

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE CIENÇIAS

DETERMINACION DE PARAMETROS EN MATERIALES TERMOLUMINISCENTES

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

Introducción	···· i
Capítulo I. Termoluminiscencia (TL)	••••
I.1. Breve bosquejo bistórico	2
1.2. Luminiscencia en sólidos	
I.3. Curvas y parámetros TL	16
Capítulo II. Modelos termoluminiscentes	22
II.l. Cinética del fenómeno TL	23
II.2. Modelos matemáticos	26
Capítulo III. Métodos utilizados para la determinación de parámetros	TL 32
III.l. Método empírico de Urbach	33
III.2. Método de Randall-Wilkins	34
III.3. Método de Garlick-Gibson	37
III.4. Método de Grossweiner	40
III.5. Método de Booth	42
III.6. Método de Laschick	43
III.7. Método de Hoogenstraaten	45
III.8. Método de Halperin-Braner	46
III.9. Métodos de Chen	48
Capítulo IV. Desarrollo experimental	50
IV.1. Instrumentación	51
IV.2. Materiales analizados	
IV.3. Curvas termoluminiscentes de los materiales estudiados	57
IV.4. Aplicación de les métodos	62
Resultados y Conclusiones	117
Bibliografía	126

INTRODUCCION

pesde que a la radiación ionizante se le ha dado diversas aplicaciones, se ha tenido la necesidad de buscar formas simples y efectivas de medir las tino de los métodos que ha llega dosis absorbidas por distintos materiales. do a ser de los más eficaces para este propósito es el que se basa en las pro En especial el fenómeno en piedades luminiscentes de ciertos cristales. que la luminiscencia es obtenida por medios térmicos y que se conoce como ter Aún cuando todavía no existe una explicación que moluminiscencia (TL). especifique completamente los mecanismos físicos y químicos responsables de este fenómeno, conocimientos cualitativos del mismo han ayudado lo suficiente a su comprensión para poder aplicarlo como un método práctico de dosimetría.

El propósito principal de este trabajo consiste en determinar los parámetros involucrados en el fenómeno de termoluminiscencia, a saber, la energía de activación E (o profundidad de trampa) y el factor de frecuencia de esca pe s, característicos de cada material que presenta termoluminiscencia. El fin de esto es tener un conocimiento más amplio acerca de las propiedades ter moluminiscentes de algunos materiales tales como: el Cloruro de Potasio (KCl), por tener una estructura cristalina sencilla y el Sulfato de Calcio (CaSU_A) por la importancia que tiene en la dosimetría de la radiación ionizante.

En el primer capítulo se presenta un breve bosqueio histórico y läs

generalidades del fenómeno de la luminiscencia que se han considerado hasta hoy.

En el segundo capítulo, debido a la importancia que implica el contar con un modelo determinado en el cual se consideren los factores involucrados en el proceso TL para poder alcansar el objetivo de este trabajo, se da una breve discusión de los modelos matemáticos que se han propuesto <u>pa</u> ra tratar de explicar el fenómeno.

En el tercer capítulo se presentan los distintos métodos que han utilizado diversos autores para determinar los parámetros de muestro interés.

En el cuarto capítulo se describe el desarrollo seguido en la aplicación de los métodos para cada uno de los materiales mencionados. Los re sultados se presentan en un quinto capítulo donde los valores encontrados pa ra los parámetros del KCl son: E = 0.73 ev. y $s \sim 10^{9}$ seg.¹ mientras que el CaSO₄:Dy presentó a E entre 0.88 y 1.18 ev. con s entre 10^{9} y 10^{12} seg.¹ lo que depende de la miestra utilizada.

CAPITULO I

截

TERMOLUMINISCENCIA (TL)

TERMOLUMINI SCFNCIA

I.l. Breve bosquejo histórico

El fenómeno de la termoluminiscencia se conoce desde hace más de 350 años, pero fue hasta 1663 en que se tuvo un registro literario del mismo cuando Boyle reportó a la Royal Society of London la manifestación de un extraño centelleo al calentar un diamante en la obscuridad.

El estudio científico de la TL comienza en la segunda mitad del siglo XIX cuando Bequerel analiza las longitudes de onda incidentes y emitidas por un material luminiscente observando la influencia de la temperat<u>u</u> ra en el proceso.

Experimentos más intimamente relacionados con radiación ionizante fu<u>e</u> ron llevados a cabo a principios de este siglo por Curie⁴, Wick⁵ y Lyman⁶.

Luego de estos estudios se generaron los primeros intentos para explicar cualitativa y cuantitativamente el fenómeno; de este modo, se hici<u>e</u> ron presentes teorías como la de Urbach⁷, Randall-Wilkins⁸ y Garlick-Gibson⁹ entre otras.

A pesar de haber existido ya esas investigaciones sobre la TL, no fue sino hasta 1950 en que Daniels¹⁰ propuso el uso de este fenómeno como mét<u>o</u> do dosimétrico de radiaciones entre otras aplicaciones. Desde entonces, el estudie de la TL en esta área se ha desarrollado con bastante rapides, llegando a tener grandes progresos en los últimos años impulsado per personas como: Cameron, Daniels, Zimmerman, Attix, Schulman, Gammage y Hecker de -I.F.L.U., Halperin, Braner y Chen de Israel, Takeuchi, Inabe y Osada de Japón, Le Blanc y Fortal de Francia, Lacksmanan y Fradhan de la India, A. Moreno, -J. Azorín, G. Espinosa, R. Salvi y A. Gutiérrez de México, entre otros.

De este modo, la TL se ha situado como uno de los métodos de más atra<u>c</u> ción en lo que se refiere a la medida de la radiación y sus efectos. Lo que corrobora el hecho de baberse realizado ya seis simposios internacionales sobre luminiscencia¹¹⁻¹⁶, de los cuales los dos primeros se han dedicado excl<u>u</u> sivamente al estudio de dosimetría termoluminiscente (TLD).

I.2. Luminiscencia en sólidos

Termoluminiscencia[®] es el término usado para denotar la emisión de fotones visibles (luminiscencia) producida por el calentamiento de ciertos m<u>a</u> teriales, los cuales han sido previamente expuestos a radiación ionizante^{1,17}.

La luminiscencia se presenta en una gran cantidad de materiales tales comos: cristales inorgánicos (vidrios y cerámicas por ejemplo), compuestos orgánicos (como el Polietileno y el Teflón), materiales biológicos y materiales bioquímicos; de todos los materiales luminiscentes, los que mayor interén tienen actualmente en dosimetríu son sólidos dieléctricos, generalmente cristales iónicos tales como los halogenuros alcalinos (NaCl, Lir, KCl, etc.) y compuestos sicalinotérreos (CaSU₄, Car₂, etc.).

A veces llamada con mayor propiedad luminiscencia térmicamente estimulada - (TSL).

En la mayoría de las investigaciones que se han llevado a cabo sobre lu miniscencia se han usado cristales de sensibilidad adecuada preparados en laboratorios bajo condiciones controlables y reproducibles 18-29, actualmente se han realizado estudios con minerales naturales que han mostrado una buena sen sibilidad^{2,30}. Característicos específicas de estos cristales como: unplio intervalo de detección para los diversos tipos de radiación, facilidad de medición, pequeñas dimensiones, posibilidad de uso para varias ocasiones y bajo costo, han colocado a la TL en una situación ventajosa con respecto a otros métodos de dosimetría (ver figura 1).

Debido a que se ha encontrado experimentalmente que en los cristales existe una gran variedad de defectos estructurales que influyen en sus propi<u>e</u> dades físicas de una manera notoria, dentro de las consideraciones cualitativas de la luminiscencia se ha asignado un papel decisivo a estas imperfecciones cristalinas³¹

Para explicar con detalle el mecanismo de la luminiscencia consideremos una red cristalina perfecta del tipo más sencillo que presentan los halogenuros alcalinos, tal como resulta ser la estructura cristalina de sal en piedra, la cual mostrará una estructura cúbica centrada en las caras³² (ver figura 2).

La estructura que se muestra en la figura 2, es una idealización y por lo mismo, no existen sólidos que puedan presentar su estructura así de perfecta ya que en ellos siempre se manifiestan diversos tipos de imperfecciones. Entre las imperfecciones más simples se encuentran los defectos puntuales, ang malías que se consideran con tamaños comparables a los iones y se localizan en ciertas regiones específicas de la red. imperfecciones de este untura-

Fig. 1

1

Características operacionales de algunes sistemas de dosimetría.

6

Fig. 2 Estructura cristalina típica de los halogenuros alcalinos; (a) en tres dimensiones y (b) en dos dimensiones. Se presenta como ejemplo clásico al Cloruro de Sodio (NaCl). leza se generan a partir de causas puramente termodinámicas³². En el estudio de estas imperfecciones, a algunas de ellas se les ha considerado como el resultado de una migración sufrida por los iones a través de la red cristalina, así, según esto se clasifica como defecto Frenkel, a la pareja formada por un ion que queda situado en un lugar intersticial (lugar no regular de la red) con su correspondiente vacancia (lugar de la red que queda vacío) y como defecto Schottky, a la situación que trae como resultado una vacancia al perder el ion de la estructura volumétrica (ver figura 3).

Fig. 3 Defectos Schottky y Frenkel en un cristal iónico. Las flechas indican el desplazamiento de los iones. En un defecto Schottky el ion viaja hacia la superficie del cristal; en un defecto Frenkel viaja hacia una posición intersticial. Tomado de C. Kittel, Int. to Solid Stat. Phys. p. 539 59 ed. (J. Wiley, 1976).

Fara un cristal determinado existe cierta diferencia entre la energía requerida para formar un defecto l'renkei y uno Schottky. En última instan cia el tipo de defecto que predomina en el cristal es aquel que requiere la mínima energía de formación. Se han realizado cálculos de estas energías los cuales indican que los defectos Schottky causados por los iones positivos predominan si se cumplen condiciones tales como: semejanza de tamaños entre iones positivos y negativos, constante dieléctrica baja y contribución pequeña de Van der Walla a la energía de la red³¹. Los halogenuros alcal<u>i</u> nos son cristales que se apegan mucho a este tipo de características (hay cálculos que indican que se requiere del orden de l ev. más para formar un defecto Frenkel que uno Schottky en este tipo de cristales³³).

Cualquier tipo de defecto que se forme ya sea Schottky o Frenkel, d<u>a</u> rá como resultado una región de carga no balanceada en el cristal y su sig no dependerá del tipo de ion que deje la vacancia u ocupe el lugar intersticial (ver figura 4), en base a esto se considera que los defectos puntu<u>a</u> les se comportan como entes con carga eléctrica efectiva los cuales pueden tener interacción coulombiana con partículas cargadas que se encuentren contenidas en el seno de la estructura cristalina.

Otro tipo de defectos puntuales característicos en estos cristales son los producidos por las llamadas impurezas , es decir, átomos extraños que se han introducido de alguna manera en el interior de la red cristal<u>i</u> na ocupando lugares regulares o irregulares de ésta (ver figura 5).

Fig. 4 Región de carga no balanceada en la estructura cristalina.

rig. 5

Atomos extranos o impureza: en la e<u>s</u> tructura cristalina.

Estos defectos resultan ser eléctricamente semejantes a los defectos Frenkel o Schottky ya que pueden actuar de igual forma sobre las partículas cargadas que se encuentran en el sólido cristalino. Por lo general, cualquier tino de defecto puntual manifiesta su existencia en los cristales al influir en las características físicas que estos presentan.

El relacionar defectos como los puntuales en las consideraciones cuali tativas del fenómeno de luminiscencia cristalina, nos conduce a manejar el modelo de bandas de los sólidos, que hasta el momento, resulta ser el más aceptable para este propósito. Este modelo se basa en el diagrama de los niveles de energía atómicos de la red, los cuales se generan cuando los áto mos se agrupan para formar el sólido, quedando tan próximos unos de otros de tal manera que sus niveles energéticos resultan perturbados, teniendo entre sí, una separación tan fina que se puede considerar como un espacio continuo formando bandas. De este modo, a la banda que queda constituída por el gru po de estados en que se encuentran los electrones del último nivel energético, se le llama banda de valencia (B.V.), esta banda generalmente, se encuentra llena; a la región en donde no existen estados permitidos para los electrones la cual se localiza inmediatamente arriba de la B.V., se le llama banda prohibida (B.P.) y a la siguiente banda en donde se localizan los primeros estados excitados, se le llama banda de conducción (B.C.), ya que los electrones que estan situados en ella contribuyen a la conducción eléctrica; esta banda generalmente se encuentra vacía.

Las propiedades ópticas y eléctricas de los halogenuros alcalinos indican

que éstos pueden clasificarse como aisladores típicos dentro del esquema de bandas con una región prohibida de varios electronvolts (ev.), lo cual depen derá del material de que se trate (ver figura 6).

Fig. 6 Modelo de bandas de un sólido cristalino. Las letras P, V y A representan diferentes estados metaestables (ver te<u>x</u> to).

En los cristales que existen en la naturaleza, las imperfecciones como las que hemos descrito, generan dentro de la banda prohibida algunas regiones o estados, los cuales pueden permitir la estancia de entes cargados que viajen por el volumen cristalino (puntos F, V y A de la figura 6), a éstas regio nes que proporcionan cierta estabilidad a dichos entes se les ha nombrado como estados metaestables, la razón de su estabilidad se debe a causas que vergmos en seguida. Cuando un sólido cristalino se expone a un campo de radiación, se le proporciona una determinada energía, de la cual, la mayor parte de ella se d<u>i</u> sipa como energía térmica del cristal (esto es, que hay un aumento en su te<u>m</u> peratura) y la restante se absorbe provocando ionización del mismo. Este ú<u>l</u> timo proceso consiste en inducir excitación a algunos de los electrones de la B.V., los que pueden liberarse así de los iones en que se encuentran, p<u>a</u> sando con esto a la B.C. y dejando tras de sí, cada uno de ellos, un vacío electrónico (localizado en la B.V.) al que se le denomina "agujero"; a estos agujeros se les considera como cargas eléctricamente positivas y de magnitud idéntica a la del electrón (ver figura 7).

Fig. 7 Producción de entes móviles o portadores de carga en la irradiación de un cristal. (a) electrones (b) agujeros.

Estos dos tipos de entes físicos tienen la facilidad de moverse libremente en las bandas donde se encuentran, por esta razón se identifican indistint<u>a</u> mente como entes móviles o portadores de carga. En su viaje a través del cristal ellos pueden seguir cualquiera de los siguientes procesos:

 Algunos se moverán por la red hasta recombinarse entre sí, emitiendo con ello un fotón luminoso[#].

b) Otros viajarán hasta quedar atrapados en los estados metmestables as<u>o</u> ciados a los defectos de la red (ver figura 8), donde permanecen un tiempo indeterminado que depende de la estabilidad que encuentre el ente móvil en dicho estado metmestable¹⁷.

Fig. 8 Procesos cinéticos que pueden seguir los entes móviles de un cristal. (a) Recomb<u>i</u> nación (b) Atrapamiento.

"Los procesos de emisión luminosa se clasifican mediante el tiempo que tar dan en llevarse a cabo, así si el tiempo es menor de 10" seg. se llama fluorescencia y si es mayor fosforescencia, este último caso se considera dentro del segundo proceso. Si sucede que un electrón es atrapado por una vacancia de ion negativo, se tiene lo que se denomina centro F (ver figura 9), del mismo modo un agujero puede ser atrapado por algún defecto para formar otro tipo de centros⁵² A un átomo o defecto capaz de capturar un electrón o un agujero se le liama comunmente "trampa", a estas se les ha asociado algunos parámetros en las teorías que se han usado para su estudio y ellos son el principal objeto de nuestra atención en este trabajo, por lo que dedicaremos la siguiente sección para ver con más detalle estos conceptos. En general se tiene la con vicción de que existen varios tipos de trampas o centros, pero los que hemos mencionado resultan ser los más sencillos de todos, en particular el centro F se muestra como la imperfección cristalina más simple de todas y por este motivo se le ha dedicado mucho más tiempo a su estudio[†].

Fig. 9 Estructura del centro F en un cristal iónico

⁷Una de las más importantes conclusiones que se han obtenido de estos estudios, es que el proceso de formación de este tipo de centros es termodinámi camente reversible, lo que hace suponer que su existencia influye directamente en las propiedades volumétricas del material, y se les atribuyen ser una de las principales causas de que éstas se manificaten.

El modelo que ha avudado a la interpretación de los fenómenos asocia dos con los centros i es el propuesto por de Boer⁵⁴, quien destacó la se mejanza de este tipo de centros con un átomo de hidrógeno, de este modo fue como se le asoció al centro i niveles discretos de energía, en los cuales el electrón puede tener transiciones al absorber o emitir una cantidad apro piada de energía^{*}. A estos niveles de energía se les atribuye ser los prin cipales causantes de los estados metaestables en la B.P.

El hecho de que los portadores de carga queden atrapados en vacancias o en impurezas implica un cambio energético en el cristal, el cual consiste en un almacenamiento de energía por parte de los entes atrapados, un sólido cristalino que se encuentre bajo estas circunstancias quedará en espera de que algún proceso físico lo ayude a poder regresar a su estado inicial ant<u>e</u> rior a la irradiación lo que equivaldrá a que el portador de carga atrapado vuelva a su estado base mediante un mecsnismo de desexcitación . Los mec<u>a</u> nismos que causan la desexcitación generalmente están asociados a una emisión de fotones, si las frecuencias de estos fotones están en el intervalo de frecuencias visibles, es cuando se tiene la llamada luminiscencia.

Los mecanismos de desexcitación causantes de la luminiscencia reciben nombres particulares según el proceso que se utilice para ceder energía al cristal y conseguir la liberación de los portadores atrapados. De este modo, si la energía se suministra por medio de frecuencia óptica, el fenóme no es llamado radiofotoluminiscencia (RPL) y si es proporcionada por medios

En particular son centros a los que se les asocia la propiedad de tener niveles de energía que producen una banda de absorción óptica para longitudes de onda en las cuales los cristales son normalmente transparentes, nor ello se les llama "centros de color" ya que son los responsables de la coloración en este tipo de cristales.

térmicos, entonces se conoce como termoluminiscencia (TL). Schulman⁵⁶ propuso en 1970 una clasificación del fenómeno de luminiscencia en sólidos basándose en el tipo de centros inducidos por la radiación en el material y en la forma de proporcionar la energía para desexcitar dichos centros. En la Tabla 1 se muestra esta clasificación así como la descripción del fen<u>ó</u> meno en cada caso.

I.3. Curvas y parámetros TL

En cualquiera de los procesos de desexcitación, se pueden obtener curvas de luminosidad, las cuales nos indiçan cómo varía ésta en función de la temperatura (o del tiempo, si el calentamiento es uniforme) en TL y de la longitud de onda en RPL .

Al patrón de luminiscencia contra temperatura se le llama curva term<u>o</u> luminiscente (TL) y juega un papel primordial en nuestro estudio. Curvas de este tipo se muestran en la figura 10.

Como podemos observar, puede ser que en ellas se manifiesten uno o va rios picos cada uno de los cuales corresponde a las distintas emisiones – emergéticas que se llevan a cabo en la cinética del fenómeno, es así como – la curva resultante puede llegar a tener una forma compleja si varios picos llegan a manifestarse traslapándose entre sí. Se ha observado que el tama no de cada uno de los picos resulta ser proporcional a la dosis a la que se expone el cristal dentro de un intervalo determinado, cuya limitación supe-

TABLAI

Tipo de centros inducidos por la radiación ionizante	Procedimiento para efectuar la medición	Efecto	Descripción del fenómeno	
Los centros inducidos por la radiación son estables al proceso de lectura,	lluminación con la luz (por lo general ultravioleta o visible).	Coloración	Los centros absorben luz en regiones espectrales normalmen- te transparentes.	
		Radiofotoluminiscen- cia	El sólido es luminiscente sin irradiar. Los nuevos centros absorben luz y emiten luminiscencia a longitudes de onda mayores durante el tiempo en que incide la luz.	
Los centros inducidos por la radiación son destruidos por el proceso de lectura.	Calentamiento	Termoluminiscencia	La energía almacenada en los centros se libera como luminis- cencia. La luminiscencia disminuye du- rante el tiempo que la muestra permanece a alta temperatura.	
	Huminación con luz de longitud de onda mayor que la luminis- cencia emitida.	Luminiscencia estimu- lada	La energía almacenada en los centros se libera como fuminis- cencia, La fuminiscencia disminuye durante el tiempo que la muestra esté expuesta a la luz estimulan- te.	

EFECTOS OPTICOS UTILIZADOS EN DOSIMETRIA DE ESTADO SOLIDO

Fig. 10

Curvas termoluminiscentes de diversos materiales, (a) Floruro de Litie (TLD-100 Harshaw), (b) Cleruro de Potasio (KC1-418 IFUNAN), (c) Sulfato de Calcio (TLD-900, Harshaw 1980), (d) Sulfato de Calcio (AGS-761, ININ 1981)

rior se considera como la saturación de las trampas, físicamente cuando la va riable en el eje de la abscisus es el tiempo, el área bajo la curva es proporcional al número de entes que se hayan atrapado (de hecho, ésta es la base para su uso en dosimetría^{*}). Características de estos picos, tales como ta mano y resolución, pueden controlarse y optimizarse por medio de algunas condi ciones aplicadas al proceso experimental, por ejemplo: distintas velocidades de calentamiento, tratamientos térmicos anteriores o posteriores a la irradia ción, etc.

El número de picos en la curva TL (los cuales son conocidos como picos luminiscentes) es característico de la naturaleza física y química del material utilizado, debido a esto, el hacer un análisis de ellos nos proporciona una información completa del comportamiento del material en el fenóm<u>e</u> no TL.

El hecho de que en la curva aparezcan picos a determinadas temperaturas, ha inducido a pensar que la existencia de cada uno de ellos se debe a la lib<u>e</u> ración de los entes móviles atrapados en paquetes de trampas de un mismo tipo, y la acción de poder liberar a los entes cuando el cristal ha alcanzado esa energía térmica se relaciona con la energía de amarre que se ejerce sobre los entes para que queden ligados a los defectos o impurezas; a esta energía de amarre se le conoce como energía de activación, y ésta resulta aer uno de los dos parámetros manejados en la teoría del fenómeno TL.

La relación que se ha establecido entre las energías de activación de

Por supuesto que se le pide al materiel cumplir con algunos otros requisitos como serían por ejemplo: sstabilidad de trampas, es decir, una mínima pérdida de información posible bajo temperatura ambiente al transcurrir el tiempo, equivalencia con el medio al que se mide la dosis, etc.

las trampas, la estabilidad de las mismas y las temperaturas de liberación, involucra consideraciones de carácter vibracional entre los entes móviles y **la red cristalina, ést**o se la basado principalmente en el hecho de observar que los materiales termoluminiscentes (TL) una vez excitados no permanecen indefinidamente en tal estado, ya que tienden a perder ciertu cantidad de in formación termoluminiscente con el transcurso del tiempo sin que haya nece sidad de que se le someta al tratamiento térmico correspondiente que está bajo nuestro control, de esta forma es como se ha introducido en los modelos teóricos de la TL, términos como el factor de frecuencia de escape s, éste es considerado como otro parámetro del fenómeno TL asociado directamente a la vibración de los entes ligados a los defectos y la vibración mis ma de los cristales, los valores de esta cantidad física al igual que los de la energía de activación, se consideran estrechamente relacionados con la mecánica estádistica del fenómeno. Gran número de investigaciones han conducido a pensar que los valores de estos dos parámetros resultan ser ca racterísticos para cada pico de la curva TL. El estudio tanto de los factores de frecuencia como el de las energías de activación de los diversos materiales TL, nos pueden dar amplia información del proceso real que se lleva a cabo para que suceda el fenómeno. Estos estudios pueden comple tarse aún más, si se toman en cuenta datos proporcionados por la calidad eg pectral de la luminiscencia, los que se pueden obtener por medio de espectros luminiscentes, que consisten en registrar la intensidad de la luz emitida por los cristales a una temperatura determinada en función de 1a -

El porcentaje de información perdida es característico para cada material y se le denomina comunmente como "fading", vale la pena mencionar que ésta queda relacionada con el tiempo de vida media de los picos luminiscentes bajo ciertas condiciones; el tiempo puede ir desde minutos hasta años.

1.

longitud de onda, las curvas resultantes de ésto (ver figura 11) al igual que la curva TL puede tener varios picos² (llamados picos de emisión) los cuales, en un momento dado, nos pueden dar información útil para poder reafirmar las teorías del fenómeno.

De hecho, todos los estudios teóricos y experimentales sobre el comportamiento y características de los materiales TL, estan basados en los estudios de curvas como las que se han mencionado, esto se confirmará en los siguientes capítulos donde se discutirán brevemente las teorías y méto dos propuestos para el estudio de la termoluminiscencia.

CAPITULO - II

HODELOS TERMOLUMINISCENTES

MODELUS TERMOLUMINISCLNTES

11.1. Cinética del fenómeno Il

En todos los modelos propuestos hasta ahora para tratar de explicar el fenómeno TL se acepta la existencia de tres elementos principales en su descripción, a suber:

a) Ente móvil o portador de carga

b) Trampas

c) Centros luminiscentes

Las teorías que tratan de explicar el mecanismo de escape de los en tes móviles atrapados en los estados metaestables, coinciden en un sólo pun to, la dependencia con la temperatura, pero difieren en la identificación de la participación física que realizan los elementos mencionados.

En estas controversias, los centros F han resultado de mucho interés, pues el considerar la participación de éstos en la luminiscencia, ha creado dos corrientes de opiniones, ya que algunos autores 19,20 sostienen que estos centros no juegan ningún papel en la TL, mientras que otros $^{21-28}$ consideran que su participación es fundamental.

Los autores que sostienen el hecho de que los centros F no intervienen en el fenómeno TL arguyen que la emisión se produce en centros l<u>u</u> miniscentes que no son ninguno de los tipos de trampas que hemos mencionado (ver figura 12.b)

Se denota como centro luminiscente a aquel estado metaestable de energía localizado en la banda prohibida donde los electrones y agujeros pueden efectuar su recombinación.

Fig. 12 Esquemas de los posibles procesos cinéticos que pueden seguir los entes móviles en un - sólido cristalino (a) Proceso de ioniza-ción del material y atrapamiento de los entes móviles. (b) - (e) leer el texto.

្ទេ

Los que consideran al centro F como parte activa del fenómeno, tienen divergencias al tratar de especificar el papel que juegan estos centros, ya que unos lo consideran centros luminiscentes, es decir, centros de recom binación de agujeros (ver figura 12.c), mientras que otros solo lo toman co mo trampas de electrones, los cuales se liberan al absorber la energía térmica para posteriormente recombinarse en las trampas de hoyos, que en este caso, resultan ser los centros luminiscentes (ver figura 12.d).. En otras palabras, una de las cuestiones se ha reducido a investigar cual de estos entes es el que viaja por el cristal, o si es que lo hacen ambos; para simplicidad de estudio la mayoría de los investigadores han supuesto que los electrones son los que viajan, pero en general no ha sido posible aclarar cual de estas aseveraciones es la correcta. El tratar de verificar este tipo de teorías ha llevado a hacer uso de técnicas esperimentales como el 37 sfscto Hall, sin embargo, ni aún con esto se ha podido definir el proceso real debido al hecho de que en los halogenuros alcalinos, por ser materiales dieléctricos, los portadores de carga presentan tiempos muy cortos (del orden de microsegundos) en su movilidad, lo que impide concluir en favor de alguna de las teorías, se espera que mediante algunas otras técnicas tales como la radiofotoluminiscencia^{19,37,38} (RPL), la conductividad térmicamente estimulada³⁹⁻⁴⁶ (TSC) y la resonancia paramagnética electrónica²⁰ (EPR) en conjunto con la termoluminiscencia (1L) se logre profundisar más en el co nocimiento del proceso en cuestión.

Muchos otros aspectos teóricos del fenómeno se han argumentado, por sjemplo, el de que los entes móviles pueden sufrir reatrapamientos⁹ al lib<u>e</u> rarse de las trampas (ver figura 12.e) o que pueden sufrir liberaciones es-

porádicas bajo ciertas condiciones⁴⁷ (ver figura 12.f), etc., todos ellos han surgido al tratar de explicar resultados experimentales, pero hasta hoy, no ha habido ninguna teoría que logre dejar perfectamente establecido cuál es el mecanismo de la TL. Con el mismo objetivo, se han propuesto diversos modelos matemáticos, pero de igual forma, sólo han podido interpretar parcialmente el proceso. En general, podemos decir que los modelos matemáticos ticos se pueden clasificar en dos tipos: los que se refieren a la construc ción teórica de los picos característicos de las curvas TL y el que se re fiere a la creación y llenado de trampas. Enseguida veremos en qué consi<u>s</u> ten cada uno de estos modelos.

II.2. Modelos matemáticos

a) Rendall-Wilkins

En 1945 J.T. Randall y M.H. Wilkins⁸ propusieron uno de los modelos más sencillos para explicar el fenómeno TL, el primero de los que se refi<u>e</u> ren a los picos característicos, con él se obtiene en forma teórica la intensidad de un pico completamente aislado en la curva TL.

La base de este modelo está constituída por el hecho de considerar que los entes atrapados en los estados metaestables tienen una distribución maxwelliana de energías térmicas, es decir, que el electrón tiene una probabil<u>i</u> dad por unidad de tiempo de escapar de un nivel particular de energía E [ev.] a una temperatura T [°K] igual a

$$P = \frac{-dn}{n} \frac{dt}{dt} = s \exp(-E/kT)$$
(1)

donde n es la concentración de trampas ocupadas en el tiempo t, k es la constante de Boltzmann $[ev/\bullet_k]$ y s un factor de proporcionalidad que tie ne unidades de tiempo recíproco el cual es llamado el factor de frecuencia o factor pre-exponencial.

Para una mejor comprensión del fenómeno se propuso hacer una semejanza entre la traspa y una caja de potencial, donde el valor de la energía de activación E denota la profundidad^{*}, mientras que s representa el producto del múmero de choques del ente móvil en las paredes de la caja por el coeficiente de reflexión³³ (ver figura 13), por tal motivo s se considera con valores menores o iguales a la vibración natural del cristal⁸ (lo que implica órdenes aproximados a 10¹³ seg⁷). Aún cuando el valor de s se ha considerado constante en la mayor parte de los estudios de la termoluminiscencia, el relacionarlo con las vibraciones del cristal, nos puede llevar a suponer que para una trampa determinada, este valor podría variar muy ligeramente con la temperatura[†].

La ecuación básica para este modelo, supone que la intensidad luminosa (I) es directamente proporcional a la rapidez con que se liberan los - . entes móviles de las trampas (-dn/dt), de esta forma, haciendo uso de la consideración establecida en la ecuación (1) se tiene que

$$I = -C \left(\frac{dn}{dt}\right) = Csn exp \left(-E/kT\right)$$
 (2)

Basándonos en esta analogía, de aquí en adelante usaremos indistintamente el nombre de energía de activación o profundidad de trampa.

[†]En general, a este factor se le ha relacionado 33,42 con ciertas cantidades físicas que pueden ser dependientes de la temperatura, por ejemple, a veces se denota como el producto de la densidad de estados posibles en la banda - de conducción, la velocidad térmica de los entes móviles y la sección eficas que pueden presentar las trampas.

Fig. 13 Energía de potencial para un electrón en un centro F. Tomado de J. A. Krumhansl y N. Schwartz, Physical Review <u>89</u>, 1154 (1953).

así si el proceso de evacuación de las trampas se lleva a cabo bajo una velocidad de calentamiento lineal $\beta = dT/dt$, se puede resolver la ecuación diferencial que se tiene en la parte derecha de la expresión anterior de donde podemos conocer la forma explícita de n, lo que a su vez nos dice -

que

I= n_os exp (-E/kT)
$$\left[exp \left(- s/\varphi \right) exp \left(-E/kT \right) dT \right]$$
 (3)

A partir de esta expresión es posible predecir la forma de la curva TL en función de la temperatura o del tiempo si se dan valores a E y s .

A este modelo se le asocian limitaciones tales como el hecho de no _considerar reatrapamiento de los entes móviles y suponer una sola profundidad de trampa.

b) Garlick-Gibson

En 1948 G.F. Garlick y A.F. Gibson⁹ sugirieron una nueva aproximación al modelo anterior, en la cual se consideró un segundo atrapamiento de les entes móviles, para esto representaron a la intensidad con la siguiente ecuación

$$I = -\frac{dn}{dt} = s'n^2 exp(-E/kT)$$
(4)

donde s' es una constante con unidades de cm³/seg. A este modelo gen<u>e</u> ralmente se le conce como el de cinética de segundo orden (y su consecuencia al anterior como el de primer orden).

La solución de la ecuación diferencial presentada en (4) no dice que la intensidad en este caso resulta ser:

I =
$$n_{\phi}^{L}s^{+} \exp(-E/kT) \left[1 + (\frac{n_{\phi}s^{+}}{\phi}) \int_{-E/kT}^{V} dT \right]$$
 (5)

Una limitación que se ha hecho notar de este modele es que en él se considera que la probabilidad de que el ente móvil sea atrapado mnevamente y la probabilidad de que se recombine, son ignales, cosa que no siempre su cede 47,48.

c) Generalisación del modelo de Randall-Wilkins

En la última aproximación que se hizo del modelo referente a los <u>pi</u> cos de intensidad luminosa, se propuso una cinética de orden general⁵⁹, es decir

$$I = \frac{dn}{dt} = s''n^{b} \exp(E/kT)$$
 (6)

aquí b indica el orden de cinética implicada, la solución de esta ecuación nos conduce a

$$I = n_{\bullet}^{b} s'' exp (-E/kT) \left\{ \left[\frac{(b-1) s'' n_{\bullet}^{(b-1)}}{\beta} \right] \int_{T_{a}}^{T} exp (-E/kT) dT + 1 \right\}^{b-1}, (b \neq 1) (7)$$

Como puede notarse, en estos modelos referentes a la construcción te<u>ó</u> rica de los picos TL, sólo se ha generalizado el orden de atrapamiento y recombinación, pero las limitaciones de considerar sólo una profundidad de trampa para cada material, junto con el hecho de tomar igualdad entre prob<u>a</u> bilidades de reatrapamiento y recombinación, sigue imperando.

d) Cameron-Zimmerman

Un camino distinto para tratar de explicar el fenómeno TL, fue propuesto por J.R. Cameron y Zimmerman⁵⁰ en 1964, al crear un modelo matemático que posteriormente modificarían⁵¹ en 1966. En este modelo se supuso la creación en properción constante de ciertas trampas generadas por la irradiación del material, las cuales se deben sumar a un número de trampas iniciales (N₀) ya existentes en tal material. Con la restricción de que la muestra que se irradía sólo puede contener hasta un número máximo de trampas (N₀) por unidad de volumen; matemáticamente esto se expresó media<u>n</u> te las dos ecuaciones siguisntes

$$\frac{dN}{dR} = \propto (N_F - N) , \qquad \frac{dL}{dR} = \Im (N - L)$$

dende L es el múmero de trampas llenas para cualquier valor de la exposición, N el múmero total de trampas, (llenas o vacias) para cualquier valer de la exposición, R la exposición en Roetgen, \propto la probabilidad de creación de trampas y J la probabilidad para el llenado de las mismas

La solución a este sistema de ecuaciones nos proporciona el valor del número de trampas llenas, el cual resulta ser:

$$L = \frac{\gamma N_e}{\alpha - \gamma} \left(e^{-\gamma R} - e^{-\kappa R} \right) + \frac{N_F}{\alpha - \gamma} \left[\alpha \left(1 - e^{-\gamma R} \right) - \gamma \left(1 - e^{-\kappa R} \right) \right] \quad (8)$$

y el valor del múmero total de trampas como

$$N = N_0 e^{-\kappa R} + N_f (1 - e^{-\kappa R})$$
 (9)

ambas como funciones de la exposición.

Observemos que en este modelo no se considera directamente el concep te de profundidad de trampa ni el comportamiento de los entes móviles dentre de ellas.

En general, podemos decir que estes sem les modelos natemáticos bási ees que se han prepuesto hasta ahora para entender el femémeno de termely miniscencia. Algunes autores^{47,44,52,53} basándose en estes modeles, han prepueste cinéticas más generales, en donde se pueden contemplar como cases particulares las que ys hemos mencionado. Sin embarge, para muestros prepésites es suficiente le que hemos viste hasta aquí.
CAPITULO III

METODOS UTILIZADOS PARA LA DETERMINACION DE PARAMETROS TL METODOS UTILIZADOS PARA LA DETERMINACION DE PARAMETROS TL

Realmente el esfuerzo que se ha realizado en el sentido de estudiar los parámetros de las trampas en materiales TL ha sido bastante grande, pese a ello, los logros obtenidos han resultado ser muy relativos en lo que se refiere a descifrar por completo el fenómeno. En esta sección, de<u>s</u> cribiremos brevemente los estudios realizados por diversos autores con este propósito, para con ello poder familiarizarnos con las técnicas experimentales que se han usado hasta ahora.

III.1. Método empírico de Urbach

El primer método para calcular la energía de activación fue propuesta por Urbach⁷ en 1930, quién encontró en forma empírica que una estimación r<u>a</u> sonable para conocer el valor de la energía de la trampa E en ev., estaba dada por

E = CTm / 500

en donde T_m representa la temperatura en "K correspondiente al máximo del pico luminiscente en la curva TL. Actualmente se puede notar que este método en realidad resulta ser muy burdo y por lo mismo no se le puede temer gran estima en su uso.

III.2. Método de Randall-Wilkins

Luego de que el estudio de la TL tuvo su primer estudio teórico en 1945 con Randall y Wilkins, ellos propusieron en base a su modelo matemát<u>i</u> co un método para determinar los parámetros TL. Este método lo basaron en el hecho de considerar que el decaimiento de la curva TL tiene una estrecha correlación con la emisión de energía por fosforescencia, es decir, con la liberación de los entes atrapados bajo un proceso isotérmico.

El método consistió en tomar en cuenta que a un tiempo determinado t. en el proceso de lectura del material desexcitado por fosforescencia, es d<u>e</u> cir, al obtener la forma de la curva TL, el valor de la probabilidad de escape de los entes móviles tendría que llegar a ser igual a la unidad, de este modo, teniendo en cuenta que esto sucedería a una temperatura T ligeremente mayor que T_m (ver figura 14),

Curva TL en dende se muestra la temperatura T_m de la intensidad máxima y la temperatura T a la cual se consideraría una probabilidad de escape igual a l.

la ecuación (1) presentaría la siguiente forma:

$$1 = s \exp \left\{-\frac{E}{[kT_m(1 + f(s, p)]}\right\}$$
 (10)

donde $f(s, \beta)$, como su expresión lo indica, es una función del factor de frecuencia y la velocidad de calentamiento utilizada en el experimento; el valor de esta función es muy pequeño comparado con la unidad. A partir de esta última ecuación se obtiene

$$E = T_m [i + f(s, \beta)] k \ln(s)$$
(11)

además, sabiendo que el tiempo promedio <t> ds estancia del portador de car ga en la trampa es el recíproco de la prebabilidad de escape, se tieme de -(1) que

$$n(t) = \frac{E}{kT} - Ln(s)$$
 (12)

en donde, si sustituinos el valor de E de la ecuación (11) obtenenos la signiente relación

$$Ln(t) = Tm\left[\frac{[1+f(s,p)]Ln(s)}{T}\right] - Ln(s)$$
 (13)

aquí T representa la temperatura a la cual se deja decser per fosferescen cia el material estudiado.

Con la ecuación (13) se tuvo la posibilidad de hacer un estadie gráfico para poder determinar los parámetros TL, ya que representa una relación lineal entre el tiempe t de decaimiento fosforescente a una temperatura fi ja dada T y la temperatura de máximo brille T_m . El valor [i+f(s,q)]ln(s)/Tresulta ser el valor de la pendiente de la recta y -ln(s) el valor de la erdenada al origen. De esta forma fue como Randall y Wilkins precedieren

ra determinar los parémetros TL del ZaS:Ca. (A) Curvas termeluminiscentes obtenidas de diferentes muestras conser vedas a temperatura constante (indicada per la línes puntea da) para distintos tiempes, a) coro seg., b) 25 seg., c) 140 seg., d) 20 min., e) 95 min., (B) Melación liueal entre les tiempes de decaimiente y la temperatura de integ

sided máxime.

a dejar decaer a temperatura constante una muestra irradiada de material termoluminiscente obteniendo la curva TL en distintos tiempos posteriores a la irradiación (ver figura 15A), así, construyendo la gráfica de T_m contra Ln(t) pudieron conocer tanto pendiente como ordenada al origen (ver figura 15B) con lo cual evaluaron los parámetros TL; para conocer $f(s,\rho)$ podemos observar que si Ln(t) = 0 entonces $f(s,\rho) = (T_m-T)/T_m$.

Este método tiene como restricción el hecho de tener que efectuar va rias lecturas de una misma muestra, la cual puede ser afectada en su respuesta por posibles daños irreversibles en cada uso, esto debido a que la respuesta de cada material TL está sujeta a la historia de uso radiológi co. Esta restricción puede ser evitada si se manejan muestras de material TL en polvo o un lote de cristales lo suficientemente homogéneo que mos garantice buena repreducibilidad en la respuesta TL:

III.3. Método de Garlick-Gibson

Cuando Garlick y Gibson propusieron su modele en 1948, también proper cionaron un método para determinar los parámetros termoluminiscentes, este se basó en el hecho de observar que en la forma de la ecuación de intensidad para cinética de segundo orden, ecuación (5), se tiene la suma de dos términos, uno de los cuales resulta ser la exponencial $\exp(-E/kT)$ multiplicada por un factor constante, esto implica que para temperaturas por de bajo de la temperatura de máximo brillo T_m , el comportamiento de la curva será proporcional a dicho término (ver figura 16a). De este modo, se pre

Pig. 16

(a) Ajuste entre la función expenencial y el surgimiento inicial de un pico TL perfectamente aislade. (b) Relación lineal obtenida del ajuste entre la expenencial y la región de surgimiento inicial del pice termoluminiscente. calentamientos hasta una temperatura que nos permita con el segundo calenta miento recuperar el pico de interés completamente aislado.

III.4. Método de Grossweiner

En 1953 Leonar I. Grossweiner⁵⁶, propuso un nuevo método para calc<u>u</u> lar los parámetros de las trampas en el fenómeno TL basado en el modelo matemático de Randall-Wilkins y algunos aspectos geométricos de la curva. Básicamente, lo que hizo fue considerar la expresión de la diferencia entre términes tales como una temperatura inicial T, que marcara exactamente una fracción conocida de la intensidad máxima (por ejemplo la mitad) y la tem peratura a la cual se manifiesta dicha intensidad, T_m (ver figura 17).

Pig. 17 Parámetro de forma de curva utilizado por Grossweiner.

A partir de esto y de algunos pasos algebráicos sencillos logró llegar a la siguiente expresión

$$\frac{1}{2} = \exp\left\{-\frac{E}{k}\left(\frac{1}{T_{1}} - \frac{1}{T_{m}}\right)\exp\left[-\int_{T_{m}}^{T_{m}} \exp\left(-\frac{E}{kT}\right)dT\right]\right\}$$
(15)

De este modo, haciendo una aproximación matemática para el valor de la int<u>e</u> gral involucrada en esta expresión, llegó a establecer el valor de la energía de activación como

$$E = 1.51 \text{ kT}_m T_c / \tau$$
 (16)

dende $\tau = T_m - T_1$. Este fue el primer método con el cual se podía encontrar la energía de activación sin tener una dependencia explícita sobre s y β .

Para obtener el valor del factor de frecuencia en este caso, se proc<u>e</u> de en forma semejante al mótodo anterier, es decir, se maximiza la expresión de intensidad (3), de donde

$$s = \frac{pE}{kT_m^2} \exp\left(\frac{E}{kT_m}\right)$$
(14)

y que podemos conocer al sustituir el valor encontrado para E.

Gressweiner estimó que el cálculo de los parámetros por este método daba valores de un margen de error de \pm 5%, si es que se satisfacen las si guientes condiciones: $s/\phi > 10^7 \, {}^{\circ}$ K y E/T_>20; posteriormente Duesel y -Bube⁵⁷ mostraron que dicho método podís tener un margen de error de \pm 7%.

Este modelo al ignal que el de Garlick y Gibson tiene como limitación, el heche de que sóle es aplicable a pices TL perfectamente aislados de etres. picos en la parte ascendente de la curva, ya que la existencia de ellos acarrearía un error de cálculo al incrementar el valor de T.

III.5. Nétodo de Booth

En 1954 A.H. Booth⁵⁸, al notar el hecho de que las características presentadas por los picos TL, tales como altura, anchura y la temperatura correg pondiente en la que se manifiesta la máxima intensidad de brillo, dependían del valor de la velocidad de calentamiento lineal $\beta = dT/dt$ (ver figura 18)

Fig. 18 Efectos de la velecidad de calentamiento sobre un pico TL. (a) velocidad alta (b) velocidad media (c) velocidad baja.

propuso un método en donde se hace uso de la derivada de la expresión de inte<u>n</u> sidad propuesta por Randall y Wilkins, ecuación (14):

$$\frac{\beta E}{kT_m^2} = s \exp\left(-E/kT_m\right)$$
(14)

para esto, lo que hizo fue usar dos velocidades diferentes de calentamiento, β_i , y β_1 , obteniendo así, las características correspondientes a cada curva resultante, que al sustituirlas en (14) conseguía tener un sistema de dos ecuaciones simultáneas, en donde juegan el papel de incognitas la energía de activación E y el factor de frecuencia s. Así obtuvo que

$$E = \left[\frac{k T_{m_1} T_{m_2}}{T_{m_1} - T_{m_2}}\right] L_n \left[\frac{\beta_1}{\beta_2} \left(T_{m_2} / T_{m_1}\right)\right]$$
(17)

donde T_{m_1} y T_{m_1} son las temperaturas de máximo brillo de los picos l y 2 respectivamente. El valor de s se consigue al sustituir el valor de E en (14). A este método se le atribuye como principal desventaja el hecho de que se tienen que realizar dos experimentos para obtener los valores desendos lo que implica el considerar que siempre se están manejando las mismas condiciones iniciales (donde intervendría directamente el valor del múmero de tra<u>m</u> pas inicialmente ocupadas, n_o, el valor de la temperatura a la cual se inicia la lectura, etc.), y una completa homogeneidad del material analizado para que siempre se obtenga la misma respuesta.

III.6. Método de Luschick

En 1955 C.B. Luschick⁵⁹, propuso un método gráfico semejante al de -

Grossweiner para encontrar la profundidad de las trampas en los materiales – TL, en este caso los términos gráficos fueron: la temperatura de máxima intensidad de brillo T_m y la temperatura T_1 que marca la mitad de dicha intensidad al decaer la emisión del pico TL, de esta forma, la cantidad aborn considerada fue $\delta = T_m - T_1$. A diferencia de Grossweiner que hizo aproxima ciones matemáticas para encontrar la energía de activación, Luschick usó una aproximación geométrica para evaluar la integral involucrada en la expresión de intensidad al hacer una semejanza entre la semiárea del pico TL y el <u>á</u> rea de un triángulo con igual altura y semiancho (ver figura 19). (Exper<u>i</u> mentalmente se considera que esta aproximación se encuentra dentro de un margen de error de $\pm 5\%$ del valor correcto de la integral).

Fig. 19 Parámetro de forma de curva utilizado por Luschick.

Así fue como encontró que si se considera una cinética de primer orden en este modelo se tiene que la energía de activación es:

$$E_{i} = kT_{m}^{2} / \delta$$
 (18)

y para una cinética de segundo orden ésta resulta ser

$$E_2 = 2 k T_m^2 / \delta$$
 (19)

es decir, que es exactamente el doble de la primera expresión.

Conociendo el valor de E, la evaluación del factor de frecuencia se hace de la misma manera que en los casos anteriores.

Al igual que el método de Grossweiner, este método requiere de picos TL totalmente aislados para hacer el análisis por la rasón que ya conecemos. Sin embargo, en este caso se tisne el inconveniente insalvable de que si el pico se traslapa con otros picos por el lado de más alta temperatura no hay forma de aislarlo. (Es claro que en este caso el borrado térmico no podría efectuarse sin borrar toda la información del pico de interés).

III.7 Método de Hoogenstraten

En 1958 W. Hoogenstraten⁵⁵, basado en la misma idea de Booth, de utilizar las características presentadas en la forma de las curvas como un función de la velocidad de calentamiento β para determinar los parámetros TL, propuso un mótodo en el cual se hace uso de varias velocidades de calentamien to lineal (β_i , i=1,2,3...7). Para esto, observó que haciendo uso de la ecuación (14), se logra llegar a una expresión lineal entre $Ln(T_m^2 / \beta)$ y $1/T_m$, ésta es:

$$Ln(T_{m}^{2}/\beta) = \frac{E}{k}(1/T_{m}) + Ln(sk/E)$$
(20)

de este modo, conociendo las β_i 's y sus correspondientes T_{m_i} 's presentadas por cada una de las curvas TL, se puede hacer una gráfica de $Ln(T_m^2/\beta)$ contra $1/T_m$, lo que resulta ser una recta cuya pendiente es igual al valor E/k que nos permite conocer la energía de activación. El valor del factor de frecuencia se puede conocer de la ordenada al origen que tiene como valor a Ln(sk/E).

A este método que resulta ser muy semejante al de Booth, también se le asocian los inconvenientes que implica el hacer uso de varios procesos experimentales.

III.8 Método de Halperin-Braner

En 1960 A. Halperin y A.N. Braner^{47,48}, medificaron el método de -Luschick, aplicándolo a una cinética de orden general. El estudio de esta cinética lo dividisron en los dos casos siguientes:

(a) Los entes atrapados sufren un efecto de tanelaje entre el nivel metaestable y el centro de recombinación (ver figura 12.f), en este caso la energía de activación resulta ser:

$$E = q k T_m^2 / \delta$$
 (21)

$$q = \frac{\mu_m}{\mu_m + \beta - 1} + \frac{B}{A\mu_m + B}$$

dondo

aquí $\int = T_2 - T_m$, es la misma expresión utilizada por Luschick, y q es una constante cuyo valor depende del orden del proceso la cual puede valorar se mediante aproximaciones cinéticas y gráficas.⁴⁷ (Por ejemplo $\mu_m = \delta/(\tau + \delta)$)

(b) Los entes atrapados pasan a la banda de conducción al ser ercita des, para luego sufrir la recombinación (ver figura 12.d), en estas circung tancias se tiene que:

$$E = \frac{qkT_m}{\delta} (1-\Delta)$$
 (22)

donde

$$\Delta = \frac{2kT_m}{E}$$

equí Δ es un factor de corrección que por lo general tiene un valor muy próximo a 0.1 (pero que para una primera aproximación se puede tomar ignal a cero).

El valor del factor de frecuencia se calcula de manera semejante a les casos anteriores, mediante el uso de la ecuación (14).

Con este método se muestra que la simetría de la curva TL no sólo de pende de la probabilidad de transición involucrada, sine también del mámero de trampas, el múmero de centros luminiscentes y la cinética considerada.

Una particularidad que se hace notar de este método en el segundo caso es que el factor de corrección , Δ , depende de la misma energía de act<u>i</u> vación que se está calculando, de este modo, la limitación de la proximidad al valor real de dicha energía, queda en función del proceso iterative del mótode⁶⁰.

III.9 Métodos de Chen

En los últimos años, algunos investigadores 60,61 han dirigido sus es fuerzos a tratar de hacer correlación entre los métodos propuestos para <u>e</u> valuar los parámetros TL y a estudiar principalmente las ventajas y desventajas que implica el uso de cada uno de ellos resaltando los detalles teórices y matemáticos que presentan en sus desarrollos. Entre estas in vestigaciones, se ha destacado la labor que ha realizado Reuven Chen^{62,63}, quien se ha esforsado en tratar de proporcionar correcciones a los métodos que hacen uso de los parámetros de forma de pico considerando que éstas pueden producir evaluaciones más exactas en los valores de los parámetros Para conseguir esto, Chen se ha basado en métodos de aproximaciones TL., numéricas 64,65 que hacen uso de picoa producidos numéricamente y métodes computacionales 66-68. De sus principales regultados vale la pena presen tar las expresienes en que intervienen los diversos parámetros de forma - $(\delta, \tau y \omega)$ para evaluar la energía de activación⁶⁹ estas son:

$$E_{\tau} = [1.51 + 3.0 (\mu_m - 0.42)] \frac{kT_m^2}{\tau} - [1.58 + 4.2 (\mu_m - 0.42)] 2 kT_m \quad (23)$$

$$E_{d} = [0.96 + 7.3(\mu_{m} - 0.42)] kT_{m}^{2}/3$$
(24)

$$E_{\omega} = \left[2.52 + 10.2 \left(\mu_{m} - 0.42\right)\right] k T_{m}^{2} / \omega - 2 k T_{m}$$
(25)

aquí $\mu_m = \frac{d}{\omega}$ es el factor de simetría de Halperin-Braner, cuyo valor indica Chen⁶¹, mos puede dar una idea sobre el orden de la cinética involucrada ya que ha observado que, en la construcción de picos "numéricos" sucede que - $\mu_m \approx 0.420$ para una cinética de primer orden y $\mu_m \approx 0.525$ para una de segunde orden.

* En este caso este incluye a ω como el semiancho total del pice TL, es - decir $\omega = \tau + \delta$.

Los factores de frecuencia pueden evaluarse por medio de la expresión (14), sunque la opinión de Chen es que debe de tomarse en cuenta la posibilidad de una dependencia de la cinética involucrada y del valor de la energía de activación, por tal motivo propuso⁴⁹ una nueva expresión del factor de frecuencia la cual obtuvo a partir de utilizar la aproximación de lialperin y Braner⁴⁷ para la evaluación de la integral involucrada en la ecuación (3)

$$\int \exp(-E/kT) dT = \left(\frac{kT^2}{E}\right) \exp(-E/kT)(I-\Delta) , \Delta = 2kT/E$$

la que sustituyendo en la expresión del máximo de la ecusción de orden gene ral (7)

$$\frac{(b+1)s}{\beta}\int_{T_{m}} \exp\left(-E/kT\right)dT + 1 = \left(\frac{sbkT_{m}^{2}}{\beta E}\right)\exp\left(-E/kT_{m}\right)$$

llegó a que

$$S = \left(\frac{\beta E}{k T_m^2}\right) \exp\left(\frac{E}{k T_m}\right) \left[1 + (b-1)\Delta_m\right]^{-1}$$
(26)

la cual es la misma ecuación (14) multiplicada por un factor que es función de la E y del orden de la cinética.

Como podemos ver, los cálculos de Chen resultan ser fundamentalmente empíricos, pero su importancia radica en el hecho de tratar de repreducir picos numéricos formados inicialmente con valores hipotéticos de E y s haciende uso de las diversas fórmulas de evaluación, lo cual da oportunidad de tener idea de qué tan aproximadas se encuentran del valor correcte.

CAPITULO IV

DESARROLLO EXPERIMENTAL

DESARROLLO EXPERIMENTAL

IV.1. Instrumentación

La lectura de los cristales se efectuó en el analizador termoluminiscente modelo 2000 de "The Harshaw Chemical Co." Este equipo tiene la flexibilidad necesaria para estudios termoluminiscentes en general, aunque su diseño, lo hace especialmente apropiado para su uso en dosimetría.⁷⁰ Consta de dos módulos, el 2000A que efectúa la detección y el 2000B que opera como sistema de registro.

Para obtener las curvas termoluminiscentes, el equipo se acopla a un graficador "x-y" y se ajusta para leer con una velocidad de calentamiento determinada, en particular nosotros utilizaremos un valor de 6.7°C/seg. a menos que el método requiera otros valores.

El módulo 2000A está constituído esencialmente por los siguientes componentes:

- 1. Plancheta para calentar las muestras en forma controlada, acoplada a un circuito de calentamiento formado por un calefactor eléctrico de alta corriente y un termopar con derivaciones al eje "x" del graficador y al control visual de temperatura.
- 2. Sistema de acoplamiento óptico, cuyas funciones consisten en aislar térmicamente a la plancheta del tubo fotomultiplicador, servir como condensador óptico haciendo que la mayor parte de la lus emitida llegue al fotomultiplicador, y disminuir la contribución de las señales espureas especialmente la radiación infrarroja.

Tubo fotomultiplicador, en cuyo fotocátodo se produce el desprendimiento de electrones en un número proporcional a la intensidad y energía de la luz emitida. Estos electrones al ser multiplicados en los dinodos, producen en el ánodo una corriente proporcional a la señal luminosa recibida.

3.

.)

Fuente regulada de alto voltaje, la cual permite seleccionar el vol taje óptimo de operación, siendo además lo suficientemente estable como para obtener resultados reproducibles. La figura 20 muestra el diagrama a bloques del módulo 2000A.

El módulo 2000B consta fundamentalmente de los siguientes componentes:

Amplificador de pulsos, cuya ganancia está predeterminada y su aju<u>s</u> te no se encuentra al alcance del usuario, ya que sólo se puede seleccionar un factor de multiplicación xl o xlO; sin embargo, se tiene la posibilidad de reducir el ruido proveniente del fotomultiplicador ajustando el control de supresión de corriente escura. El ruido del amplificador tiene una salida lineal para el eje " y " del graficador.

b) Convertidor logarítmico acoplado a un circuito mutomático melector de rango, el cual mantiene la malida dentro de los 2 órdenem de – magnitud del medidor y da una indicación visual del rango que me em tá utilizando. Una malida de este circuito va directamente al medidor de corriente, mientras que la otra puede ir, al eje " y " – del graficador para obtener una gráfica exponencial.

Fig. 20

1

Diagrama a bloques del Módulo 2000 A

- c) Integrador de corriente que permite conocer el total de la señal emitida por la muestra durante todo o parte de su calentamiento entre l<u>í</u> mites preseleccionados. Este circuito es un sistema electrónico sim ple de alta sensibilidad y bajo ruido y se encuentra acoplado a un circuito electrónico con salida visual de tipo digital cuya entrada analógica está constituida por la salida del integrador.
- d) Sistema de control el cual logra la simultaneidad o secuencia de los eventos, regulando el calentamiento de la plancheta dentro de los límites deseados con la velocidad adecuada y seleccionando el intervalo de integración de la corriente. El diagrama a bloques de la figura 21 correspondiente al módulo 2000B.

La irradiación de los materiales fue realizada con rayos gamma de 60 Co, para lo cual se utilizó la unidad Vickrad de la Gerencia de Aplicaciones Industriales del Instituto Nacional de Investigaciones Nucleares (ININ), que se encuentra su el edificio de fuente de gammas del Centro Nuclear de México (CNM), y cuya actividad sua, el 30 de Junio de 1970 de 8325 GEq (225 Ci); las energías de emisión características del 60 Co. son 1.17 Mev. y 1.33 Mev.

IV.2 Materiales analizados

Los materiales que se estudiaron fueron cuatro; tres variedades de Sul fato de Calcio activado con Disprosio (CaSO₄:Dy) y uno del Cloruro de Potasio activado con Manganeso (KCl:Mn). Las características de estos materiales son las siguientes:

Pig. 21

1

Diagrame a bloques del Médule 2000 B

a) Material TLD-900, producido por la Harshaw Chemical Co., consistente en Sulfato de Calcio activado con Disprosio. Este producto tiene la forma de pastillas cuadradas con dimensiones de lum X 3mm X 3mm y un peso de - 0.020 ± 0.002 gr. (Producción de 1980)

b) Monocristales de Cloruro de Potasio (KCl) crecido por el método de -Carochalsky-Kyropoulos⁷⁵en el Instituto de Física de la Universidad Nacional Autónoma de México (IFUNAM), este cristal tiene una concentración de 0.50 mol % de Manganese actuando como activador (KCl:Mn). Para su estudio, e<u>s</u> te material fue cortado en pastillas de dimensiones semejantes a la de TLD-900, las cuales presentaron un peso de 0.020 \pm 0.005 gr.

c) Sulfato de Calcio (CaSO₄) producido por el ININ, el estudio de este material se realisó en dos formas físicas: en polvo^{71,72} y en pastillas⁷³ -(AGS-761), embas muestras tienen una concentración de 0.1 mol % de Dispresie (Dy) actuande como activador (CaSO₄:Dy). El tamaño de partícula del polve esta entre 80 y 180 mesh, este se ha optimizado para obtener la mejor respuesta TL teniendo como base investigaciones realizadas sobre este mat<u>e</u> rial⁷⁴. La cantidad de polvo utilizada para cada lectura TL es de 0.015 ± 0.002 gr.

La forma que presentan las pastillas AGS-761 es la de un disco con 6.8mm de diámetro y 1.0mm de espesor teniendo un peso de 0.096 ± 0.002 gr.

La dosis aplicada a cada material se efectuó según su sensibilidad, por le cual, al KCl:Mn se le aplicó 840 rad (8.4 Gy) y al CaSO₄:Dy 14 rad (0.14 Gy).

Antes de cada irradiación de los materiales, se dió a estos el tratamiento térmico necesario para eliminar toda información residual y conseguir una mayor sensibilidad de respuesta, este tratamiento consistió en calentarlos a 400°C durante una hora para posteriormente enfriarlos en forma brusca hasta la temperatura ambiente.

IV.3 Curvas termoluminiscentes de los materiales estudiados.

La respuesta termoluminiscente de cada material se determinó integrando la curva TL desde la temperatura ambiente hasta 300 °C con una velocidad de calentamiento de 6.7 °C/seg. La curva obtenida del KC1-418, mostró un sólo pico con su máximo a una temperatura de (180 ± 5) °C [#], ésta se muestra en la figura 22. Las respuestas de los CaSO₄: Dy mostraron dos picos c<u>a</u> racterísticos de acuerdo a la siguiente Tabla

material	pico múmere l	pico número 2
TLD-900	(122 ± 5) °C	(183 ± 5) °C
CaSO4:Dy (pelvo)	(95 ± 5) °C	(175 ± 5) °C
AGS-761	(118 ± 5) °C	(195 ± 5) ⁰ C

Las incertidumbres indicadas en estos casos, son el error máximo de lectu ra, lo cual no dista mucho de la desviación estandar resultante de la estadística hecha sobre un múmero de 10 muestras que fue de 4.6 °C

Las curvas correspondientes a estos materiales se observan en las $f_{\underline{i}}$ guras 23, 24 y 25.

El pico de baja temperatura de las muestras de CaSO₄:Dy son muy ine<u>s</u> tables y en consecuencia originan dificultades para encontrar sus parámetros TL. 👘 Por esta razón, este trabajo se ha limitado a sólo determinar los parámetros de los picos múmero 2. Para poder aplicar en el CaSO, :Dy los métodos que requieren de tener un pico completamente aislado, se practicó el borrado térmico del pico de baja temperatura para aislar así el pi co múmero 2 de cada una de las muestras de CaSOL:Dy, el mismo procedimiento se aplicó al KC1-418; ésto se efectuó variando las temperaturas de un primer calentamiento sobre las distintas muestras aualizadas cada 10°C ver figuras 26, 27, 28 y 29), este procedimiento tuvo como fin el observar la influencia tanto del pico de baja como del grado de borrado térmico sobre los parámetros de forma de pico y temperaturas de máxima intensidad de cada caso (en consecuencia sobre el efecto en los valeres de los parámetros TL de cada método). El efecto de los diferentes grados de borrado térmi co sobre el pico de KC1-418 (ya aislado en forma natural) se utilizó como un criterio para seleccionar el borrado térmico óptimo en cada material ·y así conseguir el aislamiento adecuado del pico al cual se aplicaron los mé todos correspondientes.

IV.4 Aplicación de los métodos

De acuerdo a los procedimientos utilizados en la determinación de los parámetros TL, podemos clasificar a éstos en cinco clases:

Borrado tórmico de la curva de ECI-416. Los calentamientos se variaron cada 10 °C desde 100 °C hasta 190 °C. Tratamientes tórmicos menores de 100 °C no mestra ron influencias en el borrado.

Fig. 27

Borrado térmico de la curva de TLD-900. Los calentamientos se variaron cada 10 °C desde 70 °C hasta 210 °C.

28 Berrade térmice de la curva del CaSO, Dy em pelvo. Les calentamientes se variaren cada 10 °C desde 90 °C hasta 190 °C.

- a) Métodos de decaimiento isotérmico
- b) Métodos de diferentes velocidades de calentamiento
- c) Método del surgimiento inicial de pico
- d) Métodos que emplean parámetros de forma de pico
- c) Métodos de aproximación numérica de curva

En esta clasificación, los tres primeros puntos no requieren del conocimiento explícito de la cinética del proceso, por tal motivo, su desarrollo lo consideramos de interés principal en este trabajo. En el punto cuatro, en donde si se requiere de este conocimiento, consideraremos un breve análisis para obtener dicho valor y así aplicar las ecuaciones apropiadas en cada caso. El último punto no lo desarrollaremos aquí, pero lo tendr<u>e</u> mos en cuenta para las conclusiones a las que lleguemos.

a) Método de decaimiento isotérmico

Para efectuar el decaimiento isotérmico de las muestras irradiadas, é<u>n</u> tas fueron colocadas en un recipiente de paredes aisladoras de calor el cual tiene en su interior una cavidad en donde la temperatura puede controlarse con presición por medio del paso de corriente eléctrica a través de una resi<u>m</u> tencia calefactora que rodea a dicha uavidad (ver figura 29). Las muestras fueron retiradas del dispositivo de temperatura controlada en periodos de tiempo previamente elegidos para posteriormente proceder a obtener la emisión TL remanente.

90 Dispositive para mantener la temperetura constante, utilizado para el decamiento isotérmico de las mestras TL.

Cada uno de los materiales fue sometido al decaimiento isotérmico de des temperaturas, T = 200 °C y T = 250 °C con objeto de poder observar la influencia de la temperatura sobre el proceso y el valor de los parámetros TL.

Las curvas de decaimiento isotérmico así como las Tablas de los val<u>o</u> res relacionados linealmente en la ecuación 13 y las gráficas correspo<u>n</u> dientes para cada material, son las siguientes:

Decaimiente isotórnico de la respuesta TL del KCl-418 para una temperatura consta<u>n</u> te a 200 °C. - 31

1 3

ĺ.

NEW STATES

Table III.-Valores obtenidos para los parámetros relacio-
nados linealmente en el decaimiento isotérmico
del KC1-418 a 200 °C

tiempo (t) de dec. (min)	Ln (t)	T _w (°C)	т _т ([•] к)	I (JUC)
0	-	183	456.16	1.45
1.5	0.405	188	465.16	1.30
2.5	0.916	204	473.16	1.02
3	1.098	206	481.16	0.744
3.5	1.252	212	485.16	0.612
4.5	1.386	215	488.16	0.498
5.5	1.504	218	491.16	0.314

Tabla IV.-

Valores obtenidos para los parámetros relacionados linealmente en el decaimiento isotérmico del KCl-418 a 250 °C

tiempo (t) de dec. (min)	Ln (t)	т _т (°с)	т _т (°к)	(כאע) צ
0	-	183	456.16	1.45
1.5	0.405	195	468.16	1.24
2.5	0.916	209	482,16	0.981
3	1.098	214	487.16	0.727
3.5	1.252	219	492.16	0 . 56 2
4	1.386	222	495.16	0.383
4.5	1.504	226	499.16	0.288

Fig. 34 Gráfica de la relación lineal buscada en el decaimiento isotórmico a 200 °C en la respuesta TL del KC1-418.

Fig. 35 Decaimiento isotórmico de la respuesta TL del TLD-900 para una temperatura constan te a 200 °C.

tiempe (t) de dec.	Ln (t)	T "(°C)	T _m (⁰ K)	1 (Juc)
0		183	456.16	0.475
1	0	188	461.16	0.353
2	0.693	201	474.16	0.336
3	1.098	209	482.16	0,262
6	1.791	226	498.16	0.179
9	2.197	235	508.16	0.152
12	2.484	240	513.16	0.130
15	2.708	244	521.16	0.122

 Valores obtenidos para los parámetros relacionados linealmente en el decaimiento isotérmico del TLD-900 a 200 °C

Tabla

Fig. 36

Gráfica de la relación lineal buscada en el decaimiento isotórnico a 200 °C en la respuesta del TLD-900

1.

Tabla VI .- Valores obtenidos para los parámetros relacionados linealmente en el decaimiento isotérmico del TLD-900 a 250 °C

tiempo (t) de dec. (min)	I.n (t)	'T " (°K)	т _т (°к)	(Juc) I
0	-	183	456.16	0.475
1	0	1 9 2	465,16	0.331
2	0.693	204	477.16	0.254
3	1.098	213	486,16	0.182
6	1.791	226	502.16	0.150
9	2.197	239	512.16	0.131
12	2.484	245	518.16	0.125
15	2.708	253	526.16	0.109

Gráfica de la relación lineal buscada en el decaimiento isotórmico a 250 °C en la respuesta del TLD-900.

9 Decaimiente isotérmico de la respuesta TL del CaSO, ¡Dy en polvo para una temperratura constente a 200 °C Tabla VII .-Valores obtenidos para los parúmetros relacio-
nados linealmente en el decaimiento isotérmico
del CaSO4;Dy en polvo a 200 °C

tiempo (t) de dec. (min)	Ln (t)	T _w (°C)	т _т (°к)	(Juc) ()
0		175	448.16	1.55
1	0	180	453.16	1.31
2	0.693	191	464.16	1.22
5	1.098	199	470.16	1.03
1. 1. A. 1.	1.386	200	473.16	0.982
5	1.609	208	481.16	0.940
6	1.791	213	486.16	0.701
10	2.302	222	495.16	0.561
15	2.708	231	504.16	0.419
20	2.995	239	512.16	0.300
30	3.401	247	520.16	0.240
40	3.688	251	524.16	0.154

Fig. 40 Gráfica de la relación lineal buscada en el decaimiento isotórmico a 200 °C en la respuesta TL del CaSO₄:Dy en polve.

Fig.

				1
tiempo (t) de dec. (min)	Ln (t)	T _m (°C)	T _m (⁰ K)	I (JUC)
0		175	448.16	1.55
1	0	182	455.16	1.12
2	0.693	194	468.16	0.779
3	1.098	203	477.16	0.757
4	1.386	206	480.16	. 0.700
5	1.609	211	483.16	0 . 599
6	1.791	216	489.16	0.416
10	2,302	227	501.16	0.401
15	2,708	234	508.16	0.215
20	2.995	239	513.16	0.174
30	3.401	248	522.16	0.116
40	3.688	256	530.16	0.100

Tabla VIII.- Valores obtenidos para los parámetros relacionados linealmente en el decaimiento isotérmico del CaSO;Dy en polvo a 250 °C

Fig. 42 Gráfica de la relación linealbuscada en el decaimiento isotérmico a 250 °C en la respuesta del CaSO₄:Dy en polvo.

Tabla IX

Valores obtenidos para los parámetros relacionados linealmente en el decaimiento isotérmico del AGS-761 a 200 °C

tiempo (t) de dec. (min)	Ln (t)	T _m (*C)	т _т (*к)	(عبر) I
0		195	468.16	0.771
1	0	202	475.16	0.671
2	0.693	214	487.16	0.579
3	1.099	221	494.16	0.377
	1.386	226	499. 16	0.351
5	1.609	23 0	503.16	0.322
6	1.792	233	506.16	0.293
7	1.946	236	509.1 6	0.278
10	2.303	242	515.16	0.204

Gráfica de la relación lineal buscada en el decaimiento isotérmico a 200 °C en la respuesta del AGS-761.

Fig. 44

11. 1 31

ad!

Tabla X .- Valores obtenidos para los parámetros relacionados linealmente en el decaimiento isotérmico del AGS-761 a 250 °C

tiempo (t) de dec. (min)	Ln (t)	T_(*C)	T _m (*K)	1 (JUC)
0	.	195	468.16	0.771
1	0	213	485.16	0.612
2	0 .693	224	497.16	0.450
3	1.099	232	505.16	0.369
	1.386	235	510.16	0.337
5	1.609	240	516.16	0.301
6	1.792	245	518.16	0.282
7	1.946	255	526.16	0.197
10	2.303	261	533.16	0.152

Fig. 46

Gráfica de la relación lineal buscada en el decaimiento isotérmico a 250 °C en la reg puesta del AGS-761

b) Nétodos de diferentes velocidades de calentamiento

Para llevar a cabo los métodos que hacen uso de este tipo de procedimien to, se efectuaron lecturas termoluminiscentes de las muestras de CaSU, Ly variando la escala de control de la velocidad de calentamiento de la plancheta. La superposición de respuestus, las Tablas de valores relacionados linealmente por medio de la ecuación (20) que utiliza el método de licogenstraaten, y las respectivas gráficas de tal relación para cada material, se presentan de la fi gura 47 a la 52 y de la tabla XI a la XV.

Como el otro método que hace uso de este procedimiento (método de Booth) sólo utiliza dos curvas con diferentes velocidades de calentamiento, se asocia ron por parejas las curvas de los lotes obtenidos para cada material, dichas parejas se formaron tomando la primera y la última curva, la segunda y la pemíltima, etc. De este modo fue como con cada una de estas parejas se resolvió el sistema de ecuaciones correspondiente.

c) Método del surgimiento inicial de pico

Como se mencionó anteriormente, éste y la mayor parte de los métodos que utilizan los parámetros de forma, requieren el tener un pico perfectamente ais lado en la respuesta TL, en nuestro caso, el pico número 2 del CaSO₄: Dy y la curva sin tratamiento alguno del KCl-418. Después de haber realizado el es tudio de borrado térmico efectuado sobre la respuesta TL del KCl y las de los CaSO₄: Dy (figuras 26,27,28 y 29) se concluyo que un criterio pertinente pa ra hacer un borrado térmico sin que se afecten los valores de los parámetros -

Superposición de las curvas TL del TLD-900 obtenidas a diferentes velocidades de calent<u>a</u> miento .

Curva	ß [°C/seg]	T _m [°K]	1000 [•K"]	Tm x 104	$\ln(T_m^2/\beta)$
a	2.8	476.16	2.100	8.097	11.30
Ե	3.6	471.16	2,122	6.166	11.03
C	4.8	465.16	2.150	4.507	10.72
đ	5.5	462.16	2,163	3.883	10.57
e	6.7	458.16	2,182	3.132	10.35
	7.5	456.16	2,192	2.774	10.23
g	8.5	453.16	2,206	2.415	10.09
h	9.4	450.16	2.211	2.155	9.97
. i	9.7	451.16	2.216	2.098	9.95
j	10.5	449.16	2.226	1.921	9,86
k	11.3	446.16	2.241	1.761	9.77
1	12.5	444.16	2.251	1.578	9.66
	13.4	443.16	2.256	1.465	9.59

Valores obtenidos para los parámetros relacionados linealmente en la variación de la velocidad de calentamiento y la forma de la curva TL del TLD-900

Tabla X1 .-

Fig. 48 Gráfica de la relación lineal buscada entre la respuesta TL del TLD-900 y las distintas velocidades de calentamiento.

Tabla XII .- Valores ebtenidos para los parámetros relacionados linealmente en la variación de la velocidad de calentamiento y la forma de la curva TL del TLD-900

Curva	ß [°C/seg]	T _m [•K]	1000 Tm [°K"]	Tm x 104	$Ln(T_m^2/\beta)$
•	2.5	466.16	2,146	8.68	11.37
Ъ	3,2	459.16	2.178	6 .5 8	11.10
C	× 4.8	455.16	2.197	4.31	10.67
d	5.5	451.16	2.217	3.69	10.52
•	6.3	448.16	2 .231	3.18	10.37
1	6.7	446.16	2.241	2.96	10,30
6	7.8	444.16	2.251	2.52	10.14
h	8.5	441.16	2.267	2,28	10,04
i	9.4	439.16	2.277	2.05	9.92
3	10.2	436.16	2.293	1.86	9.83
k	10.9	435.16	2.309	1.62	9.75

Tabla XV.-

Valores obtenidos para los parámetros relacionados linealmente en la variación de la velocidad de calentamiente y la forma de la carva TL del AGS-761

Carva	ß [°C/seg]	Τ _m [•κ΄]	1000 Tm [°K']	Tm x 104	Ln (^{T,2} /p)
•	2.8	483.16	2.069	8.137	11.55
•	3.6	479.16	2.078	6.377	11,06
•	4.8	473.16	2.110	4.664	10.75
	5.5	471.16	2.121	4.036	10.61
•	6.7	468.16	2.132	3.271	10.40
	7.5	466.16	2.139	2.897	10.27
8	8,5	464.16	2,152	2.534	10,14
•	9.4	462.16	2,163	2.272	10.03
1	9.7	461.16	2,168	2.121	9.99
3	10.5	459.16	2.173	2.007	9.91

Fig. 52 Gráfica de la relación lineal buscada entre la respuesta TL del AGS-761 y las distintas velocidades de calentamiento.

de curva y correspondientemente el de los parámetros termoluminiscentes, es el siguiente: si se toma como condición inicial de borrado al tratamiento térmico correspondiente a aquel en el cual deja de manifestarse la influencia del pico número 1 en las curvas obtenidas con el borrado térmico (lo que ilustran las rayas continuas de las figuras 53, 54 y 55), se podrá considerar como un buen aislamiento del pico número 2 a cualquier curva que se encuentre entre la condición inicial de borrado y el 30% por debajo de su información. Para cuantificar esto, se ha tomado como información del pico a la corriente integrada por el lector TL al obtener la curva.

material	Temperaturas límites de borrado térmice
TLD900	110 °C — 150 °C
CaSO ₄ :Dy (polvo)	120 °C - 140 °C
AGS-761	130 ° _C — 170 ° _C

Tabla XVI.-

Temperaturas límites elegidas para el borrado térmico de cada material, entre ellas se mantiene menos del -30% en la pérdida de información del pico múmero 2 perfectamente aislado. En estos intervalos la variación para calcular los valores de los parámetros termoluminiscentes es mínima.

Fig. 53 Aislamiento del pico de segundo nivel del TLD-900. El tratamiento correspondiente es el borrado térmico a 110 °C.

Fig. 54

Aislamiento del pico de segundo nivel del CaSO, Dy en polvo. El tratamiente correspondiente es el borrado tórmico a -120 °C.

Una vez aislados los picos de interés en cada caso, se procedió a apli car el método de Garlick-Gibson. Para efectuar el ajuste de la función exponencial a cada curva, se tomó como criterio el coincidir los ejes de las abscisas (tomando para esto que el eje de las abscisas en la curva TL es la extensión de la región horizontal que precenta antes de eleverse) al mismo tiempo que coincida la función exponencial con la región de elevación de la curva TL.

Las unidades arbitrarias de la intensidad en este caeo, se manejaron en cm., suponiendo una relación directa entre la intensidad y la altura relativas del pico. Todo el procedimiento se cfectuó haciendo una estadística sobre un lote de 10 muestras. En las figuras 56, 58, 60 y 62, se puede ebservar el ajuste de la exponencial a una muestra particular del lote de cada material, así como la relación de valoree y sue respectivas gráficas pa ra hallar la energía de activación.

d) Métodoe que emplean parámetros de forma de pico

Como mencionamos anteriormente, la mayoría de los métodos que utilizan los parámetros de forma necesitan de la especificación explícita del orden de la cinética para determinar los parámetros TL. Consecuentemente, en cualquier clase de trabajo en el que se proponga hacer uso de este tipo de métodes, es necesario conocer de alguna forma el valor del orden de la cinética. En el presente trabajo, se decidió utilizar de entre los procedimientes propuestos para este objetivo, los cálculos numéricos de Chen⁶⁹, -

I (cm)	т [^о с]	1000/T [°K-']	Ln (1)
1	107	2,63	0
2	120	2,54	0.693
3	127	2.49	1.098
4	132	2.46	1.386
5	136	2.44	1.609
6	139	2.42	1,791
7	141	2,41	1.945

Tabla' XVII.- Valores obtenidos en el ajuste particular de la exponencial al pico de KCl-418

Fig. 57

ū.

Gráfica de la relación lineal obtenida del ajuste particular de la exponencial al pico de KC1-418,

Ajuste de la función exponencial a la curva TL de una muestra particular del lote de -TLD-900 . Fig. 58

1 [cm]	T [°C]	1000/T [⁰ K"]	Ln (I)
4	139	2.42	1,386
5	143	2.40	1.609
6	145	2,39	1.791
7	148	2.37	1.945
8	150	2.36	2.079
9	153	2.34	2.197

Tabla XVIII.-

Valores obtenidos en el ajuste particular de la exponencial al pico aislado de TLD-900

del ajuste particular de la esponencial al pico aislado de TLD-900.

I [cm]	T [°C]	1000/T [⁰ K ⁻¹]	Lŋ (I)
2	113	2.58	0.693
3	121	2,53	1.098
4	125	2.51	1.386
5	129	2,48	1.609
6	131	2.47	1.791
7	133	2.46	1.945

Fig. 61 Gráfica de la relación lineal obtenida del ajuste particular de la exponencial al pico aislado de CaSO₄:Dy (polve).

I [cm]	т [°с]	1000/t [°k -'}]	Ln (I)
2	132	2.46	0.693
3	139	2,42	1.098
	143	2.40	1.386
5	147	2,38	1.609
6	149	2,36	1.791
7	151	2.35	1.945

Tabla XX.- Valores obtenidos en el ajuste particular de la exponencial al pico aislado de AGS-761

sobre los factores de simetría (μ) del pico TL aislado, los cuales nos pueden dar idea[†] del valor del orden de la cinética que es necesario man<u>e</u> jar en cada caso. Los valores para cada material se muestran en la Tabla XXI.

Material	Factor de sim <u>e</u> tría promedio (JŨ.)	Orden de Cin <u>é</u> tica de Chen	Orden de Cinét <u>i</u> ca considerado
KC1-418	0.452	1.30	1
TLD-900	0.485	1.63	2
CaSO ₄ :Dy (polvo)	0.577	2.48	2
AGS-761	0,558	2.31	2

Table XXI. Orden de cinética para cada material

A partir de esto se aplicaron a cada material los métodos que utilizan los parámetros de forma según el orden de la cinética considerado. Esto se llevó a cabo haciendo estadística sobre un lote de 10 muestras de cada material con su pico TL debidamente aislado.

^TDecimos tener idea, por el hecho de que, aunque se encuentre un valor fraccional del orden de la cinética, consideraremos únicamente el valor entero próximo más cercano, despreocupandonos en esta ocasión de lo que el primer caso significaría físicamente.

RESULTADOS

WY a

Y

CONCLUSIONES

Resultados

Los cálculos para cada uno de los métodos aplicados en los cuntro materiales, nos llevaron a los siguientes resultados:

a) - Método de decaimiento isotérmico

°C	Material	E [ev.]	s [seg"]
200	KC1-418	0.73 ± 0.1	$10^7 - 10^9$
•	TLD-900	0.84 ± 0.1	$10^9 - 10^{11}$
inien	CaSO ₄ :Dy (polvo)	0.87 ± 0.1	$10^9 - 10^{11}$
Deca	AGS-761	1.09 ± 0.1	$10^{10} - 10^{12}$

э.	Material	E [ev.]	s [seg~']
250	KC1-418	0.73 ± 0.1	$10^7 - 10^9$
a a	TLD-900	0.93 ± 0.1	10 [°] - 10"
aimier	CaSU ₄ :Dy (polvo)	0.91 ± 0.1	10' - 10"
Jec	AGS-761	0.98 ± 0.1	10 ⁹ - 10 ¹¹

Para obtener los resultados del método de decaimiento se ajustó la rela ción lineal entre Ln(t) y T_m por medio de mínimos cuadrados. Las incertidum bres mostradas son el resultado de redondear al valor entero superior a la in certidumbre calculada. En el caso del factor de frecuencia, en lugar de pro porcionar un valor \pm su incertidumbre, se dan los intervalos en los cuales se localizaron los valores extremos, lo que resulta de mayor significación en este caso.

b) Método de diferentes velocidades

Material	E [ev.]	s [seg ⁻¹]
TLD-900	0.87 ± 0.1	10 [°] - 10 ^{°°}
CaSU ₄ :Dy (polvo)	0,88 ± 0,1	$10^9 - 10^{10}$
AGS-761	1.18 ± 0.1	$10^{10} - 10^{12}$

	Método de Booth	
Material	E [ev.]	s [seg ⁻¹]
TLD-900	0.94 ± 0.06	10 ¹⁰ - 10 ¹¹
CaSO ₄ :Dy (polvo)	0.90 ± 0.06	10 ¹⁰ - 10 ¹¹
AGS-761	1.18 ± 0.07	10 ¹¹ - 10 ¹²

Para obtener los resultados en el método de Hoogenstraaten se ajustó la relación lineal buscada por medio de mínimos cuadrados y se procedió de forma semejante al método anterior para las incertidumbres. En el caso del mátodo de Hooth los resultados presentados son los promedios obtenidos de un lote de datos y las incertidumbres son las desviaciones estándar de ese mismo lote, en forma semejante para los resultados de este método se procedió para todos los resultados que a continuación se presentan

Material	E [ev.]	s [seg ⁻¹]
KC1-418	0.78 ± 0.08	$10^7 - 10^{\bullet}$
TLD-900	0.84 ± 0.06	$10^8 - 10^9$
CaSO ₄ :Dy (polvo)	0.80 ± 0.07	$10^6 - 10^9$
AGS-761	1.02 ± 0.07	10 ¹⁰ - 10 ¹¹

c) Método del surgimiento inicial de pico

d) Métodos que emplean parámetros de forma de pico

Material: KC1-418

Cinética considerada: ler. orden

Método	E [ev.]	■ { =•g ^t }
Grossweiner	0.76 ± 0.05	$10^7 - 10^8$
Lusch i ck	0.69 ± 0.05	$10^7 - 10^8$
Halperin-Braner	0 .93 ± 0.05	$10^9 - 10^{10}$
Chen (Ţ)	0.73 ± 0.05	$10^7 - 10^8$
Chen (ال)	0.78±0.05	$10^7 - 10^8$
Chen (w)	0.76 ± 0.05	$10^7 - 10^{\bullet}$

Material: TLD-900

Cinética considerada: 2º orden

Nétodo	£ [ev.]	s [seg -1]
Luschick	0.93 ± 0.05	$10^9 - 10^{10}$
lial perin-Braner	1.13 ± 0.05	$10^{12} - 10^{13}$
Chen (7)	0.87 ± 0.05	$10^9 - 10^{10}$
Chen (J)	0.89 ± 0.05	10 ⁴ - 10 ⁴⁶
Chen (w)	0.89 ± 0.05	$10^9 - 10^{10}$

Material: CaSO, Dy en polvo

Cinética considerada: 2º orden

Nétodo	E [ev.]	* [**g ⁻¹]
Luschick	1.03 ± 0.05	10 ¹⁰ - 10 ¹¹
Halperin-Braner	1.07 ± 0.05	$10'' - 10'^2$
Chen (T)	0.81 ± 0.05	$10^{6} - 10^{9}$
Chen (d)	0.84 ± 0.05	$10^{6} - 10^{9}$
Chen (w)	0.82 ± 0.05	10 [°] - 10 [°]

Material: AGS-761

Método	E (ev.)	s [seg ⁻¹]
Luschick	1.12 ± 0.05	$10^{12} - 10^{13}$
llalperin-Braner	1.19 ± 0.05	· 10 ¹² - 10 ¹³
Chen (T)	0.90 ± 0.05	10 ⁹ - 10 ¹⁰
Chen (J)	0.93 ± 0.05	10 ⁹ - 10 ¹⁰
Chen (w)	0.92 ± 0.05	$10^9 - 10^{10}$

Cinética considerada: 2º orden

Conclusiones:

Como podemos observar del contenido de este trabajo, el desarrollo se guido en el propósito de evaluar los parámetros termoluminiscentes como me dio para poder descifrar el fenómeno TL, ha sido bastante extenso. Los métodos propuestos para alcansar este objetivo, nos llevan a ciertos órdemes característicos para cada material, lo cual nos permite clasificarlos por sus propiedades termoluminiscentes para su utilisación en las aplicacio mes de este fenómeno. Sin embargo, es importante hacer notar que tales - métodos estan asociados a conveniencias e inconveniencias experimentales que se deben tener en cuenta para considerar el grado de estimación que se de a cada uno de ellos. Del estudio realizado en este trabajo se obtuvieron las siguientes conclusiones:

a) El método de decaimiento isotérmico, el cual en la mayoría de las investigaciones de los parámetros termoluminiscentes se ha tomado en cuem ta con buena consideración, se notó influenciado en gran parte por el grado de correlación que presentan los puntos experimentales al buscar la relación lineal entre Ln(t) y T_m , lo que hace que las incertidumbres en los valores encontrados dependan directamente de esto. Por otra parte, la variación en los resultados de este método al aplicar diferentes temperaturas de decaimiento no mostró mayor diferencia que la que se puede encontrar directamente con la incertidumbre.

b) Una situación semejante a la anterior se puede observar en el método de Hoogenstraaten que utiliza diferentes velocidades de calentamiente ,además se pudo observar que al igual que el método de Booth, este tipo de pro cedimientos presentan una gran influencia del espesor de la muestra al obtener su respuesta TL, lo cual posiblemente podría ser causado por efecto del gradiente de temperatura presentado por la muestra.

c) El método del surgimiento inicial de pico, que también ha gozado de gran estimación en este tipo de estudios por su versátil aplicación, ha si de criticado^{76,77} en ciertos aspectos en les que se le han resaltado deficien cias en relación con el borrado térmico y con el hecho de existir la posibili dad de evaluar únicamente los parámetros de una trampa particular pertenecien

te a un conjunto que en total de forma al pico TL observado. De nuestra experiencia podemos además afirmar que en base al criterio utilizado para el ajuste entre la función exponencial y la curva TL, existe una influencia muy notoria en la evaluación de parámetros la cual depende de la diferencia entre las magnitudes de las unidades utilizadas en la función exponencial y la altura del pico, lo que implica que se debe tener especial cuidado en la validez de su aplicación.

d) Los métodos que utilizan los parámetros de forma de pico, de en tre los cuales algunos muestran gran versatilidad de aplicación, lo que po dría ser de gran conveniencia para su utilización, se les asocia el inconve niente de tener, por lo general, una fuerte dependencia del orden de la ci nética involucrada y mientras no se haga un estudio lo suficientemente for mal en este sentido, sus resultados deberán tomarse sólo como valores comparativos con los métodos que son independientes de este.

e) En lo que respecta a la clasificación y comparación de los materiales producidos por el ININ con el producido comercialmente por Harshaw -Chemical Co., que fue el objetivo principal de este trabajo, podemos concluir lo siguiente:

El KC1-418 que se utilizó principalmente como auxiliar para encontrar el criterio de aislamiento de picos, mostró una profundidad de trampa de -0.73 cv. y una s $\sim 10^9 \text{ seg}^{-1}$. Este material aún cuando mostró una respue<u>s</u> ta muy conveniente para este tipo de estudios se presentó como una muestra muy sensible a los tratamientos térmicos haciendo que tanto su respuesta, como su sensibilidad y parámetros, variaran en forma notoria con cada uso radiológico. El CaSO₄:Dy en polvo presentó mucha semejanza con el dosímetro comercial TLD-9041 (producción 1980) en la magnitud de sus parámetros termoluminiscentes E ≈ 0.88 ev. y $s \sim 10^{10}$ seg.¹, sin embargo, la sensibilidad del polvo se vió cerca de tres veces mayor que la del TLD-900, esto lo puede clasificar como un buen dosímetro únicamente restringido por su forma física.

El AGS-761 que es en sí el polvo de $CaSO_4$:Dy con un aglutinante para for mar una pastilla sólida, mostró una profundidad de trampa de cerca de llev. con un s~10" seg" lo cual lo sitúa como el material más estable de los tres $CaSO_4$:Dy estudiados, aún cuando en este caso la sensibilidad se mostró menor que la del polvo, resultó ser casi el doble del de la pastilla comercial. Es to nos permite afirmar que el uso del AGS-761 como dosímetro resulta tan o más conveniente que el importado.

f) Para finalizar podemos hacer un breve comentario sobre el significado físico de lo que pudiera representar la energía de activación. Como - podemos concluir de la discusión del capítulo II, no es posible afirmar nada - en concreto acerca de si existe o no un mecanismo universal para la TL y qui zás cada material necesite de una cinética particular para describir su participación en el fenómeno, en este sentido lo único que se podría hacer es bascar una correlación entre todos los posibles medios experimentales que nos pue dan evaluar las energías involucradas en las diferentes etapas por las que pasan los meteriales termoluminiscentes, por ejemplo, se podría utilizar R.P.E. antes y después de irradiarlo, así como filtros ópticos durante la emisión, de este modo, se tendrían datos que podrían compararse con resultados como los en contrados aquí para de esta forma poder concretar algo en este sentido.

Bibliografía

- 1.- Cameron J. R., Kenney G. N., Suntharalingam H., TLD, The University of Wisconsin Press (1968)
- 2.- Azorín N.J., Tesis de Maestría, Fac. de Ciencias U.N.A.M. (1979)
 3.- Azorín N.J., Tesis profesional, E.S.F.M. (1971)
- 4.- Curie M., Research on Radioactive Substances (en francés) Gauthier-Villars, Paris (1904)
- 5.- Wick F. G., The effect of x rays in producing and modifyng TL, -Phys Rev. 25, 588 (1925)
- 6.- Lyman T., Transparence of the air, Phys. Rev. <u>48</u>, 149 (1935)
- 7.- Urbach F., Luminiscencia de los halogenuros alcalinos, Wiener Ber 139 IIa, 363 (1930)
- 8.- Randall J. T., Wilkins M.N., Phosporescence and electron traps. -Prec. Roy. Soc. A <u>184</u>, 366, 390 (1945)
- 9.- Gerlick G.F.J., Gibson A.F., A mathematical model of TL, Proc. -Phys. Soc. <u>60</u>, 574 (1948)
- 10.- Daniels F., TL and properties of crystale, Symp. of Chem. and Phys. of Radiat. Dosimetry, Maryland. U.S.A. (1950)
- 11.- 1st Int. Conf. Luminiscence Dosimetry, Stanford (1965)

12	2 nd lnt. Conf. Luminiscence Dosimetry, Gatlinburg (1968)
13	3 rd Int. Conf. Luminiscence Dosimetry, Riso (1971)
14	4 th Int. Conf. Luminiscence Dosimetry, Cracovie (1974)
15	5 th Int. Conf. Luminiscence Dosimetry, Sao-Paulo (1977)
16	6 th Int. Conf. Luminiscence Dosimetry, Maryland (1980)
17	Schulman J.H., New TLD, Rev. Sci. Inst. 31, 1263 (1960)
18	Hirata J., Harvo S., Crawford J.H., Effect of Impurities on the
	annealing behavior of irradiated silicon, J. Appl. Phys. 38,
1.4	2433 (1977)

- 19.- Miller L.D., Bube R.H., Trapping and F centers in LiF Crystals, ibid, <u>41</u>, 3697 (1970)
- 20.- Patridge J.A., May C. E., EFR Study of Isothermal Annealing Kinetics of F centers in KCl, Phys. Lett. <u>30</u>A, 652 (1969)
- 21.- Hill J.J., Schwed P.J., TL of Pure and Impurity deped KBr Cryg tals, J. Chem. Phys. 23, 652 (1955)
- 22.- Jain S.C., Mehendru P.C., TL in LiF, Phys. Status Selidi, <u>957</u>, 54 (1979)
- 23.- Hageseth G.T., TL and Color Center in LiF, Phys. Rev. <u>B5</u>, 4060 (1972)

- 24.- Murti Y.V., Murthy K.R., Ramasastry C., TL of x ray irradiated KBr y KBr:Cu crystals, J. Phys. C: Solid st. Phys. <u>12</u>, 1606 (1978)
- 25.- T'Kint de H., Amaury D.E., TL Study of traps in monocrystalline CdI, ibid, <u>11</u>, 819 (1978)
- 26.- Jain V.K., Kathuria, S.P., 'IL and Color Centers in LiF, Phys -Status Solidi <u>50</u>, 329 (1978)
- 27.- Murti Y.V., Murthy K.H., TL of NaCl:Cu crystals, J. Phys C: So lid Stat. Phys. 5, 2827 (1972)
- 28.- Ausin V., Alvarez Rivas J.L., TL and F Center Thermal annealing in heavily irradiated KCl and NaCl crystals, ibid, 7, 2255 (1974)
- 29.- Amerin N.J., Salvi R.C., Morene M.A., Improvement in preparation of CaSO₄:Dy as TL dosemeter, Nuc. Inst. Methods, <u>175</u> 81 (1980)
- 30.- Azerín N.J., Salvi R.C., Gutiérrez C.A., Some minerals as TL desimeters, Health Phys. (per publicarse)
- 31.- Muños P.E., Tesis doctoral, Fac. Ciencias U.N.A.M. (1970)
- 32.- Kittel C., Introduction to Solid State Physics, (5* ed.), J. Wiley (1976)
- 33.- Mott N.F., Gurney R. W., Electronic processes in ionic crystals, Oxford at the Craredon Press (1940)

- 34.- De Hoer J.H., Receuil Trav. Chim Pays-Bas, 56, 301 (1937)
- 35.- Leverenz H.W., An introduction to the luminiscence of solids, J. Wiley (1950)
- 36.- Schulman J.H., Compton W.D. Color Centers in solids, Pergamon Press (1959)
- 37.- Klick C. F., Claffy W.E., Gorbicks S.G., Attix F.H., J. Appl. Phys 38, 3867 (1967)
- 38.- Christy R. W., Jhonson M.N., Wilbarg R., TL and Color Centers in -LiF., i id, <u>38</u>, 2099 (1967)
- 39.- Breser I., Braunlich P., TL and TSC tools for determination of trapp ing parameters, Academic Press, N.Y. (1968)
- 40.- Nichelas K.H., Woods J., Brit. J. App. Phys, 15 783 (1964)
- 41.- Chen R.J., Winer A.A., Effect of various heating rates on glow curwes, J. Appl. Phys. <u>41</u>, 5227 (1970)
- 42.- Keating P.N., TSE and conductivity peaks in the case of temperature dependent, Proc. Roy. Soc. <u>78</u>, 1408 (1961)
- 43.- Babe R. H., Dussel G. A., Miller L.D., J. Appl. Phys. <u>37</u>, 21 (1966)
- 44.- Seunders I.J., Brit. J. Appl. Phys. <u>18</u>, 1219 (1967)
- 45.- Chen R.J., Chem. Phys Letters, <u>6</u>, 125 (1970)
- 46.- Chen R.J., J. Appl. Phys. 42, 5899 (1971)

- 47.- Halperin A., Braner A., Evaluation of thermal activation energies from glow Curves, Phys. Rev. <u>117</u>, 408 (1960)
- 48.- Idem, Thermal activation energies in NaCl and KCl crystals, ibid, <u>117</u>, 416 (1960)
- 49.- Rasdan K.N., Wiatrovski W.G., Brenan W.D. Calculation of TL curves by an analog computer, J. Appl. Phys. <u>44</u>, 5483 (1975)
- 50.- Cameron J.R., Zimmerman D.W., TL vs. R. in LiF: A proposed model mathematical model, Rept. C00-1105-102, USAEC. (1964)
- 51.- Cameron J.H., Zimmerman D.W., Hodifications of the mathematical model reported in COO-1105-102, (COO-1105-113) (1966)
- 52.- De Mier D., Physica <u>48</u>, 1 (1970)
- 53.- Kelly P., Bräunlich P., Phys. Rev. Bl, 1587 (1970)
- 54.- Tayler G. C., Lilley E., J. Phys. E: Appl. Phys <u>11</u>, 567 (1978)
- 55.- Heegenstreaten W., Electron Traps in ZnS phosphors, Phillips Ree. Rept. 13, 515 (1958)
- 56.- Gressveiner L.I., J. Appl. Phys. 24, 1306 (1953)
- 57.- Dussel G. A., Bube R. H., Activation energy in the NaCl TL, Phys. Rev. <u>165</u>, 764 (1967)
- 58.- Booth A. H., Canad. J. Chem. 32, 214 (1954)
- 59.- Luschick C. B., Sov. Phys. JETP: 3, 390 (1956)

60	Shalgaonkar C. S., Narlickar A.V., J. Mat. Sci. 2, 1465 (1972)
61	Chen R.J., J. Mat. Sci. <u>11</u> , 1521 (1976)
62	Chen R.J., J. Appl. Phys. <u>40</u> , 570 (1969)
63	Chen R.J., J. Mat. Sci. <u>9</u> , 345 (1974)
64	Chen R.J., Mohan N.S., J. Appl. Phys 3, 243 (1970)
65	Chen R.J., Habers G.A., Chem. Phys. Let. <u>z</u> , 483 (1968)
66	Chen R.J., J. Compt. Phys. 4, 415 (1969)
67	Chen R.J., J. Compt. Phys. <u>8</u> , 156 (1971)
68	Chen R.J., Shenker D., J. Compt. Phys. 10, 272 (1972)
69	Chen R.J., J. Electrochem. Soc.: Solid State Sc. 116, 1254 (1969)
70	Richey J. B., The Harshaw Model 2000 TL analyzer, The Harshow -
	Chemical Co., Cleveland, Ohio (1978)
71	Asería N.J., González M.G., Gatiérres C.A., Salvi R.C., Preparation
	and desimetric properties of a highly sensitive CaSO4:Dy, (per publi-
	carse) .

- 72.- González M.G., Tesis profesional, Fac. de Química U.N.A.N., (1980)
- 73.- Asorín N.J., Gatiérres C.A., Salvi R.C., Desarrolla de CaSO:Dy mesclado con KBr (AGS-761) para desimetría,(per publicarse).
- 74.- Aserín N.J., Morene T.J., Gutiérres C.A., Influencia de Tamaño de partícula y la energía en la respuesta TL del CaSO₄:Dy, (per pablicarse).

- 75.- Buckley, Harold Eugene 1897, Crystal Growth N.Y. J. Willey (1951)
 76.- Haake C.H., Critical Comment on a method for determining electron traps depths, J. Opt. Soc. Am. <u>47</u>, 649 (1957)
- 77.- Bräunlich P., Comment on the Initial-Rise, Method for determining traps depths. J. Appl. Phys. <u>38</u>, 2516 (1967)

Agradecimientos

Agradezco al Instituto Nacional de Investigaciones Nucleares las faci lidades otorgadas para el desarrollo de este trabajo.

Deseo hacer presente mi más sincero agradecimiento al 4. en C. Juan Azorín Nieto por la sugerencia del tema así como por su atinada y valiosa dirección de esta tesis.

También agradezco al Dr. Jhon H. Cameron sus valiosas discusiones, su gerencias y consejos otorgados durante su estancia con el grupo de termoluminiscencia del I.N.I.N.

Agradezco al Fís. Javier Reyes Luján su interés y gran apoyo para el desarrollo de este trabajo.

Agradesco al Dr. J.L. Boldú del Instituto de Física de la U.N.A.N., el habernos donado el KCl-418 y permitirnos utilizarlo en este trabajo.

Así mismo agradezco la orientación y colaboración desinteresada en el desarrollo de esta tesis a los físicos Alicia Gutiérrez C. y Roberto Salvi C. así como a mis compañeros Jorge Moreno T. y Marco A. Medrano L.

Por último deseo agradecer a la Srita. Esther Moreno T. su dedicación, esfuerzo y cuidados en su labor mecanográfica.