3237	0.3208	0,4056
BS 2817	B2 Ve	-0.0592	-0.0324	-0.0421	-0.0127	-0.0127	-0.0189	-0.0153	0.2513	0.3000	0.2577	0.2480	0.2837
BS 2921	B2 Ve	0.0529	0.0585	-0.0501	0.0182	0.0182	0.0136	0.0455	0.1254	0.1326	0.1287	0.1569	0.1697

CONCLUSIONES

Se hizo un análisis de residuos para el juego #1 de nuevos filtros 13C, para estrellas tempranas (0,B,A) encontrándose que:

- El color (37-52) tiene problemas de transformación, por el corrimiento del filtro 37 con respecto a la discontinuidad de Balmer, ya que los residuos se correlacionan bien con la luminosidad y la temperatura, y por lo tanto debe ser corregido.

- Los colores (35-52) y (40-52) probablemente nucesiten correcciones, ya que en algunos casos los residuos podrían tener algún significado físico. De cualquier manera las correcciones serían pequeñas.

- Las mejores soluciones se obtienen cuando se limitan los intervalos de luminosidad y temperatura, y cuando se usan correcciones de la forma br+c.

- Para una mejor corrección en todo el intervale de tipo espectral y clase de luminosidad (09-A9, V-Ib), se necesita una expansión más grando, usando términos de ordon 2 o mayores para ℓ y τ , así como más observaciones de supergugantes, que actualmente no tenemos.

- Se encontró que el filtro [63] del juego original está contaminado significativamente por H α , por lo que hay que tener cuidado al interpretar observaciones con este filtro, sobre todo en el caso de estrellas variables con H α intensa en emisión.

De un estudio estadístico y del análisis de algunas estrellas individuales, se encontró que las estrellas Be presentan esencialmente los siguientes tipos de variabilidad.

- Variaciones en la discontinuidad de Balmer, medidas en los colores (33-52) y (35-52).

- Variaciones en las magnitudes visuales (52 y 58).

- Variaciones en los filtros 80 y 86 (\sim 8000 Å) debidas prob<u>a</u> blamente a procesos H⁻(Schild 1978).

- Variaciones en el infrarrojo cercano (~8000-11000 Å), probablemente por procesos libre-libre.

(100)

REFERENCIAS

-	Abt, H.A., y Levato, H. 1977, Pub. A.S.P. <u>89</u> , 797.
	Allen, D.A. 1975, Infrared, The New Astronomy (Keith Reid
	LTD), P. 99.
~	Alvarez, M., y Schuster, W.J. 1978, Bull. A.A.S. 10, 683.
-	Alvarez, M., y Schuster, W.J. 1981, Rev. Mexicana Astron.
	Astrof. 6, 163.
	Alvarez, M., y Schuster, W.J. 1982, Rev. Mexicana Astron.
	Astrof. 6, 173.
-	Bahng, J.D.R. 1976, I.A.U. Symposium #70 Be and Shell Stars,
	Ed. A. Slettebak (Dordrecht: Reidel), P. 41.
	Bond, H.E. 1973, Pub. A.S.P. 85, 405.
-	Borgmann, J. 1960, Bull. Astr. Inst. Netherlands 15, 255.
	Borgmann, J. 1963, Bull. Astr. Inst. Notherlands 17, 58.
-	Carrasco, L., Franco, J., Chavarría, C., de Laza, E., y
·	Sánchez, G. 1979, Rev. Mexicana Astron. Astrof 4, 215.
	Collins, G.W., II 1955, Astrophys. J. 146, 914.
-	Collins, G.W., II, y Sonneborn, G.H. 1977, Astrophys. J.
	Suppl. 34, 41.
-	Crampin, J., y Hoyle, F. 1960, M.N.R.A.S.120, 33.
-	Feinstein, A. 1975, Pub. A.S.P. 87, 603.
-	Feinstein, A., y Marraco, H.G. 1979, Astron. J. 84, 1713.
-	Ferrer, L., y Jasches, C. 1971, Pub. A.S.P. 83, 346.
	Hardie, H.R., Astronomical Techniques, Ed. W.A. Hiltner
	(University of Chicago Press, Chicago), P. 178.
-	Harmanec, P., y Kriz, S. 1976, I.A.U. Symposium # 70 Be and
	Shell Stars, Ed. A. Slettebak (Dordrecht: Reidel), P. 385.
	Hubert, H., y Chambon, M. Th. 1976, I.A.U. Symposium # 70
	Be and Shell Stars, Ed. A. Slettebak (Dordrecht:Reidel) P.33.
- 。	Hubert-Delplace, A.M., y Hubert, H. 1979, An Atlas of Be
	Stars (Paris: Paris: Meudon Observatory).
-	Jaschek, M. 1981, Selected Spectral Types. CDS Microfiche,
	Strasbourg.

Jaschek, M., Hubert-Delplace, A.M., Hubert, H., y Jaschek, C. 1980, Astron. and Astrophys. Suppl. 42, 103. Jaschek, M., Slettebak, A., y Jaschek, C. 1981, "Be Star Terminology". Be Star Newsletter. Ed. M. Jaschek, Observa tory de Strasbourg, France. Johnson, H.L. 1977, Rev. Mexicana Astron. Astrof. 2, 175. Johnson, H.L., y Mitchell, R.I. 1968, Astrophys. J. 153,213. Johnson, H.L., y Mitchell, R.I. 1975, Rev. Mexicana Astron. Astrof. 1, 299. Johnson, H.L., Mitchell, R.I., y Latham, A.S. 1967, Comm. Lunar and Planet. Lab., 6, 85. King, I. 1952 a, Astron. J. 57, 253. King, I. 1952 b, Astrophys. J. 115, 580. Limber, D.N. 1976, I.A.U. Symposium #70 Be and Shell Stars, Ed. A. Slettebak (Dordrecht: Reidel), P. 371. Marlbourough, J.M., y Snow, T.P. 1976, I.A.U. Symposium #70 Be and Shell Stars, Ed. A. Slettebak (Dordrecht: Reidel) P. 179. Mendoza, E.E. 1958, Astrophys. J. 128, 207. Mendoza, E.E. 1969, Rol. Obs. Tonantzintla y Vacubaya 5, 104. Mendoza, E.E. 1971 a. Bol. Obs. Tonantzintla y Tacubaya 6, 1973. Mendoza, E.E. 1971 b, Bol. Obs. Tonantzintla y Tacubaya 6, 89. Mendoza, E.E. 1971 c, The Magellanic Clouds (Dordrecht: Reidel), P. 69. - Mendoza, E.E. 1981, I.A.U. Symposium # 98 Be Stars, Eds. M. Jaschek y H.G. Groth (Dordrecht: Reidel), 2. 3. Milkey, R.W., y Dyck, H.M. 1973, Astrophys. J. 181, 833. Mitchell, R.I., y Johnson, H.L. 1969, Comm. Junar and Planet. Lab. 8, 1. Percy, J.R., Jakate, S.M., y Matthews J.M. 1981, Astron. J. 86, 53. Roxburgh, I.W. 1970, I.A.U. Collog. # 4 Stellar Rotation, Ed. A. Slettebak (Dondrecht: Reidel), P. 19.

1

...

-	Sahade,	J.	1980,	Space.	Sci.	Rev.	26, 3	49.

- Schild, R.E. 1965, Astrophys. J. 142, 979.

- Schild, R.E. 1973, Astrophys. J. 179, 221.

- Schild, R.E. 1978, Astrophys. J. Suppl., 37, 77.
- Schild, R.E., y Romaniskin, W. 1976, Astrophys. J. 204, 493.
- Schild, R.E., Chaffee, F., Frogel, J.A., y Person, S.E. 1974, Astrophys. J. 190, 73.
- Schuster, W.J. 1976 a, Rev. Mexicana Astron. Astrof. 1, 327.
- Schuster, W.J. 1976 <u>b</u>, Tesis Doctoral, Universidad de Arizona, Tucson.
- Schuster, W.J. 1979 a, Rev. Mexicana Astron. Astrof. 4, 233.
- Schuster, W.J. 1979 b, Rev. Mexicana Astron. Astrof. 4, 301.
- Schuster, W.J. 1979 c, Rev. Mexicana Astron. Astrof. 4, 307.
- Schuster, W.J. 1981, Rev. Mexicana Astron Astrof. 5, 69.
- Schuster, W.J. 1982, Rev. Mexicana Astron. Astrof. 5, 149.
- Schuster, W.J. 1983, Jomunicación Privada.
- Schuster, W.J. 1984 a, Rev. Mexicana Astron. Astrof. 9, 53.
- Schuster, W.J. 1984 <u>b</u>, Fotometría de Supergigartes no publ<u>i</u> cada.
- Schuster, W.J., y Alvarez, M. 1983, Pub. A.S.P. 5, 137.
- Schuster, W.J., y Guichard, J. 1984 <u>a</u>, Rev. Mexicana Astron. Astrof. (enviado).
- Schuster, W.J., y Guichard, J. 1984 <u>b</u>, Rev. Mexicana Astron. Astrof. (enviado).
- Slettebak, A. 1968, Astrophys. J. 154, 933.
- Slettebak, A. 1976, I.A.U. Symposium # 70 Be and Shell Stars, Ed. A. Slettebak (Dordrecht: Reidel), P. 123.
- Slettebak, A. 1979, Space Sci. Rev., 23, 541.
- Strömgren, B. 1963, Pusic Astronomical Data, Ed. K. Aa. Strand (University of Chicago Press, Chicago), P. 123.
- Struve, O. 1958, Pub. A.S.P. 70, 5.
- Underhill, A.B. 1979, Astrophys. J. 234, 528.
- Underhill, A.B. y Doazan, V., eds. 1982: "Be Stars with and without Emission Lines". C.N.R.S.-N.A.S.A. 5p-456.

- Underhill, A.B., Divan, L., y Prévot-Burnichen, M.L. 1979, M.N.R.A.S. 189, 601 y Microficha MN 189/1.

ļ

Anexo 1

Salida Típica de datos reducidos en 13C. En este caso se usó el sistema 8C.

.

.

10/19 APRIL 1983 - 80, 60, AMPEI - 85 STATE, SUEDWARFS

18/19 4PRIL	1983 - 8C, 6	50, AMP#1 - DE 1	STAFS	SUSDWA	RFS		
10	οÜ	AR = E0. 0.0	DEC	= 1.	8.		
0 0 90	0 3454 BS	AR = 0, 42.3	DEC	= 3.	27.	STANDARD	
0	ō Ū	AR = 0, 0, 0	DEC	= 0.	C.		
0 ° 0	0 3454 BS	AR = 8, 42.3	DEC	= 3.	27.	STANDARD	
0	ο <u>Ο</u> Ο	AR = 0 0.0	DEC	≕ 0.	Ο.		
0 0 00	0 7454 BS	AR = 8 42.3	DEC	= 3.	27.	STANDARD	
0 70 0 00	0 3731 23 0 7240 BS	AR = 8 + 15 A	DEC	= 9	14	STANDARD	
	0 <u>32</u> 4, 1 0 A A	$\Delta R = 0 0 0$	DEC	= 0	C		
Ŭ Č DD		AC = 8 15 A	NEC	= 9	14	STANDARD	
0 90	0 3247 88 a aca: 80		- DEC	= -14	27	PE STAR	
0 90	0 2721 00	AP = 0.00	5000 1000	= 0	<u>~</u> ^		
Q		AR = 0.000	DEC	= -10	AQ.		
C 110	5 1480 HD	Mit = 0.00.0		= -10	0. 		
0 120	5 3367 HU	AR = 7. 1.6		10.	2J. 15		
G 90	0 3135 BS	AR = 7.57.7	DEC		47.		
0 90	ь 2367 HD	AR = 7.42.8	DEC	=4.	37. CO	DE SIAR	
0 120	0 2017 BS	AR = 23.5	· DEC	= 15.	යය.	BE STAR	
0 90	0 2548 BS	AR = 4 55.3	DEC	= 46.	17.	BE STAR	
0 120	7 1072 HD	AR = 8.24.2	DEC	= -12.	42.	BE STAR	•
· 0 120	6 9884 HD	AR = 10, 21.3	DEC	= -17.	57.	BE STAR	
0 120	0 4123 BS	AR = 10, 20, 2	DEC	= -13.	31.	BE STAR	
0 90	0 4123 - BS	AR = 10. 31.9	DEC	= 9.	23.	BE STAR	
0 90	0 3454 BS	AR = 8, 42.3	DEC	= 3.	27.	STANDARD	
Ō.	ΟŪ	AR = 0, 0, 0	DEC	= 0.	Ο.		•
0 90	0 3454 BS	AR = 8, 42.3	DEC	= 3.	27.	STANDARD	
Ö.	Ö Ö	AR = 0, 0.0	DEC	= 0.	0.		
	0 3454 BS	AR = 3, 42, 3	DEC	= 3.	27.	STANDARD	
Ū.	0 0	AR = J, 0, 0	DEC	= 0.	Ο.		
· 0 90	0 2454 BS	AR = 9, 42, 3	DEC	= 3.	27.	STANDARD	
à pă	0 3249 BS	AR = 3, 15, 6	DEC	= . 7.	14.	STANDARD	· ·
(i)	ο <u>ο</u>	AR = 0 0.0	DEC	= 0.	Ο.		
	0 3249 BS	AR = 8 15.6	DEC	= 9.	14	STANDARD	•
	0 4574 BS	AR = 14 48 2	DEC	= 14	40.	STANDARD	
0 0	O AASA BS	$\Delta F = 11 - 32 - 6$	DEC	= 16	53	STANDARD	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4900 DD 0 4950 RC	$\Delta P = 11 52.0$	DEC	= 37	50	ETANDARD	
0 70 5 100		AP = 10, 50.6	DEC	= 20	20	SUBDUARE	
· · · · · · · · · · · · · · · · · · ·	D D S S S D D	AP = 12 59.2	DEC	= -9	45	SUBDWARE	
	- 3070 DD - 3000 DD	AC - 1A = SO A		= -21	57	SUBDUARE	
	1 4007 DD 7 54007 DD		DEC	- 24	5.	STANDARD	. •
	0.0004 DD 0.5770 DD	AR = 10.0.0		- 21	25	BE STAR	
0 40 7 54		MR = 10.02.0		= -10	50. 50	SUDDWARE	
91		$M_{\rm R} = 10, 42.2$			51 51	DE GTAD	
	4 1067 HD	AR = 13.47.3		 	· 17	DE DIAN	•
0 90	0 5741 85	MR = 10.07.2	DE.C	14.	13.	DE DIAN	
0 90		AR = 10, 20, 2		= -18.	∠ದ. ಕರ	CTAUNADD	
0 90	0 5665 85	AR = 15.16.1		= -4.	17.	DIANDARD	
0 90	0 5654 85	AR = 15, 43, 4	DEC	= 6.	28. 57	5 MANUARU	
0 90	0 5938 BS	AR = 15, 54, 9	DEC	= 42.	37.	DE DIAR	
0 90	0 6664 BS	AR = 17.49.6	DEC	= 48.	23.	DE DIAR	
0 90	0 6984 BS	AR = 18.34.5	DEC	= 34.	26.	BE STAR	
0 90	0 7106 BS	AR = 18.49.4	DEC	= ວ່ວ.	21.	DE LA LYK	
0 91	6 2428 HD	AR = 17.49.3	DEC	= 24.	27.	DE SIAK	
🔆 tii	7 3371 HD	AR = 1844.2	DEC	= 0.	23.	BE STAR	
0 SO	0 6203 BS	AR = 17.42.6	DEC	= 4.	35.	SIANDARD	
C 90	0 6629 BS	AR = 17.47.1	DEC	= 2.	43.	STANDARD	
20	0 0	AR = 0. 0.0	DEC	= <u>0</u> .	<u>o</u> .		
¢,	0 0	AR = 0, 0, 0	DEC	= 0 .	0.	,andar ya yana, a mastan arti	
CINTA INS	TRUMENTAL# 33	B FOT. BC	AMP.	# 1	CAL.	- 1//18 APRIL	1483
1 UBSER	VATORY - SAN	N FEDRO MARTIR		TELES	CUPE	-60. INCH	r S
18/19 APPIL 1983 - 80, 60, AMP#1 - BE STARS, SUBDWARFS

GA1 OPE	N TABLE	АМР- -	• 1 DC • ND. 0.0 52 3352 6 3 1 6 0.15 0.15 0.50 0.50 0.80 0.80 0.51 0.64	U 2552 3752 0 & 7 4 0.15 0.15 0.50 0.50 0.50 0.80 0.50 0.00	SED AMPLIF OLDR SYSTE 4052 58 8 6 5 0.15 0.15 0.50 0.50 0.80 0.80 0.10 0.14	IER- NO. 1. M - CODE NO. 5258 5.263 6 5 6 4 0.15 0.15 0.50 0 50 0.80 0.80 0.15 0.20	8 4552 7 6 0.15 0.50 0.80 0.31	3335 10 0.15 0.50 0.80 0.41	• • •
STAR O	0⊇454	BS	RA 8.	42.3 DEC	3.0 27	.0 1	983	4, 19.	2. 39.
ETAR O	6@454	BS	RA B.	42.3 DEC 0 TIME 19	3.0 27 	.0 1	983	. 4.19.	2. 50.
STAR O	<u>∂</u> ⊋454	BS	RA 8.	42.3 DEC	3.0 27	.0 1	983	4. 19.	з. О.
STAR O	03249	BS	RA B.	15.6 DEC	9.0 14	.0 i	983	. 4.19.	3. 9.
			COMMENT NO.	0 TIME 19	· 3.17.	~ •		4 10	a 10
STAR O	02249	BS	RA B.		9.0 14	.0.1	. 783 700	. 4.17. 1 10	3.10.
STAR O	02921	85	COMMENT NO		3 37	. 0 1		· · · 47.	J. 44.
STAR O	51480	нр	RA 6.	56.5 DEC	-10.0 -48	.0 1	983	. 4. 19.	3. 40.
STAR O	50367	HD	RA 7.	1.8 DEC	-10.0 -25	.0 1	983	4.19.	з. 54.
ETAR O	13135	BS	RA 7.	59.7 DEC	-2.0 -49	.0 1	983	4.19.	4.11.
STAR O	_2367	HD	RA 7.	42.6 DEC	-4.0 -39	.0 1	783	. 4. 19.	4. 22.
		FLT=	= 4. GN= 53.	DFL=7705.13	ER= 23.48	NO= 4.			
STAR O	62817	· BS	RA 7.	23.5 DEC			983	. 4.19.	4.37.
		FLI=	= 9. GN= 43.	DEL=3434.63	ER= 9.97	NU = 4.	003	4 10	4 53
STAR O	02068	135 UN	RA 0. DA 9		-12 0 -43	, O 1	983	4 10	5. 6.
EIMA U	/10/2	FIT=	= 0 GN = 52.	DFL::7940.88	ER= 24.26	NO= 4.			- · -·
		FLT=	= 0. · GN= 52.	DFL=7394.63	ER= 5,28	NO= 4.			
STAR O	89884	HD	RA 10.	21.3 DEC	-17.0 -57	.0 1	983	4. 19.	5. 26.
		FLT=	= 9. GN= 45.	DFL=3521.88	ER= 14.77	NO= 4.			
STAR O	04123	BS	RA 10.	30.2 DEC	-13.0 -31	.0 1	. 983	. 4.19.	5.43.
STAR O	<u>_4133</u>	85	RA 10.	31.49 DEC	9.0 23	.0	. 7 6 3 'o o o	· 4.17.	
STAR O	03454	85	- 	42.3 UEC 0 TIME 10	. 3.0 et/ . 6.16	.0	70.3	. 4.17.	o
CTAD A	00454	nc		42 7 DEC	30 27	0 1	983	4. 19.	6. 17.
STAR U	00404	00	COMMENT NO.	0 TIME 19	. 6.24.				
STAR O	02454	BS	RA B.	42.3 DEC	3.0 27	.0 1	983	. 4. i9.	6.26.
			COMMENT NO.	0 TIME 19	6.33.				
STAR O	<u>⊖</u> 3454	BS	RA B.	42.3 DEC	3.0 27	.0 1	983	. 4.19.	6.34.
STAR O	02249	ES	RA 8.	15.6 DEC	9.0 14	. 0 1	983	. 4, 19.	6. 44.
		80	CUMMENT NU.	0 /1ME 19		A 1	003	4 10	Å 52
STAR O	03247	20	RA 0. DA 14	10.6 DEC 19.9 DEC	14 0 40	0 1	983	4.19	7. 3.
STAR O	04034	BC	RA 11	- 73.3 DEC	16 0 53	0 1	983	4.19.	7.12.
STAR O	04400	BS	5A 11.	52.0 DEC	37.0 50	0 1	983	4. 19.	7. 23.
STAR O	2:2247	BD	RA 10.	50.6 DEC	20.0 22	.0 1	983	. 4. 19.	7.34.
0		FLT=	= 0. GN= 55.	DFL=5673. 92	ER= 14.81	NO= 6.			
STAR O	93 595	BD	RA 12.	58.2 DEC	-9.0 -45	.0 1	983	. 4.19.	7. 5 3.
		FLT=	= 1. GN= 61.	DFL=9054.00	ER= 31.94	NO= 4.		•	
		FLT=	= 0. GN= 61.	DFL=6740.38	ER= 27.87	NU≕ 4.			
			- 4. GN= 54.	DFL=8494.25	ER= 24.71	NU= 4.			
		FL1=	$= 1, \Theta N = C 1, \\ = 0, O N = 2 + 1$	DELESIÓN, DU	CR- 20.70	NO = 4	. -		
CTAD A	01 1000	- רבו ממ	$- \mathbf{U} \cdot \mathbf{U} = \mathbf{O} \mathbf{I} \cdot \mathbf{U}$	- DEL-3000, UU - 50+0 - DEC	-21 0 -54	ο 1 Ο 1	982	4.19	8, 47
O AMIC	214007		= 1 GN = 4.1	DEL=5420 12	ER= 21 10	ND= 4.		 .	
		FLT=	= 0. GN= 62.	DFL=5679. 72	ER= 38.05	NO= 6.		•	

12/19 APRIL 1983 - 8C, 60, AMP#1 - BE STARS, SUBDWARFS PAGE 0003 RA 15. 24.0 56.0 1 9 8 3. 4.19. 9.12. DEC RS ETAR 0 05634 6.6 31.0 25.0 19778 BS RA 15. 32.3 DEC 1983 4.19, 9.24. ETAR O -10.0 -52.0 1983 ETAR O 1 24149 BD RA 15. 42.2 DEC 4.19. 9. 36. HD RA 15. 49.3 -3.0 -51.0 1 9 8 3. 4.19, 9.48. DEC STAR 0 141569 1983 STAR 0 -5941 DS RA 15. 57.2 DEC -14.0 -13.0 4. 19. 10. O. 1 9 8 3. 4.19.10.21. RA 16. 26.2 DEC -18.0 -26.0 BS ETAR 0 26118 ETAR O BS RA 15. 16.1 DEC -9.0 -19.0 1 9 8 3. 4. 19, 10, 32. 1 9 8 3. 4 19. 10. 43. RA 15. 43.4 DEC 6.0 28.0 ETAR 0 JE854 BS ETAR O BS RA 15. 54.9 DEC 42.0 37.0 1 9 8 3. 4. 19. 10. 55. 05928 23.0 1 9 8 3. 4. 19. 11. 7. BS RA 17. 49.6 DEC 48.0 ETAR O 04664 RA 18. 34.5 DEC 34.0 26.0 1 9 8 3. 4. 19, 11, 20. BS STAR 0 01984 BS RA 18. 49.4 DEC 33.0 21.0 1983. STAR 0 07106 4. 19. 11. 31. RA 17. 27.0 1982 49.3 24.0 HD 4. 19. 11. 43. ETAR O :62428 DEC 173371 1983 STAR O HD RA 18. 44.2 DEC 0. **0** 23.0 4. 19. 11. 56. GN= 52. ER= 13.75 NO= 4. FLT≈ 0. DFL=8070.25 0.603 BS STAR 0 RA 17. 42.6 DEC 4.0 35.0 1 9 8 3. 4.19, 12.20. 06629 RA 17. 47.1 DEC 2.0 43.0 1 9 8 9. 4. 19. 12. 31. STAR 0 BS TIME 19. 12. 40. COMMENT NO. 20 1 RAW DATA LIST FOR NIGHT 1 7 8 3. 4.19. 52 2352 3552 3752 4052 W1 W2 W3 W4 W5 H. A. AIR J. D. HAME-58 5258 5263 4552 3335 0 03454 BS -1.174 1.402 2.154 1.278 0.240 1 1 1 0.024 1.128 15443.613 1 1 0.275 -0.004 -0.752 -1.450 -3.601 1 1 1 1 1 1.388 2.137 1.279 0.239 1 1 0.075 1.131 15443.621 0 034:4 BS -1.185 1 1 4 -0.749 0.281 -1.467 -2.621 -0.012 1 1 1 1 ł 1.391 0.235 0 03454 -1.188 2.143 1,269 1 0.115 1.135 15443.627 BS 1 1 1 1 -1.474 0.286 -3.616 -0,00£ -0.752 1 1 1 1 5.694 -1.523 5. 740 4.768 2.559 1 1.115 15443.634 0 03249 **PS** 1 1 1 1 0.273 -0.927 -0.596 -2.488 0.705 -0.246 1 1 1 1 1 -1.507 5.924 4.768 2. 551 5. 285 15443.640 0 03249 BS 1 1 0.311 1. 126 1 1 1 -0.912 -0.595 -2.484 -0.239 0,705 1 1 1 1 1 1.496 2.220 0.251 0. 537 1.708 0 02921 BS 1.308 0.327 1 1 1 1 1 15443.648 1.644 0.064 1 -1.393 -2.307 -0.723 1 1 1 1 0 51480 HD 1.567 2.001 2.668 1.273 0.745 1 1 1 1 1 0.760 1.943 15443.656 2.737 -1.170 -0.667 -3.149 1 0.284 1 1 1 1 0 535.7 HD 1.671 1.946 2. 549 1.811 0.838 1 1 1 1 0. 604 2.030 15443.667 1 -1.150 -0.603 1 _ .2.821 -3. 1.64 0.371 1 1 1 1 0 03:05 BS 0.970 1.435 2.140 1.212 0.329 1 1 1 1 0.612 1.479 15443.677 1 2.377 -1.407 -3.511 0.056 -0.705 1 1 1 1 1 1.896 1.532 0.339 1.674 ٥ 62357 HD 1.667 2.601 1 0.739 15443 685 1 1 1 1 3.081 -1.414-2.554 0.040 -0.705 1 í 1 1 1 0.963 1.273 2.027 0.220 0.899 1.532 0 02817 ΕS 1.216 1 1 15443.697 1 1 1 2.405 -1.443 -3.598 -0.008 -0.754 1 1 1 1 1 Ø 02556 BS 0.369 1.932 2.636 1.523 0.344 1 1 1 1 1 1.080 1.532 15443.704 -1.394 -3. 520 1.783 0.052 -0.704 1 1 1 1 1 1.387 71072 1.434 1.685 2.412 0.292 0.763 2.032 15443.718 0 HD 1 1 1 1 1 2.856 -1.422 -3.564 **C**.0⊇1 -0.727 1 1 1 1 1 0.312 0 89884 HD 1.666 1.731 2.443 1.427 1 1 1 1 1 0.339 1.638 15443. 731 -3.316 -0.712 3.077 -1.391 0.035 1 1 1 1 1 G. 084 1.812 0, 137 2.422 0.379 1.519 15443, 742 0 04123 BS 1 1 1 1 1 0.366 1.494 -1.356 -3.479 Q. 045 -0.662 1 1 1 1 1 1.185 1.931 1.117 0.295 0 04133 BS -1.618 .1 1 1 1 1 0.457 1.201 15443.757 -1.410 -0.208 -3. 536 -0.012 -0.746 1 1 1 1 1 БS 1.402 1, 237 0.238 0 03454 -1.158 2.159 0.941 1.865 15443.756 1 1 1 1 1 0.279 -1.437-3. 592 -0.003 -0.757 1 1

16	5/19	APRIL	1923	- 80, 6	0, AMP#1	- BE STA	AS, SUEI	WARFS				PAGE OC	04
		•			•				•				
	0	03454	B 5	-1.191	1.395	2.145	1.278	0. 237	1 1	1 1 1	0. 976	1.954	15443. 76
	0	03454	BS	-1.179	1.390	2.148	1.276	0.229	1 1		1.016	2.068	15443, 7 7
	0	03434	BS	-1.171	-1.434	-3. 590	1.274	-0.758	1 1 1		1.050	2. i82	15443. 77
	0	03249	BS	-1.476	-1.435	-3.594	4.790	-0.764 2.565			1.210	2.606	15443.7 8
	0	03249	65	-0.900	-0.576	-2.496	4, 780	-0.260	1 1 1		1.246	2. 514	15443. 78
	Ø	04534	BS	-0.882	-0.564 2.768	-2.483	2.244	-0.244			-0. 420	1.127	15443. 79
	0	04459	BS	-2.021 0.437	-1.308 1.540	-3,407 2,292	0.068 1.399	-0. 607 0. 279	1 1 1 1	$ 1 1 1 \\ 1 1 1 $	0. 470	1. 135	15443. BO
	0	04550	BS	1.851 1.167	-1,414 3,163	-3.553 3.674	0,011 2,731	-0.751 1.291	1 1 1 1	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	0. 438	1.076	15443. 8 1
	Ū a	212247	БĎ	2.105 2.902	-0.938 2.627	-2. 887 3. 189	0,408 2,176	-0.511 0.944	1 1 1 1	1 1 1 1 1 1	0. 767	1.319	15443. 8 2
	0	93595	ED	4.007 2.333	-1.105 3.402	-3.107 3.883	0.322 2.914	-0, 562 1, 334	1 1 1 1	1111	0. 313	1.396	15443. 83
	0 2	214009	BD	3,233 3,238	-0,900 2,798	-2, 866 3, 315	0, 364 2, 282	0. 481 1. 036	1 1 1	1 1 1 1 1 1	0. 006	1.658	15443. 87
	0	05634	BS	4.305 -0.428	-1,066 2,808	3.056 3.374	0, 372 2, 305	-0.517 0.943	1 1 1 1	i 1 1 1 1 1	0. 064	1.007	15443.88
	0	05778	ES	.0.688 -1.335	-1.116 1.791	-3.137 2.509	C. 285 1. 483	-0. 566 0. 320	1 1 1	1 1 1 1 1 1	0.006	1.000	15443.89
	0 1	04147	ED	0.057 1.861	-1.391 2.701	-3, 524 3, 223	0.041 2.181	-0.719 0.981	1 1 1 1	1 1 1 1 1 1	0.017	1. 343	15443, 90
	0 1	41549	нĎ	2.935 1.679	-1.074	-2.051 3.360	0, 368 2, 229	-0. 523 0. 570	1 1 1	1 1 1 1	0.039	1. 220	15443. 91
	0	05941	85	2.971	-1.292	-2.377	0,111 1 428	-0.638	. 1 1		0.060	1,422	15443.92
	0	06118	85	0.909	-1.366	-3,489	0.070 1.667	-0.765	1 1	1 1 1	0 024	1 526	15443 93
	٥ ٥	05475	20	0.127	-1.139	-3.140	0.296	-0.621	1 1	1 1 1	0.379	1 423	15443 94
	0	0565.4	25	-1.492	-1.357	-3.495	0.031	-0.464	1 1	1 1 1	0 204	1 149	15442 94
	0	05550	DC DC	-1.782	-0.731	-2.671	0.572	-0.477	1 1	1 1 1	0.200	1 053	15442 05
	0	06420	ne	- 1.642	-1.365	-3.495	0.026	-0.673	1 1		-0.307	1 054	15443 04
	0	06004	50 50	2.673	-1. 373	-3.509	0.028	-0.698	1 1	111	-0. 270	1.004	15442 071
	0	07104	55	2.026	-1.375	-3, 500	0.025	-0.707			-0.274	1.033	15445 00
	0	47400	50	~Ū. 730	-1.265	-3. 370	0.119	-0, 647	1 1	1 1 1	-0.298	1.033	13443.75
	л ч			3.061	-1.352	-3.468	0.044	-0.681	1 1		0.017	1.007	15445. 791
	0 1	.732/1 0//00	н <i>и</i>	2.790	-1.311	-3. 425	0.023	-0.671			-0.100	1.1/0	13444. UD
	0	00033	85	-1.631	-0.711	5. 302 -2. 653	4.081 0.586	-0.491	1 1		0.211	1,141	12444.017
	0	06629	BS	-1.635	-1, 325	⊴. ⊴48 −3, 430	2.174 0.072	0.510 -0.623	1 1	1 1 1 1	0.236	1.16/	13444. 024

STANDARD STARS FOR NIGHT

1 9 8 3. 4. 19.

.

14.¹

.

۰.

12/19 APRIL 1983 - 80, 60, AMP#1 - DE STARS SUBDWARFS

PAGE 0005

		NA	ME-	AIR	52 58	2352 5256	3552 5263	37 52 4552	4052 3335	₩T ZR.PT.	WT ZR.PT.	WT ZR.PT.	UT ZR.PT.
	0	03454	BS	1.128	-1.174 4.275	1. 402 -1. 240 -1. 450	2.154 -1.138 -7.601	1,278 -0,749	0.240 -0.248	9 5.455 2	-2. <u>6</u> 50	-3. 352	-2.012
	Ø	03454	85	1.131	4.326	-0.051 1.388	-0.100	-0.056	-0.102 -0.239	4, 062 7	1.378 9	3.50B 9	-0.052 9
					4. 275 0. 281	-1.240 -1.467	-1.138 -3.521	-0.749 -0.012	-0.248 -0.749	5.456 9	-2.637	-3.334	-2.014
	0	03454	BS	1.135	4.336 -1.188 4.275	-0.061 1.291 -1.240	-0.100 2.143 -1.138	-0.056 1.269 -0.749	-0.102 0.235 -0.248	4.056 9 5.448	1,395 9 -2,640	3, 528 9 3, 341	-0.044 9 -2.004
					0.286 4.336	-1. 474 -0. 061	-3.616 -0.100	-0.006 -0.056	-0.752 -0.102	9 4. 052	9 1.402	9 3. 523	-0. 0 50
	0	03247	BS	1.115	-1.523 3.945 -0.927	5.694 3.116	5.940 2.709 2.488	4.768 2.773 0.706	2.559 2.179	9 5.454	9 -2.614	9 -3.396	9 -1.942
	0	0324 7	BS	1.126	3.193 -1.507	0, 752 5, 680	1.169	0.644 4.768	0.390		1.344 9	3. 662 9	-0.060 9
					3.945 -0.912	3.115 -0.595	2,709 -2,484	2.773 0.705	2.179 -0.239	5,438 7 4,685	-2.604	-3.379 9 5 459	-1.942
	0	03454	BS	1.865	-1.158 4.275	1. 402 -1. 240	2.159	1.287 -0.749	0. 238	4.025 9 5.439	-2.651	-3.357	-2. 022
	~	0.7.1			0.279 4.336	-1.437 -0.061	-3.592 -0.100	-0.003 -0.056	-0.757 -0.102	ç 4 (58	9 1.366	9 3.499	9 · -0.053
	0	034.85	RR	1.954	-1.191 4.275 0.252	-1.390 -1.240 -1.440	-1.138 -3.200	1.278 -0.749 -0.001	-0.237	5,471 9	-2.644 9	-3.342 9	-2. 013 9
	0	03⊰ʻ54	BS	2.068	4.336 -1.178	-0.041 1.350	-0.100 2.148	-0.056 1.276	-0.102 0.229	4.036 9	1.371 9	3.507 9	-0.055
					4.275 0.256 4.336	-1.240 -1.434 -0.051	-1.139 -3.590 -0.100	-0.749 -0.004 -0.056	-0.248 -0.758 -0.102	5 458 9 4 ()81	-2.639	-3.345	-2.011 9 -0.052
÷	0	03454	BS	2.182	-1.171 4.275	1.377 -1.240	2.143 1.138	1.274	0.233 -0.248	9 5.451	-2, 628	9 -3.341	-2.007
	0	. 02040	BC	2 404	0.264 4.336	-1.405 -0.021 5.400	-3.594 -0.100	-0.001 -0.056	-0.764 -0.102	9 4. 074 3	9 1.363	9 3.501	-0.055
	U	00247		2.000	3. 945 -0. 900	3.115 -0.575	2.709	2.773 0.722	2. 179 -0. 260	5.407 7	-2.599 9	-3.396 9	-1. 964 9
	0	03249	BS	2.814	3.193 -1.446	0.752 5.667	1.169 5.911	0.644 4.750	0.390 2.541	1.072 9 5.277	1.324 9 -2.594	3.670 9 -7 766	-0.076
			•		-0.882 3.193	-0.544 0.752	-2.483	0. 704 0. 644	-0. 244 0. 390	4, 055	-2, 388 9 1, 312	-3. 380 9 3. 657	-0. 059
	0	04534	BS	1.127	-3.327 2.125 -2.021	2.7.8 0.101	3.375 0.105	2.244 0.173	0. 577 0. 142	9 5,453 8	9 -2, 654	9 -3.364	-2.046
	0	04456	BS	1.135	2.087 0.437	0.03 1.540	0.075	0.054 1.399	0. 026	4. 107 9	1.336 9	3.489 9	-0. 034 9
					5.914 1.851	-1.111 -1.414 -0.017	-1.011 -3.553	-0.643	-0.215 -0.751	5.482 9	-2. 661	-3.366	-2.026
	0	04550	BS	1.076	1.167 6.627	-0.052 3.153 0.557	3. ±74 0. 417	2. 731 0. 736	1. 291 0. 873	4,1≠0 9 5,458	1. 341 9 -2, 626	3.40/ 9 ~3.359	-1. 763
					2. 105 6. 236	-0,938 0,391	-2. 887 0. 456	0.408 0.348	-0. 511 0. 140	9 4. 121	9 1.322	9 3.549	9 -0.059

.

18/19	APRJL.	1983	- 8C, 60,	AMP#1 -	BE STARS	SUEDWA	RFS	• ~			PAGE 000	6
0	05694	BS	1.007	-0. 428 5. 012	2. 802 0. 152	3. 2 74 0. 1 05	2. 305 0. 282	0. 943 0. 497	5. 4 40	9 -2,668	9 -3.363	9 -1. 997
				0. 698 4. 789	-1, 11è 0, 223	-3, 137 0, 388	0.285 0.227	-0.566 0.053	9 4.075	7 1,331	9 3. 531	9 -0. 057
0	0566 5	BS	1. 423	-2.849 2.605	2.077 -0.573	2.763 -0.524	1.559 -0.463	0,309 -0,163	9 5. 436	9 -2,659	9 -3.363	9 -2.005
				-1.452 2.631	-1.357 -0.02-	-2 495 -0.044	0.031 -0.034	-0.686 -0.046	9 4. 1:23	9 1.321	9 3.458	9 -0.065
Ö	05654	BS	1.149	-2.513	4,823	5.300 2.013	4.053	2.022	9 5. 4 34	9 -2.643	9 -3.434	-1. 954
0	n (/ h)	D.C.	1 1 4 4	-1.782 2.358	0.572	0.879	0.501	-0.477 0.193	4.125	1.297	9.555 9.555	~0. 069
U	00803	69	1. 141	3. 061	2.192	1,599	2.045	1.632	7 5.392	-2.648	-3,450	-1.971
0	06629	85	1, 167	2.468	0.573	0. 896 3. 346	0.500	0.189	4. 103	1,279 9	3.555 9	-0.085
	4 W 4 E 7	24		3.751 -0.310	0.062	0. 0 55 -3. 4 30	0.072	0.046	5. 336 9	-2. 678 9	-3. 383 9	-2.078 9
				3.744	0.007	0.016	0.013	0.007	4, 053	1.322	3.453	-0.059

STANDARD STARS TO BE REJECTED

LEAST SQUARE REDUCTION RESULTS

ິບມ	LUR- 52					
	A 1= 5 4666	A 2= -0.0051 K 1	= 0.0144			•
	LIST	AIR MASS	STD. COLOR	OBS. COLOR	CAL. COLOR	RESIDUAL
0	03454 BS	1.1284	4 2750	-1.1744	4, 28,23	-0. 0073
0	03434 BS	1, 1312	4.2750	-1.1854	4. 2712	Q. 0038
Ó	03454 BS	1. 1353	4. 2750	-1.1877	4. 2.588	0.0062
0	03249 BS	. 1. 1146	2.9450	-1. 5231	3.9.15	0. 0335
0	03219 BS	1, 1259	0. 9450	-1.5073	3. 9272	0. 0178
0	03454 BS	1.8646	4. 2750	-1.1581	4.2879	-0.0129
0	03454 BS	1. 9542	+ 2750	-1.1906	4 2541	0. 0209
Õ	· 03454 BS	2, 0682	4. 2750	-1. 1777	4. 2654	0.0096
0	03454 BS	2. 1816	4. 2750	-1.1709	4. 2706	G. 0044
0	03249 BS	2, 6057	1 9450	-1.4756	3. 5376	0.0074
Ö	03249 BS	2. 8142	3. 9450	-1.4464	2.5637	-0.0187
0	04534 BS	1, 1266	2.1250	-3. 3286	2. 1211	0.0039
0	04456 BS	1, 1350	5. 9140	0. 4372	5. E'731	0. 0209
Õ	04250 BS	1. 0761	£.6270	1. 1669	6.6152	0.0118
0	05634 BS	1.0074	5.0120	-0.4282	5. 0 231	-0.0111
0	05685 BS	1, 4228	2. 6050	-2. 8489	2. 6001	0.0049
0	05854 BS	1, 1487	2.9300	-2. 5135	2. 92:53	0. 0047
0	06603 BS	1, 1408	3.0610	-2. 3418	3. 6972	-0. 0362
0	06529 BS	1, 1672	2.7510	-1.6349	3 8146	-0. 0636
υ						
CO	LOR- 3352					
	A 3= -2.6920	A 4= 1.0139 K 3	= -0.0201			
	LIST	AIR MASS	STD. COLOR	OBS. COLOR	CAL. COLOR	FESIDUAL
0	03454 BS	1.1264	-1.2400	1. 4017	-1.2478	0. 0 078
C	03454 BS	1. 1912	-1.2400	1. 3881	-1.2615	0. 0215
0	03484 BS	. 1. 1353	-1.2400	1. 3913	-1.2581	0. 0181
0	03249 85	1, 1146	3, 1140	5.6944	3, 1045	0.0115

				1917 - 1918 1	•		
				• 		· · ·	
			•	i de la companya de la compa	•		
18/19	APRIL 19	83 - 8C,	60, AMP#1 -	- BE STARS, SUBD	JARFS		PAGE 0007
					-	·	e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l La companya de la comp
000000000000000000000000000000000000000	03249 B 03454 B 03454 B 03454 B 03454 B 03249 B 03249 B 03249 B 03249 B 04534 B 04534 B 04550 B 04550 B 05634 B 05635 B		1. 1259 1. 8646 1. 9542 2. 0682 2. 1816 2. 6057 2. 8142 1. 1266 1. 1350 1. 0761 1. 0074 1. 4228	3.1140 -1.2400 -1.2400 -1.2400 -1.2400 3.1140 3.1140 0.1310 -1.1110 0.5570 0.1580 -0.5700	5. 6847 1. 4020 1. 3954 1. 3900 1. 3791 5. 6801 5. 6666 2. 7678 1. 5403 3. 1633 2. 8085 2. 0765	3. 0948 -1. 2325 -1. 2373 -1. 2405 -1. 2491 3. 1204 3. 1110 0. 1373 -1. 1070 0. 5373 0. 1761 -0. 5575	0.0212 -0.0075 -0.0027 0.0005 0.0091 -0.0044 0.0050 -0.0043 -0.0040 0.0197 -0.0181 -0.0125
0 0 0 U	05854 B 06603 B 09629 B	15 15 15	1, 1487 1, 1408 1, 1672	2,2100 2,1920 0,0620	4. 8231 4. 8106 2. 7227	2, 2217 2, 2089 0, 0924	-0.0117 -0.0169 -0.0304
	DR 35 5m -2:33 LIST 00454 00454 B 00454 B 002454 B 03454 B 03454 B 03454 B 03247 B 03249 B 03249 B 03249 B 04534 B 04534 B 054534 B 056854 B 056854 B 056854 B 04603 B 04627 B 04627 B	52 377 A 6= 5 5 5 5 5 5 5 5 5 5 5 5 5	1.0128 K AIR MASS 1.1284 1.1312 1.1353 1.1146 1.1257 1.8646 1.9542 2.0682 2.1816 2.6057 2.8142 1.1266 1.1350 1.0761 1.0761 1.0761 1.4228 1.1487 1.1408 1.1672	5= -0.0142 STD.COLOR -1.1380 -1.1380 2.7090 2.7090 -1.1380 -1.1380 -1.1380 -1.1380 -1.1380 -1.1380 -1.1380 2.7090 2.7090 2.7090 0.1050 -1.0110 0.4170 0.1050 -0.5240 2.0130 1.9790 0.0550	OBS. COLOR 2. 1542 2. 1371 2. 1432 5. 9404 5. 9239 2. 1589 2. 1449 2. 1480 2. 1432 5. 9404 5. 91432 5. 9406 5. 9111 3. 3752 2. 2915 3. 6744 3. 3741 2. 7628 5. 3005 5. 3018 3. 3455	CAL. COLDR -1. 1400 -1. 1573 -1. 1511 2. 6944 2. 6778 -1. 1246 -1. 1375 -1. 1327 -1. 1360 2. 7160 2. 7160 2. 6892 C. 0946 -1. 0008 0. 3789 C. 0937 -0. 5193 2. 0467 2. 0479 0. 0671	PESIDUAL 0.0020 0.0193 0.0131 0.0146 0.0312 -0.0134 -0.0005 -0.0053 -0.0053 -0.0053 -0.0020 -0.0070 0.0198 0.0084 -0.0102 0.0181 0.0113 -0.0047 -0.0337 -0.0489 -0.0121
	.JQ- 37 7= -2 04 LIST 03454 B 03454 B 03454 B 03454 B 03249 B 03249 B 03454 B 03454 B 03454 B 03454 B 03249 B 04550 B 04550 B 05634 B 05685685 B 0568568568568568568568568568	752 193 A 8= 95 95 95 95 95 95 95 95 95 95	1.0085 K AIR MASS 1.1284 1.1312 1.1353 1.1144 1.1257 1.8646 1.7542 2.0682 2.1816 2.6057 2.8142 1.1266 1.1350 1.0761 1.0074 1.4228	7= -0.0013 STD.COLOR -0.7490 -0.7490 2.7730 2.7730 2.7730 -0.7490 -0.7490 -0.7490 -0.7490 2.7730 2.7730 0.1730 0.1730 -0.6430 0.2820 -0.4630	OBS. COLOR 1. 2775 1. 2787 1. 2691 4. 7677 4. 7677 1. 2872 1. 2782 1. 2782 1. 2782 1. 2764 1. 2740 4. 7903 4. 7799 2. 2439 1. 3988 2. 7312 2. 3051 1. 5589	CAL. COLOR -0 7584 -0 7572 -(. 7668 2. 7615 2. 7615 -0. 7477 -0. 7566 -0. 7583 -0. 7583 -0. 7605 2. 7862 2. 7761 0. 2162 -0. 6360 0. 7076 0. 2777 -0. 4742	RESIDUAL 0.0094 0.0082 0.0178 0.0115 -0.0013 0.0076 0.0073 0.0115 -0.0132 -0.0031 -0.0031 -0.0032 -0.00304 0.0043 0.0112

•

S APRIL	1983 - 80,	60, AMP#1 -	BE STARS, SUBD	WARFS	, -	PAGE C
•	×			•		
0 05854	BS	1. 1487	2 0540	4. 0534	2.0412	0. 0128
06603	BS	1,1408	2 0450 0 0770	4.0612	2.0490	-0.0040
0 05629	85	1.16/2	0.0720	2. 1740	0. 1.406	-0, 0/36
COLOR-	1052 1077/ 110-		- 0 00.26	·		
	18/6 ATU=	AIR MASS	STD LOLOR	OBS. COLOR	CAL. COLOR	RESIDUAL
0 0245.4	ÐS	1, 1284	-(2480	0. 2405	-0. 2388	-0.0092
0 03454	BS	1, 1312	-0.2480	0. 2385	-0.2408	-0. 0072
0 0345.	BS	1, 1353	-0.2480	0. 2354	-0. 2441	-0.0039
0 0324-7	BS	1, 1146	.2.1790	2.5587	2.1904	-0.0114
0 03249	85 DC	1 8446	-0.2480	0 2378	-0 2435	-0.0045
0 03454	BS	1,9542	-0.2480	0, 2370	-0. 2446	-0. 0034
0 03454	BS	2,0682	-0 2480	0.2294	-0.2530	0. 0050
0 03454	BS	2, 1816	-0.2460	0.2329	-0. 2495	0. 0014
0 03249	BS	2.6057	2.1790	2. 5653	2.1731	-0.0141
0 03245	BS	2.8142	2.1790	2.5413	2.16/4	0.0116
0 04537	BS DC	1,1260	-0 2150	0.3773	-0 1987	-0.0276
0 04550	85	1 0761	0 8730	1, 2905	0.8617	0.0113
0 05634	BS	1.0074	0. 4970	0.9429	0.4975	-0. 0005
0 05685	BS	1, 4228	-0. 1630	0.3092	-0.1675	0. 0045
0 05854	BS	1, 1487	1.6390	2.0217	1.6276	0.0114
0 05603	BS	1.1408	1.6320	2.0274	1.62/34	-0.0016
0 06629	BS	1.16/2	0. 0460	0. 5100	U . U436	0.002-
COLOR-	58			•		
All= A	1109 A12=	= 0.0450 K11 ATR'MASS	STD COLOR		CAL CELOR	RESIDUAL
0 03454	RS	1 1284	4. 3360	0, 2754	4. 2516	-0. 0256
0 03454	BS	1, 1312	4.3360	0.2815	4. 2077	-0. 0317
0 03454	BS	1, 1353	4. 3360	0.2861	4.0722	-0. 0362
0 035-2	BS	1.1146	3.1930	-0.9266	3. 1954	-0.0034
0 032-9	BS ·	1,1259	3.1930	-0.9123	· 3.2105	-0.0173
0 03454	83 RC	1 0540	4 3360	0.2774	4.3223	0 0137
0 03434	BS	2,0682	4.3360	0. 2564	4 (244	0. 0114
0 03454	BS	2, 1816	4 3360	0. 2639	4. 3297	0. 0063
0 032;9	BS	2. 6057	3. 1930	-0. 8997	3. 1944	-0.0014
0 03249	BS	2, 8142	5 1930	-0.9820	3. 2081	-0.0151
0 04534	BS	1, 1266	E. 0870	-2.0208	2.0699	0.0171
0 04455	85	1,1350	3,9760 74 9940	2 1044	5.9073 6 9199	0.0357
0 05404	85	1 0074	4.7890	0. 6880	4. 7374	-0.0004
0 05695	BS	1,4228	2.6310	-1. 4915	2.5906	0. 0404
0 05854	BS	1, 1487	2.3580	-1.7824	2. 3319	0. 0261
0 06813	BS	1, 1408	2.4880	-1. 6306	2.4840	0. 0040
0 06617	BS	1.1672	3. 7440	-0.3095	3.7790	-0. 0350
COLOR-	5258		0.000			
A13= 1.1	2/47 A14=	- U.YEBE KIE AIR MARS			CAL COLOR	RESTDUAL
0 03454	BS	1, 1284	-0.0610	-1, 4498	-0 0803	0. 0193
0 03454	BS	1.1312	-0.0610	-1.4669	-0.0964	0. 0354
0 03454	BS	1,1353	-0.0610	-1. 4738	-0.1029	0. 0415
0 03249	BS	1.1146	0.7520	-0.5965	0.7202	0.0318
0 03249	82	1.1257	0.7550	-0.3730	U. / #1/	. 0.0303
			x			·• · •
		and an a second second	······································	- Land a second a contract of the second se second second sec	· · · · · · · · · · · · · · · · · · ·	•
· ,		· .				•
		,				
					1. A	

...

• •				• •	· · · · · · · · ·	· · · ·	• •
18/19	APR11	1983	- 8C, 60, AMP#	1 - BE STARS, SU	BDWARFS		PAGE 0009
		•			· ·		
0	03454 03454	BS BS	1, 8646 1, 9542	-0.0610	-1. 4375 -1. 4428	-0.0355 -0.0701	0.0045 0.0071
0	03451	BS	2,0682	-0.0610	-1.4341		0.0005
0	03454	85	2, 1616	0 7520	-0.5759	0 7452	0.0008
õ	03244	55	2, 8142	0. 7520	-0. 5545	0.7578	-0.0058
õ	0452'4	BS	1, 1266	0. 0380	-1. 3078	0.0329	-0.0149
Ũ	04456	BS	1, 1350	-0 0620	-1.4141	-0.0+5B	-0.0152
0	04500	BS	1.0761	C. 3710	-0. 9377	0.3999	-0.0089
0	05654	BS	1.0074	0.2230	-1.1162	0.2021	
0	03663	83	1.4220	0 0280	-0.7310	0.5242	-0.0222
õ	06603	BS	1. 1408	0.5/30	-0.7112	0.6127	-0.0397
ō	06627	BS	1. 1672	0, 0070	-1.3254	0.0344	-0. 0296
Č COL		5263	A14- 1 1004	K150 0018			
-	10- 2.	7115	AIR MASS	STD. CCLOR	OBS. COLOR	CAL COLCR	RESIDUAL
0	0345.	BS	1, 1284	-0.1000	-3.6013	-0.1314	0.0314
0	0345	BS	1, 1312	-0.1000	-3.6210	-0. 1337	0.0537
Õ	03454	BS	1. 1353	-0.1000	-3.6160	-0.1-78	0.0478
0	03245	DS	1. 1146	1.1690	-2.4877	1.1271	0.0419 .
0	03249	92 100	1, 1254	1.1290	-2,4836 _7 5015	1, 18e.0 -0, 1000	0.0370
0	03454	03 130	1 9542		-3.5929	-0.1074	0.0022
õ	03454	BS	2,0682	-0.1000	-3.5897	-0. 09 52	-0.0045
Ō	03454	BS	2, 1616	-0.1000	-3. 5738	-0.0969	-0.0031
0	03247	BS	2. 6057	1 1690	-2.4956	1.1549	0.0141
õ	035.00	BS	2. 8142	1. 1690	-2.4832	1.1741	-0.0051
0	045.34	85	1, 1266	0 0750	-3.4073		-0.0129
0	04406	85	1, 1330	0.4560	-2 8868	0.0723	-0.0189
ő	05634	BS	1,0074	0. 3880	-3.1366	0. 3909	-0.0029
ō	05685	BS	1. 4228	-5. 6440	-3.4948	-0. 0038	-0.0402
0	05854	BS	1, 1487	U. 8790	-2.6706	0. 0212	-0.0422
0 -	06673	BS	1.1408	0.8760	-2. 6533	0: 5406	-0.0446
U	06625	85	1. 16/2	0 0160	-3.4303	0.0629	-0.0489
COL A	0R- 17= -0	4552 0524	-A18= 0.9778	K17= 0.0005			
	LIST		AIR MASS	STD COLOR	OBS. COLOR	CAL. CELOR	RESIDUAL
0	03434	BS	1. 1264	-0.0560	-0.0038	-0. (567	0.0007
0	03454	85	1,1312	-0.0560	-0.0117	-0.0591	0.0084
ŏ	037.9	BS	1, 1146	0.6440	0. 7060	0.6374	0.0056
č	03219	BS	1.1259	0.6440	0. 7051	0. 2365	0.0075
Õ	03454	BS	1.8646	-0 0560	0.0035	-0.0567	0. 3007
0	03454	BS	1.9542	-0 0560	-0.0009	-0.0543	-0.0017
C O	03454	BS	2,0662	-0 0560	-0.0037	-0.0570 -0.0540	0.0010
0 a	03474	85	2,1010	-0 0380	0.0015	-0.0349 0.6518	-0.0078
Ŭ	03249	BS	2.6142	0.6440	0.7035	0.6341	0.0079
ō	04534	BS	1. 1266	0.0540	0. 0882	0.0333	0. 0207
õ	04456	BS	1, 1350	-0.0530	0.0108	-0.0424	-0.0106
õ	04550	BS	1.0761	C. 3480	0.4081	0.3461	0.0019
0	05624	85	1,0074	C. 2270	U. 2848 A AGAD	U. 2236 0	
0 0	05854	85 .	1 1487	0. 5010	0. 5719	0. 5062	-0.0052
~	00004	ل ت <i>ي</i> و	-,				

• .

. .

. .

•

۰,

ունը։ Դու ուղղի 15 ֆիրտեսաբարապատախությոն է լու է տես բողընտեսաբեն տուր է մի հանձերին տես են է հայ ուղի հես պատաստանությաններություն է գրու է պատ

	•	•					· •					
0 0	06403 06427	BS BS	:	1.1408 1.1672	0 Q	5000 0130	0.5 0.0	86 4 719	0,5204 0,0173	-	-0. 0204 -0. 0043	
	LÜR- 3 A19= 0.6 LISY 03454 03454	335 428 85 85	A20= 1. AI	.0000 K R MASS 1.1284 1.1312 1.1353	19= -0.0 STD. -0 -0 -0	028 CCLOR 1020 1020	085.00 -0.7 -0.7 -0.7	LOR 525 490 518	CAL. CLLOR -0.1045 -0.1030 -0.1059	RE	SIDUAL 0.0045 0.0010 0.0038	-
00000000	03424 03249 03249 03451 03454 03454 03454	BS BS BS BS BS BS BS BS		1.1146 1.1259 1.8646 1.9542 2.0682 2.1616 2.1616	0 -0 -0 -0 -0 -0	. 3900 . 3900 . 1020 . 1020 . 1020 . 1020 . 1020	-0. 2 -0. 2 -0. 7 -0. 7 -0. 7 -0. 7 -0. 7	460 392 569 495 580 641 605	0.3797 0.4058 -0.1087 -0.1012 -0.1074 -0.1151 0.3877	-	-0.0099 -0.0168 0.0069 -0.0008 0.0074 0.0131 0.0003	
0000000	03249 03249 04551 04436 04550 05624 05624	BS BS BS BS BS BS BS		2.8142 1.1266 1.1350 1.0761 1.0774 1.4228	0 0 0 0 0 - 0 - 0	. 3900). 0260). 1000). 1000]. 10000]. 1000]. 10000]. 10000]. 10000]. 10000]. 10000]. 10000]. 100	-0.2 -0.6 -0.7 -0.5 -0.5	445 074 512 112 656 863	0.4042 0.0364 -01052 0.1347 0.0800 -0.0345	-	-0.0162 -0.0126 0.0052 0.0053 -0.0270 -0.0265 0.0244	•
0 0 U 1	05854 06603 06659 76 IN	BS BS	EDUCTION	0F DATA	C C FOR NIG	9. 1890 9. 2070 9. 21	-0.4 -0.4 1983.	912 228 4. 19 .	0.1549 0.0233	-	0.0341	
	NAM	E-	52	3352	3552	3752	4052	W1 W2	2 W3 W4 W5	H. A.	AIR	J. D.
000000000000000000000000000000000000000	$\begin{array}{c} 034\%4\\ 03454\\ 03454\\ 03454\\ 03454\\ 032249\\ 032249\\ 032929\\ 032929\\ 032921\\ 032929\\ 0329$	855555555555555555555555555555555555555	$\begin{array}{c} 58\\ 4 \\ 2861\\ 4 \\ 2766\\ 9 \\ 2$	5258 -1. 248 -0. 080 -1. 261 -0. 076 -1. 258 -0. 103 3. 104 0. 720 3. 075 0. 722 -1. 140 -0. 025 -0. 623 0. 186 -0. 627 -0. 623 0. 186 -0. 677 -0. 038 -0. 735 -1. 207 -0. 735 -0.	5283 -1.140 -0.131 -1.157 -0.154 -1.157 -0.148 2.694 1.127 2.678 1.132 -1.045 -0.013 -0.608 0.400 -0.727 -1.149 -0.608 0.400 -0.725 -1.149 -0.649 -0.649 -0.649 -0.646 -0.840	$\begin{array}{c} 4552\\ -0.0757\\ -0.0757\\ -0.0757\\ -0.0757\\ -0.0757\\ -0.0757\\ -0.0757\\ -0.0757\\ -0.0757\\ -0.0757\\ -0.0757\\ -0.057\\ -0.057\\ -0.057\\ -0.0524\\ -0.057\\ -0.0524\\ -0.0504\\ -0.0504\\ -0.0504\\ -0.0504\\ -0.0504\\ -0.0504\\ -0.0504\\ -0.0504\\ -0.0504\\ -0.0504\\ -0.0502\\ -0.0504\\ -0.0502\\ -0.$	-0. 237 -0. 237 -0. 107 -0. 241 -0. 103 -0. 244 -0. 104 2. 190 0. 400 2. 182 0. 407 -0. 149 -0. 076 0. 287 -0. 018 0. 384 0. 046 -0. 147 -0. 058 -0. 137 -0. 057 -0. 257 -0. 107 -0. 131 -0. 057 -0. 187 -0. 187 -0. 165		1 1 1 1 1 1 1 1 1 <	$\begin{array}{c} 0. \ 024 \\ 0. \ 0275 \\ 0. \ 075 \\ 0. \ 075 \\ 0. \ 115 \\ 0. \ 273 \\ 0. \ 273 \\ 0. \ 273 \\ 0. \ 273 \\ 0. \ 311 \\ 0. \ 537 \\ 0. \ 311 \\ 0. \ 537 \\ 0. \ 740 \\ 0. \ 604 \\ 0. \ 612 \\ 0. \ 739 \\ 0. \ 859 \\ 0. $	$\begin{array}{c} 1. \ 128\\ 1. \ 128\\ 1. \ 125\\ 1. \ 135\\ 1. \ 135\\ 1. \ 135\\ 1. \ 135\\ 1. \ 125\\ 1. \ 125\\ 1. \ 125\\ 1. \ 126\\ 1. \ 7043\\ 0. \ 030\\ 1. \ 4774\\ 1. \ 6922\\ 2. \ 4774\\ 1. \ 69222\\ 2. \ 253222\\ 2. \ 1. \ 155\\ 1. \ 533222\\ 2. \ 1. \ 155\\ 1. \ 533222\\ 2. \ 1. \ 1. \ 533222\\ 2. \ 1. \ 1. \ 533222\\ 2. \ 1. \ 1. \ 533222\\ 2. \ 1. \ 1. \ 533222\\ 2. \ 1. \ 1. \ 533222\\ 2. \ 1. \ 1. \ 533222\\ 2. \ 1. \ 1. \ 1. \ 1. \ 533222\\ 2. \ 1. \ 1. \ 1. \ 1. \ 1. \ 1. \ 1. \$	$\begin{array}{c} 15443. \ 613\\ 15443. \ 621\\ 15443. \ 622\\ 15443. \ 622\\ 15443. \ 622\\ 15443. \ 622\\ 15443. \ 624\\ 15443. \ 634\\ 15443. \ 634\\ 15443. \ 646\\ 15443. \ 646\\ 15443. \ 656\\ 15443. \ 657\\ 1545\\ 15443. \ 657\\ 15443. \ 657\\ 15443. \ 657\\ 15443. \ 657\\ 15443. \ 657\\ 15443. \ 657\\ 15443. \ 657\\ 15443. \ 657\\ 15443. \ 657\\ 15443. \ 657\\ 15443. \ 657\\ 154443. $

.

í.

16/19 APRI_ 1983 - 8C, 60, AMP#1 - BE STARS, SUBDWARFS

18/19 APRIL 1983 - BC, 60, AME## - BE STARE, SUBDWARFS

.

•

			•												
Ó	5.9524	НĎ	7.155	-0.023	-0.023	-0.019	-0.064	1	1	1	*	1	0.339	1.638	15443.73
ō	041.22	ES	5 583	-0.205	-0.193	-0.218	-0.074	1	1	1	1	1	0.345	1.519	15443.748
ň	04100	25	5 576	0 009	0.016	0 011	-0 015	1	1	1	i	1	0.366	1.519	15443.74
Š	0410	53	2,070 7,070	-1 244	-1 745		-0.197			1	ŝ	1	0 457	1 201	15443 75
~	04133	53	0.027	-1. 400	-0.050	0.720	-0.100			Î	÷	1	0.457	1 201	15443 75
0	041.5	55	3.676	-0.042	-0.006		-0.100						0.407	4 07 0	1 5 4 4 3 7 5
C	0345/	65	4.288	-1. c.3c	-1.125	-0.748	-0, 244	1	. 1	1	à.		0.541	1.655	10443.700
0	03454	ធិទ	4.351	-0.066	-0.102	-0.057	-0.109	1	. 1	1	3	1	0.941	1.855	15443, 78
0	03434	BS	4.254	-1.237	-1.137	-0.757	-0, 245	1	. 1	1	•	1	0.970	1.954	15443.764
0	03454	65	4.322	-0.070	-0.109	-0.054	-0. 101	1	. 1	1	1	1	0.975	1. 554	15443,764
Ö	03454	ΒΞ	4.265	-1.240	-1.133	-0.758	-0.253	1	. 1	1	1	1	1.016	2. 06B	15443, 77(
0	03454	BS	4, 324	-0.061	-0.095	-0.057	-0.109	1	1	1	1	1	1.016	2.069	15443.770
ō	07453	29	4 271	-1 249	-1 136	-0 761	-0 250	1	1	1	1	1	1.050	2, 192	15443.776
ā	0345	20	4 330	-0 062	-0.097	-0.055	-0 115	Í	1	1	1	1	1 050	2 182	15443.776
č	037.15	50	7 656	2 120	0.017	2.200	2 192	1	1	1	1	1	1 210	2 606	15443 782
~	032.47	n	2 104	0 744	4 455	0 450	0 200	- 1	ŝ	-	ŝ.	ĩ	1 010	2 404	15442 782
Š	03249	50	3.174	0.746	1.100	0.002	0.370	4	 	4	ŝ	i	1 50	7 614	15443.70
Ū.	ے <i>د</i> رے در ا	55	3.764	5.111	2.007	2.110	2.10/	1	1	-		-	1.240	2.014	
0	03244	32	3,208	0.758	1.174	0. 6.54	0.406	1	1	1	:	L.	1.248	1. 1. 1. 1	10440.700
C	04554	BS	2, 121	0.137	0.097	0.215	0.114	1	1	1	1	÷	-0.420	1,127	15443.790
0	04524	ES	2.071	0.053	630.0	0.033	0.039	1	1	1	1	1	-0.420	1.127	15443.796
. O	04452	BS	5.893	-1.107	-1.001	-0.635	-0.199	1	1	1	1	1	0.470	1.135	15443.803
0	04456	BS	5,938	-0.047	-0.077	-0.042	-0.105	1	. 1	1	2	1	0.47ŭ	1.135	15443. EO2
Ū	04535	BS	6.615	0.537	0.399	0,703	0.862	1	1	1	1	Ϊ.	0.435	1.07e	15443.81(
0	04550	BS	6, 213	0 400	0.675	0.346	0.135	1	1.	1	1	i	0.438	1.075	15443.81(
ō	2122.17	BD	8 350	-0 001	-0 089	0 143	0.498	1	1	1	1	1	0.767	1.319	15443.620
ō	2102.17	na	8 104	0 244	0 7.35	0 242	0 084	· . 1	1	1	1	1	0 767	1.315	15443. 820
Ň	00706	00	7 774	0.294	0.402	0 692	0.906	1	1	1	ī	1	0 315	1 396	15443 634
Š	70.00	50	7.770	0.700 A 107	0.010	0.072	0.144	1		1	î	÷	0.012	1 794	15442 834
0	720%	50	7.336	0.437		0.325	0.100		. 1	4	4	Ť	0.213	1 450	15642 971
U v	2140/05	50	8.680	0.179	0.043	0,206	0.593	1	. 1	1	1	4	0.008	1.000	16:43 07
0	214009	БD	8,396	0.282	Q. 498	0.310	0.131	1	1	1		1	0.005	1.635	10443.87
0	05.5	BS	5.023	0.176	0.054	0.278	0.498	1	. 1	1	4	1	0.064	1.007	15443.88
· 0	05c - 1	BS	4.790	0.232	0.371	0.226	0.060	1	. 1	1	1	1	0. 0ఓ4	1.007	15443.88
0	057 " 3	ES	4.122	-0. E56	-0.783	-0.552	-0.155	1	. 1	1	5	1	0.006	1.000	15443.894
0	057° E	65	4.147	-0.026	-0.047	-0.013	-0. 072	1	. 1	1	2	1	0. COŁ	1.000	15443.894
0	104:49	ΒD	7.308	0.074	-0.054	0, 153	0.536	1	1	1	1	1	0.017	1.343	15443.903
0	104149	ED	7,032	0.273	0.496	0.307	0.124	1	•1	1	1	1	. 0.017	1.343	15443.903
Ō	1415.0	HD	. 7.127	0.092	0.082	0.202	0.106	. 1	1	1	1	1	0.039	1.220	15443. 91:
ŏ	14156.3	н <u>л</u>	7 061	840.0	0 124	0 055	0 008	· •	1	1	1	1	0.037	1.220	15443. 91
ŏ	052.5	00	4 000	-0 417	-0.295	-0.606	-0 129	1	1	1	-	1	0 060	1.422	15443. 920
- Ă	050/01	ມວ	4 600	-0.001	0.007	0.000	-0 118		1	1	÷	1	0.060	1 422	15443 920
Š	0.1.2	55	7,775	-0.001			-0.115			â	a.	ĩ	0.000	1 575	15443 97
0		55 57	T. HOB 4 CHO	-U. 723 0 510	-0.901 A 404		0, 273		. <u>.</u>	4	4	4	0.02~	1 572	15447 03
0	06_12	55	*. ~1d	U. 213	0.400	U. 20/ 3 171		1	. <u>1</u>	4	-	4	0.024	1.000	15107 000
0	05625	65	2.600	-0.555	-0.515	-0.4/4	-0, 168	1	. 1	1	1	1	0.5/9	1.420	10440.746
0	056?5	BS	2.552	0.008	-0.004	-0.023	-0, 040	1	. 1	1	1	1	0.379	1.423	13443.942
· Q	05854	BS	2, 925	2, 222	2.047	2.041	1. 628	1	1	1	1	1	U . 304	1.147	10440.949
0	058 54	BS	2.333	0.594	0. 521	0.504	0. 169	1	. 1	1	1	1	0.304	1.149	15443,949
0	059.22	BS	5.732	-0.621	-0.574	-0.433	-0.154	1	. 1	1	1	1	0.307	1.053	15443. 958
0	057.55	BΞ	5.733	-0.001	-0 012	-0.022	-0. 047	1	. 1	1	7	1	0.309	1.053	15443, 958
O	065.1	BS	6.754	-0.629	-0.577	-0.535	-0.174	1	. 1	1	1	1	-0.139	1.054	15443.966
Ö	065.4	BS	6.763	-0.009	-0.025	-0.026	-0.052	1	. 1	1	1	1	-0.139	1.054	15443.96
ō	04954	BS	6 107	-0 902	-0.540	-0.542	-0.161	1	. 1	1	1	1	-0.279	1.030	15443.97
ă	04943	ne.	6 117	-0.011	-0.019	-0.022	-0.062	1	. 1	1	1	1	-0.275	1.020	15443.97
2	00164	ກດ	2 440		-0.774	-0 540	-0 035		1	1	4	1	-0 295	1 033	15443 58
	071-26	53	3,460 2,2015	-0.777	0.776	0.000 0.01/			1	î	ĩ	ī	-0 200	1 032	15447 00
v v	0/1/6	5	5.360	0.072		0.004	-0.001			4	4	1		1 002	15242 60
0	162428	HD	7.166	-0.796	-0.763	-U,402	-0.120	1		4	:_ 	1	0.017	1 007	10440,77(
Õ	162418	HD	/.153	0.011	0.016	-0.010	-0.035	1	1	1		4		1.007	10740,77(16444 AA
0	173371	HD	6.732	-0,468	-0.444	-0.364	-0.037	1		4	ة. م	1	-0.100	1.1/0	
ŷ	173371	HD	6.881	0.050	0.069	0.025	-0.025			1	1	1	-0.155	1.170	10444,00
0	06603	BS	3.097	2,209	2.048	2.049	1.634	5	1	1	1.	1	0.211	1.141	15444,01

18/19	APRI, 1983 -	- 8C, 60, A	MP#1 - BE STARS	SUBDWARFS			PAGE (0012
	0660% BS 06629 BS 0662* BS M4	2.486 0. 3.814 0. 3.780 0 4GNITUDES DI	. 613 0. 941 . 092 0. 067 . 037 0. 063 E LAS ESTRELLAS	0 520 0.155 0.145 0.044 0.017 0.023	1 1 1 1 1 1	1 1 <u>1</u> 1 1 1 1 1 1	0. 211 1. 141 0. 236 1. 167 0. 236 1. 167	l 15444.017 7 15444.024 7 15444.024
2	N=ME+	33	35 37	40 45	52	58 6	53 D5258	D3335
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.030 3.011 3.011 4.4.4.5.5.5.4.5.2.3.3.7.7.2.4.7.8.8.8.5.3.7.7.4.3.2.5.5.4.5.2.4.4.5.3.0.0.2.5.8.1.2.3.2.7.7.4.3.2.5.5.4.5.2.4.3.4.5.3.0.0.2.5.5.8.1.2.3.2.7.7.4.3.2.5.5.4.3.4.4.5.3.0.8.3.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	3.142 3.524 2.114 2.514 3.118 3.502 4.606 4.679 4.607 4.679 4.633 4.971 4.633 4.971 4.633 4.971 4.633 4.971 4.401 4.650 4.335 6.893 5.272 5.699 4.434 4.643 5.151 5.574 5.191 5.327 4.010 6.229 4.273 4.527 5.390 5.365 2.474 2.919 2.163 3.507 2.135 4.740 3.133 3.507 3.133 3.507 3.133 3.507 3.133 3.507 3.133 3.507 3.133 3.507 3.133 3.507 3.397 5.2517 7.014 7.320 8.723 8.497 8.723 9.361 7.254 7.462 7.254 7.462 7.254 7.462 4.972 4.924 2.081 2.1266 4.972 4.924 5.158 5.299 6.177 6.219 5.665 2.406 4.711 5.565 2.488 2.9001 6.488 2.545 5.145 5.145	4. $C44$ 4. 226 4. 020 4. 207 4. 025 4. 210 6. 102 4. 549 5. 549 5. 707 7. 296 7. 293 7. 496 7. 421 6. 275 6. 423 6. 576 7. 079 6. 152 6. 353 6. 576 7. 079 6. 152 6. 353 5. 706 5. 835 6. 423 6. 852 6. 948 7. 115 5. 509 5. 574 3. 457 3. 775 4. 044 4. 208 4. 044 4. 208 4. 021 4. 208 4. 021 4. 208 4. 021 4. 208 4. 021 4. 208 5. 694 5. 851 7. 477 6. 961 8. 847 8. 612 8. 847 8. 612 8. 847 8. 612 9. 273 8. 971 5. 521 5. 249 7. 234 7. 183 4. 861 5. 004 4. 712 4. 674 2. 433 3. 432 5. 577 5. 704 6. 580 6. 728 5. 946 6. 079 3. 436 3. 524 7. 046 6. 728 5. 577 5. 704 6. 573 6. 957 6. 673 6. 973 6. 673 6. 973 6. 673 6. 973	$\begin{array}{c} 4.282\\ 4.269\\ 3.925\\ 7.1223\\ 5.77\\ 6.1223\\ 4.269\\ 7.1223\\ 5.77\\ 6.75\\ 5.344\\ 4.433\\ 2.254\\ 5.1202\\ 5.12$	4.4.2.2.5.4.4.4.4.2.2.2.5.5.7.7.8.4.4.4.2.2.5.4.6.3.7.6.2. 3640,0.9.2.7.7.3.2.5.6.3.1.2.4.0.4.7.7.4.4.2.2.5.4.6.3.7.6.2 3640,0.9.2.7.7.3.2.5.6.3.1.2.4.0.4.7.1.3.3.9.9.4.4.2.2.5.4.6.3.7.6.2 3640,0.9.2.5.4.4.4.4.4.3.3.2.2.5.6.8.7.8.4.4.7.7.4.4.2.2.5.4.6.3.7.6.2 3640,0.9.2.5.4.4.4.4.4.3.3.2.2.5.5.7.7.8.4.4.6.7.4.4.2.2.5.4.6.3.7.6.2 3640,0.9.2.5.4.4.4.4.4.3.3.2.2.5.5.7.7.8.4.4.6.7.4.4.2.2.5.4.6.3.7.6.2	4.414 0.00 4.425 0.00 4.477 0.00 2.794 -0.00 2.795 -0.00 2.795 -0.00 2.795 -0.00 2.795 -0.00 2.795 -0.00 2.795 -0.00 2.795 0.00 2.795 0.00 2.795 0.00 2.795 0.00 2.795 0.00 2.442 0.00 2.532 0.00 2.790 -0.00 2.844 0.00 2.3970 0.00 2.3970 0.00 2.790 -0.00 2.790 -0.00 2.790 -0.00 2.790 -0.00 2.790 -0.00 2.790 -0.00 2.942 0.00 2.942 0.00 2.942 0.00 2.942 0.00 2.432 0.00 2.432	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

DENSIDAD DE FLUJO ABSOLUTO * LOG(X E-12 WATT/(CM 2 MICRON))

	33	35	37	40	45	52	58	63
			۰.					
			•					
• •	an an an an an an an an an an an an an a				· · · · ·		•• •••• •	

18/19	APR1_ 19	· C3	- 8C, 60, AM	P#1 - 0E S	TARS, SURD	WARFS			PAGE	0013
			-	_						
	•			-			•	•		,
								ι.		
L ()	07154	rs.	-12 4848	-12 7434	-12 7775	-12 7287	-12 9090	-17 0312	-12 2563	-12 4010 1
20	03.54	ES	-12. 6769	-12.7323	-1. 7736	-12 7234	-12 9017	-1.3 0769	-13 2585	-13 4056 2
30	02.54	ES	-12.6773	-12,7337	-12.7667	-12.7213	-12,9027	-19.0760	-13 2603	-12 4021 3
4 0	07239	ĒS	-14, 2807	-14, 1298	-14 0424	-13.5655	-13.0343	-12. 9217	-12 7890	-12 7459 4
∎ 50	07:49	ES.	-14. 2833	-14, 1292	-14, 0487	-13.5685	-13.0403	-12 2280	-12 7947	-12.7502 5
60	02921	25	-13.2960	-13.3374	-13.3853	-13.3307	-13. 5004	-12. 6473	-13.8000	-13. 9193 6
70	51480	HD	-14. 0264	-14.0462	-11.027E	-14.0276	-14.1078	-1-1 1705	-14,2387	-14. 2762 7
80	55 67	HD	-14.0458	-14.0422	-14.1257	-14.1076	-14.1824	-14.2114	-14,2719	-14.3237 6
- 90	07125	·ES	-13, 5562	-13, 5959	-13.6475	-13.6208	-13.7869	-13.9266	-14.0947	-14.2113 9
10 0	62.357	HD	-14.0237	-14,0594	-14.0322	-13,9012	-14, 0575	-14, 2133	-14.3747	-14. 505710
11 0	02517	ES	-13.4907	-13.5478	~13 6057	-13, 5724	-13, 7600	-13, 9339	-14,1052	-14.248211
12 0	02568	BS	-13, 5245	~13.5629	-12 4986	-13.3930	-13, 5516	-12,7027	-13.8569	-13.981312
13 0	71.72	HD	-13.8461	-13.8900	-13 8594	-13.7866	-13, 9593	-14, 1185	-14,2819	-14.412313
14 0	85.64	HD	-13.9647	-14,0033	-1.1. 9783	-13.8982	-14, 0638	-14.2212	-14.3737	-14. 497314
15 0	04:23	БE	-13.6234	-13.6453	-10.5153	-13.3141	-13.4550	-13.6011	-13.7419	-13.861415
16 0	04.33	BB	-12.4221	-12.4769	-11. 5360	-12. 5735	-12, 7237	-12,6036	-13,0629	-13. 193716
17 0	0.2454	BS	-12.6952	-12.7518	-12.7840	-12.7291	-12.9112	-13.0534	-13.2524	-13.391317
180	03 54	63	-12.6796	-12.7332	-12.7660	-12,7152	-12, 8986	-13.0699	-13.2407	-13.380 818
19 0	03/54	BS	-12.6830	-12.7395	-11. 7707	-12.7164	-12, 9021	-12.0743	-13.2417	-13.379 519
20 0	03 - 54	ES	-12.6816	-12.7403	-12.7719	-12.7198	-12,9050	-12.0764	-13.2438	-13.382 320
21 0	03:49	ΒΞ	-14.2974	-14, 1466	-14.0627	-13.5767	-13.0506	-12.9422	-12,7887	-12.745121
22 0	03249	28	-14.3044	-14, 1483	-14.0694	-13.5767	-13,0539	-12.9:27	-12.7944	-12.747922
23-0	04034	ÐS	-12.3754	-12.3738	-1:3. 3044	-12.0033	-12.0788	-12.2160	-12.3378	-12.447623
24 0	045E	ES	-13.3874	-13.4433	-13 4706	-13.3892	-13, 5587	-12,7253	-15,8871	-14.023224
- 25 Ŭ	04650	DS	-14.2330	-14.2917	-14 2973	-14.0996	-13. 9984	-14.0.27	-13.9959	-14.008625
26 0	2121.47	ED	-14.8112	-14.7903	-14 7667	-14.6476	-14.6590	-14 7067	-14.7525	-14.800026
27 0	93: - 5	ED	-14.8967	-14.8420	-11 8358	-14.5820	-14.4530	-14. 758	-14.4454	-14.460327
25 0	214209	ED	-15.0156	-14.9754	-14.9421	-14.8179	-14.8102	-14 3359	-14.8695	-14.905528
29 0	05 - 34	59	-13. 5516	-13, 5329	- 1.4885	-13.3167	-13. 3140	-10 3761	-13.4270	-13.486029
30 0	05 78	85	-12.7790	~12.8216	-10.7957	-12.6977	-12.8615	-13. 3167	-13, 1706	-13. 302530.
31 0	104,49	ED	-14.4247	~14.3677	-14.3524	-14.2464	-14.2501	-14.2501	-14.3240	-14. 357631
320	14.59	HD	-14.3601	~14.3705	3011	-14.0028	-14.0899	-14.2185	-14.3361	-14. 435532
0 22 0	0::-41	65	-13.3024	-13.3/53	-13.1262	-13.0555	~13.2197	~13.3840	-13.5085	-13 629933
	06118	55	-12.8779	-12.6846	2.9983	-12.9944	-13.0842	-12, 1420	-13.1782	-13.248034
1 35 U	07.525	85	-12.2894	-12.3201	-12.2189	-12.0839	-12,2489	-12.40/8	-12.5485	-12. 6/60330
	01434	83	-13.0308	~13.4776	-13.3007 10.407	-12. 7364	-12.0860		-12.4441	-12.400700 10.000000
3/ U 00 0	0	50 50	-15 0054	-10 0500	-13.48/0	-13.3417	-13.477/		-13.8047	-10, 736731
30 U 30 A	00.004	50 70	-10.7444 -17 6847	-10.7000	-13.6305	-13./427	-13.7073	-1- 2073	-14. 2107	-14. 340438
0 00 0	001/84	ಶದ		-10 5561		-10.4076	-10.047/	-10 0100	-10.7004	-19.000037
21 0	121130	59 74	-14 020s	-12.0070 -14 0400	-14 0577	-12.404/	-16,0202	-14 0040	-12.00/4	-12.70/340
22 0	170021	μn	-14 0570	-14 0824	-17 0000	-13 0505	-14 0000	-12 12072	-14.3/30	-14 279842
47 0	100502	BS	-13 5944	-13 5444	-13 4207	-13 0073	-10 6609	-12 4054	-12 5052	-12 494843
43 0	05220	BS	-13 0349	-13 0365	-12.95.77	-12 4527	-12 7500	-12 2834	-13 0238	-13 135044

.