Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

EL EQUILIBRIO DE IONIZACION

DE UN PLASMA DE BAJA DENSIDAD

TESIS

QUE PARA OBTENER EL TITULO DE: F I S I C O P R E S E N T A:

VLADIMIR ESCALANTE RAMIREZ

MEXICO, D. F.

1982

15 11.14

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

CONTENIDO

			Pag.
Int	roduce	ión	1
1.	Condi Plasm	ciones Físicas y Procesos Atómicos en un a de Baja Densidad.	6
	1.1	Equilibrio Termodinámico	8
	1.2	Distribución de velocidades de Maxwell.	15
	1.3	Estado de Excitación de los Iones	21
	1.4	Procesos Atómicos.	29
2.	Cálcu	lo de los Procesos Atómicos mas Importantes.	36
	2.1	Coeficiente de Ionización Colisional.	37
	2.2	Coeficiente de recombinación radiativa	53
	2.3	Coeficiente de recombinación dielectrónica.	82
3.	El Eq del C el Pl	uilibrio de Ionización y otras Aplicaciones álculo de la Ionización y Recombinación en asma.	122
	3.1	Equilibrio de Ionización	123
	3.2	Importancia de la Fotoionización en el Pla <u>s</u> ma.	144
Con	clusio	ones	155
Ref	erenci	as	158
Арб	ndice el fa ción	I. Validez de la Expansión Asintótica para - actor de Gaunt libre-ligado usada en la sec- 2.2.	162

V

INDICE DE TABLAS

				Pag.
•	Tabla	I.1.	Abundancias cósmicas (Cámeron,1973).	3
	Tabla	1.2.1.	Desviación de $f(w)$ respecto a $f^{\circ}(w)$.	21
	Tabla	1.3.1	n(p)/n(1) y n _E (P)/n _E (1) entre paré <u>n</u> - tesis.	27
	Tabla	1.4.1.	C(con autoionización)/C(sin autoioni zación)(Sumers,1974a)	34
	Tabla	2.1.1.	Coeficiente de ionización colisional (Ec. 2.1.2). Valores para I,ºm,Em y N.	40
	Tabla	2.2.1	Coeficiente de recombinación radiati- va al nivel de valencia (Ec. 2.2.18). Valores de $h_{v_{T}}$, a_{T} , β y S (Raymond,1976)	63
and and a second	Tabla	2.2.2.	Coeficiente de recombinación radiati- va (Ec. 2.2.25). Valores ajustados de A_r , n, T ₁ y T ₂ .	75
	Tabla	2.3.1.	Algunos valores de α que cambian cuan do no se suman las ^d transiciones fue- ra del rango de validez de (2.3.13)	9.0
	Tabla	2.3.2.	Líneas permitidas desde el estado base agrupadas en secuencias isoelectrónicas.	93
	Tabla	2.3.3.	Longitudes de onda e intensidades de os- cilador para las transiciones de la ta- bla 2.3.2.	97
	Tabla	2.3.4.	Valores adoptados de F(Landini y Monsignori Fossi, 1971).	111

VI

Tabla 2.3.5. Coeficiente de recombinación dielectrónica (Ec. 2.3.17). Valores ajusta dos de A_d, T_o, B_d, T₁, T_i y T_s.

Pag.

INDICE DE FIGURAS

Ì

			Pag.
Fig.	1.1.1.	Los plasmas y sus densidades y temperaturas típicas (McWhirter, 1975).	7
Fig,	1.2.1.	Desviación de la distribución real de veloci- dades $f(\vec{w})$ de la distribución de Maxwell f°(w).	20
Fig.	1.3.1.	 b = población calculada en estado estacionario n del nivel n/población calculada por Saha- Boltzmann para el hidrógeno a 10 000°K a dife- rentes densidades electrónicas (Brocklheurst, 1970). 	25
Fig.	1.4.1.	Magnitudes relativas de los 6 procesos que pue blan los primeros trece niveles de un ion hi- drogenoide para $0.64~000^{\circ}$ K y $\eta_e = 10^{10}$ cm ⁻³ (McWhirter,1975).	30
Fig.	1.4.2.	Coeficiente de recombinación colisional radia- tiva en función de n y θ para iones hidrogeno <u>i</u> des (Bates y Kingston, 1963).	32
Fig.	2.1.1.	Relación empírica $\sigma_{m} \times /N=C/I^{2}$ (Ec. 2.1.3) (Franco, 1981).	46
Fig.	2.1.2.	Sección recta de ionización colisional para el N III (Tomada de Franco y Daltabuit, 1978).	49
Fig.	2.1.3.	Sección recta de ionización colisional para el Na II (Tomada de Franco y Daltabuit,1978).	50
Fig.	2.1.4.	Coeficiente de ionización colisional para los iones del cxígeno.	52
Fig.	2.2.1.	g _{II} (n,E) calculado con la Ec. (2.2.14) (lí- neas discontínuas) y con expresiones exactas (líneas contínuas) según Menzel y Pekeris (1935) para distintas n.	58
Fig.	2.2.2.	Coeficiente de recombinación radiativa total del OII.	72
Fig.	2.3.1.	Captura dielectrónica (a) y transiciones estabi- lizadora (d) y autoionizantes (b,c) del nivel - doblemente excitado 2d, nl para las secuencias del B al Ne.	91

				Pag.
	Fig.	2.3.2.	α _d (z,i→z-1, k,nl) del Si V para diversas tran siciones i→j según Jacobs et al. (1977b): La línea punteada está calculada con la fórmula de Burgess(1965) (Tomada de Jaobs et al.(1975b)	110
	Fig.	2,3,3,	Coeficientes de recombinación radiativa y die- lectrónica totales del Ne VI y Ca X.	113
	Fig.	2.3.4.	Coeficientes de recombinación radiativa y die lectrónica totales del Ca XVII.	114
	Fig.	3.1.1.	Equilibrio de ionización para los iones del H.	127
	Fig.	3.1.2.	Equilibrio de ionización para los iones del He.	128
÷	Fig.	3.1.3.	Equilibrio de ionización para los iones del C.	129
	Fig.	3.1.4.	Equilibrio de ionización para los iones del N.	130
Part - harden in	Fig.	3.1.5.	Equilibrio de ionización para los iones del O. Las líneas punteadas son las curvas calculadas usando las fórmulas de bajo consumo de tiempo y memoria de computadora $(2.1.10)$ δ $(2.1.11)$, (2.2.25) y $(2.3.17)$	131
	Fig.	3.1.6.	Equilibrio de ionización para los iones del Ne.	132
	Fig.	3.1.7.	Equilibrio de ionización para los iones del Mg.	133
	Fig.	3.1.8.	Equilibrio de ionización para los iones del Si.	134
	Fig.	3.1.9.	Equilibrio de ionización para los iones del S.	135
	Fig.	3.1.10	Equilibrio de ionización para los iones de Ca I a Ca X.	136
	Fig.	3.1.11	Equilibrio de ionización para los iones de Ca X a Ca XXI.	137
	Fig.	3.1.12	Equilibrio de ionización para los iones de Fe I a Fe XII	138
	Fig.	3.1.13	Equilibrio de ionización para los iones de Fe XII a Fe XXVII.	139
	Fig.	3.1.14	Equilibrio de ionización para los iones de Ni I a Ni X.	140
	Fig.	3.1.15	Equilibrio de ionización para los iones de Ni X a Ni XXIX	141

......

IX

			Pag.
Fig.	3.2.1.	r_c para el N y el O para una estrella O4 ZAMS	
		$(T_{H} = 50,000^{\circ}K, \log (R_{H}/R_{O}) = 1.18)$. Se muestran	
		r" y T" para el OIII,	150
Fig.	3.2.2.	r para el N y el O para una estrella O6 III,	
		$(T_{H} = 40\ 000^{\circ}K, \log\ (R_{H}/R_{\odot} = 1.06).$	151
Fig.	3.2.3.	r_{c} para el N y el O para una estrella 09.5 I	
11 - 11 4 - 12 -		$(T_{i} = 30 \ 000^{\circ}K, \log (R_{i}/R_{\odot}) = 1.44).$	152
Fig.	3.2.4.	r para el N y el O para una estrella B1 I	
		$(T_{i} = 20 \ 400^{\circ} \text{K}, \log (R_{i}/R_{o}) = 1.57).$	153
Fig.	A.1.1.	$ \delta S_n $ para distintos valores de n.	165
Fig.	A.1.2.	AS _n para distintos valores de n en el inter	
		valo de log x_n de -6.4 a -2.4.	166
Fig.	A.1.3.	ΔS _n para distintos valores de n en el inter-	
	200	valo de log x_ de -2.5 a 1.5	167

X

INTRODUCCION

El estudio del medio interestelar ha planteado como problema fundamental a la astrofísica la determinación de las condiciones físicas que imperan en dicho medio y su relación con otros sistemas y cuerpos celestes. La formación y evolución de estrellas y galaxias estan fundamentalmente determinadas por la constitución química y la dinámica del material interes telar y a su vez la evolución y características de éste último se ven fuertemente influenciadas por fenómenos propios de la evolución de las estrellas como el viento estelar, la eyección violenta de material en novas y supernovas y, especulando un poco, la producción de chorros de material en cuasares y otros objetos en el Universo.

El examen de las observaciones y de los modelos teóricos necesarios para explicar estos fenómenos muestran que las características físicas del medio interestelar son variadí simas y su estudio puede ser muy complicado. En general se tie nen que hacer simplificaciones que restringen los cálculos a ciertas regiones del medio interestelar. Así por ejemplo, se tienen que hacer modelos para regiones HII, para medio interes telar chocado, para remanentes de supernovas, para gas molecular, etc., usando distintas aproximaciones.

Un caso que puede ser aplicado a una gran cantidad de casos en el medio interestelar es el de un plasma de baja dens<u>i</u> dad. Los plasmas en el medio interestelar son comunes debido a las grandes cantidades cantidades de energía que se liberan en el Cosmos y que proveen la energía necesaria para producir la ionización del gas. La baja densidad de estos plasmas y su ai<u>s</u> lamiento de materiales fríos a su alrededor hacen que se mante<u>n</u> gan sin recombinarse por largo tiempo. Este es el caso de las

remanentes de supernova, los cascarones de gas chocado alrededor de novas y estrellas con fuertes vientos y otros casos similares.

Un problema muy importante en los plasmas de baja densidad es la validez de la suposición de estado estacionario. En los ejemplos que se mencionaron arriba el plasma, en general, se encuentra en movimiento turbulento o supersóni co o al menos muy rápido así que no se puede suponer que están en equilibrio mecánico ni que sus características como la temperatura y la densidad sean constantes en el tiempo. Además existe la posibilidad de que en ellos haya gradientes de temperatura o que exista un flujo de plasma a través de un gradiente de temperatura. En este caso las fracciones de ionización de los diversos elementos en el plasma pueden des viarse notablemente de sus valores en equilibrio y con esto el cálculo de su espectro emitido y otras características del plasma pueden varias fuertemente.

Para resolver este problema se debe hacer el cálculo exacto de la ionización del plasma en función del tiempo resolviendo un sistema de ecuaciones diferenciales con una -ecuación por ion. El problema resulta muy complicado en muchos casos porque la temperatura puede ser función del tiempo así que la solución de este sistema de ecuaciones resulta un problema de computación serio que consume mucho tiempo y memo ria. Cuando el cálculo de la ionización del plasma se va a emplear como parte de cálculos más extensos como en el caso de programas para el cómputo de modelos hidrodinámicos de evo lución de remanentes de supernovas o de cascarones chocados por vientos es indispensable que se pueda calcular el estado de ionización del plasma de la manera más eficiente, es decir, con un bajo consumo de tiempo y memoria de computadora.

En este trabajo se proponen fórmulas que dependen de 2 a 4 parámetros por cada ion que permiten calcular la ionización colisional y la recombinación radiativa y dielectrónica totales en función de la temperatura electrónica que por su sencillez consumen muy poco tiempo de computadora sin que esto represente una merma significativa en la exactitud de los resultados.

Al considerar un plasma cósmico es necesario suponer una cierta composición química del mismo. Los resultados de Cameron (1973) muestran que en el medio interestelar los elementos más abundantes son el H, He, C, N, O, Ne, Mg, Si, S y Fe (Tabla I.1). En los últimos años se ha agregado el Ni a esta lista como el siguiente elemento en abundancia (Raymond, 1976).

Tabla I.1.

Abundancias Cósmicas (Cameron, 1973).

Elemento	Abundancia relativa			
	al H			
He	6.95E-2			
С	3.71E-4			
N	1.176E-4			
0	6.76E-4			
Ne	1.082E-4			
Mg	3.34E-5			
Si	3.14E-5			
S	1.57E-5			
Fe	2.61E-5			

Otro factor importante que se debe considerar es el rango de temperaturas y densidades que se pueden encontrar en este tipo de plasmas. En general su temperatura máxima ll<u>e</u>ga a los 10⁸°K y la mínima que se debe considerar está dada por la temperatura en que el plasma se recombina totalmente (~10³°K) aunque obviamente puede bajar más. Por razones que se discutirán en el capítulo 2, sección 4 y el capítulo 3, la densidad máxima que consideraremos estará entre 10⁴ y 10⁶ partículas por cm³ aunque un aumento moderado de estos valores no afecta muchos los resultados. El rango de densidades que consideraremos, 0 a 10⁶ partículas/cm³, es el que gene ralmente se encuentra en los plasmas de baja densidad en el cosmos.

4

En el capítulo 1 se discuten las características y aproximaciones fundamentales aplicables en un plasma de baja densidad así como los procesos que de ellas resultan como más importantes. En el capítulo 2 se discuten brevemente los pro cesos atómicos más importantes en el plasma: la ionización colisional y la recombinación radiativa y dielectrónica. En este mismo capítulo se proponen las fórmulas paramétricas ade cuadas para el cálculo rápido de los coeficientes de estos procesos. Una manera práctica de comparar los resultados ob tenidos con los de otros autores de manera global es comparan do sus resultados para el equilibrio de ionización del plasma (esto es, el estado de ionización del plasma en estado estacionario) con los que se obtengan para el equilibrio de ioni zación a partir de los resultados de este trabajo. Por esto en el capítulo 3 se da el equilibrio de ionización para los elementos de la Tabla I.1 y el Ni. En este capítulo también se dan algunos resultados que permiten determinar cuándo en el plasma se debe incluir el efecto de la fotoionización pro ducida por una fuente externa (como por ejemplo, una estre -11a).

La nomenclatura usada en los capítulos para las 🕒

ecuaciones, figuras y tablas consta de 3 números, el primero para el capítulo, el segundo para la sección y el tercero pa ra el número correspondiente de la ecuación, figura o tabla; así por ejemplo, la Ec. 2.3.1. se refiere a la ecuación 1 de la sección 3 del capítulo 2.

1. CONDICIONES FISICAS Y PROCESOS ATOMICOS EN UN PLASMA DE BAJA DENSIDAD.

Un plasma es un estado de agregación de la materia en el que los átomos se hayan parcial o totalmente ionizados de forma que resulta ser una mezcla de electrones e iones <u>ge</u> neralmente positivos. La neutralidad de carga en el plasma esta restringida a un cierto volumen L_D^3 , donde L_D es la lo<u>n</u>gitud de Debye que es la distancia máxima a la que una partícu la cargada en un plasma puede dejar sentir su campo electro<u>s</u>tático. Para subsistir, un plasma requiere de una gran cant<u>i</u> dad de energía interna. Esta energía se le debe proporcionar externamente de manera contínua pues en general el plasma la está perdiendo a través de algún mecanismo de enfriamiento. De otra forma el estado de ionización del plasma se pierde por la recombinación de sus iones con los electrones libres.

En la actualidad se conoce una gran variedad de con diciones en que es posible que subsista un plasma producido ar tificialmente o por causas naturales (Fig. 1.1.1). En particu lar los plasmas cósmicos se encuentran en un amplio rango de condiciones de densidad y temperatura. Estas condiciones van desde los núcleos de las supernovas al explotar $(n_e^{>10^{30} \text{ cm}^{-3}},$ T>10¹⁰°K) hasta el medio interestelar ($n_e < 1 \text{ cm}^{-3}$, T[<]10⁴°K) p<u>a</u> sando por casos intermedios como los interiores y las atmósfe ras estelares. En estos casos la fuente de energía del plasma puede ser la radiación de estrellas o las ondas de choque pro ducidas por vientos estelares o materiales eyectados por super novas a velocidades supersónicas. Los mecanismos de enfria miento son fundamentalmente radiativos. Una característica importante de los plasmas cósmicos es su composición química típica: 90% de hidrógeno, 10% de helio y 1 parte por 1000 de elementos pesados.

Fig. 1.1.1. Los plasmas y sus densidades y temperaturas típicas (McWhirter,1975).

En éste capítulo se analizarán las condiciones físi cas y los procesos atómicos que ocurren en un plasma de baja densidad como los que se encuentran en el medio interestelar. En la sección 1.1 se discuten las condiciones que debe cumplir un plasma para estar en equilibrio termodinámico y equilibrio termodinámico local y por qué en un plasma de baja densidad y opticamente transparente estas condiciones no se cumplen en -La única característica del equilibrio termodi su totalidad. námico que se conserva en un plasma de esa naturaleza es la distribución de Maxwell. Por la importancia de este hecho, la sección 1.2 se refiere a esta distribución exclusivamente. La sección 1.3 discute un factor importante para el desarro el estado de excitación de los iones. llo de este trabajo: Por último en la sección 1.4 se examina la importancia relati va de los procesos atómicos que ocurren en el plasma.

1.1 Equilibrio Termodinámico

Los plasmas que se encuentran en el medio intereste lar normalmente están lejos de equilibrio termodinámico. Esto se debe, en primer lugar a que son sistemas abiertos. Ade mas su estudio se complica considerablemente porque no se pue den usar las ecuaciones de estado macroscópicas (Ecs. de Saha y Boltzmann por ejemplo) sino que hay que considerar en deta lle todos los procesos microscópicos que ocurren en el plas ma.

Una simplificación que se hace frecuentemente es su poner que el plasma es ópticamente delgado a todas las frecuen cias. Con ello el campo de radiación se considera desacoplado de la materia y la radiación y los iones se tratan de manera separada. Sin embargo esta suposición contempla sólo un caso extremo. En general se debe esperar que parte de la radiación producida por el plasma (por recombinación o decaimiento radia tivo, por ejemplo) sea parcialmente reabsorbida por otros io nes en el plasma (por fotoionización o excitación radiativa). Sin embargo considerar esta reabsorción implica suponer una -geometría determinada para la región.

El criterio para considerar el plasma ópticamente -delgado o no se basa en comparar el camino libre medio de los fotones con las dimensiones de la región emisora. El camino libre medio de un fotón de frecuencia y está dado por:

$$d(v) = (\sum_{i=1}^{v} n_{i}a_{i}(v))^{-1}$$

donde $n_i \equiv$ densidad de iones de tipo i $a_i(v) \equiv$ sección recta de absorción por el ion i

Si L es la dimensión característica de la región,

el plasma no reabsorberá su radiación cuando

d(v) >> L (caso opticamente delgado a la frecuenciav).

y la reabsorberá prácticamente toda cuando

I

d(v) << L (caso opticamente grueso a la frecuencia v).

Como se ve, estos dos casos extremos dependen de la densidad cuando las dimensiones del volumen ocupado por el plas ma son fijas. De aquí que se deba esperar que los plasmas de densidad suficientemente baja sean ópticamente delgados.

Para que un plasma se halle en equilibrio termodinámi co estricto se requiere que se cumpla el balance detallado en todos los procesos microscópicos en el plasma. El balance deta llado consiste en que la tasa de ocurrencia de un proceso es igual a la del proceso inverso. Se puede demostrar que el balance detallado es equivalente a la validez de las condiciones macroscópicas siguientes:

- a) que el campo de radiación esté dado por la fun-ción de Planck,
- b) que las fracciones de ionización de los elemen tos estén dadas por la ecuación de Saha,
- c) que la población de niveles de cada ion esté dada por la ecuación de Boltzmann, y
- d) que la distribución de velocidades de cada clase de partículas esté dada por la función de distribución de Maxwell.

Como se verá más adelante, el equilibrio termodinámi

co estricto o simplemente equilibrio termodinámico rara vez es una buena aproximación para un plasma cósmico. Las razones de ésto son variadas. Consideremos los principales procesos atómicos en un plasma, agrupándo los procesos inversos por pares:

 Excitación colisional de un nivel p al nivel q y desexcitación colisional entre los mismos niveles:

 $X(z,q) + e \stackrel{?}{=} X(z,p) + e$ (1.1.1)

 ionización colisional de un nivel p y recombina ción colisional o de tres cuerpos al mismo ni vel:

$$X(z-1,p) + e \neq X(z) + 2e$$
 (1.1.2)

 decaimiento radiativo de un nivel p a otro q y excitación radiativa entre los mismos niveles:

$$X(z-1,p) \neq X(z-1,q) + h_v$$
 (1.1.3)

 4) recombinación radiativa al nivel p y fotoioniza ción desde el mismo nivel:

$$X(z-1) + e \neq X(z,p) + h_v$$
 (1.1.4)

5) captura electrónica sin radiación a un nivel do blemente excitado (i, nl) en el contínuo y autoio nización del mismo nivel:

$$X(z-1,p) + e \ddagger X(z,i,nl)$$
 (1.1.5)

6) bremsstrahlung o tranciciones libre-libre.

$$X(z) + e \stackrel{?}{\leftarrow} X(z) + e + h_V$$
 (1.1.6)

7) dispersión electrónica

I

 $e + h_{v} \stackrel{?}{=} e + h_{v}$ (1.1.7)

Hay algunos otros procesos como la dispersión de Compton o la radiación sincrotrónicaque no consideraremos porque ocurren en condiciones de altas energías. La recombinación dielectrónica es un proceso especial que es una combinación de 2 de los procesos anteriores (1.1.3 y 1.1.5), así que no se in cluye en la lista. Este proceso y su importancia relativa se discutirá en la sección 2.3.

Como se ha dicho, para que se tenga el equilibrio termodinámico en un plasma se debe tener balance detallado en los procesos (1.1.1) a (1.1.7). Algunos de estos procesos in fluyen más directamente que otros en el cumplimiento de las ecuaciones macroscópicas mencionadas al principio de ésta sec ción; por lo tanto cuando no se tiene balance detallado en al gunos de los procesos atómicos se pueden violar sólo algunas de esas ecuaciones.

Comunmente la más frágil es la función de Planck ya que requiere un interacción muy cerrada entre materia y radia ción, principalmente a través de los procesos (1.1.3), (1.1.4) (1.1.6) y (1.1.7). Sin embargo las ecuaciones de Saha y Boltz mann y la distribución de Maxwell pueden seguir cumpliendose. Esta situación se conoce como equilibrio termodinámico local. (Griem, 1964).

Hagamos un recorrido que parta del interior estelar y llegue hasta el medio interestelar de más baja densidad p<u>a</u>ra ejemplificar cómo se pierde la situación de equilibrio te<u>r</u> modinámico local conforme la densidad de particulas baja,

En los interiores existe un gradiente térmico impor tante debido a la opacidad del plasma. La radiación que llega a un cierto punto proveniente del interior corresponde a una temperatura mayor que la que tienen los electrones e iones en ese punto, lo cual no permite que se establezca un campo de radiación uniforme y termalizado que obedezca la distribución de Plank en una región arbitrariamente extensa aun cuando la densidad de radiación sea alta. Sin embargo la densidad de partículas es suficientemente alta como para que los procesos colisionales y radiativos que determinan las poblaciones de niveles y los estados de ionización puedan cumplir las ecuacio nes de Saha y Boltzmann. Por ésto se puede aplicar el equil<u>i</u> brio termodinámico local como una buena aproximación.

Conforme pasamos del interior a las capas externas de la estrella la temperatura y densidad bajan sensiblemente por lo que el efecto de contaminación con radiación a disti<u>n</u> ta temperatura se incrementa. Esto produce un desbalance e<u>n</u> tre procesos radiativos y colisionales que se incrementa co<u>n</u> forme la densidad y temperatura decrecen. Cuando llegamos al medio interestelar a una region HII los procesos dominantes son la fotoionización y la recombinación radiativa (1.1.4). Sin embargo estos procesos están fuera de balance detallado porque mientras que la recombinación a un nivel moderadamente excitado p (1.1.4 con \rightarrow)es bastante frecuente, la fotoioniza ción desde el mismo nivel es prácticamente nula. Esto se d<u>e</u>be a que es más probable que el ion se desexcite por decaimie<u>n</u> tos radiativos sucesivos hasta el nivel base antes de ser f<u>o</u>-

toionizado nuevamente. Si este proceso de decaimiento se balanceara con su inverso $(1.1.3 \text{ con} \leftarrow)$ se podría tener una po blación importante de iones excitados al nivel p que podrían ser fotoionizados pero debido a la baja densidad la radiación que podría excitar a los iones se escapa de la región casi en su totalidad. Una región HII normalmente sólo se puede suponer ópticamente gruesa a algunas frecuencias. Como resultado de lo anterior, el equilibrio termodinámico local es apenas una aproximación burda en las atmósferas estelares y totalmen te mala en las regiones HII.

Otro ejemplo que se encuentra en el medio intereste lar es el gas chocado a muy alta temperatura y con alto grado de ionización que generalmente se puede considerar ópticamente delgado a todas las frecuencias. En este caso la ioniza ción es predominantemente colisonal, cuyo inverso exacto es la recombinación de tres cuerpos, pero este proceso sólo es apreciable a altas densidades. A bajas densidades es mas probable ble que los electrones se recombinen radiativamente. Como el plasma es opticamente delgado este proceso no se balancea a través de la fotoionización sino a través de la ionización coli sional. Esto sin embargo no es balance detallado y por tanto el plasma esta fuera de equilibrio termodinámico, aun local.

Como se ve, cuando la densidad es suficientemente ba ja, los procesos de ionización y excitación no cumplen el balan ce detallado y por lo tanto las ecuaciones de Saha y Boltzmann no se aplican. En resumen la aproximación de equilibrio termo dinámico local no vale en un plasma de baja densidad y ópticamente delgado porque los procesos en que unelectrón se mueve de un nivel superior ligado o libre a otro inferior ligado (recom binación o decaimiento), son principalmente radiativos mien tras que los procesos que los compensan (ionización y excita -

ción) son fundamentalmente colisionales. McWhirter (1968) en contró que la condición para el establecimiento del equilbrio termodinámico local para un ion es que la tasa de transicio nes entre todos los niveles del ion causadas por colisiones sea aproximádamente 10 veces mayor que la tasa de transiciones radiativas. Esto es,

$$n_x(e,j) > 10A(i,j)$$
 (1.1.8)

donde x(i,j) es el coeficiente de excitación colisional que se puede tomar como (Seaton, 1964):

 $x(i,j) = \frac{1.71 \times 10^{-3} \text{ g f(i,j)}}{T^{\frac{1}{2}} X(i,j)} \exp(-1.16 \times 10^{4} X(i,j)/T) \text{ cm}^{3}/\text{s}$ (1.1.9)

si kT < X(i,j)

I

g = factor efectivo de Gaunt (=0.2)

y A(i,j) es la probabilidad de transición expontánea que se relaciona con f(i,j) de la siguiente manera:

$$A(i,j) = \frac{8\pi^2 e^2}{mh^2 c^3} \chi(i,j) f(i,j) \qquad (1.1.10)$$

Sustituyendo (1.1.9) y (1.1.10) en (1.1.8) se tiene que la condición propuesta por McWhirter es:

$$n > 1.6 \times 10^{12} T^{\frac{1}{2}} X(i,j)^{3} cm^{-3}$$
 (1.1.11)

En el caso del hidrógeno para los niveles de número cuántico principal i=1 y j=2 esta condición se expresa así:

 $n_e > 1.7 \times 10^{15} T^{\frac{1}{2}} cm^{-3}$

Esto quiere decir que en un plasma con una temperatura mayor de 10³ K la densidad electrónica necesaria para -aproximarse al equilibrio termodinámico local debe ser mayor de~5 × 10^{16} cm⁻³ así que para los rangos que estamos considerando (n_e < 10^{4} cm⁻³, 10^{3} <T < 10^{6} K, véase la introducción) la condición (1.1.8) no se cumple.

Por último una segunda razón por la que un plasma puede estar fuera de equilibrio termodinámico local es que sus condiciones (temperatura y densidad fundamentalmente) cambien más rápido que el tiempo de relajación de los procesos atóm<u>i</u> cos en el plasma.

1.2. Distribución de velocidades de Maxwell.

Como se ha mencionado arriba, el equilibrio termódi námico es muy difícil de mantener en un plasma de baja densidad en las condiciones normales del medio interestelar o el interior estelar precisamente por la baja densidad y porque la radiación se escapa fácilmente del plasma. Es decir, lo que tenemos en un sistema abierto que sufre de una fuerte corriente de energía radiada. La primera condición que se rompe por consiguiente es la ley de Planck. En este caso aún se puede definir una condición de equilibrio que es el equilibrio termodinámico local si la densidad es suficientemente alta como la dada por la condición (1.1.9) gracias a la presencia de un número suficiente de colisiones entre electrones e iones. Cuando la densidad disminuye lo suficiente las ecuaciones de Saha y Boltzmann ya no se cumplen, pero la distribución de -Maxwell sigue vigente como se demostrará en esta sección.

Se puede decir que así como la distribución de Planck es la característica más frágil en un plasma en cuanto a su validez, la distribución de Maxwell es la característica más resistente. Esto se debe a que está determinada por las llamadas colisiones elásticas o encuentros coulombianos que por estar regidos por fuerzas de largo alcance tiene una sec ción recta mucho mayor que la de las colisiones inelásticas (excitaciones o ionizaciones) que son los procesos que deter minan las ecuaciones de Saha y Boltzmann. En los párrafos si guientes demostraremos que en un plasma de baja densidad las desviaciones de la distribución de Maxwell son mínimas.

En equilibrio termodinámico estricto la distribución de velocidades f(\vec{w}) de un ensable de partículas con velocida des \vec{w} respecto al marco de laboratorio se puede demostrar que es la distribución de Maxwell, f°(w), que por ser isotrópica sólo depende del módulo de la velocidad w= $|\vec{w}|$:

donde

 $f(\vec{w}) = f^{\circ}(w) = \frac{1}{\pi^{3/2}} \exp(-1^{2}w^{2})$ (1.2.1) $1^{2} = \frac{m}{2kT} = \frac{3}{2 < w^{2} >}$

La distribución de velocidad relativa \vec{u} de un grupo de partículas respecto a otro grupo

 $\vec{u} = \vec{w}(1) - \vec{w}(2)$

también esta dada por (1.2.1) si m se cambia por la masa reducida

 $\mu = m(1)m(2)/(m(1)+m(2))$

Como ya se ha dicho, fuera de equilibrio termodinámi

co local los procesos colisionales no se balancean con sus in versos debido a la ocurrencia desequilibrada de procesos radia tivos. Esto afecta no sólo a los procesos colisionales inelás ticos como se discutió en la sección anterior, sino también a las colisiones elásticas entre electrones que tienden a perder su balance detallado precisamente porque las colisiones inelás ticas entre iones y electrones no están en balance detallado. Cuando un electrón colisiona inelásticamente con un ion, éste queda excitado o pierde otro electrón. Para mantener el balan ce detallado se requiere que se produzcan desexcitaciones o -recombinaciones colisionales entre electrones e iones en el mismo estado de excitación con la misma frecuencia pero el de caimiento radiativo y la baja densidad no lo permiten. Entonces la fracción de electrones con una cierta energía disminuye debido a las colisiones inelásticas mientras que el aumento de esta fracción que compensa la disminución no se debe a colisio nes super elásticas como implica el tener balance detallado si no que se debe a la ionización. El resultado es que se produce una cierta desviación de la distribución (1.2.1).

I

Para estimar la magnitud de esta desviación se puede suponer un plasma en estado estacionario en el sentido de que la tasa de cambio de la distribución real de velocidades $f(\vec{w})$ debida a colisiones elásticas $(\partial f/\partial t)_{el}$ que acercan $f(\vec{w})$ a f°(w) debe igualar la tasa de cambio debida a colisiones inelásticas $(\partial f/\partial t)_{in}$ que tienden a alejar a $f(\vec{w})$ de f°(w). Estas tasas de cambio se pueden evaluar con un modelo simplifica do propuesto por Bhatnagar, Gross y Krook (1954) que supone -que

$$(\partial f/\partial t)_{el} = \frac{f^{\circ}(w) - f(\vec{w})}{t}$$
(1.2)

.2)

donde t_s es el tiempo de colision entre electrones moviéndose en un campo de protones dado por (Spitzer, 1978)

$$t_{s} = \frac{1.241 \times 10^{-16} w}{n_{e} \ln(\Lambda m w^{2}/3 kT)} s \qquad (1.2.3)$$

donde $ln_{\Lambda \cong 23}$ si $n_e \equiv 1 \text{ cm}^{-3}$ y T $\cong 10^{40} \text{ K}$.

Análogamente se puede tomar

$$(\partial f/\partial t)_{in} = -f(\vec{w})/t_{ex}$$
 (1.2.4)

donde se debe cumplir (suponiendo un sólo nivel para simplifi car el problema) $\frac{1}{2}mw^2 > E_k$ siendo E_k la energía de excitación del nivel.t_{ex} es el tiempo de excitación dado por

$$t_{ex} = \frac{1}{n_{i}w\sigma(o,k)}$$
 (1.2.5)

n_i es la densidad de iones y $\sigma(o,k)$ la sección recta de excitación dada por (Osterbrock, 1974)

$$\sigma(o,k) = \frac{\pi}{g_k} \left(\frac{n}{2\pi m w_k}\right)^2 \Omega (o,k) \qquad (1.2.6)$$

siendo $\Omega(o,k)$ la intensidad media de colision, g_k el peso estadístico del nivel excitado y

$$w_k = (2E_k/m)^{\frac{1}{2}}$$
 (1.2.7)

Obsérvese que aquí se está igualando la velocidad relativa u de los electrones respecto a los iones con la velo cidad de los electrones w ya que la masa de éstos últimos es mucho menor que la de los iones. En las colisiones inelást<u>i</u>-

cas no se está considerando la emisión de energía por Bremstrahlung o emisión libre-libre. Esto se debe a que su contribución es despreciable a las temperaturas que nos inte resan (<108°K) debido a que hay muy pocos electrones con las energías necesarias para que se produzca el fenómeno. Ade más sólo se consideran procesos de excitación ya que como se mostrará en las siguientes secciones la mayoría de los iones se encuentran en su estado base porque es más probable que se desexciten radiativamente antes de que se produzca una colisión con un electrón. Como consecuencia en (1.2.4) no se consideran desexcitaciones colisionales que darían una contri bución positiva que en equilibrio termodinámico produce el ba lance detallado haciendo $(\partial f/\partial t)_{in} = 0$. Tampoco se considera la contribución de los electrones con energías mayores que 2E, que al colisionar inelásticamente pueden pasar a formar parte de la población de electrones con energías entre E, y 2E, , lo cual también daría una contribución positiva en (1.2.4).

Las observaciones anteriores son importantes porque implican que nuestro análisis sólo se aplica a las partes de la distribución que están a una velocidad mayor que un cierto valor $w_w w_k$. Normalmente E_k es considerablemente mayor que la energía cinética media, o sea que estamos hablando prácticamen te de la cola de la distribución. Los electrones en esta parte pierden energía al colisionar inelásticamente pasando a engrosar la población de electrones de menor energía. Como por otro lado

$$\int_{\infty} f(\vec{w}) d\vec{w} = 1$$

la distribución $f(\tilde{w})$ tiende a bajar en las partes de alta velocidad y a subir en las partes de baja velocidad con respecto a $f^{\circ}(w)$ como se ilustra en la Fig. 1.2.1.

Fig. 1.2.1. Desviación de la distribución real de velocidades $f(\vec{w})$ de la distribución de Maxwell f°(w).

Entonces para $w > w_k$, $f^{\circ}(w) > f(\vec{w})$ y usando (1.2.2) a (1.2.7) tenemos que para los electrones

$$\delta f = \frac{f^{\circ}(w) - f(\vec{w})}{f(\vec{w})} = \frac{t_{s}}{t_{ex}} = \frac{1.838 \times 10^{-2} E_{k} \Omega(o,k)}{g_{k} \ln(2\Lambda E_{k}/3kT)} \frac{n_{i}}{n_{e}}$$
(1.2.8)

En la tabla 1.2.1. se dan los valores calculados para $\delta f_{n_i}^{n_e}$ a una temperatura de 10 000°K que está cerca del límite inferior del rango que estamos considerando (10³°K). Cuando la temper<u>a</u> tura aumenta es de esperarse que δf baje aun más porque dismi nuye la razón n_i/n_e en (1.2.8) por el aumento del grado de i<u>o</u>nización. Se escogieron los iones y las transiciones desde el estado base más importantes en el enfriamiento de un plasma a 10⁴°K segun Spitzer (1978) y que además cumplieran con la co<u>n</u> dición de que

$$E_k > \frac{3}{2} kT = 1.29 eV$$

Tabla 1.2.1.

Desviación de f(w) respecto a $f^{\circ}(w)$

Ion	Ni Inferior	vele	s Superior	E _k (eV)	Ω(0,k)	δf ⁿ e nix10 ⁴
NII	зÞ	_	¹ D	1.90	2,99	5.0
1.1	3 P		¹ S ²	4.05	0,36	1.2
OIII	³ P	- -	¹ D	2.51	2.50	5.4
a anti-	3 P	, 1 ., ×	¹ S ²	5.35	0.30	1.3
OII	⁴ S _{3/2}	- 4	² D	3.32	1.47	9.4

Como se puede ver en la tabla 1.2.1 δf es $<<10^{-4}$ ya que a una temperatura de 10,000°K la ionización del hidr<u>ó</u> geno hace que n_i $<<n_e$ para todos los iones de la tabla. Esto quiere decir que la distribución de velocidades de los ele<u>c</u>trones se puede suponer maxwelliana en un amplio rango de co<u>n</u> diciones.

El caso de la distribución de velocidades de los electrones respecto a los iones no merece tanta atención porque si bien los iones por ser más pesados tardan más en est<u>a</u> blecer una distribución maxwelliana entre sí y con los ele<u>c</u>trones, su diferencia de masa con éstos últimos permite sup<u>o</u> ner a los iones prácticamente en reposo.

1.3 Estado de excitación de los iones.

Anteriormente se mencionó que en un plasma de baja densidad la mayor parte de los iones están en el estado base. Esto es una simplificación del problema que permite tratar en detalle los procesos atómicos en el plasma de una manera razo nable porque así se pueden dejar de considerar procesos que - involucran niveles excitados. Por ejemplo, la ionización so lo se considera para electrones en el nivel base, mientras – que un electrón libre se recombinará tanto al nivel base como a los niveles excitados.

Para justificar esta suposición se deben consid<u>e</u> rar todos los procesos que pueblan un cierto nivel. El pr<u>o</u>blema puede ser muy complejo porque implica resolver el si<u>s</u>tema completo de ecuaciones para las poblaciones de niveles y la dependencia de los procesos atómicos con la densidad. Existe un modelo simplificado para tratar este problema que es el modelo colisional radiativo propuesto por McWhirter y Hearn (1963). Este modelo consiste en suponer un plasma co<u>m</u> puesto únicamente de iones hidrogenoides de carga z-1, iones totalmente ionizados de carga z y electrones. Los procesos que se toman en cuenta son:

 a) excitación y desexcitación colisionales entre niveles ligados p y q:

 $X(z-1,q) + e \stackrel{2}{\leftarrow} X(z-1,p) + e$

con los coeficientes de tasa x(q,p) y x(p,q) respectivamente,

b) ionización colisional desde un nivel p y recom
 binación de tres cuerpos al mismo nivel:

 $X(z-1,p) + e \stackrel{?}{=} X(z) + 2e$

con un coeficiente de tasa C(p) y $\beta(p)$ respectivamente,

c) decaimiento radiativo espontáneo de un nivel -

p a otro q inferior:

 $X(z-1,p) \rightarrow X(z-1,q) + hv$

con coeficiente A(p,q) y

d) recombinación radiativa al nivel p

 $X(z) + e \rightarrow X(z-1,p) + h_v$

con coeficiente de tasa $\alpha(p)$

De acuerdo con nuestra suposición de profundidad ó<u>p</u> tica baja, no se está considerando fotoionización ni excit<u>a</u> ción radiativa.

La tasa de cambio del nivel p es de acuerdo a la d<u>e</u> finición de los coeficientes de tasa de los procesos (a) a (d):

dn(p)/dt	= -n(p) {n _e	[C(p) ·	+ ^Σ ×(p,q)]	+ $\sum_{q < p}^{\Sigma} A(p,q)$	+	
+ $n_e \frac{\Sigma}{q \neq p}$	n(q) x(q,p)	+ Σ q>p	n(q) A(q,p)	+ $n_e n(z)_\alpha(p)$	÷+	
+ n _e ² n(z)	β(p)				(1.3	.1.)

donde n(z) es la densidad de núcleos y n(p) la de iones en estadop.

Los niveles p y q se pueden identificar con los núme ros cuánticos principales ya que en iones hidrogenoides la ener gía de los niveles sólo depende del número cuántico principal. Entonces la condición para equilibrio termodinámico local (1.1.8) se cumple necesariamente para los subniveles y por tanto éstos se encuentran poblados estadísticamente según Boltzmann, es d<u>e</u>cir:

n(i)/n(j) = g(i)/g(j)

donde g(k) = peso estadístico del sub-nivel k

Como cada ion tiene un número infinito de niveles, se tiene un sistema infinito de ecuaciones diferenciales del tipo (1.3.1.) para cada p conteniendo sumas infinitas.

Para resolver el problema se tienen que hacer dos suposiciones adicionales. La primera es que el plasma esta en estado estacionario:

dn(p)/dt ≡ 0 para toda p

I

Esta es una suposición muy fuerte. McWhirter y Hearn demustran que el tiempo de relajación o de vida media de los niveles excitados es mucho menor que el del estado base y que por lo tanto se puede tomar $dn(p)/dt \equiv 0$ para p > 1 (estado cuasiestacionario) y expresar la dependencia en el tiempo de n(p > 1) a través de la variación de n(1). Aquí tomaremos la simplificación de estado totalmente estacionario en que el si<u>s</u> tema se reduce a un sistema de ecuaciones lineales algebraicas.

La segunda simplificación consiste en suponer que arriba de un nivel p_0 que depende de n_e la población de un nivel se pue de tomar igual a la dada por la ecuación de Saha-Boltzmann. Esto se justifica por el hecho de que los procesos radiativos disminuyen su importancia en el poblamiento de un nivel mien tras que los procesos colisionales la aumentan conforme el nivel en cuestión es más alto. Como en un plasma ópticamente delgado de baja densidad los procesos radiativos no están balanceados por sus inversos mientras que los procesos colisio nales sí, es de esperar que los niveles muy excitados estén en equilibrio termodinámico local. Para justificar esta suposición los cálculos considerando los procesos atómicos de pobla ción de los niveles en detalle, hechos por Brocklehurst,(1970) se muestran en la Fig. 1.3.1

Fig. 1.3.1. b_n = población calculada en estado <u>es</u> - tacionario del nivel n/población calculada por <u>--</u>Saha-Boltzmann para el hidrógeno a 10 000°K a dif<u>e</u> rentes densidades electrónicas (Brocklehurst, 1970).

Con esta simplificación se reduce el número de ecua ciones a un número finito p_0 . Además como la población de estados altamente excitados es mucho menor que la de estados ba jos, las sumas se pueden cortar.

Para determinar a n(p) a partir de (1.3.1) con dn(p)/ dt=0 requerimos ecuaciones adicionales:

> $\sum_{p=1}^{\Sigma} n(p) = n(z-1),$ $n(z-1) + n(z) = N \quad y$ $(z-1)n(z-1) + zn(z) = n_{e}$

para encontrar n(p) en términos de N, n(z-1) y n_e. En este caso es más práctico hacerlo en términos de otras variables.

Como el sistema de ecuaciones es lineal se puede ex presar su solución en términos de una de dos incógnitas que conviene que sean n(1) y n(z). Se supondrá que n(z) \cong constan te,así que su contribución a n(p) será a través de una costan te n_o(p):

$$n(p) = n_0(p) + n_1(p) n(1)$$

o más convenientemente como

$$\frac{n(p)}{n_{\rm E}(p)} = r_{\rm o}(p) + r_{\rm 1}(p) \frac{n(1)}{n_{\rm E}(1)}$$
(1.3.2.)

donde $n_E(p)$ y $n_E(1)$ son densidades dadas por la ecuación de Saha-Boltzmann. Los coeficientes $r_0(p)$ y $r_1(p)$ sólo dependen de p, la temperatura y la densidad electrónica y están tabula dos por McWhirter y Hearn. Estos autores también calcularon la razón $n(1)/n_E(1)$ en el estado estacionario. Usando sus re sultados, en la Tabla 1.3.1. se calcula con (1.3.2.) la razón de poblaciones entre los estados excitados y el estado base mediante la ecuación de Saha-Boltzmann de este caso para obte ner $n_E(p)/n_E(1)$:

$$\frac{n_{\rm E}(p)}{n_{\rm E}(z)n_{\rm e}} = \frac{p^2 \left(\frac{h^2}{2\pi m k T}\right)^{3/2} \exp(\chi(p)/kT)}{(\chi(p)/kT)}$$

donde $X(p) = z^2$ $X_H(p) \equiv$ potencial de ionización del ion des de el nivel p.

 $n_{E}(p) \equiv$ densidad de iones en el estado excitado p. $n_{E}(z) \equiv$ densidad de núcleos. $n_{e} \equiv$ densidad electrónica.

Para expresar los resultados con más generalidad se definen las variables reducidas para la temperatura:

$$\theta = T/z^2$$

la densidad electrónica:

$$n_e = n_e/z^7$$

y densidad de población de un nivel excitado p:

$$\eta(p) = Xn(p)/z^{11}$$

donde X = $n_e/n(z)$. Estas definiciones son covenientes pues permiten expresar la ecuación de Saha-Boltzmann de manera r<u>e</u>ducida:

$$n_{\rm E}(p) = n_{\rm e}^2 p^2 \left(\frac{h^2}{2\pi m k \theta} \right)^{3/2} \exp \left(\chi_{\rm H}(p) / k \theta \right)$$

Tabla 1,3.1.

n(p)/n(1) y n_E(p)/n_E(1) entre paréntesis

0×10 ⁻³	4	64	256
p ⁿ e			
2 10 ⁸	6.7E-21(5.6E-13)	1.0E-18(6.3E-1)	1.0E-8(2.5E)
$2 10^{12}$	6.7E-17	3.0E-5	1.0E-4
5 10 ⁸	3.9E-24(8.9E-16)	4.2E-9(2.3E +0)	1.6E-8(1.4E+1)
5 10 ¹²	4.1E-20	3.5E-5	1.3E-4
7 10 ⁸	3.0E-24(8.0E-16)	7.0E-0(4.4E +0)	2.7E-8(2.7E+1)
7 10 ¹²	3.4E-20	5,4E-5	1.7E-4

Como se ve en la tabla (1.3.1.) aun a temperaturas del orden de $10^5 z^{20}$ K la población de niveles excitados es muy pequeña en comparación a la del nivel base. Es importante no tar, sin embargo, la diferencia tan grande entre n(p)/n(1) y $n_E(p)/n_E(1)$. Esta se debe fundamentalmente a que fuera de equilibrio termodinámico local el nivel base se sobrepuebla mientras que los niveles excitados se depueblan debido a la importancia de los procesos de decaimiento radiativo. Los plasmas que consideraremos aquí tienen densidades menores que $10^8 z^7 cm^{-3}$, lo cual implica, según se ve en la tabla 2, que la razón $n_g(p)/n_g(1)$ es todavía menor.

El modelo anterior justifica por tanto la suposición de que los iones se encuentran en su estado base si la tempera tura y la densidad son suficientemente bajas. Cuando se cons<u>i</u> deran iones más complejos con dos o más electrones hay que pre cisar más lo que se entiende por estado base, ya que en este caso los estados de excitación no se pueden describir simple mente con el número cuántico principal. En el caso en que se aplique la aproximación de acoplamiento spín-órbita, los estados de excitación de un ion se pueden describir con los núme ros cuánticos de momento angular orbital total L, spín total S y momento angular total J además de los números cuántico principal n y angular orbital l para los electrones de la capa de valencia.

Cuando un ion experimenta una recombinación a un -cierto nivel conun electrón, éste puede quedar ligado a cualquier estado excitado y como ya hemos visto es más probable que d<u>e</u> caiga hasta el nivel más inferior antes de sufrir una colisión que lo excite o separe del átomo. Este nivel mas inferior no necesariamente es el nivel $|n_0, 1_0, L_0, S_0, J_0\rangle$ de mínima -energía sino que puede ser un nivel dado por $|n_0, 1_0, L_1, S_1, J_k\rangle$
donde no necesariamente i=0, j=0 y k=0 debido a que las reglas de selección entorpecen el decaimiento de los electrones. Ad<u>e</u> más si la diferencia de niveles es muy pequeña es probable que sus poblaciones sean comparables. Por esto conviene consid<u>e</u> rar que el nivel base de los iones esté definido por algunos de los números cuánticos n_0, l_0, L_0, S_0, J_0 . Esta definición pu<u>e</u>de ser algo arbitraria. Aquí se escogerán para definir el <u>es</u>tado base los números n_0, l_0, L_0 y S₀ ya que en el acoplamiento spín-órbita la diferencia de energías entre los 2J+1 subniv<u>e</u>les en general es muy pequeña en comparación a la diferencia en niveles con distintos números L o S.

1.4 Procesos atómicos.

En la sección anterior se listaron los procesos que se consideran en el modelo colisional-radiativo para un plasma ópticamente delgado fuera de equilibrio termodinámico lo cal. La importancia de algunos de estos procesos depende de la densidad y del nivel del ion que se está considerando.

En la figura 1.4.1 se muestra la magnitud relativa de los procesos que pueblan los primeros niveles de un ion h<u>i</u> drogenoide.

El límite de colisión es el nivel en el que es más probable que un electrón sufra una transición hacia arriba y no hacia abajo. Como se ve, arriba de este límite los proce sos colisionales dominan sobre los radiativos mientras que aba jo de este límite son los procesos radiativos los dominantes. Esto justifica la suposición de que la población de niveles excitados se aproxima a la dada en equilibrio termodinámico local por la ecuación de Boltzmann que hicimos en la sección anterior (vease la Fig. 1.3.1.)

Fig. 1.4.1. Magnitudes relativas de los 5 procesos que pueblan los primeros trece niveles de un ion hidrogenoide para $\theta = 64000^{\circ}$ K y $n_e = 10^{10}$ cm⁻³ (McWhirter, 1975).

En un plasma de baja densidad no todos los procesos enumerados en las secciones precedentes son importantes. Algu nos como la recombinación de tres cuerpos o recombinación coli sional se pueden despreciar. Para demostrar esta última afirmación basta observar en la Fig. 1.4.1. que la recombinación de tres cuerpos no llega a ser importante para ningún nivel a la densidad de 10^{10} cm⁻³ y a la temperatura de 64 000 z² °K. Es te proceso requiere densidades mucho más altas a esa temperatu ra para que llegue a ser comparable en magnitud a la recombina ción radiativa. Para explicar este hecho llamemos al coeficien te de recombinación a . Se puede definir un coeficiente de re combinación reducido $\gamma = \alpha/z$ definido como la probabilidad de recombinación por segundo de un ion de carga z y un electrón de forma que el número de recombinaciones por segundo N es:

$$n_e n_i \gamma = N$$

(1.4.1.)

Ahora bien, si el coeficiente de recombinación de tres cuerpos es α_3 el número de recombinaciones de tres cuer pos por segundo N₃ es:

 $\eta e^{2} \eta_{i} \alpha_{3} = N_{3}$ (1.4.2.)

mientras que si α_r es el coeficiente de recombinación radia tiva, el número de recombinaciones radiativas por segundo N $_r$ es:

$$n_e n_i \alpha_r = N_r \qquad (1.4.3.)$$

En realidad en un plasma los dos procesos anteriores ocurren simultáneamente pero los cálculos cuánticos muestran que $N_3 >> N_r$ así que $N \equiv N_3$ si n_e es mayor que un cierto valor n_e^* que depende de la temperatura. Entonces si se compara (1.4.2.) con (1.4.1) se ve que para $n_e >> n_e^*$

γ≅ n_e α₃

γ ≅ α_n

Cuando $n_e << n_e^*$, $N_3 << N_r$ así que $N \ge N_r$ y comparando (1.4.3.) con (1.4.1.):

En la Fig. 1.4.2. se muestra γ a distintas tempera turas en función de la densidad calculada exactamente. Se puede observar que γ es proporcional a n_e para altas $n_e(\gamma \equiv \alpha_3 n_e)$ mientras que es independiente de n_e si n_e es suficientemente baja. n_e ^{*} aumenta con la temperatura. En las condiciones que interesan en este trabajo (T > 1000z² °K y $n_e < 10^8 z^7 cm^{-3}$) la recombinación siempre se puede considerar radiativa.

Fig. 1.4.2. Coeficiente de recombinación colisi<u>o</u>nal-radiativa en función de η_e y θ para iones h<u>i</u> drogenoides (Bates y Kingston, 1963).

Hasta aquí se ha identificado a la recombinación no colisional con recombinación radiativa pero en realidad la ta sa de recombinación de un plasma de baja densidad incluye tan to a la recombinación radiativa como a la dielectrónica. Esta última puede ser algunos ordenes de magnitud mayor que la recombinación radiativa a altas temperaturas por lo que se le dedicará la sección 2.3 en el próximo capítulo.

La ionización siempre se puede suponer colisional -

cuando las densidades de partículas y de radiación son suficientemente bajas. Sin embargo la tasa total de ionización debe incluir a la autoionización. Este proceso ocurre cuando un ion sufre una colisión con un electrón y queda excitado en un nivel superior al del contínuo. Esto puede suceder en el caso en que un electrón de una capa interna salte a un nivel excitado nl debido a la colisión. Un ion en este esta do tiene dos posibles estados finales. Puede decaer radiati vamente o puede interaccionar con el contínuo y emitir un electrón (autoionización).

En el caso que decaiga radiativamente,el ion no necesariamente regresa a su estado original sino que puede decaer a otro estado excitado. Cuando este estado excitado se encuentra todavía en el contínuo puede ocurrir que el ion se autoionice en vez de seguir decayendo radiativamente. Esta posibilidad se conoce como autoionización secundaria y está más ligada a la recombinación dielectrónica.

La tasa de autoionización se expresa como un produc to de probabilidades de dos sucesos consecutivos:

$$C_{a} = \sum_{p} \left[\frac{A_{a}(p)}{A_{a}(p) + A_{r}(p)} \right] \times (g,p)$$

donde

x(g,p)

I

= coeficiente de excitación colisional del nivel base al nivel p.

A_a(p) = probabilidad de autoionización del nivel p.

A_n(p) = probabilidad de decaimiento del nivel p.

y la suma abarca todos los niveles desde los que puede haber autoionización. Normalmente la autoionización es importante

en los niveles más bajos en que A_a(p) >> A_p(p) y

$$C_a \cong \frac{\Sigma}{p} \times (g,p)$$

por ejemplo, para el NaI las excitaciones más importantes son (Bely, 1968):

 $x(2s^22p^63s) + e \rightarrow x(2s^22p^53snl) + e'$ y

 $x(2s^22p^63s) + e + x(2s 2p^63snl) + e' con n = 3.$

Summers (1974a) muestra que en algunos casos la auto ionización incrementa en un factor de 10 la tasa de ionización total como se puede ver en la tabla 1.4.1.

Tabla 1.4.1.

C(con autoionización)/C(sin autoionización) (Summers, 1974a)

T 1/23	10	NIZACIÓN 25º2p	DELA CATA		IONIZACIÓN DE LA CAPA 2 pº 35			•	
	2 2	4 00	-6	8	2	4	6	10	16
2.03	1 101	3.49	2.33	1:92	1.00	1.00	1.00	1:01	1.00
5.03	1.12	2.10	1.57	1.40	1.00	1:00	1 * 1 1	2.38	1.80
1.01	1.11	1.52	1.36	1 25	1.00	1 . 26	2.57	6.89	+ '7+
2.01	1.10	1.12	1.18	1.15	1.02	2.80	5.81	9.85	6:95
5.01	1.12	1.16	1.08	1.00	1.32	4.95	6.80	7.67	5 '90
1.05	1.00	1.10	1.05	1.03	1.79	4.81	5.20	5.33	4:38
2.05	1.00	1.07	1.04	1.03	2.00	3.97	4:15	4.07	3.49
5.02	1.05	1.00	1.03	1.02	1.97	3.12	3.12	3.02	2.70

La autoionización introduce cambios leves en el cálculo del equilibrio de ionización de un plasma que se notan principalmente cuando la concentración del ion es muy baja. Las aproximaciones que se hacen en este trabajo para el cálculo de otros procesos introducen variaciones de ese mismo orden

así que no se incluirá la autoionización entre los procesos que consideraremos en los próximos capítulos.

I

2. CALCULO DE LOS PROCESOS ATOMICOS MAS IMPORTANTES.

Como se mencionó en el capítulo 1, la ausencia de equilibrio termodinámico estricto y local en un plasma de baja densidad implica que se tienen que considerar todos los procesos microscópicos que ocurran en el plasma en detalle pa ra calcular su estado de ionización, su emisión, etc. Esto quiere decir que hay que calcular los procesos atómicos que o curren entre sus iones y electrones. Estos procesos en general no dependen de la densidad debido precisamente a la baja densidad que prácticamente no afecta la estructura atómica de los iones. En cambio, la temperatura, la carga y la estructu ra electrónica de los iones sí son variables importantes en el cálculo de los procesos atómicos en un plasma de baja densidad.

El cálculo de los procesos atómicos está seriamente limitado por el conocimiento que se tiene de la física atómica involucrada. En general la ignorancia sobre los datos ató micos como longitudes de onda de transiciones, intensidades de oscilador, secciones rectas, etc., aumenta conforme aumenta el número atómico y el estado de ionización. Además, el cálculo mismo de los procesos en cuestión está restringido mu chas veces a aproximaciones hidrogenoides o semiclásicas debi do, en lo esencial, a las dificultades que implica el problema cuántico de muchos cuerpos.

Cuando se pretenden calcular las características de un plasma como la emisión, la ionización, etc., en un rango de temperatura muy amplio y considerando una gran cantidad de -elementos pesados además del hidrógeno y el helio, hay que po der calcular las tasas o simplemente "coeficientes" de los procesos atómicos más importantes de una manera que no consuma demasiado tiempo de computadora. Esto es importante sobre todo cuando se quiere tratar plasmas fuera del estado estacio nario porque puede suceder que la temperatura del plasma varie con el tiempo de forma que haya que calcular el coeficiente de cada proceso y cada ion en cada paso de integración. Esto implica que hay que buscar fórmulas sencillas, lo cual aumenta necesariamente la inexactitud en los cálculos.

De acuerdo a la discusión de la sección 1.4 los procesos más importantes que hay que considerar en un plasma de baja densidad y ópticamente delgados para determinar la es tructura de ionización son la ionización colisional, la recom binación radiativa y la recombinación dielectrónica. En este capítulo se dedica una sección a cada uno de estos tres proce. sos. En cada sección se discuten brevemente los métodos para calcular el proceso en cuestión y se dan las fórmulas más ade cuadas en términos de tiempo y exactitud para el cálculo. Es tas fórmulas son en general los ajustes a datos experimenta les (como en el caso de la ionización colisional) o a valores teóricos calculados con cierta precisión y permiten reducir considerablemente el tiempo y el espacio utilizado de memoria de computadora. En el capítulo 3 se discutirán algunas aplicaciones de estas fórmulas.

2.1 Coeficiente de ionización colisional.

Sea C(Z,z) el coeficiente de ionización colisional del elemento Z y carga z. Por definición

$$n(Z,z)n_{c}C(Z,z)$$

representa la tasa de ionizaciones colisionales por unidad de volumen del estado de ionización z al z+1. n(Z,z) es la densidad de iones en el estado de ionización z y n la densidad

electrónica. Se sobrentiende la dependencia de C(Z,z) en la tem peratura electrónica T.

C(Z,z) se calcula a partir de la integración de la sección recta de ionización colisional sobre todas las posibles energías de los iones ionizantes, es decir,

$$C(Z,z) = \int_{\sigma(E)w(E)f(E)dE}^{\infty} (2.1.1)$$

I(Z,z)

donde I(Z,z) es el potencial de ionización del ion(Z,z), w(E) es la velocidad de los electrones con energía E, σ (E) es la correspondiente sección recta y f(E) es la distribución de velocidad de los electrones que está dada por la función de Maxwell (1.2.1) en el caso de los plasmas cósmicos según se expl<u>i</u> có en la sección 1.2.

Existen varias formas de calcular la sección recta de ionización colisional. La teoría clásica de colisiones en tre electrones y átomos fue iniciada por Rutherford y Thompson antes de que se conociera la mecánica cuántica pero sus métodos y resultados se han seguido usando debido a su sencillez y a que requieren correciones pequeñas para alcanzar una exac titud razonable. También hay dos razones teóricas para expli car por qué la teoría clásica puede sustituir exitosamente a la teoría cuántica (Burgess y Percival, 1968). La primera es que las integrales de acción asociadas con estos fenómenos son grandes en comparación a h por lo que según el principio de correspondencia estamos en el límite clásico de la mecánica cuánti. ca. La segunda razón es que las secciones rectas diferenciales clásica y cuántica para la dispersión de dos partículas idénticas que interactúan a través de una ley r^{-2} son idénti cas. Algunos fenómenos atómicos específicos como la intefe rencia, resonancias y el efecto túnel no se pueden explicar

con la teoría clásica sola pero en general no son importantes cuantitativamente.

En general las formulaciones clásicas dan desviacio nes sistemáticas de los valores experimentales especialmente en el rango de bajas energías donde la energía del electrón colisionante es comparable a su energía de interacción con los demás electrones y con el núcleo del ion. Debido a esto, una alternativa usada ampliamente ha sido el uso de fórmulas empí ricas o semiempíricas. Por ejemplo, Cantó y Daltabuit (1974) propusieron la siguiente fórmula empírica:

$$\sigma(E) = 4\sigma_{m}(E-I)(E_{m}-I)/(E+E_{m}-2I)^{2} \qquad (2.1.2)$$

donde E = energía del electrón colisionante.

- I ≡ potencial de ionización del ión.
- σ_m = sección recta máxima.

E_m ≡ valor de E en que la sección recta es máxima.

Los valores de σ_m y E_m se deben determinar de los datos experimentales. Franco (1981) ha realizado una compilación extensa de los datos disponibles de la que se tomaron los valores requeridos en esta tesis y que se muestran en la Tabla -2.1.1 (véase el artículo de Franco para las referencias y observaciones a los datos). Las incertidumbres en σ_m son típi camente de 10% pero pueden llegar al 40% en algunos casos.

Cuando no se conocen σ_m ni E_m se puede usar la relación empírica encontrada por Franco y Daltabuit (1978)

 $x_m \sigma_m = cN/I^2$

(2.1.3)

Coeficiente de Ionización Colisional (Ec. 2.1.2),

Valores para I, σ_{m} , E_{m} y N*.

Ion		n	I(eV)	$\sigma_{\rm m}(10^{-16} {\rm cm}^2)$	E _m (eV)	N
	н	I	13.6	0,67	56	1
	He	I	24,6	0,37	120	2
	He	II	54.4	0.048	178	1
	с	I	11.3	3.3	60	4
	с	II	24,4	0.57	78	3
	С	III	47.9	0.11	140	2
	C	IV	64.5	0.025	180	1
1	C	V	392,	a ser a s		- 2
	С	VI	490,		-	1
	N	I	14.5	1.57	100	5
	N	II	29.6	0.52	112	ц
	N	III	47.4	0.18	140	3
	N	IV	77.5		- 1 - 1	2
	N	V	97.9	0.15	270	1
	N	VI	552.	s Sector State	- <u>-</u>	2
	N	VII	667.		· - · · · · · · ·	1
	0	I	13.6	1.5	90	6
	0	II	35.1	0.40	148	5
	0	III	54,9	0.18	145	4
	0	IV	77.4	0.056	200	3
	0	V	114.	- * * -	-	2
	0	VI	138.	0.008	300	1
	0	VII	739.	- , , , , , , , , , , , , , , , , , , ,	<u>-</u>	2
	0	VIII	871.		-	1
	Ne	I	21.6	0.86	170	8
	Ne	II	41.4	0.30	200	7
	Ne	III	63.5	0.16	220	6
	Ne	IV	97.0	0.13	300	5
	Ne	V	126.	-	-	4
	Ne	VI	158.	-	-	3
	Ne	VII	207.			_ 2

Tabla 2.1.1.

(continuación)

2

1

Ion	I(eV)	$\sigma_{\rm m}(10^{-16} {\rm cm}^2)$	E _m (eV)	N
Ne VIII	239.	-	-	1
Ne IX	1195.	-	-	2
Ne X	1360,	-	-	1
Mg I	7.65	7.8	12	2
Mg II	15.0	0,51	40	1
Mg III	80.1	0.14	300	8
Mg IV	109.		-	7
Mg V	141.	1.00		6
Mg VI	187.	-	-	5
Mg VII	225.	-	-	. 4
Mg VIII	266.	and a state of the		3
Mg IX	328.	ali na s eco di la		2
Mg X	367.	a a state a st		1
Mg XI	1762.	이 있는 것 수 있습니다. 이 가지 않는 것 수 있는 것 같은 것		2
Mg XII	1963.		-	1
Si I	8.15			4
Si II	16.3			3
Si III	33.5		-	2
Si IV	45.1			1
Si V .	167.			8
Si VI	205.		4	7
Si VII	246.		1.200	6
Si VIII	303.	Start of the	· · - · · ·	5
Si IX	351.	1.5	2020 2	4
Si X	401.	4		3
Si XI	476.		-	2
Si XII	523.		-	1
Si XIII	2438.	4	-	2
Si XIV	2673.		1 <u>.</u>	1
SI	10.4	2.5	-	6
S II	23.4	-	-	5

Tabla 2.1.1.

(continuación)

	Ion	I(eV)	$\sigma_{\rm m}(10^{-16} {\rm cm}^2)$	E _m (eV)	N
	S III	35.0	-		4
	S IV	47.3	-	-	3
	SV	73.0	-	-	2
	SVI	88.0	-	-	1
	S VII	281.	-	-	8
	S VIII	328.	- 10	-	7
	SIX	379.		-	6
-	SX	447.	a na sala 🗕 👔 👘	-	5
	S XI	505.		-	ų
	S XII	565.	-		3
1	S XIII	652.	· · · · · · · · · · · · · · · · · · ·	the state of the second	2
	S XIV	707.		-	1
	S XV	3224.		-	2
	S XVI	3494.	-		1
1.1	CaI	6.71	6.5	20	2
1	Ca II	11.9	1.75	100	1
	Ca III	51.2		A	8
	Ca IV	67.3	<u> </u>	120 200	7
1	Ca V	84.5	Contract of the	-	6
1. I. I.	Ca VI	. 109.		-	5
	Ca VII	128.		n - 117	4
	Ca VIII	148.	- 1 .	-	3
	Ca IX	189.			2
đ.	Ca X	211.	- · · · - · · · ·	-	1
1	Ca XI	592.		<u>_</u>	8
	Ca XII	657.	이번 바람 수가 있었다.	÷.	7
	Ca XIII	727.		14 m 14	6
12	Ca XIV	818.	· · · · ·	-	5
	Ca XV	895.	-		4
	Ca XVI	974.	_		3
	Ca XVII	1087.		-	2

(continuación)

Ion	I(eV)	$\sigma_{\rm m}(10^{-16} {\rm cm}^2)$	E _m (eV)	N
Ca XVIII	1157.	_	12.00	1
Ca XIX	5129.		-	2
Ca XX	5470.			1
Fe I	7.87		- .	8
Fe II	16.2		n 🖬 r 🖒)	7
Fe III	30.7	_	3	6
Fe IV	54.8	-	<u> </u>	5
Fe V	75.0			. '4'
Fe VI	99.0	- 1 - A - A - A - A - A - A - A - A - A	4	3
Fe VII	125.		-	2
Fe VIII	151.	물건 물건 물건	4	1
Fe IX	235.	· · · · · · · · · · · · · · · · · · ·	-	8
Fe X	262.	- in the second	2	7
Fe XI	290.		-	6
Fe XII	331.			5
Fe XIII	361.			4
Fe XIV	392.	1	-	3
Fe XV	457.	-	-	2
Fe XVI	490.		-	1
Fe XVII	1265.		-	8
Fe XVIII	1358.		-	7
Fe XIX	1456.	1. Set 1. 2.		6
Fe XX	1582.	-	2 E .	5
Fe XXI	1689.			4
Fe XXII	1794.			3
Fe XXIII	1950.		-	2
Fe XXIV	2045.		- 1	1
Fe XXV	8828.		- 1 - 1	2
Fe XXVI	9278.	-		1
Ni I	7.64	- ×	<u> </u>	10
Ni II	18.2	i ca financia	÷ ÷	9
Ni III	35.2	анан алан айтаан айтаан айтаа айт	-	8

Ion	I(eV)	$\sigma_{\rm m}(10^{-16} {\rm cm}^2)$	E _m (eV)	N
Ni IV	54,9		-	7
Ni V	75.5	-	-	6
Ni VI	108.	-	-	5
Ni VII	133.	-	-	ц
Ni VIII	162.	- ×	<u> </u>	3
Ni IX	193.		-	2
Ni X	255.	· · · · · · · · · · · · · · · · · · ·	-	1
Ni XI	321.	<u> </u>		8
Ni XII	352.			7
Ni XIII	384.			6
Ni XIV	430.		9 . 9 . 19 . 19	5
Ni XV	464.			- 4
Ni XVI	499.		-	З
Ni XVII	571.		<u>, 1</u> , 1, 1, 6	2
Ni XVIII	608.		an i sa fi	1
Ni XIX	1546.		s i g travel	8
Ni XX	1648.	-	n h ann	-7
Ni XXI	1756.		-	6
Ni XXII	1894.			5
Ni XXIII	2011.		-	<u>'</u> 4
Ni XXIV	2131.	1	-	3
Ni XXV	2295.	-	2 -	2
Ni XXVI	2399.			1
Ni XXVII	10250.		1 <u>-</u> 1 et	2
Ni XXVIII	10750.	1. 1. 1 - V. 1	- 1	1

* $\sigma_{\rm m}^{}$, $E_{\rm m}^{}$ y N Tomados de Franco (1981) e

I de Raymond (1976).

.

donde N es el número de electrones en la capa externa, $x_m \equiv E_m/I$ y c=3.8×10⁻¹⁴ cm²eV² (este valor fue dado por Franco (1981) con la inclusión de nuevos datos experimentales). En la Figu ra 2.1.1. se muestra la relación (2.1.3) junto con los datos experimentales. Para algunos iones con estructuras electrón<u>i</u> cas del estado base complejas resulta ambígua la determinación de N. Por ejemplo para el FeI con una configuración [Ar]3d⁶4s², N puede ser 6, 2 u 8. En estos casos se escogerá el valor que mejor se acerque a la relación (2.1.3). En la tabla 2.1.1. se dan los valores escogidos para N para cada ion. Para obtener σ_m de (2.1.3) se debe tomar el valor típico de x_m que es 3 de acuerdo a los argumentos dados por Franco en su artículo.

Existe una razón teórica importante que explica la relación (2.1.3). Consideremos la sección recta encontrada por Thompson (1912) para la ionización colisional.

$\sigma = N\pi e^{4} (I/E) (1-I/E)/I^{2} \qquad (2.1.4.)$

Obsérvese que aquí se esta suponiendo que las secciones rec_tas de ionización que presentan los electrones de la capa externa son aditivas. (Desde el punto de vista cuántico esto no es cierto ya que debe haber términos de interferencia entre los distintos canales de ionización de esta capa). Es con veniente definir una sección recta reducida $\sigma'=4I^2\sigma/(N\pi e^4)$ ya que en el caso de la sección de Thomson, la sección recta redu cida debería ser una función de x $\equiv E/I$ válida para todos los iones

$$\sigma'_{\rm m} = 4(x-1)/x^2 \qquad (2.1.5)$$

Esta función tiene un máximo en $x_{m} = 2$ así que (2.1.4) da

 $x_{m}\sigma_{m} = 0.5N\pi e^{4}/I^{2}$

Fig. 2.1.1. Relación empírica $\sigma_m x_m / N = C/I^2$ (Ec. 2.1.3) (Franco, 1981).

Por otro lado (2.1.3) en términos de πe^4 da

$$x_m \sigma_m = 0.67 N \pi e^4 / I^2$$
 (2.1.6)

Con ayuda de la ecuación (2,1.6) se puede poner la sección recta empírica (2.1.2) en forma reducida.

$$\sigma'_{E} = \frac{10.76(x-1)(x_{m}-1)}{x_{m}(x+x_{m}-2)^{2}}$$
(2.1.7)

La expresión (2.1.7) difiere de (2.1.5) en el factor numérico cuando se toma x_m=2 pero Franco (1981) ha señalado el parecido de (2.1.7) con dos expresiones obtenidas por métodos clásicos: el modelo de encuentro binario (BEA=binary encounter aproximation) desarrollado por Thomas (1927), Gryzinzski (1959) y Stabler (1964) entre otros que da (Peterkop, 1977)

$$\sigma' = \frac{4(x-1)}{3x(x+2)} [5+2/x]$$
(2.1.8)

y el modelo de encuentro binario simetrizado (ECIP ≡ echange classical impact parameter) propuesto por Burgess (Burgess, 1964a, Burgess y Percival, 1968) que da

$$\sigma' = \frac{4(x-1)}{3x(x+2)} [5+2/x-3xlnx/(x^2-1)] \quad (2.1.9)$$

Cuando se toma $x_m = 3$ en (2.1.7) se tiene

$$\sigma'_{\rm F} = 7.5(x-1)/(x+1)^2$$

Tomando en cuenta que en general x>1 las expresiones entre -corchetes en (2.1.8) y (2.1.9) se pueden considerar correccio-

nes del orden de $\frac{1}{x}$ y $\frac{1}{x^2}$ respectivamente. Entonces la primera expresión se puede aproximar a

$$\sigma' = 7.6 \frac{(x-1)}{x(x+2)} = 7.6(x-1)/(x+1)^{2}$$

BEA x(x+2)

y la segunda a

 $\sigma' = 6 \frac{x-1}{x(x+2)} \equiv 6(x-1)/(x+1)^2$

Nótese el parecido de estas dos expresiones con (2.1.7) cuando se toma $x_m=3$

En las Figuras 2.1.2 y 2.1.3 se comparan diversas secciones rectas de ionización colisional con la dada por la expresión (2.1.2) así como con los datos experimentales. Como se ve, la fórmula (2.1.2) resulta más exacta que las otras prácticamente en todo el rango de energías en que se dan los puntos experimentales.

Hay otra característica que hace más conveniente la expresión (2.1.2). Cuando se calcula el coeficiente de ion<u>i</u>zación colisional con (2.1.2) se obtiene

 $C(Z,z) = 2.48 \ 10^{-10} \sigma_m T^{b_2} \exp(-U) \gamma g(x_m,U)$ (2.1.10)

donde $U \equiv I/kT$

 $g(x_m, U) \equiv 1 + U(x_m - 2) - U(\gamma(x_m - 2) + 2x_m - 3) \exp(\gamma) E_1(\gamma)$ y $E_1(\gamma)$ es la función exponencial integral valuada en γ . Cuando no se co-

Fig. 2.1.2. Sección recta de ionización colisional para el NIII. Los puntos experimentales son de Aitken, Hawison y Rundel (1971). SEFEformulación semiempírica, C-BEaproximación de Coulomb-Born, ECIPEmétodo ECIP, CDEfórmula de Cantó y -Daltabuit (2.1.2). (Tomada de Franco y Daltabuit, 1978).

I

Fig. 2.1.3. Sección recta de ionización colisional para el NaII. Los puntos experimentales son de Peart y Dolder (1968a,b). SEFEformulación semiempírica, C-BEaproximación de Coulomb-Born, ECIPEmétodo ECIP, CDEfórmula de Cantó y Daltabuit (2.1.2). (Tomada de Fran co y Daltabuit, 1978).

nocen σ_m y x_m se usa (2,1,3) con x_m =3:

$$C(Z,z) = 6.96 \times 10^{-8} NT^{\frac{1}{2}} exp(-U) Ug(x_m = 3,U) / I^2$$
 (2.1.11)

Como se ve, el cálculo de C(Z,z) se reduce prácticamente a eva luar una función exponencial integral. Si en cambio se usa la expresión dada por el método ECIP (2.1.9) se tiene que hacer la integración numéricamente en (2.1.1)(Summers, 1974b)

$$C(Z,z) = \frac{2\alpha c}{\pi} (I_{H}/kT)^{\frac{1}{2}} \times \sum_{i} N(i) \times \int_{I(i)} \sigma(E) \exp(-E/kT) d_{E} \quad (2.1.12)$$

donde se suma sobre todas las capas electrónicas del ion para considerar ionización desde capas internas. Esta expresión fue usada por Raymond (1976) en sus cálculos. Expresiones más sencillas se obtienen con otras fórmulas empíricas como la d<u>a</u>da por Seaton (1962)

$$\sigma_{1} = C'(x-1)/x \text{ si } x \leq 2$$
 (2.1.13)

que da

I

$$C(Z,z) = 1.3 \times 10^{-8} T^{\frac{1}{2}} NF(Z,z) exp(-1/kT)/1^{2}$$
 (2.1.14)

donde F(Z,z) es un factor que toma en cuenta la distorsión de la función de onda del electrón por el campo Coulombiano. Jordan (1969, 1970), Landini y Monsignori Fossi (1972) y Cox y Tucker (1969) toman la expresión anterior en sus cálculos de equilibrio de ionización. En la Fig. 2.1.4 se comparan los va lores obtenidos con las expresiones (2.1.10) a (2.1.14) usando los valores dados por Raymond (1976) para el potencial de ioni zación. Como se ve los valores calculados con la fórmula de -Cantó y Daltabuit no difieren en más de un 40% de los calculados por Summers (1974b) usando el método ECIP que es mucho más

sofisticado. Los valores obtenidos con la fórmula empírica de Seaton (2.1.13) pueden ser suficientemente exactos para temperaturas kT<I si se escoge adecuadamente el factor F(Z,z) en --(2.1.14) pero para kT>I sobreestima fuertemente el coeficiente de ionización porque (2.1.13) no toma en cuenta la disminución de $\sigma(E)$ a altas energías.

Por lo anteriormente dicho, las expresiones (2.1.10)y (2.1.11) resultan más adecuadas en cuanto a rapidez y sencillez para el cálculo de C(Z,z) por lo que serán las fórmulas que emplearemos en este trabajo.

2.2. Coeficiente de recombinación radiativa.

El coeficiente de recombinación radiativa para un -ion de carga z del elemento de número atómico Z al niveln, $\alpha_n(Z,z)$ se define de forma que

$$n(Z,z + 1)n_{\alpha}\alpha_{n}(Z,z,)$$

es el número de recombinaciones radiativas por unidad de tiempo por unidad de volumen. n(Z,z +1) es la densidad por número de iones con carga z del elemento Z y n_e es la densidad por núm<u>e</u>ro de electrones. Se sobreentiende la dependencia en la temp<u>e</u> ratura de $\alpha_n(Z,z)$.

Si se desprecian los efectos de interferencia entre los distintos estados posibles en que puede quedar el sistema despues de una recombinación, el coeficiente de recombinación radiativa total (a todos los niveles) es simplemente

$$\alpha_{r}(Z,z) \equiv \sum_{n=n, j}^{N} \alpha_{n}(Z,z)$$
 (2.2.1)

donde n_v es el nivel más bajo al que se puede recombinar el electrón (se supone que el ion está en el estado base). Para un ion hidrogenoide n_v=1. Para un ion no hidrogenoide no es tan sencillo decir que n_v es el nivel de valencia porque éste puede estar parcialmente lleno. Este problema lo discutiremos con detalle más adelante en esta sección. N es el máximo nivel al que hay recombinaciones efectivas. En el límite de den sidad cero N= ∞ . Para densidades reales N se determina como el nivel a partir del cual ya no hay recombinación porque los electrones en esos niveles regresan fácilmente al contínuo por efecto de colisiones. Para bajas densidades sin embargo es muy incierta la determinación de N, así que normalmente se to ma lo suficientemente grande como para asegurar 2 o 3 cifras significativas en $\alpha_n(Z,z)$.

Para el cálculo de α_n requerimos, al igual que en el caso del coeficiente de ionización colisional, el promedio sobre la distribución maxwelliana f(E) de la sección recta de recombinación:

$$\alpha_n(Z,z) = \langle w\sigma_n \rangle = \int_0^\infty w(E)\sigma_n(E)f(E)dE \qquad (2.2.2)$$

donde E es la energía cinética del electrón.

I

La sección recta se puede obtener fácilmente usando el principio de balance detallado al relacionarla con la se<u>c</u>ción recta de fotoionización del nivel n(a_n) mediante la rel<u>a</u> ción de Milne

$$\sigma_{n} = \frac{w_{n}(z)}{w(z+1)} \frac{h^{2}v_{n}^{2}}{m^{2}c^{2}v^{2}} a_{n} \qquad (2,2,3)$$

donde $w_n(z) \equiv peso$ estadístico del nivel n del ion de carga z.

$$v \equiv$$
 velocidad del electrón incidente, y
hv = $I_n + \frac{1}{2}mv^2$ (2.2.4)

siendo h_v la energía perdida por el electrón al recombinarse al nivel n. El problema se reduce así a encontrar $a_n(v)$

El problema se ha resuelto con buena exactitud y de manera analítica para el caso de iones hidrogenoides. Sustituyendo (2.2.3) y (2.2.4) en (2.2.2) se tiene

$$a_{n} = \frac{1}{c^{2}} \left(\frac{2}{\pi}\right)^{\frac{1}{2}} (mkT)^{-\frac{3}{2}} \frac{w_{n}(z)}{w(z+1)} \exp(I_{n}/kT) \int_{I_{n}}^{\infty} (hv)^{2} \exp(-hv/kT) \times a_{n}(hv) d(hv)$$
(2.2.5)

Para un ion hidrogenoide de carga z

$$w_{\rm p}(z) = 2n^2$$
 (2.2.6)

$$w(z+1) = 1$$
 (2.2.7)

$$I_n = hRc z^2/n^2$$
 (2.2.8)

y la sección recta de fotoionización es (Ditchburn y Öpik, 1962):

$$a_{n}(v) = \frac{\frac{2^{6} \alpha \pi a^{2}}{3\sqrt{3}}}{\sqrt{3}} - \frac{n}{z^{2}} (1 + n^{2}E)^{-3} g_{II}(n, E) \qquad (2.2.9)$$

donde hRcz²E $\equiv \frac{1}{2}mv^2$

I

1

(2.2.10)

α Ξ constante de estructura fina.

- a = radio de Bohr.
- R = constante de Rydberg.

g_{II} (n,E) = factor de Gaunt para transiciones lig<u>a</u>do-libre.

Con las Ecs. (2.2.4) y (2.2.6) a (2.2.10) la Eq. (2.2.5) se expresa como

$$\alpha_{n} = Dz(\lambda^{2}/n)x_{n}S_{n}(\lambda) - (2.2.11)$$

$$D \equiv 5.197 \times 10^{-14} \text{ cm}^{3}/\text{seg}$$

$$\lambda \equiv 157890z^{2}/T \text{ (T en °K)}$$

$$x_{n} \equiv \lambda/n^{2} \qquad y,$$

$$S_n(\lambda) = \int_0^{g_{II}(n,E) \exp(-x_n U)/(1+U) dU}$$
 (2.2.12)

$$con U = n^2 E$$

donde

Para calcular la integral en (2.2.12) hay que eva luar el factor de Gaunt $g_{II}(n,E)$. Como se sabe, este factor es una corrección cuántica a la aproximación semiclásica que da el resultado (2.2.9) con $g_{TT}=1$. En este caso

$$S_{n}(\lambda) = \exp(x_{n})E1(x_{n})$$
 (2.2.13)

donde $E1(x_n)$ es la función exponencial integral.

Seaton (1959) argumenta que (2.2.13) da errores de hasta el 20% por lo que propuso una mejor aproximación usando una expansión asintótica para g_{II} encontrada por Menzel y Pekeris (1935) y corregida por Burgess (1958):

$$g_{II}(n,E) = 1+0.1728n^{-2/3}(U+1)^{-2/3}(U-1) - (2.2.14)$$

- 0.0496n^{-1/3}(U+1)^{-4/3}(U²+⁴/₃U+1) + ...

si U<<1

Sustituyendo (2.2.14) en (2.2.12) se tiene

$$S_{n}(\lambda) = \exp(x_{n})E1(x_{n}) + 0.1728n^{-2/3}X_{1}(x_{n}) - 0.0496n^{-4/3}X_{2}(x_{n}) + \dots$$

$$= 0.0496n^{-4/3}X_{2}(x_{n}) + \dots$$

$$= \int_{0}^{\infty} (U+1)^{-5/3}(U-1)\exp(-x_{n}U)dU$$

$$X_{2}(x_{n}) = \int_{0}^{\infty} (U+1)^{-7/3}(U^{2} + \frac{4}{3}U+1)\exp(-x_{n}U)dU$$

Cox y Tucker (1969) expresan las integrales anterio res en términos de funciones gama incompletas r(a,x) de la siguiente forma:

 $X_{1}(x_{n}) = (1+3x_{n})f(\frac{1}{3}, x_{n}) - 3$ $X_{2}(x_{n}) = (1+2x_{n}+\frac{3}{2}x_{n}^{2})f(\frac{2}{3}, x_{n}) - \frac{3}{2}(1+x_{n})$

donde $f(a,x) = \exp(x)x^{-a} \Gamma(a,x)$

La expresión asintótica (2.2.14) os considerablemen te más sencilla que la expresión exacta que está en términos de funciones hipergeométricas y tiene un error muy pequeño a energías suficientemente bajas (Fig. 2.2.1). Obsérvese que la contribución de altas energías E o niveles n altos a la in tegral de (2.2.12), donde la expresión asintótica (2.2.14) ya no vale, disminuye debido al factor $\exp(-x_n U)$ y a que en la

expansión asintótica, aparece en potencias negativas. Sin embargo a altas temperaturas o altos niveles n ($x_n <<1$) esta contribución puede ser importante y dar lugar a errores en el cálculo de α_n .

Para resolver este problema se puede elegir una x_n^* tal que si $x_n < x_n^*$ se toma $g_{II} = 1$ en (2.2.12). Para escoger el valor de x_n* hay que estimar el error que se produce al usar (2.2.14) en (2.2.12). Los cálculos muestran que si se fija una cota máxima al error admisible, el valor que se debe tomar para x_n" depende de n (véase el Apéndice I). Si se quiere que el error sea menor al 10% entonces $x_1^* = 0.162, x_2^* = 0.057,$ x10"=0.007, etc. Por otra parte el tiempo de procesador dismi nuye conforme x_n^* aumenta. Si x_n^* aumenta de 0.001 a 1.0 este tiempo disminuye en un 80%. Entonces conviene establecer un compromiso entre la exactitud que se quiere y la rapidez de -los cálculos. Ahora bien, la contribución a $S_n(\lambda)$ de los términos que contienen a X_1 y X_2 en (2.2.15) y que resultan de los dos sumandos de corrección en la expansión asintótica (2.2.14) siempre es menor del 10% si 0.002 < x₁<0.5 y 0.0008<x_n<2.5 p<u>a</u>-ra n≥2 (véase el Apéndice I). Conforme n aumenta esta corrección disminuye a una ×n . fija si n>5. Entonces se pue de lograr un ahorro adicional aunque moderado de tiempo de pro cesador si tomamos $g_{TT} \equiv 1$ cuando n>n* independientemente del va lor de x_n. El ahorro de tiempo al tomar n*=10 en vez de 600 es de 20% y la diferencia en el cálculo de α_{p} según (2.2.1) es menor al 1%. Esto quiere decir que podemos tomar a x " más grande que x₁" para toda n sin perder exactitud. Se comprobó que cuando se calcula $\alpha_{p}(Z,z)$ según (2.2.1) los valores calculados tomando $x_n^*=1.0$ para toda n no difieren en más de un 3% de los calculados tomando x $_n^{*=0.001}$ o tomando los distintos valores de x_n^{*} que le corresponden a cada n (en el Apéndice I se muestra que x_n*≅0.127n^{-1.19}). Aquí tomaremos x_n*=1. En

un cálculo más preciso de α_n conviene tomar la $x_n^{\ *}$ adecuada a cada n.

El problema de la recombinación radiativa de iones no hidrogenoides es más complicada porque en general hay fuer tes desviaciones del comportamiento hidrogenoide de las funcio Ahora bien, se han calculado con detalle los coe nes de onda. ficientes de recombinación radiativa para subniveles hidroge noides con distinto momento angular 1 (Burgess, 1958) y para iones sencillos en acoplamiento L-S (Burgess y Seaton, 1960). Estos cálculos muestran que la contribución a la recombinación radiativa de los subniveles es mayor para estados con momento angular alto o moderado, los cuales se vuelven hidrogenoides rapidamente conforme aumenta el número cuántico principal n si se trata de estados excitados (Bates et.al. 1939). Los cálculos de M. Rudkjöbing (1940) ejemplifican esta tendencia para el NaI. Las secciones rectas de recombinación para el -NaI en los estados 3s y 4s son menores que 0.1 de los valores hidrogenoides mientras que en los estados 3p y 4p respectivamen te son 1.17 y 1.06 veces el valor hidrogenoide. Sin embargo las capturas a estados s no son importantes en comparación con los estados p:

La discusión anterior permite usar las fórmulas h<u>i</u>drogenoides (2.2.11) a (2.2.14) para calcular la recombinación radiativa a los niveles excitados de un ion no hidrogenoide siendo el error menor mientras más alto sea el nivel. Queda por resolver sin embargo la recombinación al nivel de valencia n_v que por estar parcialmente ocupado puede exhibir fuertes desviaciones del comportamiento hidrogenoide.

Se han propuesto muchas formas de calcular la recombinación al nivel de valencia. Spitzer (1948) propone que cuan do se quiera calcular el coeficiente de recombinación total (2.2.1), se incluya en la suma el nivel de valencia sólo si más de la mitad de sus 2n² subniveles están ocupados. Un pro cedimiento alternativo ha sido propuesto por Cox y Tucker (1969) quienes sugieren usar las fórmulas hidrogenoides con un número cuantico efectivo $n_v^{*=z(I_H/I_{z-1})^{\frac{1}{2}}}$ donde I_z es el potencial de ionización del ion de carga z-1, multiplicado por una fracción N(Z-z)/2n * donde N(Z-z) es el número efectivo de esta dos vacíos de la capa de valencia de un ion de número atómico Z y carga z. Multiplicar a $\alpha_{n,vi}$ por esta fracción obedece al hecho de que el coeficiente hidrogenoide dado por (2.2.5) esta multiplicado por la degeneración de la capa 2n². En el caso de la capa de valencia, esta degeneración no es 2n."² como se tendría al substituir n," en lugar de n en la Ec.(2.2.10) sino que es N(Z-z). Para un ion hidrogenoide N(Z-z)=2n². En el caso general (Mac Alpine, 1972)

 $N(Z,z) = \sum_{l=0}^{n-1} \frac{q}{2(2l+1)} \frac{\alpha_{nl}(Z,z)}{\sum_{l=0}^{n-1} \alpha_{nl}(Z,z)}$ (2.2.16)

donde q es el número de espacios vacíos en la subcapa l y $\alpha_{nl}(Z,z)$ es el coeficiente hidrogenoide de recombinación radiativa a la subcapa (nl), tabulada por Burgess (1964b).

Una tercera forma para calcular la recombinación al nivel de valencia es mediante la relación de Milne (2.2.3) y una fórmula adecuada para la sección recta de fotoionización del nivel de valencia que sustituya a la fórmula hidrogenoide. Una fórmula empírica muy usada es la propuesta por Seaton(1958):

$$a_{n_{v}}(v) = a_{T} \left[\beta(\frac{v}{v_{T}})^{-s} + (1-\beta)(\frac{v}{v_{T}})^{-s-1}\right]$$
 (2.2.17)

donde a_m = sección recta de fotoionización en el umbral.

 $h_{V_m} \equiv potencial de ionización$

y s y β son parámetros característicos del ion en cuestión.

Esta fórmula es un ajuste paramétrico de cálculos teóricos más sofisticados. $a_T y v_T$ se determinan experimen talmente o teóricamente y s y β se ajustan por mínimos cuadrados a los valores experimentales o teóricos de $a_{nv}(v)$. Los valores de a_T , hv_T , s y β se dan en la tabla 2.2.1 y fueron recopilados por Raymond (1976).

Sustituyendo las Ecs. (2.2.17) y (2.2.3) en (2.2.2) se tiene que el coeficiente de recombinación radiativa al nival de valencia es

 $\alpha_{n_V} = 5.2307 \ 10^{-5} \ \frac{w_{z-1}}{w_z} T^{1.5} \ \exp(x) x^{S_a} [\beta \Gamma(3-s,x) + (1-\beta) x \Gamma(2-s,x)]$ (2.2.18) donde $x \equiv h v_m / k T$

r(a,x) = función gama incompleta.

Esta expresión es suficientemente exacta cerca del umbral. A altas temperaturas sin embargo, puede alejarse considerablemente de los valores exactos. En particular cuando s <1, α_{n_v} puede aumentar con el aumento en la temperatura, lo cual es un comportamiento totalmente fuera de la realidad. E<u>s</u> te es el caso del OI, NeI y MgII.

Este último método tiene la ventaja de que es relati vamente fácil de calcular. Además da la misma exactitud que la dada por métodos cuánticos más detallados en las regiones cercanas al umbral de ionización donde la recombinación es más

Tabla 2,2,1,

Coeficiente de recombinación radiativa al nivel

de valencia (Ec. 2,2,18)

	Ion	hv _T (eV)	$a_{T}(10^{-18} \text{ cm}^{3})$	β	S
	H I*	13.6	6,30	1,338	2,99
	He I	24.6	8.34	.763	1.99
	He II	54.4	1.75	1.287	2.95
	CI	11.3	12.19	3,317	2.0
	C 11	24.4	4.6	1.95	3.0
	C III	47.9	.389	4.3	1.7
	CIV	64.5	.561	1.71	2.16
	CV	392.	.472	1.42	2.78
	C VI	490.	.194	1.287	2,95
	NI	14.5	11.42	4.287	2.0
	N II	29.6	6.65	2.86	3.0
4	N III	47.4	2.06	1.626	3.0
1	N IV	77.5	.481	3.0	1.9
	NV	97.9	. 392	2.3	2.54
	N VI	552.	. 322	1.43	2.82
	N VII	667.	.142	1.287	2.95
	0 1	13.6	2.94	2.661	1.0
	0 11	35.1	7.32	3.837	2.5
	0 111 .	54.9	3.65	2.014	3.0
	0 10	77.4	1.27	.831	3.0
1	O V	114.	.462	1.86	1.78
	0 11	138.	.302	1.611	2.26
	0 111 0	739.	.246	1.46	2.86
	O VIII	871.	.109	1.287	2.95
	Ne I	21.6	5.35	3.769	1.0
-	Ne II	41.4	4.16	2.717	1.5
	Ne III	63.5	1.8	2.277	2.0
	Ne IV	97.0	3.11	1 963	3.0

Valores de hv_T , a_T , β y s (Raymond, 1976).

*Los datos para el H I se tomaron de Bethe y Salpeter (1957).

Ion	hv _T (eV)	$a_{T}(10^{-18} \text{ cm}^{3})$	ß	S	
Ne V	126.	1.4	1.471	3.0	
Ne VI	158.	.49	1.145	3.0	
Ne VII	207.	.334	1.56	1.94	
Ne VIII	239.	.184	1.23	2.02	
Ne IX	1195.	.151	1.46	2.90	
Ne X	1360.	.0706	1.287	2.95	
Mg I	7.65	1.2	3.0	14.0	
Mg II	15.0	.24	3.708	.91	
Mg III	80.1	5.92	2.45	1.8	1.1
Mg IV	109.	2.59	2.04	2.04	
Mg V	141.	.918	3,1	2.9	
Mg VI	187.	1.74	2.1	2.8	
Mg VII	225.	.887	2.1	3.1	
Mg VIII	266.	317	.98	2.6	
Mg IX	3 28.	.241	1.01	1.7	1
Mg X	367.	.126	.73	1.7	
Mg XI	1762.	.102	1.46	2.93	
Mg XII	1963.	.0409	1,287	2.95	
Si I	8.15	39.16	4.42	5.0	
Si II	16.3	1.41	2.305	1.50	
Si III	-33.5	2.99	1.553	2.32	
Si IV	45.1	.954	1.508	3.14	
Si V	167.	3.56	2.07	2.1	
Si VI	205.	1.52	1.95	2.34	
Si VII	246.	.503	2.78	2.86	
Si VIII	303.	1.02	1.72	2.80	
Si IX	351.	.504	2.2	3.2	
Si X	401.	.191	1.2	2.8	

Tabla 2.2.1. (continuación)

l
Ion	hv _T (eV)	$a_{T}(10^{-18} \text{ cm}^{3})$	β	S	i.
Si XI	476,	.180	.41	1.9	
Si XII	523,	.0902	.42	1.5	
Si XIII	2438.	.0732	1.46	2.95	
Si XIV	2673.	.036	1.287	2.95	
SI	10.4	12.62	21.595	3.0	
SII	23.4	8.2	1.695	1.5	1
S III	35.0	.38	18.427	2.0	
S' IV	47.3	.29	6.837	2.0	
SV	73.0	1.29	1.481	3.02	
S VI	88.0	.195	.40	3.0	
SVII	281.	2.32	2.23	2.56	
S VIII	328.	.885	2.0	2.7	
SIX	379.	.318	1.84	2.60	
5 X	447.	.646	.83	2.3	
S XI	505,	.328	2.1	3.3	
S XII	5 65.	.126	.425	2.1	
S XIII	652.	.136	.41	1.3	
SXIV	7 07.	.0683	.42	1.5	
S XV	3 224.	.0552	1.45	2.96	
S XVI	3494.	.0276	1.287	2.95	
Ca I	6.71	.90	1.0	3.0	
Ca ll	11.9	.209	1.0	3.0	
Ca III	51.2	4.8	1.0	2.0	
Ca IV	67.3	3.7	1.0	2.0	
Ca V	84.5	.49	1.0	2.0	
Ca VI	109.	. 31	1.3	1.75	
Ca VII	128.	.36	1.0	2.0	
Ca VIII	148.	.25	1.2	2.2	

Tabla 2.2.1. (continuación)

The second

		*** == 4			
Ion	hv _T (eV)	$a_{T}(10^{-18} \text{ cm}^{3})$	ß	S	
Ca IX	189.	.072	.70	2.5	
Ca X	211.	.042	1.0	3.0	+
Ca XI	592.	1.04	2.28	2.94	
Ca XII	657.	.375	1.9	2.74	
Ca XIII	727.	.140	.43	1.7	
Ca XIV	818.	.306	.6	2.3	
Ca XV	895.	.156	2.09	3.36	
Ca XVI	974.	.0612	.44	2.2	
Ca XVII	1087.	.0848	1.37	2.18	
Ca XVIII	1157.	.0408	.42	1.5	
Ca XIX	5129.	.0350	1.44	2.98	
Ca XX	5470.	.0176	1.287	2.95	
Fe I	7.87	6.43	1.0	2.0	
Fe II	16.2	2.76	1.0	2.0	
Fe 111	30.7	2.0	1.0	2.0	
Fe IV	54.8	1.3	1.0	2.0	
· Fe V	75.0	.9	1.0	2.0	
Fe VI	99.0	.7	1.0	2.0	
Fe VII	125.	.6	1.0	2.0	
Fe VIII	151.	.5	1.0	2.0	
Fe IX	235.	.692	1.0	2.0	
Fé X	262.	.116	1.0	2.0	
Fe XI	290.	.0235	1.0	2.0	
Fe XII	331.	.0954	1.0	2.0	
Fe XIII	361.	.0945	1.0	2.0	
Fe XIV	392.	.0687	1.0	2.0	
Fe XV	457.	.0016	1.0	2.0	
Fe XVI	490.	.0095	1.0	2.0	
Fe XVII	1265.	.423	2.2	3.2	
Fe XVIII	1358.	.143	2.44	3.12	

Tabla 2.2.1. (continuación)

I

Fe XIX14560575.451.Fe XX1582130.4522.Fe XXI168906642.453.Fe XXII17940270.4482.Fe XXIII17940270.4482.Fe XXIII195004841.162.Fe XXIV20450241.411.Fe XXV882802011.443.Fe XXV882801041.2372.Ni I7.646.41.02.Ni II18.22.61.02.	5
Fe XX1582130.4522.Fe XXI168906642.453.Fe XXII17940270.4482.Fe XXIII195004841.162.Fe XXIV20450241.411.Fe XXV882802011.443.Fe XXVI927801041.2872.Ni I7.646.41.02.Ni II18.22.61.02.	9
Fe XXI168906642.453.Fe XXII17940270.4482.Fe XXIII195004841.162.Fe XXIV20450241.411.Fe XXV882802011.443.Fe XXV892801041.2872.Ni I7.646.41.02.Ni II18.22.61.02.	26
Fe XXII17940270.4482.Fe XXIII195004841.162.Fe XXIV20450241.411.Fe XXV882802011.443.Fe XXVI927801041.2372.Ni I7.646.41.02.Ni II18.22.61.02.	62
Fe XXIII195004841.162.Fe XXIV20450241.411.Fe XXV882802011.443.Fe XXVI927801041.2872.Ni I7.646.41.02.Ni II18.22.61.02.	28
Fe XXIV20450241.411.Fe XXV882802011.443.Fe XXVI927801041.2872.Ni I7.646.41.02.Ni II18.22.61.02.	08
Fe XXV882802011.443.Fe XXVI927801041.2872.Ni I7.646.41.02.Ni II18.22.61.02.	6
Fe XXVI927801041.2872.Ni I7.646.41.02.Ni II18.22.61.02.	00
Ni I 7.64 6.4 1.0 2. Ni II 18.2 2.6 1.0 2.	95
Ni II 18.2 2.6 1.0 2.	0
	.0
Ni III 35.2 .7 1.0 2.	.0
Ni IV 54.9 .4 1.0 2.	.0
Ni V 75.5 .5 1,0 2.	.0
Ni VI 1085 1.0 2.	.0
Ni VII 1334 1.0 2.	.0
Ni VIII 1623 1.0 2	.0
Ni IX 1933 1.0 2	.0
Ni X 2552 1.0 2	.0
Ni XI 32143 1.0 2	.0
Ni XII 352052 1.0 2	.0
Ni XIII 384014 1.0 2	.0
NI XIV 430071 1.0 2	.0
Ni XV 464066 1.0 2	.0
Ni XVI 499063 1.0 2	.0
Ni XVII 5710012 1.0 2	.0
Ni XVIII 6080065 1.0 2	.0
Ni XIX 1546326 2.1 3	.2

Tabla 2.2.1. (continuación)

	Ion	hv _T (eV) a	$a_{\rm T}(10^{-18} {\rm Gm}^3)$) β	S	
	Ni XX	1648.	.1 09	2.2	3.0	
	NIXXI	1756.	.0445	.46	1.9	
	NI XXII	1894.	.101	.47	2.3	
	NI XXIII	2011.	.052	1.7	3.2	
	NI XXIV	2131.	.0214	.42	2.2	
ł	NT XXV	22 95.	.0416	2.05	2.66	
	Ni XXVI	2399.	.0210	2.16	2.86	
	NI XXVII	10250.	.0175	1.44	3.01	4
	Ni XXVIII	10750.	.0090	1.287	2.95	

Tabla 2.2.1. (continuación)

importante. Como la Ec. (2.2.17) toma en cuenta la presencia de electrones en la capa de valencia, la expresión - -(2.2.18) puede usarse directamente en la suma para calcular la recombinación total dada por (2.2.1) donde n_v se toma como el número cuántico principal del nivel de valencia.

Con los métodos descritos anteriormente ya es pos<u>i</u> ble calcular el coeficiente de recombinación radiativa total (2.2.1). Hay varias formas de calcular la sumatoria sobre los niveles. Una, muy usada, consiste en usar una función previamente determinada que dé el coeficiente de recombina ción radiativa total de un ion hidrogenoide en función de la temperatura y la carga F(Z,z,T). Esta función será por lo tanto dada por

$$F(Z,z,T) = \sum_{n=1}^{N} \alpha_{n}(Z,z)$$

que según (2.2.11) se puede escribir como

$$F(Z,z,T) = DZ\lambda^{\frac{1}{2}} \phi(Z,z,T)$$
 (2.2.19)

donde $\phi(Z,z,T) = \sum_{n=1}^{N} x_n S_n(\lambda)/n$ de forma que para un ion no hidrogenoide

$$\alpha_{r}(Z,z) = F(Z,z,T) - \sum_{n=1}^{n_{v}} \alpha_{n}(Z,Z) + \alpha_{n_{v}}$$
 (2.2.20)

Diversos autores han propuesto expresiones para $\phi(Z,z,T)$. Burbidge, Gould y Pottasch (1963) ajustaron la si guiente expresión

$$\phi(\mathbb{Z}, z, T) = \frac{1}{2}(1.735 + \ln\lambda + \lambda/6), \lambda \ge 1 \qquad (2.2.21)$$

donde $\lambda \equiv 157890z^2/T$ mientras que Tucker y Gould (1966) die-

ron la siguiente aproximación:

 $\phi(Z,z,T) = \lambda(-0.298-1.202ln\lambda) + \lambda^{2}(0.495-1.037ln\lambda) + \\ +\lambda^{3}(0.471-0.504ln\lambda) + \lambda^{4}(0.210-0.167ln\lambda) + \dots \text{ si } \lambda < <1 \\ (2.2.22)$

Las dos expresiones anteriores fueron calculadas to mando $g_{II}\equiv1$, o sea, mediante la Ec. (2.2.13). Esto quiere decir que además de los errores debidos al ajuste o al truncamiento de la serie para $\phi(Z,z,T)$ se tiene el error debido a que no se considera la dependencia de g_{II} del nivel n y la energía del electrón recombinante. Seaton (1959) usando las, expresiones (2.2.14) y (2.2.15) ajustó la siguiente expresión

 $\phi(Z,z,T) = 0.4288+0.5\ln\lambda+0.4698\lambda^{-1/3}$ (2.2.23)

que da un error menor al 0.5% para $\lambda \ge 1.6$, del ~3% para $\lambda = 0.16$ y del ~3% para $\lambda = 3.2 \times 10^{-2}$.

La expresión (2.2.22) es el complemento de (2.2.23) para $\lambda <<1$ pero como ambas son ajustes al cálculo exacto de F(Z,z,T) hecho con la sumatoria (2.2.19) a distintos rangos de λ , muestran un error grande en los extremos del intervalo de λ en que se ajustaron. Esto hace que no sea posible – un paso contínuo entre el ajuste para λ grande y el ajuste pa ra λ pequeña. Este hecho tiene repercusiones importantes si se quiere hacer un segundo ajuste para el coeficiente de recombinación radiativa total $\alpha_r(Z,z)$ en un intervalo intermedio entre λ pequeña y λ grande calculado de la forma (2.2.20).

El resultado de calcular α_r según (2.2.20) es por lo tanto la introducción de errores adicionales a los prod<u>u</u>cidos por las aproximaciones hidrogenoides. Para corregir

este problema se debe calcular la sumatoria en (2.2.1) direc tamente. Si se usan las Ecs. (2.2.11), (2.2.15) y (2.2.18) se tiene

$$\alpha_{r}(Z,z) = \alpha_{n_{v}} + \sum_{n=n_{v}+1}^{N} \alpha_{n}(Z,z)$$
 (2.2.24)

donde N es un nivel que se toma lo suficientemente alto como para que se tenga exactitud en por lo menos tres cifras significativas. Esto implica que N2400 ya que la serie es extremadamente lenta en su convergencia. Como el cálculo de α_n implica el cálculo de funciones gama incompleta, la expresión (2.2.24) representa un serio problema de tiempo de computadora.

En el caso de atmósferas y coronas estelares se puede argumentar que el valor efectivo de N es mucho menor ya que a partir de un cierto nivel excitado ya no se produ cen recombinaciones. Esto se debe a que la alta densidad electrónica disminuye el potencial de ionización notablemente; sin embargo en un plasma de baja densidad este efecto no es importante.

Con el fin de obtener valores más exactos en este trabajo se calculó $\alpha_r(Z,z)$ mediante (2.2.18) y (2.2.24) con los datos de la tabla 2.2.1 para calcular α_{n_V} . Los valores obtenidos en general difieren cuando mucho por factores de 1.5 con los de Goldberg (1968) y House (1963) quienes calcularon $\alpha_r(Z,z,)$ por otros métodos. (Fig. 2.2.2). Los valo res de Mac Alpine (1972) calculados con las fórmulas (2.2.16) y (2.2.20) son sistemáticamente mucho menores que los calcula dos aquí y por Goldberg y House siendo las diferencias mayores (a veces de un orden de magnitud) conforme disminuye la carga del ion z.

• ••

El ahorro de tiempo de cálculo usando las Ecuaciones (2.2.18) y (2.2.24) que resulta de tomar $g_{II} \equiv 1$ en (2.2.12) si $x_n < 1$ o n>10, de acuerdo a lo dicho en párrafos anteriores, no es suficiente.

I

El cálculo de $\alpha_{r}(Z,z)$ para todos los iones de los elementos de la tabla I.1. y del Ni entre las temperaturas 10^{3} °K a 10^{8} °K en intervalos de logT de 0.1 consume alrededor de una hora de tiempo de procesador en la computadora Burroughs 6800. Esto resulta prohibitivo para hacer cualquier cálculo del equilibrio de ionización fuera de estado estacionario. Pa ra resolver este problema Aldrovandi y Péquignot (1973) propu sieron ajustar la fórmula paramétrica

 $\alpha_{n}(Z,z) = A_{n}(T/10^{4})^{-\eta}$ (2.2.25)

a los valores calculados con (2.2.24) donde T es la temperatura y A_n y n son los parámetros a ajustar para cada ion. El ajuste se puede realizar por mínimos cuadrados sin dificultad. El único problema es que la exactitud de este ajuste es limitada lo cual implica que si se fija una cota superior al error admisible en (2.2.25) se tiene que restringir su rango de validez a un cierto intervalo de temperatura (T1,T2). Es te intervalo de temperatura fue determinado de forma que el error en el cálculo del equilibrio de ionización debido al error en (2.2.25) fuera mínimo. En la sección 3.1. se demues tra que para el coeficiente $\alpha_n(Z,z)$ este criterio implica -que el intervalo (T1,T2) debe centrarse aproximadamente en la temperatura T* donde la densidad (partículas por unidad de volumen) del ion de carga z, n(z) sea igual a la densidad del ion en el siguiente estado de ionización n(z+1).

La determinación de T* se hizo en el estado estacio

nario así que los resultados podrían no ser válidos fuera de dicho estado. Se espera sin embargo que fuera de estado estacionario la temperatura T*' en que n(z)' = n(z+1)' estará - en una vecindad alrededor del valor en equilibrio T*. En tonces debemos encontrar el máximo intervalo posible (T_1,T_2) centrado en T* para dar mayor validez a los resultados. Para ésto se elaboró un programa de computación que determina el intervalo más ancho (T_1,T_2) en que el error en el ajuste (2.2.25) fuera menor o igual al 10%. Los valores encontrados para A_r , η , T_1 , y T_2 para cada ion se dan en la tabla 2.2.2.

Cuando se compara la tabla 2.2.2 con la que dan -Aldrovandi y Péquignot (1973)(AP) para los mismos parámetros A_p, n, T₁ y T₂ para los iones del C, N, O, Ne, Si, y S se encuentran diferencias importantes que sobrepasan el error del 10% de la fórmula (2.2.23) en varios iones como es el ca so del OII (Fig. 2.2.2.) y otros iones del oxígeno, a pesar de que AP, calcularon $\alpha_{r}(Z,z)$ usando las mismas fórmulas que se usaron aquí. En casi todos los casos, estas diferencias se explican por dos factores. El primero es que estos autores calcularon de manera inexacta el valor de α_{n_v} . Una comparación de los valores obtenidos con la Ec. (2.2.18) usando los valores de $A_{T}^{}$, $v_{rr}^{}$, s y β de la tabla 2.2.1 con los tab<u>u</u> lados en la referencia dada por AP en su artículo (Bergeron y Souffrin, 1971) favorecen menos a AP en algunos casos. E1 segundo factor produce las diferencias en la mayoría de los casos y consiste en que los intervalos de validez T1 y T2 son distintos. En AP en casi todos los casos

 $log(T_{2}/T_{1}) = 3$

mientras que en la tabla 2.2.2 $log(T_2/T_1) \sim 2.5$

101

Tabla 2,2,2.

Coeficiente de recombinación

radiativa (Ec. 2.2.25).

Valores ajustados de

A_r, n, T₁ y T₂.

	Ion	A _r (an³/s)	n	logT ₁ :	logT ₂
	ุ่ ห'่า	4.05E-13	0,743	3,3	5.1
	HE I HE II	4.25 E-13 2.39E-12	0.691 0.747	3.0	6+5 5+8
	CI	3.872-13	0.603	3.3	4.9
	C 11	2.39E-12	0.703	3.0	5.4
	C, 111	3,91E-12	0.904	4.2	4.0
	C IV	0,06E-12	0.844	4.1	4.1
	C V	2.44E-11	0.807	5.1	4.9
	C VI	4.30E-11	0.778	5.3	4.9
	N I	2.758-13	0.683	3.5	4.7
	N 11	1,036-12	0.720	3.6	5.0
	N III	5.91E-12	0,755	4.3	5.9
	N IV	8,63E-12	0.893	4.4	6.2
	• N • U	1.44E-11	0.834	4.3	6.1
1.1	N VI	4.10E-11	0.821	5.3	7.1
	N VII	4.71E-11	0.789	5,5	7.1
	0 1	2.856-13	0.647	3.7	4.7
	0 11 .	1.46E-12	0.722	3.0	7.0
	0 - 111	4.95E-12	0.777	4.2.10	6.0
	0 10	1.336-11	0.821	4.7	6.1
	• O V	1.61E-11	0.892	4.6	6.4
	0 VI	2.39E-11	0.839	4.5	6.3
	O VII	6.55E-11	0.833	5.5	7.3
	0 4111	1.02E-10	0.802	5.7	7.3
	NE I	2.12E-13	0.765	3.0	5.0
	NE II	1.426-12	0.661	4.2	5.4
	NE III	4.22E-12	0.652	4.2	6,0
	NE IV	9.74E-12	0.853	4.5	6.3
	NEV	1.946-11	0.840	4.8	6,4
	NE VI	3.30E-11	0.823	4.9	6.5

Tabla 2.2.2.

(continuación)

Ion	A _r (cm³/s)	Ŋ	logT ₁	log'F ₂	
NE VII	4,45E-11	0.909	5,0	å, 8	
NE VII	I 5,21E-11	0,842	4,7	6.7	
NE IX	1.420-10	0,851	5.9	7.5	
NE X	2.05E-10	0,820	\$,0	7.6	
KG I	1.31E-13	0,956	3,2	4.6	
MO II	7.26E-13	0.880	3,3	5.1	
MG 111	3.77E-12	0,752	4,2	6.0	
NG IV	0,12E-12	0.704	4,1	6.5	
MG V	1.63E-11	0.739	4.4	6.6	
NO VI	2.73E-11	0,839	4.7	6.7	
MO VII	- 4.66E-11	0,826	5.1	6.7	
MG V11	I 6.87E-11	0.803	5,1	6.9	
MG IX	0.84E-11	0,904	5.2	7.0	
MG X	9,95E-11	0,852	5.0	7.0	
HG XI-	2.57E-10	0.861	6.1	. 7.7	
HO XII	3.49E-10	0.84I	6,2	7.8	
5I I	3.89E-13	0.715	3.2	4.6	
SI 11	1.12E-12	0.755	3.7	5.3	
SI 111	3.32E-12	0,934	4.1	5.9	
6I IV	6.84E-12	0.008	4.1	5.7	
51 V.	1.330-11	0.761	- 3.0	7.2	
SI VI	2.28E-11	0.747	3.9	7.5	
31 VII	3,04E-11	0.766	4.7	6.9	
SI VII	I 6.45E-11	0.869	5.1	6.9	
SI IX	1,01E-10	0.840	5.5	6.9	
51 X	1.38E-10	0.838	5.5	7,1	
51 XI	1.79E-10	0.933	5.5	7.1	
SI XII	1.68E-10	0.859	5.2	7.2	
SI XII	1 4.40E-10	0.874	6.3	7.9	
SI XIV	5+74E-10	0.837	6.5	7.9	
5 I	6.430-13	0.308	3.4	4.6	
5 II	1.09E-12	0.796	3.7	5,5	

Tabla 2.2.2. (continuación)

	second		and a supervise in success where we want to the second	and in section the state of the section			
	Ior	1	Ar (an ³ /s)	η	logr ₁	logT'2	
	5	III	2,84E-12	0.807	4.0	5,9	
	8	IV	5,95E-12	0.764	4.3	6.1	
	8	V	1,51E-11	0,958	4.7	6,1	
	8	VI	2,065-11	0.896	4.5	5,9	
	5	VII	3,816-11	0,826	4.7	4.9	
	5	VIII	5,836-11	0.817	5.0	7.0	
	5	IX	7,70E-11	0,793	5,0	7,2	
	8	×	1,21E-10	0;879	5.3	7.1	
	8	XI	1,90E-10	0.886	5.7	7.1	
	S	XII	1'.94E-10	0,819	5,4	7.4	
	S	XIII	2,48E-10	0,902	5,6	7.8	
	S	XIV	2,64E-10	0.864	5.4	7.4	
	8	XV	6.41E-10	0,873	6.4	8.0	
•	6	XVI	7.00E-10	0,817	6.4	8,0	
	CA	i	1.03E-13	1,021	3,3	4,7	
	CA	11	7.79E-13	0.936	3.5	4.9	
	CA	111	3.31E-12	0.922	4.1	5.9	
	CA	IV	6.79E-12	0.010	3.7	4.7	
	CA	V	1.35E-11	0,896	4.4 -	6.4	
	CA	VI	2.39E-11	0.949	4.7	6.3	
	CA	VII	3,49E-11	0.916	4.7	6.5.	
	CA	VIII	4.82E-11	0.867	4.7	6.9	
	CA	IX	9.37E-11	0.995	5,3	6.7	
	CA	x	9,68E-11	0.931	5.1	6.5	
i.	CA	XI	1.47E-10	0.866	5.4	7.0	
	CA	XII	1.79E-10	0.843	5.4	7.2	
	CA	XIII	1.73E-10	0.784	4,19	7.9	
	CA	XIV	3,35E-10	0,903	517	7.3	
	CA	χv	4.92E-10	0.913	6.0	7.4	
	CA	XVI	4.70E-10	0.854	5,8	7.6	
	CA	XVII	7.08E-10	0.951	6.0	7.8	
	CA	XVIII	5,25E-10	0.866	5.6	8.0	

Tabla 2.2.2. (continuación)

I

.)	Ion	A_{r} (cn ³ /s)	η	logr ₁	jogľ ₂
	CA XIX	9.06E-10	0.833	6.3	B.Ò
	CAX	9.396-10	0.779	6.3	8.0
	FE I	1.266-13	0.897	3.0	5.6
	FE 11	8.53E-13	0,935	3.6	5.4
	FE 111	3.26E-12	0.787 -	3.3	6.3
	FE IV	7.63E-12	0.960	4.4	4.0
	FE V	1.41E-11	0.929	4.5	4.3
	FE VI	2.36E-11	0.917	4.7	4.5
-	FE VII	3.33E-11	0.876	4.6	6.8
101	FE VIII	4.15E-11	0.714	4.7	7.3
	FE IX	9.45E-11	0.990	5.3	4.9
	FE X	1.12E-10	0.963	5.2	6.8
	FE XI	1.70E-10	0.991	5.5	6.9
-	FE XII	1.85E-10	0.956	5.4	4.8
	FE XIII	2.68E-10	0.976	5.6	7.2
	FE XIV	2.51E-10	0.904	5.4	7.4
	FE XV	4.66E-10	1.010	5.8	7.2
	FE XVI	6.63E-10 -	1.034	6.0	7.4
	FE XVII	5.47E-10	0.875	5.9	- 7.3
	FE XVIII	6.28E-10	0.883	5.9	7.5
ŝ.	FE XIX	6.52E-10	0.856	5.8	7.8
	FE XX	1.07E-09	0.935	6.1	7.7
	FE XXI	1.65E-09	0.961	6.4	7.8
	FE XXII	1.24E-09	0.883	6.1	7.9
	FE XXIII	1.59E-09	0.941	6.2	8,0
	FE XXIV	1.31E-09	0.884	6.0	8.0
4	FE XXV	1.40E-09	0.795	6.2	8.0
	FE XXVI	1.35E-09	0.737	6.1	8.0
	NII	1.63E-13	0.810	3.0	5.3
	NIII	9.95E-13	0.932	3.7	5.3
12	NI III	3.23E-12	0.947	4.1	5.7
	NI IV	7.60E-12	0.954	4.4	6.0

Tabla 2.2.2. (continuación)

I

	Ion	A_{r} (cm ³ /s)	η	logr ₁ logr ₂	
	NIV	1.29E-11	0.859	4.2 6.6	
	NI VI	2.63E-11	0.976	4.9 6.3	
1	NIVII	4.08E-11	0,960	5.0 6.6	
	NI VIII	5.74E-11	0.946	5.0 6.8	
	NI IX	7.34E-11	0.910	5.0 7.0	
	NI X	7.17E-11	0.746	5.3 7.5	
	NIXI	1.36E-10	0.945	5.2 6.8	
	NI XII	1.85E-10	0.957	5.4 6.8	
	NI XIII	2.42E-10	0.964	5.5 4.9	
. 1	NI XIV	2.80E-10	0.950	5.5 4.9	
	NI XV	3.35E-10	0.942	5+5 7+1	
	NI XVI	3.428-10	0.089	5.4 7.6	
	NI XVII	6.72E-10	1.008	5.9 7.3	
1	NI XVIII	1.07E-07	1.055	6.2 7.6	
	NI XIX	8.62E-10	0.920	6.1 7.5	
	NI XX	8.55E-10	0.808	6.0 7.6	
	NI XXI	8.76E-10	0.862	5.9 7,9	
	NI XXII	1.46E-09	0.942		
	NI XXIII	2.11E-09	0.940	4.5 7.9	
	NI XXIV	1.58E-09	0.085	4.2 8.0	
14	HI XXV	2.31E-09	0.960	6.4 B.O	
	NI XXVI	2.29E-09	0.932	6.4 B.O	
	NI XXVII	1.60E-09	0.786	6.2 8,0	
	NI XXVIII	1.49E-09	0.726	6.0 B.O	

y además este intervalo corresponde a temperaturas generalmen te más altas que las que corresponden al intervalo dado por AP, el cual se definió de forma que

$$\frac{n(Z,z,+1)}{\sum n(Z,z)} < 10^{-4} \text{ si } T > T_2 \text{ y } T_1 \equiv T_2 / 10^3$$

Esto hace que el intervalo pueda ser algo mayor sin aumentar el error en el ajuste porque hay un cambio en el comportamien to de $\alpha_{r} \alpha T^{-\eta}$ justamente en $kT^{2}I_{H}$ (Tucker, 1975):

$$a_{n}(Z, z-1) \propto T^{-2} \ln(\lambda)$$
, si $\lambda >> 1$

y $a_p(Z,z-1)\sigma z^4 - \frac{3}{2} \ln(1/\lambda)$ si $\lambda <<1$

Una posible forma de aumentar la longitud del intervalo de forma que abarque los dos casos anteriores es mediante una fórmula de tres parámetros como por ejemplo la propuesta por Tarter (1971) (compárese con 3.3.19 y 2.2.23)

 $\alpha_{r} = A_{r} \lambda^{-\frac{1}{2}} (1 + B_{r} \ln \lambda + C_{r} \lambda^{-\frac{1}{3}})$

aunque esto tiene la desventaja de aumentar el espacio de memoria de computadora.

Los parámetros A_r y n para el Fe también los calcularon Woods, Shull y Sarazin(1981) a partir de secciones rectas de fotionización calculadas cuánticamente para las distintas sub capas 1s, 2s, 2p, etc. (Reilman y Manson, 1978) para calcular ^{α}n_V integrando numéricamente a (2.2.5). Shull y Van Steenberg (1982) dieron A_r y n para los iones del Ca y Ni extrapolando e interpolando a α_r sobre secuencias isoelectrónicas. Estos resultados difieren por factores de 1.5 a 0.3 o más de los de la tabla 2.2.2. En ninguno de los dos artículos anteriores se dan valores para T_1 o T_2 . Como se ve, existen posibilidades de mejorar los cálculos del coeficiente de recombinación radiativa total me diante un cálculo más preciso de la sección recta de fotoioni zación al nivel de valencia y a niveles cercanos. Además tam bién se pueden mejorar otros datos atómicos que se relacionan con la recombinación radiativa. Así por ejemplo, se debe determinar cuál es el nivel máximo al que puede haber recombina ciones efectivas ya que en la aproximación de densidad cero el número de niveles que hay que sumar en principio es infinito, pero en la realidad las recombinaciones a partir de un - cierto nivel n_o ya no son efectivas porque un electrón en un nivel más alto que n_o es fácilmente ionizado antes de desexcitarse y llegar al nivel base.

En el espíritu de este trabajo se ha tratado de con seguir el valor más exacto para an sin importar los recursos de computación que exija porque a estos valores se les ajusta ría una fórmula del tipo de (2.2.25), con lo que se elimina el problema del alto consumo de recursos de computación. En tonces se deberían incluir las correciones mencionadas arriba, pero recordemos que la fórmula (2.2.25) garantiza un error me nor al 10% con respecto a los valores teóricos calculados. En tonces no vale la pena tratar de hacer las correciones más fi nas posibles si al hacer el ajuste se van a perder debido al error del 10% inherente a dicho ajuste. En realidad la decisión de si son o no necesarias las correciones o un mayor gra do de sofisticación depende del grado de exactitud que se nece site en la Ec. (2.2.25) y este grado de exactitud depende a su vez del tamaño del intervalo de temperatura en que se hará el ajuste. Por esto usaremos las Ecs. (2.2.18) y (2.2.24) para obtener los parámetros del ajuste (2.2.25), el cual será el que usemos para calcular a, por su bajo consumo de tiempo y memoria.

La fórmula (2.2.25) es 240 veces más rápida que las fórmulas (2.2.18) y (2.2.24) y ahorra un 67% de espacio de memoria al evitar el almacenaje de los valores de a_T , hv_T , s y β para todos los iones.

2.3 Coeficiente de recombinación dielectrónica.

La recombinación dielectrónica de un ion de carga z en el estado de excitación i denotado por X(z,i) es el resultado de dos procesos sucesivos que se pueden representar así:

$$X(z,i)+e(E,l_i) \rightarrow X(z-1, j,nl)$$
 (2.3.1.)

$$X(z-1,j,n1) \rightarrow X(z-1,k,n1) + hv$$
 (2.3.2.)

En el primer proceso (2.3.1.) un electrón libre con una ener gía E y un momento angular inicial 1, es caputrado por el ion X(z,i) en el nivel (nl) excitando a un electrón interno en vez de radiar su energía como en el caso de la recombinación radiativa. Este proceso ocurre cuando la energía del electrón libre E es ligeramente inferior a la energía de umbral de excitación E_m del electrón interno. Cuánticamente ésto es posible ya que normalmente los números nl son muy -grandes así que podemos aplicar el principio de corresponden cia (Burgess, 1965a), esto es, dado que para n y 1 muy grandes un pequeño intervalo de energía AE contiene una gran can tidad de niveles de energía $-I_{H}z^{2}/n^{2}(\Delta E >> 2I_{h}z^{2}/n^{3})$, podemos considerar que estamos en el límite clásico de la mecánica cuántica. Ahora bién, clásicamente la sección recta de exci tación varía suavemente alrededor de $E=E_{m}$. Como la sección recta tiene un valor finito en $E=E_{qr}$, su extrapolación para $E < E_T$ da valores altos para la probabilidad de excitación. El

ion recombinado queda así en un estado doblemente excitado situado en el contínuo. Este estado es por lo tanto inestable y puede dar lugar al proceso opuesto de auto-ionización

$$X(z-1,j,nl) + X(z,k') + e(E',l_{k'})$$
 (2.3.3.)

en que no necesariamente i=k' (i es el estado inicial),

Es posible sin embargo que en vez de autoionizarse, el ion se estabilice mediante el proceso (2.3.3) con lo que el proceso de recombinación se completa. Existe también la posibilidad de que el ion se estabilice con una colision electrónica

$$X(z-1,j,n1)+e(E)$$
 $X(z-1,k,n1)+e(E')$, $E < E'$. Bates y

Dalgarno (1962) estiman la importancia relativa de los proc<u>e</u> sos de estabilización radiativa y colisional usando los tie<u>m</u> pos de vida radiativa y colisional τ_p y τ_c definidos como

 $\tau_{r} \equiv 1/A_{r}(j \rightarrow k)$ $\tau_{c} \equiv 1/K(j \rightarrow k)n_{p}$

donde $A_r(j \rightarrow k)$ es el coeficiente de probabilidad de decaimien to radiativo de Einstein y $K(j \rightarrow k)$ es el coeficiente de exc<u>i</u>tación. Se encuentra que

$$\tau_{n}(j\rightarrow k)/\tau_{n}(j\rightarrow k) = 10^{29}/p\lambda^{4}n_{p}$$

donde p~1 y λ es la longitud de onda de la transición j+k. Entonces para que la estabilización colisional sea tan impor tante como la radiativa se requieren densidades electrónicas muy altas. Cuando λ va de 1000Å a 8000Å, n_p va de 1×10¹ cm⁻³ a 2x10¹² cm⁻³ (Esto es una manifestación más de la importancia de los procesos radiativos sobre los colisionales en una plasma de baja densidad que se comentó en el Capítulo 1)

De acuerdo con lo dicho, el coeficiente de recombinación dielectrónica entre un estado inicial (z,i) y uno final estabilizado (z-1,k,nl) es el producto de la probabili - dad de captura dielectrónica $C_d(z,i \rightarrow z-1,j,nl)$ por la probabilidad de que el ion experimente la transición radiativa (2.3.3) entre todos los posibles caminos que puede seguir (autoioniza ción, estabilización radiativa, etc):

$$\alpha_{d}(z,i+z-1,k,nl) = \sum_{j} C_{d}(z,i+z-1,j,nl) \frac{A_{r}(j,nl+k,nl)}{A(z-1,j,nl)}$$
(2.3.4)

donde se suma sobre todos los posibles estados j en que puede excitarse el electrón interno y A(z-1,j,nl) es la probabil<u>i</u>dad total de decaimiento

$$A(z-1,j,n1) = \sum_{k' < j} [A_{a}(z-1,j,n1+z,k',E')+A_{r}(j,n1+k',n1)]$$
(2.3.5)

donde $A_a(z-1,j,nl \rightarrow z,k',E') = \sum_{k'} A_a(z-1,j,nl \rightarrow z,k',E',l_{k'})$

es la probabilidad de autoionización mediante el decaimiento a algún estado inferior del electrón interno. Para encontrar C_d en términos de A_a se puede suponer que estamos en equilibrio termodinámico estricto, lo cual implica que se cumple el principio de balance detallado puesto que los procesos son uno el inverso del otro, es decir:

 $n_e^{n(z,i)C_d(z,i+z-1,j,nl)=n_e^{n(z-1,j,nl)A_a(z-1,j,nl+z,i)}$

y usando la ecuación de Saha-Boltzmann tenemos

$$\frac{C_d}{A_a} = \frac{n(z-1,j,nl)}{n(z,i)} = C \frac{w(z-1,j,nl)}{2w(z,i)} \exp(-E/kT)$$
(2.3.6)

donde $C \equiv h^3/(2\pi m kT)^{3/2}$

 $E/I_{H^{2}}(z+1)^{2}(1/v_{i}^{2}-1/v_{j}^{2})-z^{2}/n^{2}$ (se supone que (nl)>>j>i)

E peso estadístico.

v_i, v_j ≡ números cuánticos efectivos de los estados i y j respectivamente.

^IH = potencial de ionización del hidrógeno.

Sustituyendo (2.3.5) y (2.3.6) en (2.3.4) se tiene

$$\alpha_{d}(z,i \neq z-1,k,nl) = C \sum_{j} \frac{w(z-1,j,nl)}{2w(z,i)} \times$$

(2.3.7)

$$\times \frac{A_a(z-1,j,nl+z,i)A_r(j,nl+k,nl)}{\sum_{\substack{k' < j}} [A_a(z-1,j,nl+z,k',E')+A_r(j,nl+k',nl)]}$$

El coeficiente de recombinación dielectrónica total se obtiene fácilmente si suponemos que los efectos de interferencia entre los diversos estados finales posibles (z -1,k,nl) no son importantes. Esto será cierto si cada estado da su con tribución más importante a distintas energías, lo cual ocurre casi siempre. Entonces simplemente sumamos para obtener el coeficiente total

$$\alpha_{d}(z, i \rightarrow z-1) = \sum_{k nl} \alpha_{d}(z, i \rightarrow z-1, k, nl)$$
 (2.3.8)

Los cálculos se simplifican si suponemos que todos los iones están en el estado base de forma que i=g. Esta suposición se fundamentó ampliamente en la sección 1.3. Entonces podemos denotar al coeficiente dado por (2.3.8) simplemente con la carga z para cada elemento Z de forma que

 $n_{a}n(Z,z+1)\alpha_{d}(Z,z)$

da el número de recombinaciones dielectrónicas por unidad de volumen por unidad de tiempo. n(Z,z+1) es la densidad (partículas por unidad de volumen) del ion de carga z+1. La dependencia de $\alpha_d(Z,z)$ en la temperatura se sobreentiende.

Las expresiones (2.3.7) y (2.3.8) muestran que el cálculo de α_d resulta muy laborioso ya que depende de la r<u>e</u> copilación de muchos datos atómicos y la consideración de m<u>u</u> chos niveles atómicos finales. Además hay que cuidar que el estado final (z-1,k,nl) quede bajo el potencial de ionización del ion z-1. De otra forma en los cálculos se tendría que considerar la probabilidad de una tercera opción: la autoi<u>o</u> nización desde el estado (z-1,k,nl) o autoionización secund<u>a</u> ria compitiendo contra un segundo decaimiento radiativo est<u>a</u> bilizador. La autoionización secundaria sólo es importante en algunos casos aislados como en el Fe X y Fe XIV (Blaha, 1972).

Una suposición que simplifica los cálculos es considerar que en las Ecs. (2.3.7) y (2.3.8)

$$k \equiv i \quad y \quad k' \equiv i$$
 (2.3.9)

Esta es una condición suficiente y a veces necesaria para que el proceso (2.3.2.) estabilice al ion z-1. Ade más es normalmente la más importante cuantitativamente. Es ta simplificación elimina la sumatoria sobre k en (2.3.8). En este caso la Ec. (2.3.7) queda en términos del cociente

$$\frac{A_{a}(z-1,j,nl \rightarrow z,i)A_{p}(j,nl \rightarrow i,nl)}{A_{a}(z-1,j,nl \rightarrow z,i)+A_{p}(j,nl \rightarrow i,nl)}$$
(2.3.10)

Los primeros cálculos de α_d que se hicieron (Massey y Bates, 1942; Bates y Dalgarno, 1962; Bates, 1962 y Seaton, 1962) su ponian que $A_a >> A_r$ de forma que el cociente (2.3.10) se apro ximaba a $A_r(j,nl \rightarrow i,nl)$ y como usualmente (nl)>>(j)

$$A_{r}(j,nl+i,nl) \approx A_{r}(j+i) = \frac{8\pi^{2}e^{2}v^{2}}{mc^{3}} \frac{w(z-1,i)}{w(z-1,j)} f(i,j) \quad (2.3.11)$$

donde $v \equiv$ frecuencia de la transición $i \neq j$

f(i,j) = intensidad de oscilador de la transición i → j (absorción)

Sustituyendo (2.3.9) y (2.3.11) con $A_a >> A_r$ en (2.3.7) y (2.3.8) se tiene que

$$\alpha_{d}(z,i \rightarrow z-1) = C'T^{-\frac{3}{2}} \sum_{nl j} \frac{w(z-1,j,nl)}{2w(z-1,j)} (hv)^{2} f(i,j) \exp(-E/kT)$$
(2.3.12)

donde C'≡he² (2π/m⁵c³k³)^{1/2} y se supuso que w(z-1,i)≅w(z,i) porque (nl)>>i. Además como también (nl)>>j se puede sup<u>o</u>ner que

$$w(z-1,j,n1) \cong 2n^2 w(z-1,j)$$

La expresión (2.3.12) tiene el defecto de diverger como

 $\sum_{n=n_0} n^2 \exp(-z^2 I_H / n^2 kT)$

cuando se suma sobre nl'así que hay que cortarla, pero ésto subestima el valor de α_d .

Burgess (1964c) encontró que la causa de este com portamiento estriba en que para n y l suficientemente grandes $A_a << A_p$ así que el cociente (2.3.10) tiende a cero conforme n,l $\rightarrow \infty$. Este hecho introduce un factor de corte en la serie que la hace converger, pero para entonces el valor de α_d aumenta considerablemente debido a la gran cantidad de sumandos en la serie. Los cálculos de Burgess mostraron que la recombinación dielectrónica puede ser más importante que la radiativa a ciertas temperaturas.

Como se ve es necesario conservar intacto el cocien te (2.3.10), pero esto implica un trabajo considerable porque hay que calcular y extrapolar a energías bajo el umbral (del orden de $E_T - z^2 I_H / n^2$) las secciones rectas de excitación colisional $\sigma(i,E,l_i \rightarrow j,nl)$ para cada transición y cada ion.

Para simplificar los cálculos Burgess (1965b) en contró que la contribución importante a α_d viene de intervalos de temperatura y energía en que el factor $\exp(-E/kT)$ es suave de forma que E se puede remplazar por un valor efec tivo E. Además α_d es sensitiva a la elección de $\sigma(i,E,l_i,j,nl)$ para l grande donde como ya se dijo el cociente (2.3.10) tien de a cero, así que se pueden tomar valores representativos de σ . Estas simplificaciones permiten expresar a (2.3.12) de la forma

 $\alpha_{d}(z,i+z-1) = T^{-3/2} \sum_{j} \phi(E,z) f(i,j) \exp(-\overline{E}/kT)$ (2.3.13)

donde la función ϕ se puede separar en dos funciones A y B con un error menor del 10%

 $\phi = 3.0 \times 10^{-3} A(x) B(z)$

y donde

 $A(x) = x^{\frac{1}{2}}/(1+0.105x+0.015x^{2}), x>0.05$ $B(z) = z^{\frac{1}{2}}(z+1)^{\frac{5}{2}}/(z^{2}+13.4)^{\frac{1}{2}}, z \le 20$ $\overline{E} = h_{V}/a = hc/\lambda a$ $a = 1+0.015z^{3}/(z+1)^{2}, \overline{E}/kT \le 5.0$ $x = 1/\lambda R(z+1)$ R = constante de Rydberg.

 λ = longitud de onda de la transición $i \rightarrow j$.

La fórmula (2.3.13) corrige a (2.3.12) gracias a los valores efectivos de E y σ que usa y dentro de un error de un 10% ahorra el cálculo de 160 000 integrales de Coulomb según Burgess.

Posteriormente Burgess y Tworkowski (1976) dieron una corrección a la expresión (2.3.13) para iones de la secuen cia isoelectrónica del helio en la forma de un factor multipli cativo que se debe añadir al miembro de la derecha de (2,3.13) que es

 $C''=0.84+0.5/(z+1)^{2}+0.03(z-11)/[1+4.5\times10^{-5}(z-11)^{3}] \qquad (2.3.14)$

El uso de la fórmula (2.3.12) fuera de sus rangos de validez $\overline{E}/kT \le 5.0$ y x>0.05 puede aumentar considerablemente el error con el valor de α_d como lo hace notar Storey (1981)(la restricción z ≤ 20 no parece ser tan fuerte) aunque en general la recombinación dielectrónica no toma su máximo valor fuera de estos intervalos. Esto se ve en la tabla 2.3.1 en que se tomaron precisamente aquellos iones en que Storey argumenta que la recombinación dielectrónica es más importante que la radiativa fuera de los rangos de validez de (2.3.13)

Tabla 2.3.1.

Algunos va	lores de a _d qu	e cambian cuando	no se suman las -
transicion	es fuera del r	ango de validez	de (2.3.13).
Log T CII	α _d ×10 ¹²	α _d *×10 ¹²	$(\alpha_d / \alpha_d^m) \times 100\%$
4.2	0.362	0	0.67
4.8	44.3.	43.7	82.1
CIII			
4.2	6.26	0	10.9
4.8	57.2	57.0	100.0
NIII			말 아이지 않으면
4.2	0.0561	0	0.08
4.8	41.1	41.0	61.7
NIV		and the second second	
4.2	2.38	0	3.96
4.8	58.69	58.66	97.96

 α_d = valor calculado sumando todas las transiciones.

 α_d^* = valor calculado sumando sólo las transiciones con E/kT>5.0 y x<0.05

 α_d^m = valor máximo de α_d

Una deficiencia más importante que la limitación de su rango de validez en E y T de la fórmula de Burgess d<u>a</u>da por (2.3.13) y (2.3.14) ha sido señalada por Jacobs et al. (1977a,b, 1978, 1979, 1980) quienes realizaron un extenso -

trabajo sobre la recombinación dielectrónica que cambia de manera importante los resultados sobre el equilibrio de ionización y emisión de un plasma de baja densidad que se habían realizado con anterioridad. Estos autores eliminaron la segunda identidad en (2.3.9), lo que implica regresar a las fórmulas completas (2.3.7) y (2.3.8). Al hacer el cálcu lo del denominador de (2.3.7), que es la probabilidad total (2.3.5) de todos los posibles caminos que el ion doblemente excitado (z-1,j,nl) puede tomar encontraron que en muchos ca sos éste aumenta considerablemente con respecto al término A_a(z-1,j,nl→z,i)+A_p(j,nl→i,nl) que queda cuando hacemos la suposición (2.3.9). La razón de este aumento es que para al gunos iones pesados hay transiciones a estados excitados que producen autoionización y que tienen un probabilidad más alta que la transición autoionizante al estado base. Por ejem plo, en los iones de las secuencias isoeléctricas del boro al neón los estados doblemente excitados 3d, nl se autoionizan más probablemente al estado 3p que al estado base 2p (Fig. 2.3,1).

Fig. 2.3.1. Captura dielectrónica (a) y transiciones estabi lizadora (d) y autoionizantes (b,c) del nivel doblemente exci tado 3d,nl para las secuencias del B al Ne. La mayor longitud de las flechas denota mayor probabilidad de ocurrencia.

Jacobs et al. también aumentaron el término (2.3.5) mediante la inclusión de un tercer término, pequeño en gen<u>e</u>ral, que es la probabilidad de autoionización radiativa

$$\sum_{k' < j} \int dE_{k'n}(z-1,j,nl \rightarrow z,k',E_{k'})$$

Con las correciones mencionadas arriba el coeficiente de recombinación dielectrónica de algunas transiciones disminuye en muchos casos hasta en un orden de magnitud respecto a los valores de Burgess (Fig. 2.3.2.)

Al sumar sobre todas las transiciones posibles la diferencia entre la fórmula de Burgess y los valores de Jacobs et al. disminuye un poco ya que no en todas las transiciones son importantes las correciones de éstos últimos.

En este trabajo usaremos la fórmula de Burgess dada por (2.3.13) y (2.3.14) ya que da relativamente buenos resultados para casi todos los iones de los elementos ligeros (del He al Ne) que son normalmente los más abundantes. En la suma toria sobre j de (2.3.13) se incluyeron todas las transiciones permitidas desde el estado base: gE1+j de las que se tu vieron datos (Tabla 2.3.2.) ya que son éstas las más importan tes por su alta probabilidad de ocurrencia. Es muy importante tener en mente que ésta es una simplificación que resulta de suponer que las transiciones estabilizadoras más importan tes son las que van del estado j al estado base g∃i (véanse las expresiones (2.3.9) a (2.3.11)). La fórmula de Burgess tiene la ventaja de ser más sencilla de calcular ya que depen de de sólo dos datos para cada transición: f(i+j) y la longi tud de onda. Unicamente el cálculo de los valores de estos dos parámetros para todos los iones de los elementos que esta mos considerando representa un problema grande. En la Tabla

		Li	nea	s p	bern	nitidas	desc	le el	es	tado base
		ägr	upad	das	s er	n secue	ncias	s iso	elé	ctronicas.
	4.) -		ł	H						Не
		1	1s	-	2p		1	1s²	1 S	- 1s2p ¹ Po
		2	11	-	3p		2	н		- 1s3p ¹ P ^o
		3	11 -	-	4p		3	U.		- 1s4p 1 Po
		4	н	-	Sp.		" × Ц			- 1s5p ¹ P°
		5	, H	-	5p					
							+			
1		1 4 (1	Li			1.			Be -
1	1s ²	2s	2 S	-	2 p	2 po	1	1s ² 2	s²	¹ S - 2s(² S)2p ¹ P ^o
2	36	11,		-	3p	2 po	2		Ħ	- 2s(² S)3p ⁻¹ P ^o
3		.11		-	4p	2 po	3		n.	- 2s(² S)4p ¹ po
4			1. 4	-	5p	2 po				
1.17.1										

1.1

Tabla 2.3.2.

В

1	1s ² 2	s ² 2p ² P	·	$2s2p^2$ ² D	i nat
2			-	2s2p ² ² S	
3	15 10,	.0	-	2s2p ² ² p	
4			-	2s ² (¹ S)3	s ² S
5		n	-	2s ² (¹ S)30	1 ² D
6	1.	u .	2-	2s ² (¹ S)40	2 D
7	at an in			2s2p ² 4P	

C

1	$1s^2 2s^2 2p^2$	зр –	2s2p ³ ³ D ^o	
2	. H	29 <u>2</u>	2s2p ³ ³ P ^o	
3	11	-	2s2p ³ ³ S°	
4		-	2p(² P ^o)3s	3 Po
5	. 11	-	2p(² P ^o)3d	3 Do
6		-	2p(² p°)3d	3 po

Tabla 2,3,2. (continuación)

	1	N			
1	$1s^{2}2s^{2}2p^{3}$	4 So	-	2s2p4 4P	
2	11		-	2p ² (³ P)3s	4 P
3	11		-	2p²(3P)3d	4P

0

1	1s ² 2s ² 2p ⁴	зр. –	2s2p ⁵ ³ P ^o	
2	5	. n-	2p ³ (⁴ S ^o)3s ³ S ^o	
З	т — П — Т	-	2p ³ (² D ^o)3s ¹ ³ D ^o	
4	U.	· · · <u>-</u>	2p ³ (³ P ^o)3s ¹¹ ³ P ^o	c
5		<u> </u>	2p3(4S0)3d 3D0	
6	. 11		2p3(2D0)3d1 3D0	
7	а – н. Н	si je	2p ³ (² D ^o)3d ¹ ³ P ^o	
8			2p ³ (² D ^o)3d ¹ ³ S ^o	

F

I

1	1s ² 2s ² 2p ⁵ ² p ^o	. 7	2s2p	6 2 S
2	8 n. 18 n. 1986 n. 19	_	3s ²	P
3		-	3s'	² D
4	H	-	3s"	² S
5	11	-	3d	² D

Ne

1 $1s^{2}2s^{2}2p^{6}$ ¹S - $2p^{5}(^{2}P^{0}_{\frac{1}{2}})3s$ ¹P⁰ 2 " - $2p^{5}(^{2}P^{0}_{3_{2}})3d$ ¹P⁰

Na

1	1s ² 2s ² 2p ⁶ 3s	² S	-	Зp	2 P 0
2	· · · · · · · · · · · · · · · · · · ·		-	4p	2 Po
3	Ĥ			5p	2 P 0

Tabla 2.3.2.

(continuación)

Mg

1	1s ² 2s ² 2p ⁶ 3s ²	۱S		3s(²S)3p	1 Po
2			-	3s(² S)4p	1 po

A1

.

1	1s ² 2s ² 2p ⁶	3s²3p	2 p o	-	3s3p ^{2 2} D	
2		11		-	3s3p ² ² S	
3		ń –			3s3p ^{2 2} P	
4	1	н. К ,			3s²(1S)3d	2 D
5		н.		-	3s²(1S)4s	2 S
6		H		-	352(1S)4d	2 D.
7		н. × "		-	3s²(1S)5s	2 D
8	the second	н			3s3p² 4P	

Si

1 1s ² 2p ² 3s ² 3p ² ³ P	- 3s3p ³ ³ D ^o
2 "	- 3d ³ D°
3 "	- 3p(2P°)4s 3P°

 \mathbf{P}

1	1s ² 2s ² 2p ⁶	3s ² 3p ³	4 S° -	3s3p4 4P	
2		11	. .	3p ² (³ P)4s	4 P
3		н	- 10 -	3p ² (3P)3d	⁴ P

S

1	1s²2:	s ² 2p ⁶ 3	3s²3p	4 3 p	-	3s3p ⁵ ³ po	
2			•			3p ³ (⁴ S ^o) ⁴ s ³ S ^o	
3			Ē			3p ³ (² D ^o)4s ¹ ³ D ^o	
4			t			3p ³ (4S°)4d 3D°	

Tabla 2.3.2. (continuación)

Cl

1	$1s^2 2s^2 2p^6$	3s ² 3p ⁵ ² Po	-	3s3p ⁶ ² S
2		11	-	3p4 (3P)4s 2P
3		1 <u>1</u>		3p ⁴ (¹ D) 3d ² S
4		н	-	3p ⁴ (³ P)3d! ² P
5			-	3p ⁴ (³ P)ed ¹¹ ² D
t, i		Sarah Carl		adel in the t

 $1 \quad 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} \ {}^{1}S = 3d[\frac{3}{2}]^{\circ}(1p_{0} - 3d_{2})$

κ

Α

1 $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}S - 4p^{2}po^{2}$ 2 " $- 5p^{2}po^{2}$

Tabla 2.3.3.

Longitudes de onda e intensidades de oscilador para las transiciones de la tabla 2.3.2.

Ion ¹	Num²	λ(Å) ³	£4	Ref. λ^{5}	Ref. f ⁶	
нт	1	1215.670	0,41620	WS	ws	-1
	2	1025.720	0.07910	ws.	ws	
	3	972.537	0.02897	WS	WS	
		949.743	0,01394	ws	ws	
	5	937.804	0,00780	ws	WS	
C 11	1	1335.300	0.27000	ws	ws	
1	2	1036.800	0.05900	WS	WS	
		904.090	0.52000	WS	ws	
1.27 . 14 . 4	4	858.410	0.04600	ws	ws	
	5	687.250	0.26000	WS	ws	-
C 111		977.026	0.81000	ws	ws	
1.1.1.1	. 2	386.203	0,26000	WS	ws	
the second	3	310,171	L^{-1} λ^{5} f^{-6} 0.41420 WS WS 0.07910 WS WS 0.02897 WS WS 0.01394 WS WS 0.00780 WS WS 0.007900 WS WS 0.05900 WS WS 0.05900 WS WS 0.052000 WS WS 0.04600 WS WS 0.26000 WS WS 0.26000 WS WS 0.28400 WS WS 0.28400 WS WS 0.02630 WS WS 0.02630 WS WS 0.02630 WS WS 0.14100 WS WS 0.17000 WS WS 0.17800 WS WS 0.22000 WS WS			
C IV		1549.100	0.28600	ws	ws	
4.0	2 ·	312.430	0,20000	WS	WS	÷
	. 3	244.907	0.05970	ws	WS	
	•••	222.791	0.02630	ws	ws	
C V	1	40.270	0.64700	WS	WS	
	2	- 34.973	0.14100	ws	ws	
	3	33.426	0.05400	м	e	
N 11	1	1085.100	0,17000	w s	ws	
1. 1.	- 2	916.340	0.22000	ws	ws	
	3 .	644,990	0,23000	ws	ws	
	TA.	671.480	0,17800	ŵ S	ws	
199	5	533.670	0,26000	ŴS	ws	
1.1	6	529.680	0.08200	ws	ک	
-N 111	S. F	990,980	0,18000	WS	WS	
· · · · ·	2	764.010	0,11000	W S	WS	
	3	685,710	0.45000	IV S	ws	
Same	4-54	452,110	0,04600	WS	W.S	

Tabla 2,3,3.

(continuación)

Ion ¹	Num².	·λ(Å) 3	f ⁴	Ref. λ^5	Ref. f ⁶
	5	374,360	0,39000	WS	ws
	6	314.809	0.10180	M	Gr
N IV		765.140	0,64000	WS	VS
	2	247.205	0,55000	W S	ws.
NV		1240.100	0,23400	we	w c
	2	209.280	0,23500	wr	
	3	162.562	0.06690	w c	ws.
N VI		14 . The			
	1.	28.787	0,67400	ws	ws
t 1825	.2	24.898	0.14400	ws	ws
	. 3.	23.771	0.05500	ws	WS
0 11	1	833.800	0.43000	We	٣s
	. 2	539.370	0.11000	10 C	w c
Sec.	3	430.090	0.32000	we	
0 111	1	834.500	0,15000	w s	WS
		703.360	0,18000	ws	N I
	3	507.930	0,19000	WS	W S
1º ret		374.120	0.08100	WS	ws
1. 11 T. 1. 1.	5	305.720	0.43000	ws	2.00
	6	303.660	0.14000	ws	WS.
0 14		789.360	0.15000	ws	ws
م دجان	- 2	609.350	0.10000	WS	ws
	3	554.370	0.30000	WS	ws
de la t		279.830	0.05000	ws	ws
A4 1	5	238,500	0,50000	ws	ŵs
0 V		A79.710	0.51000	Ne	ws
S. 5. 1	2	172,140	0.59000	ws	WS.
0 11		876.1304	0,07000		
Contrast.	1	1033.800	0,19600	ws	ws
	2	150,100	0.26200	W S	WS
	3	115,824	0,07200	M	е

Tabla 2.3.3.

(continuación)

Ion ¹	Num².	·λ(Å) ³	ſч	Ref. λ^5	Ref. f ^s
0 VII					
	1 B	21.602	0,67400	WS.	WS
	2	18,627	0.14600	wr S	ws
1	3	17,768	0.54000	м	e
NE II	1 4	461,280	0.33000	- ws	WS
34 4.1	2	446.362	0.01730	M	Gr
1.46	3	406.276	0.00650	AL	Gr
i and i	4	361.771	5,430E-04	M	Gr
	5	357,025	0,00450	AL	Gr
NE 111	1	489.540	0.26000	ws	ws
1.1	2	313.350	0.01000	WS	ws
	3	283.410	0.05700	w S	ws
S. 2. 1.		267.290	0,03400	ws	ws
	5	251.330	0.21000	ws	w s
	6	229.060	0.09600	WS	ws
1.	7	227,620	0.12000	ws	W.S
1. 4	8	227.400	0.05500	ws	ws
NE IV	- 7 7 - 1	K43 030	0 74000	1.1	1.1
		5421020	0.34000	ms .	w3
	-	208.030	0.09500	. U J	~ 3
-	3	1/2+567	0.53000	M	ar
ME V	19 15	571.040	0.11000	WS	ws
· · · · ·	2	482.150	0.14000	WS	ws
	3	358,930	0.14000	WS	ws
	4	167.700	0.04500	M	sw
	5	143.320	0.61000	ws	ws
·	6	142.610	0.20000	WS	ws
NE VI	. 1	561.380	0.14000	ws	ws
	2	434.820	0.03000	WS	WS
	• 3	401.650	0.25000	ws	N'S
	4	138.550	0.02900	ws.	w's
	5	122.620	0.54000	ws	ws

Tabla 2.3.3.

(continuación)

I

I

Ion ¹	Num²,	$\lambda(\Lambda)^3$	f4	$\frac{\text{Ref.}}{\lambda^5}$	Pef. f ⁶
NE VII	1	465,221	0,57000	WS	ک معا
NE VIII					
	•	773.690	0,15200	NS .	WS.
	2	88,134	0.29800	WJ	WS
	-3	67,370	0.07900	e	e
NE IX	1	13,460	0.72300	ws	₩ſ
1. 1. 1	2	11,550	0.14900	ws	ws
	3	10:990	0.57000	e	e
MG II	1.50 5				⁻ **
	1	2797.900	0.94000	ws	w.s
	2	1240,100	2,300E-04	ws	ws
1. N. M.	3	1026.000	0.00100	WS	ivs
MG III		311.770	0 21000	WE	WS
		187.194	0.14000	1.1.1	WS
	4 -		0112000	10.1	14 1 1 2
	1	321.770	0.14000	WS	WS
HG V		767 140	0.22000		we
		333,184	0,22000	W 3	
10 11	1	401,760	0,26000	WS	W.S
NG VII	1.1	્રુકો છે. છેલ			
		433,040	0.10000	ws	ws
	2	366,420	0.11000	ws	201
1. N. N. N.	3	277.690	0.12000	ws	w s
1. 3. 19		95.448	0.05900	M	SW
NG VIII	1	434.620	0.08700	WS	ws
and a fait of	2	337.750	0.04500	ws	WS
1. 20 1	3	314.590	0.21000	ws	ivs.
		02.740	0.02400	ws	WS
1 · · · ·		74 074	0.02400	we	WS
-		/ 7 + 7 / 0	0101000		
10 14	1	368.070	0,31400	WS	WS
6.19.19	2	62.000	- 0.59000	A	A
HO X	19.15		1.8.81		
i . 54	1	614,900	0,12500	WS	WS
'fabla 2,3,3,

(continuación)

I

	Ion ¹	Nuii?.	λ(Å) ³	f	Ref. λ ⁵	Ref. f ⁶
		2	57.691	0,32000	NS	ws
	200	3	44.050	0,08500	ws	ws
	MG XI		9,169	0,74500	WS	ws
		2	7.050	0,15200	WS	WS
		3	7.473	0,05690	WS	WS
	in in	4	7,310	0.02770	ws	ws
	SI 11-			0 (0700		V
			1814-000	0.88300	N S	
		. 2.	1307,600	0.07000	ws	w's
1	* 2 * 4 * 4 1	3	1195.500	0.91000	WS	W S
		•	1263.300	1,20000	w s	ws
		5	1531.200	0,13000	WS	ws
	Sec.	6 .	991.740	0.20000	ws	ws
		7	1022.700	0.02100	WS	W3
	- SI III	1 5	1206.510	1.70000	NS.	ws
12	ф., _с .,	2	566,613	0.04600	ws	WS
2	51 IV		+ 704 700	0 00300	1w 5	ws
٩.	1 1		13781700	0.01300	wc	ws
		~	437.730	0.03300		- CW
		in an in a	361.370	0,01300		
	D1 V	1	117,860	0.19000	w.s -	WS
	1. 14 2	2	97.143	0.84000	WS	WS
	SI VI	1	247,040	0,11000	ws	ws
	61 VII	1	275.460	0,18000	WS	ws
	'SI VIII	1	317,680	0.22000	NS.	ws
	SI IX		347.400	0.08400	WS	ws
			507 AAA	0.00100	WS.	ws
		<u></u>	677+95V	0.07100	W.C.	411
		3	5521410	0,10000	A1	SW
		4	61,480	0.05700		•
	DI X		353,140	0,07300	WS	WS

Tabla 2.3.3.

(continuación)

	I	on ¹	Num².	$\lambda(\Lambda)^3$	ſ4	Ref. λ^5	Fef. f ^s	
			2	275,490	0,03700	ws	ws	
			3	275,790	0.18000	ws	WS	
			4	55,020	0.02300	e	SW	
	÷		5	50,636	0.63000	ws	WS	•
			6	620,129	4,800E-05	Ga	Ga	
	51	XI	1	303.580	0.26400	ws	ws	
			2	- 44.000	0.60000	A		
	SI	XII			1. 1. 24			
ł,			•	506.350	0.10800	WS	٢	
			2	40.990	0.33300	٢.	SW	
1			3	31,090	0.08700	e.	e	
	51	XIII	1	6.660	0.76000	e.	sw:	-
		15	2	5,690	0.15200	e	SW	
		12.34	3	5,410	0.05700	e	e	
-	6		1	1256,100	0.02800	WS	ws	
	6	111		1197.500	0.62000	ws	ws	
	.7 +		2	679.690	1,10000	M	A	
		19.2	3	683.072	0.10000	M	A	
	6	IV	here's	1069.600	0.57000	1.1.1	See.	
			4	460.054	0.37000	6.7	A	
	"		5	553,100	0.08400	iv c	ws	
	6	U	1	0001100	0.07400			
		3	1	786.476	1.46000	MS	WS	
	6	VI		937.070	0.64000	ws	ws	5
			2	249.090	0.07100	ws	ws	
	14		3	191.510	0.02800	ws	ws	
	5	VII		72.029	0.17000	ws	WS	
		2	2	60.804	1.40000	WS	ws	
	5	VIII	1	199.910	0.09600	WS.	WS	
	5	IX						
	ų.	1.	1	226.100	0.16000	e	SW	

Tabla 2.3.3.

(continuación)

	Ion ¹		Num².	λ(Å) ³	f"	Ref. Ref. λ^5 f ⁶		
	S	×	1	263.400	0.19000	ę	sw	
	6	XI	1	290.900	0.07300	ę	SW	
			2	249.500	0.00400	e	sw	
		-	3	190.000	0,08600	e	SW	
			4	43.070	0,05500	e	SW	
	5	XII	1	298,200	0,05100	e	SW	
3.			2	232.800	0,02900	0	sw	
			3 *	222.300	0.16000	e	SW	
		10-1	4	39.240	0,02200	e	sw.	
			5	36,519	0.63000	2	sw	
	6	×111	1	238,800	0.25000	e	sw	
-14	6	XIV	P			Ъ÷,	e 41	
	2	1.	1 - 3	423.900	0,92000	e	cw.	
	1		2	30,560	0.34500	c	6	
1			1.	23.100	0.08400	e	1.1	
	Б	×v	1 -	5.050	0.77000	e	SIV	
-ų.		1.44	2	4.310	0.15300	e	SW	
			3	4.100	0.58000	e	е	
	CA	11	1	3945,200	1.04000	ws	ws	
	-		2	1650,520	2.760E-04	M	Gr	
	CA	10	1	660.540	0.37000	NS	ws	
	CA	V	1	647.010	0.63000	w.J	WS	
	CA	VI	1	637.100	0.88000	w ľ	145	
	CA	111	1	634.720	0,43000	w J	ws	
	CA	VIII	1	592,220	0.41000	IV S	iv s-	
			5	183.680	0,08100	w s	۰ ک میل	
	CA	1X	1	466.230	1.07000	ws	WS	

Tabla 2.3.3.

(continuación)

Н

I

Ion ¹	Num²,	λ(Å) ³	f4	Ref. λ^5	Ref. f ⁵
CA X	1	563,060	0.53000	WS	ws
	2	111.040	0.14500	ws	WS
1. 1925	3	82.900	0.04700	e	SW
CA XI					
	1	35.213	0.11000	WS	ws
19.00	2	30.867	2.10000	w s	WS
CA XII	1	145.000	0.07700	e	SW
CA XIII	1	166,500	0,13000	e	Siv
CA XIV	4	196.200	0.16000	e	sw
CA XV	1	219.400	0,05100	e	SW
	2	108.600	0.06700	e	SW
	3	144.400	0.06800	6	sw
		24.470	0.05200	e	sw
CA XVI		- 227 . 400	0.04000	e	sw
	2	177.800	0.02300	e	SW
	• 3	170.800	0.12000	е	ŚW
		22.840	0.02100	е	S W
	5	21.586	0.65000	e	SW
CA YUII	1	199.800	0,22000	e	sw
CA XVIII		710.400	0.07700		e
		10.040	0.7/300	e	7 10
		10,000	0,38300	e o	çw
	-	141190	0109200		
	1	3.123	0.07300	e	SW
	2	2.717	0.36300	e	SW
	3	2.580	0.05800	e	sw
FE IX	1	171.060	1.24300	FP	FP
FE X	1	353.411	0,23300	V	r
	2	96.340	0.14800	FP	FP

Tabla 2.3.3.

(continuación)

Ion ¹	Hum ² .	λ(Å) ³	f ⁴	Ref. λ ⁵	Ref. f ⁶
	3	186,330	0.15700	FP.	FP
	4	178.300	0.83200	FP	FP
	5	174,540	1.80000	FP	FP
FE XI	1	361,474	0.41600	V	V
FE XII	1	363,755	0.57800	v	v
	3	194.140	1.22900	wS.	P.P.
FE XIII	1	371,100	0.20100	e	v
FE XIV	0	457.679	0.00458	Ga	V
	1	350.714	0+27700	Ga .	V
	2	201.671	0.15600	V	Ga
and the	3	260.556	1.63000	6,0	Ga
16 . 2. 11	4	219.379	0.35500	64	FP
	5	70.520	0.04200	FP	FP
1. 1. 1.	6	59.370	0.27300	FP	FP
FE XV	Yaşi	284.000	0.80000	SW	SW
FE XVI	1	344,250	0,39800	M	SW
12.00	2	50.418	0.23000	M	e
1	3	36.710	0,06400	SIV	SW
FE XVII	1	16.774	0.06600	Gŀ	66
*** **********************************	2	15.012	2.37000	66	68
FE XVIII	1	102.700	0.05900	ę	SW
FEXIX	1	119.300	0.10000	e	sw
FE XX	1	141.900	0,12000	P	sw
FE XXI	1	160.300	0,04800	e	SIV
	2	138,100	0,05200	e	sw
	3	106.200	0,05200	e'	5 14
		13.060	0,05000	е	SW.

Tabla 2.3.3.

(continuación)

Ion	Nun ² .	$\lambda(A)^3$	f ⁴	Ref. λ^5	Ref. f ⁶
FE XXII					
1 4 - F	12	167,600	0.31000	e	SW
	2	131,200	0.01700	e	S W
	3	126.800	0.09400	e	SW
		12.440	0.02000	e -	s w
	5	11,916	0.66000	e	SW
FE XXIII		148.900	0.15000	e	s w
FE XXIV	1	226,700	0.05200	Ch	Ch
	2	10.800	0.38600	C h	Ch
	4	8.093	0.09600	C h	Ch
FE XXV	1.4.4.	1.868	0.79400	C 4	Ch
	2	1.586	0.15600	C h	C h
	3	1.507	0.05800	Ch	Ch
NI XII	1	306.716	0.20705	r	V
NI XIII	1	316.140	0.37000	V	r
NI XIV	4	318.259	0.51200	v	v
NI XV	1	326,000	0.24900	e	V
NI XVI	1	315.300	0.25000	e	e
	5	55.630	0.06700	e	e
NI XVII	1	255.000	0.74000	v	SIV
NI XVIII	1	302.237	0.36600	м	sw
	2	41.086	0.25000	e	SW
in 10 Adamin'n	з.	29.760	0.06800	e	sw
NI XIX	1	13.790	0.05700	e	e
	2	12.400	2.40000	e	e
NT XX	1	93.600	0.05500	e	SIV
NI XXI	1	190.000	0.07300	e	sw.

Tabla 2.3.3.

(continuación)

Ion ¹	Mum².	λ(Å) ³	f ⁴	Ref. λ^5	Pef. f ⁶	
NI XXII	1	130,000	0,11000	e	sw	
NI XXIII	1	147,100	0.04600	e	sw	
	2	126,700	0.04800	e	SIV	
	3	97,620	0.04800	e	sw	
	4	11.000	0.04900	E	SW	
NI XXIV	1	154.200	0.02900	е	54	
data ing	2 .	120.700	0.01600	e	SW	
	3	116,800	0.08700	е	SW	
1		10,520	0.01900	е	SW	
東京学校	5	10,111	0.66000	e	s w	
NI XXV		137,200	- 0.14000	8	SW	
NI XXVI	-1	206.100	0.05000	e	SW	
	2	9.240	0.38300	e	sw	
	3 -	6.920	0.07600	e	sw	
NI XXVII	1	1.606	0.80000	e	SW	
Ser.	2	1.363	0.15600	e	Siv	
	3	1.295	0,05800	e	s W	

¹ Las líneas listadas pertenecen al espectro del ion en esta columna. Recuérdese que para calcular el coeficiente de recombinación dielectrónica con -(2.3.13) de un ion dado se requieren los datos de las transiciones del espectro del ion en el est<u>a</u>do de ionización previo a la recombinación.

² En esta columna se da el número de transición de la secuencia isoelectrónica a la que pertenece el

Tabla 2.3.3. (continuación)

el ion. En la tabla 2.3.2 se listan las transi ciones de cada secuencia junto con sus correspon dientes números.

- 3,4 Longitud de onda e intensidad de oscilador prome diadas sobre J.
 - ⁵ Referencia para la longitud de onda.
 - ⁶ Referencia para la intensidad de oscilador.

Abreviaturas usadas para las referencias.

 $A \equiv Allen (1963).$

Ch = Chapman (1969).

e ≡ extrapolación o interpolación sobre la se cuencia isoelectrónica.

 $FP \equiv Fawcett$, Peacock y Cowan (1968).

Ga ≡ Garstang (1962).

- Gb = Garstang (1966).
- $Gr \equiv Griem (1964).$

 $M \equiv Moore, C.E.$ (1949, 1952).

SW \equiv Smith y Wiese (1971).

V = Varsavsky (1961).

WS ≡ Wiese, Smith y Glenon (1966) 6 Wiese, Smith y Miles (1969). 2.3.3 se dan los valores de estos parámetros. En algunos casos hubo que extrapolarlos o interpolarlos sobre secue<u>n</u> cias isoelectrónicas. Esto se hizo en base a la teoría de perturbaciones que muestra que λ y f para iones no hidr<u>o</u>genoides dependen de z asi

$$1/\lambda = a_0^{+a_1^{+}z^{+}a_2^{+}z^{2}^{+}\cdots}$$

$$f = b_0^{+}/z^{2+}b_1^{+}/z^{+}b_2^{+}\cdots$$

por lo que al interpolar o extrapolar basta con determinar los coeficientes a₀,...,b₂ por mínimos cuadrados. En los casos en que no se pudieron obtener los datos necesarios se usó la fórmula simplificada de Landini y Monsignori Fossi (1971) quienes encontraron que para iones en las secuencias isoelectrónicas del H, He, Ne y K al Ni

$$\alpha_{d}(z,i\rightarrow z-1) = 2.0\times10^{-4} T^{-3/2} (z+1)^{2} f(0+1) W_{1}^{\frac{1}{2}} exp(-10.6\times10^{3} W_{1}/T)$$

$$cm^{3}/s$$
(2.3.15)

y para las secuencias isoelectrónicas del Li al F, del Na al A y del Cu al Kr

 $\alpha_{d}(z,i+z-1)=2.0\times10^{-4} T^{-3/2}(z+1)^{2} Fexp(-10.6\times10^{3} CW_{1}/T) cm^{3}/s$ (2.3.16)

donde

C ≡ (z+2.3)/3.3 F ≡ f(0+1)AW₁^{1/2} A ≡ 1+3.3z^{1/2}-9.2/z^{1/2}

 $f(0 \rightarrow 1) \equiv$ intensidad de oscilador de la primera trans<u>i</u>ción permitida desde el nivel base n_ol_o al s<u>i</u> guiente nivel n₁l₁ (según las reglas atómicas en este caso $f(0 \rightarrow 1) = \sum_{i=1}^{n} f(i \rightarrow j) = número de electro$ nes en la capa externa.

101 RECOUBINACION I CM³ 185⁻¹1 RECOMBINACIÓN RADIATINA TRANSICION DIELECTRONICA 34 ----- 2 p TRANSICIÓN DELECTRONICA 8 COEFICIENTES TRANSICIÓN DELECTRONICA 10 58 62 LOG 10 1. (*K) 66 70

Fig. 2.3.2. $\alpha_d(z,i\rightarrow z-1,k,nl)$ del SiV para diversas transicio nes i+j según Jacobs et al. (1977b). La línea punteada está calculada con la fórmula de Burgess (1965) (tomada de Jacobs et al., 1977Ъ).

5.0

5 4

Los valores de F son aproximadamente independientes de z ya que $W_1 \sim z$, $A \sim 2.2z^2$, $f(0 \rightarrow 1) \sim 1/z$, así que son constantes para cada secuencia isoelectrónica y fueron calculados por Landini y Mansignori Fossi. Los valores adoptados por estos autores se dan en la tabla 2,3.4.

W₁ ≡ potencial de excitación de la primera transición permitida en eV.

/alores	adoptados de F	(Landini y Monsignori	Fossi,1971)
	Secuencia	F≅f(0→1)AW ₁ ¹ / ₂	
	Li	3	
	Be	10	
	В	10	
	С	10	
	N	15	
	0	20	
	F	15	
	Na	12	
	Mg	25	
1. A.	Al	30	
	Si	30	
	Р	50	
A Start	S	40	
a de la	Cl	50	
	Α	50	m i inter

Tabla 2.3.4.

1

En general las fórmulas (2.3.15) y (2.3.16) dan al menos el orden de magnitud del valor conrrecto para la recom binación dielectrónica.

Aún con todas las simplificaciones que implican, las fórmulas (2.3.13) a (2.3.16) requieren de un espacio de memoria importante y un consumo regular de tiempo de procesa dor por lo que conviene ajustar una fórmula paramétrica a -los valores calculados con dichas fórmulas para calcular la recombinación dielectrónica con una mayor rapidez y menor consumo de memoria de computadora. La fórmula paramétrica propuesta por Aldrovandi y Péquignot (1973)

$$\alpha_{d}(Z,z) = A_{d}T^{-\frac{3}{2}} \exp(-T_{0}/T)[1+B_{d}\exp(-T_{1}/T)]$$
 (2.3.17)

donde Ad, Bd, To y T1 son parámetros que se ajustan para cada ion, resulta ser muy adecuada ya que de hecho tiene la mis ma forma que la fórmula de Burgess (2,2,13) suponiendo (como es el caso frecuentemente) que las transiciones más importan tes en su contribución a la sumatoria sean sólo una o dos con potenciales de excitación =kT_o y k(T_o+T₁) y con intensi dades de oscilador proporcionales a Ad y AdBd respectivamente. Esta observación es muy útil para poder realizar el ajus te por mínimos cuadrados de los parámetros de la fórmula (2.3.17) a los valores exactos calculados con (2.3.13) cuando hay más de dos transiciones que se tienen que sumar. La razón es que la expresión (2.3.17) es extremadamente inestable y resulta muy difícil de manejar en un procedimiento recursivo de ajuste de mínimos cuadrados porque hay una gran cantidad de valores A_d, B_d, T_o y T₁ que se pueden ajustar a los datos con cierta exactitud. Acton en (1970) en su capítulo "What not to compute" prohibe que se intente hacer un ajuste de mínimos cuadrados a esta fórmula, sobretodo cuando hay de por medio errores experimentales. De aquí que se ten gan que conocer con mucha precisión los valores iniciales de los parámetros. Claramente cuando sólo se conocen datos para dos o una transición no es necesario hacer ningún ajuste por minimos cuadrados.

Los cálculos muestran que la recombinación dielectróni ca es una función que aumenta muy rápidamente con la tempera tura hasta alcanzar un máximo para después disminuir como $T^{-\frac{3}{2}}$ al igual que la recombinación radiativa a altas tempera turas (Figs. 2.3.2, 2.3.3 y 2.3.4). El coeficiente total de recombinación dielectrónica esencialmente sólo sirve para -calcular el equilibrio de ionización del plasma para lo cual

LogT

se debe sumar al de recombinación radiativa total:

$$\alpha(Z,z) = \alpha_{p}(Z,z) + \alpha_{d}(Z,z)$$
 (2.3.18)

Esto permitiórestringir el ajuste de la fórmula (2.3.17) en un intervalo de temperatura de T_i a T_s donde T_i es la tem peratura bajo la cual la recombinación dielectrónica no es importante con respecto a la radiativa y T_s es la máxima tem peratura en que la fórmula (2.3.17) da un error menor al 10% excepto para el NeV, MgVII, SiIV, SXI y CaXV en que es menor de 17% en el intervalo de T_i a T_s . T_i se escogió como una temperatura tal que

$$\alpha_d = 0.01 \alpha_p \quad \text{si } T > T_i$$

Los valores encontrados para A_d , B_d , T_o , T_1 , T_i y T_s se dan en la tabla 2.3.5.

Aldrovandi y Péquignot (1973) hicieron este mismo aju<u>s</u> te para los iones de C, N, O, Ne, Mg, Si y S. Los valores que dan para A_d , B_d , T_o y T_1 difieren en la mayoría de los casos en menos del 10% de los de la tabla (2.3.4) aunque hay casos como algunos iones del O y del Si y S en que las dif<u>e</u>rencias son grandes, sobre todo en los parámetros B_d y T_1 -que esencialmente están determinados por la segunda o terc<u>e</u>ra transiciones en importancia. Los casos en que hay mayores diferencias en los valores ajustados se deben a que estos a<u>u</u> tores tomaron menos líneas que las que se listan en la Tabla 2.3.3 y a que los intervalos (T_i , T_s) en que sus ajustes dan un error menor al 10% en α_d (Z,z) son mucho menores que los de la tabla (2.3.4). En efecto, los de Aldrovandi y Péquignot se definieron de forma que

$$\alpha_{d}(Z,z) > 0.2\alpha_{n}(Z,z)$$
 si $T > T_{i}$

I

Tabla 2.3.5,

Coeficiente de recombinación dielectrónica (Ec.2.3.17).

Valores ajustados de

A _d ,	т,	в _д ,	т ₁ ,	Τ _i	У	T _s ,	
<u> </u>	~	~				<u> </u>	

	Ion	A _d (cm³∕s)	т _о (°К)	Bd	т ₁ (°К)	lcgT _i	logTs
	HE I	1.940-03	4,728400	3.13E-01	1.030+05	4,5	8.0
۰.	CI	7,94E-04	1.07E+05	2.310+00	A. 39E104	3.9	8.0
	C II	6,932-03	1,450105	5,15E~01	2.272105	4.0	8.0
	C III	3, BOE-03	9,06E+04	2.150100	3,900105	3,8	8,0
	C IV	3,12E-02	3,440+06	2.010-01	5,85E105	5,5	8.0
	CV	4.82E-02	4,052+04	2,020-01	9,050+05	5,6	B.0
	NI	0.80E-04	1,380+05	3.320100	9,36E104	-4.0	8.0
	N . 11	3.210-03	1.536+05	3,366100	1.440105	4.1	8.0
	N III	1.19E-02	1,830+05	1,410+00	3,040+05	4.1	8.0
	N IV	5.47E-03	1+120+05	2.756+00	5.862+05	3.9	8.0
1	NV	5,080-02	4.756+06	2.726-01	8.30E+05	5.6	8.0
	N VI	6.6BE-02	5.440+06	2.78E-01	1,216+06	5.7	8.0
	0 I	1.36E-03	1.72E+05	1.24E400	1.442105	4.1	8.0
	0 11	2.076-03	1.772+05	4.00E+00	2.136+05	4.1	8,0
	0 111	6.76E-03	1,936+05	3.04E+00	2.176+05	4.2	6.2
	O IV	1.71E-02	2.20E+05	1.950+00	5,856+05	4.2	8.0
2.	0 V	7.085-03	1.320+05	4.120+00	0,30E+05	4.0	8.0
	O VI	7.54E-02	6.25E+06	9,200-01	1,292+04	5.7	8.0
	D VII	8,675-02	7.026404	2.73E-01	1,56E+06	5.8	8.0
	NE I	1.385-03	3.116+05	3.630-02	6.526104	4.3	8.0
	NE II	3.12E-03	2.71E+05	2,946100	2.846+05	4.4	8.0
	NE III	7.420-03	2,59E+05	2.876100	5.32E+05	4.3	8.0
	NE IV	7.45E-03	2,61E105	5-550100	5.420105	4,3	6.3
	NE V	1.440-02	2.620105	3.480+00	5.33E105	4.3	6.3
	NE VI	3.970-02	2+905+05	0,	0.	45.4	8.0
	NE VII	1.05E-02	1.726+05	4,520+00	1.422106	4.2	0.0
	NE VIII	1.36E-01	9.77E+06	8.66E-01	2.05E+06	6.0	9.0
	NE IX	1.27E-01	1.072107	2.626-01	2,390+06	6,1	8.0
÷.	HO I	1.67E-03	5.126104	2.06E-03	8,400104	3.5	8.0
	HG 11-	3.2BE-03	6.13E105	0,15E-01	1.460105	4.7	0.0

Tabla 2.3.5, (continuación)

				1. 1. 24	2.5	5 X X
Ion	A _d (cn∛s)	T _o (°K)	^E d	Т ₁ (°К)	logT _i	logTs
NG III	3.822-03	4,366105	0.	ο,	4.6	8.0
NG IV	S.24E-03	3.92E105	0.	0,	4,5	8.0
MG V	1.466-02	3.400105	0.	0.	4.5	8.0
HG VI	1.746-02	3.366105	9.41E-01	4.010+05	4+5	8.0
HG VII	2.436-02	3.47E105	4.266100	1,10E+06	4.5	4.5
NG VIII	3,756-02	3.57E+05	3.070100	1.768.+06	4,5	8.0
HG IX	1.376-02	2.11E+05	9,01E+00	2.150+06	4,3	8.0
MG X	2.08E-01	1.40E+07	2,602-01	2.75E+06	6.1	8.0
HG XI	1.72E-01	1,500+07	2.57E-01	3,34E+06	6.2	8.0
SI I	1.64E-03	7.956+04	3.91E+00	3,60E+04	3.7	8,0
SI II	1.326-02	1.182+05	3.822-02	1+33E+05	3.9	8.0
SI III	1.12E-02	1,00E+05	1.04E-01	2.312+05	3.8	9.0
SI IV	1.228-02	1.100+06	4.67E100	2.510+05	5.0	8.0
SIV	7.495-03	5,546+05	0,	0.	4.7	B.0
SI VI	1.596-02	4,906105	0.	0.	4.6	8.0
SI VII	2.305-02	4.176105	0.	0.	4.6	8.0
SI VIII	2.726-02	4.126105	8.54E-01	7.120+05	4.6	8.0
SI IX	4.00E-02	4.162105	4.926100	1.080+06	4.6	6.6
SI X	4.776-02	4.220105	4,92E+00	2.496+06	4.6	8.0
SI XI	1.776-02	2.500105	1,122+01	3.00E+06	4,4	8.0
SI XII	2.916-01	1,87E+07	2+326-01	3.57E+06	6.3	8.0
SI XIII	2.14E-01	1.99E107	2.50E-01	4.450+06	6.4	8.0
5 I	7.255-05	1.146+05	٥.	0.	4.0	8.0
S II	4.826-03	1.19E105	2.51E100	9.02E+04	3.9	8,0
S III	9,126-03	1.312105	2.036100	8.546+04	4.0	8.0
S IV	4.246-02	1.762+05	0.	0.	4.1	8.0
SV	2.42E-02	1.466105	2.94E-01	4.486105	4.0	B.0 -
S VI	2.506-02	1.070106	8.50E+00	3+46E+04	5.2	8.0
S VII	1.246-02	6.66E+05	0,	0,	4,8	8.0
5 VIII	2.39E-02	5.01E+05	0.	0.	4.7	8.0
S IX	3,176-02	5.170105	1.400+00	21718+06	# .0 -	÷.0
5 X	3.472-02	4.74E+05	0.732-01	7,200405	4.6	7.1

Tabla 2.3.5. (continuación)

Ion	A _d (an∛s)	т _о (°К)	Ed	т ₁ (°қ)	logr _i	logTs
s Ti	4.865-02	4.94E 105	6.07E+00	2,600+06	4.7	6.7
S XII	6+386-02	4,820105	0,	٥.	4.7	8.0
111X 2	2.08E-01	2.91E+05	1.37E+00	3.970+04	4.4	8.0
S XIV	3.86E-01	2.412+07	7.806-01	5,330+06	6.4	8.0
S XV	2,55E-01	2,532107	2.47E-01	5.660+06	6+5	8.0
CA I	1.566-03	3.632104	4.035-04	5.050104	3.3	- B.O
CA II	9.175-02	4.302105	0.	0,	4.2	8.0
CA III	7.365-03	2,120+05	0,	0.	4.2	8.0
CA IV	2.01E-02	2+1405	0,	0.	4.2	8.0
CA V	4.00E-02	2.150+05	0,	0,	4.2	8.0
CA VI	2,500-02	2.13E105	0,	0,	4.2	8.0
CA VII	1.395-01	3,220+05	8,78E-02	6.99E+03	4.3	6,3
CA VIII	1.140-01	2-826+05	0,	0,	4.3	8.0
CA IX	4.02E-01	2,296+05	6.278-02	2.81E+05	4.3	6.3
CA X	4.54E-02	3.642106	1,750+01	5.12E+05	5,5	8.0
CA XI	2,25E-02	8,726+05	0,	0,	5.0	8.0
CA XII	4,07E-02	7,49E+05	0.	0.	4.9	8.0
CA XIII	5.220-02	6.28E+05	0,	0.	4.0	8,0
CA XIV	5.950-02	6.10E105	6.57E-01	1+520+06	4.8	7.0
CA XV	6.770-02	6.180105	8.326100	4+460406	4.8	6,8
CA XVI	9.645-02	5.946105	٥.	٥.	4.0	8.0
CA XVII	2.80E-02	3.68E+05	1.87E+01	6.15E+06	4.6	8.0
CA XVIII	5.498-01	3.65E106	2.920-01	7.25E+06	6.7	8.0
CA XIX	8.00E-02	4+61E+07	4,16E+00	0+42E+06	6.7	8.0
FE	1,246-02	5.03E+04	٥.	0.	3.4	8.0
FE II	3.65E-02	1.170105	٥.	ο,	3.8	8,0
FE III	7.925-02	2.500+05	ο,	٥.	4,2	8,0
FE IV	1.150-01	3.370105	0.	٥.	4,3	8.0
FE V	1,43E-01	4.46E105	0,	٥.	415	8.0
FE VI	1,46E-01	5,67E+05	0.	٥.	4.6	8,0
FE VII	1,040-01	6.720105	0.	٥.	4.7	8,0
FE VIII	2.10E-01	7,69E105	0,	0.	4.8	8,0

Tabla 2.3.5. (continuación)

Ion	A _d (cn∛s)	т _о (°К)	E _d	т ₁ (°К)	logTi	logfs
FE IX	1.400-01	2.502105	3.300100	1.330+06	4,5	6.5
FE X	6,95E-02	3,54E+05	0,	ο,	4,5	8.0
FE XI	1.11E-01	3.470105	2,850100	3.040+05	4.4	8.0
FE XII	6.04E-02	3,360105	0,	0.	4.5	8+0
FE VIII	2,42E-01	3,700105	2.428100	2,24E+05	4.5	8.0
FE XIV	2.446-01	4-28E105	0.	0.	4.5	8.0
FE XV	1.23E-01	3.490105	1,740+00	2,200+06	4.5	8.0
FE XVI	6,90C-02	7,076+05	3.612101	8,300+05	5.0	8.0
FE XVII	3.846-02	1.140+06	0.	0.	5.1	.8.0.
FE XUIII	6,62E-02	9.716+05	0.	0.	5.0	8.0
FC XIX	7.746-02	8+06E+05	0.	0.	4.9	8.0
FE XX	9.106-02	7.746+05	6,210-01	2.010+06	4.9	7.0
FE XXI	2,916-01	6.80C+05	4-13E+00	8,266+06	4.0	8.0
FE XXII	1.200-01	7.42E+05	0,	0.	4.9	8,0
FE XXIII	3.65E-02	4.82E+05	2,75E+01	1+01E+07	4.8	8.0
FE XXIV	9.138-01	5.79E+07	2.13E-01	1.156+07	6.9	8.0
FE XXV	4.37E-01	5.956107	2.33E-01	1.336+07	7.0	8.0
NI I	1,926-02	7.256+04	0.	0.	3,6	8.0
NIII	5.55E-02	1.520105	0.	0.	3.9	8.0
NI III	1.220-01	3.022105	ο.	0.	4.3	0.0
NI IV	1.910-01	4.156105	0.	0.	4.4	8.0
NIV	2.555-01	5.130+05	0.	0.	4.5	8.0
NI VI	3.04E-01	6.14E+05	0.	0.	4.6	8.0
NI VII	3.20E-01	7.46E105	0.	0.	4.7	8.0
NI VIII	3.030-01	0.94E105	٥.	0,	4.8	B.0
NI IX	2,020-01	1.040+06	0.	0,	4.9	8.0
NIX	6.14E-01	5.38E+05	0,	0.	4.3	8,0
NI XI	4.27E-02	4.120105	0.	0.	4.6	8.0
NI XII	0.500-02	3.94E+05	0.	0.	4.5	8.0
NI XIII	1.330-01	3.870+05	0,	0.	4.5	8.0
NI XIV	7.126-02	3,730+05	ο,	0.	4,5	8.0
NI XU	B+03E-02	3,010105	5.79E-01	1.786106	4.5	Π.Ο
NI XVI	2.876-01	4.450105	0.	ο.	4.6	8.0

¥.

Tabla 2.3.5. (continuación)

				and the summer of the second		and a state of the
Ion	A _d (c⊪∛s)	Т _о (°К)	Ed	Т ₁ (°К)	logTi	logr
NI XVII	1.440-01	3.886102	2.120100	2.672+06	.4.5	B.0
NI XUIII	2.705-01	8.47E+06	1.03E-01	8.01E+06	5.9	8.0
NI XIX	4.400-02	1.220106	0.	0.	5.2	0.0
NI XX	5,78E-02	5.95E+05	0.	0.	4.0	8.0
NI XXI	8.78E-02	8,60E105	0.	0.	5.0	8.0
NI XXII	9.476-02	8.16E+05	5.75E-01	1.436104	4.9	7.0
NI XXIII	1+150-01	0,38E+05	1.17E+01	9.39E106	5.0	7.0 -
NI XXIV	1.336-01	7.87E+05	0.	ο.	4.9	8.0
NI XXV	4.156-02	5.192105	2.81E+01	1.16E+07	4.0	8.0
NI XXVI	1.020100	6.58E+07	2.110-01	1.31E+07	6.7	8.0
NI XXVII	4.67E-01	4.75E107	2.31E-01	1.516+07	7.1	8.0

B

D

$$\frac{n(Z,z+1)}{\sum_{z} n(Z,z)} < 10^{-4} \text{ si } T > T_{s}$$

Esto hace que $T_s \stackrel{\leq}{_{10T_i}}$ mientras que en la tabla 2.3.4 en t<u>o</u>dos los casos $T_s > 10^2 T_i$ y en algunos casos $T_s > 10^4 T_i$.

Shull y Van Steenberg (1982) hicieron el mismo ajuste a $\alpha_d(Z,z)$ con la fórmul 2.3.18 pero usando los valores de -Jacobs et al (1977a,b, 1978, y 1980) para todos los iones de la tabla 2.3.4 excepto para el FeI al FeVII y el NiI al NiIX, y los iones de las secuencias del He y Li en que usaron la fórmula de Burgess (2.3.13). Sus resultados difi<u>e</u> ren de los de la tabla 2.3.4 por factores de ~2.5 a 0.2 en A_d y B_d dando en general valores menores para $\alpha_d(Z,z)$ como era de esperarse. Las diferencias en los valores para los iones del Fe calculados con la fórmula de Burgess se expl<u>i</u> can por la inclusión de nuevos datos atómicos.

Shull y Van Steenberg no dan ninguna indicación sobre el intervalo T_i a T_s aplicable a sus datos.

La fórmula (2.3.18) representa un ahorro del 40% en tiempo de procesador y del 30% en espacio de memoria, por lo que resulta la manera más adecuada para calcular el coeficien te de recombinación dielectrónica de la manera más eficiente dada su exactitud.

3. EL EQUILIBRIO DE IONIZACION Y OTRAS APLICACIONES DEL CALCULO DE IONIZACION Y RECOMBINACION EN EL PLASMA.

Con el cálculo detallado de la ionización y recomb<u>i</u> nación en un plasma de baja densidad ya es posible calcular el equilibrio de ionización de los diversos elementos.

Este cálculo consiste en determinar la fracción de iones de un elemento en un cierto estado de ionización con respecto al total de átomos de un elemento. La utilidad de este cálculo radica en que es necesario para calcular una se rie de características importantes del plasma como son su emi sión en el contínuo, en líneas, la población de niveles de los iones que lo componen, la intensidad de las líneas, etc. Los resultados del cálculo del equilibrio de ionización se dan en la sección 1 de éste capítulo. Como las característ<u>i</u> cas enumeradas pueden variar con el tiempo es indispensable que su cálculo implique un bajo consumo de tiempo y memoria de computadora por lo que el uso de las fórmulas paramétricas y empíricas para calcular la ionización colisional y la recom binación radiativa y dielectrónica totales propuestas en el capítulo anterior tienen su mayor aplicación en este caso.

El cálculo rápido de los procesos atómicos también puede aplicarse en otras cuestiones relacionadas con la dete<u>r</u> minación de los procesos atómicos en plasmas que están en s<u>i</u>tuaciones especiales que no son las más usuales. En la se<u>c</u> ción 2 de este capítulo se analiza el caso de un plasma de b<u>a</u> ja densidad pero situado en un campo radiativo muy fuerte. Cuando este plasma ha sufrido procesos como choques, su temp<u>e</u> ratura no estará determinada por el campo de radiación y éste origina que procesos como la ionización colisional compitan con los procesos comunes en las regiones HII como la fotoion<u>i</u> zación.

3.1. Equilibrio de ionización.

El cálculo del estado de ionización de un plasma consiste en determinar las fracciones

a(Z,z) = n(Z,z)/n(Z)

para cada ion de cada elemento del plasma en función del tiem po y la temperatura electrónica. n(Z,z) es la densidad de iones con carga z de elemento de número atómico Z y n(Z) es la densidad o simplemente abundancia del elemento en cuestión. El objeto de determinar a(Z,z) y no n(Z,z) es lograr mayor <u>ge</u> neralidad en los resultados ya que como se sabe n(Z) varía entre las diversas regiones de la galaxias.

Para encontrar a(Z,z) se resuelve el siguiente sis tema de ecuaciones diferenciales:

 $\begin{aligned} da(Z,0)/dt = n_e^{[\alpha(Z,0)a(Z,1)-C(Z,0)a(Z,0)]} \\ da(Z,z)/dt = n_e^{[C(Z,z-1)a(Z,z-1)]-[C(Z,z)+\alpha(Z,z-1)]} \\ & \times a(Z,z)+\alpha(Z,z)a(Z,z+1)\} \\ & \text{si } 0 < z < Z-1 \end{aligned}$

 $da(Z,Z)/dt=n_{C(Z,Z-1)a(Z,Z-1)-\alpha(Z,Z-1)a(Z,Z)]$

junto con la condición de normalización

$$\sum_{z=0}^{Z} a(Z,z) = 1, \qquad (3.1.1)$$

la condición de neutralidad de carga

$$\sum_{Z}^{2} n(Z) \sum_{z=0}^{2} za(Z,z) = n_{e}, \qquad (3.1.2)$$

y las condiciones iniciales adecuadas

a₀(Z,z) para z=0,...,Z

Estas últimas son las que determinan a qué caso particular se aplicarán nuestros resultados, esto es, están determinadas por las características iniciales de nuestro plasma. Recuérdese que α y C dependen de la temperatura electrónica. En general, la complejidad del problema está en que la temperatu ra también es una función del tiempo en la mayorfa de los ca sos por la emisión del plasma que a su vez depende de a(Z,z). Entonces para determinar a a(Z,z) se tiene que emplear un pro cedimiento recursivo que permita llegar a una solución autoconsistente.

Hay sin embargo una situación que puede aplicarse sin tener que fijar condiciones iniciales y que consiste en suponer que se tiene un estado estacionario. En este caso se dice que hay equilibrio de ionización:

 $dn(Z,z)/dt \equiv 0$ si z=0,...Z

y el sistema de ecuaciones diferenciales se reduce a uno de ecuaciones algebraicas:

$$\alpha(Z,0)a(Z,1)-C(Z,0)a(Z,0) = 0$$

$$C(z, z-1)a(Z, z-1)-[C(Z, z)+\alpha(Z, z-1)]a(Z, z)+$$

+ $\alpha(Z,z)a(Z,z+1) = 0$, con z=1,...Z-1

 $C(Z,Z-1)a(Z,Z-1)-\alpha(Z,Z-1)a(Z,Z) = 0$

(3.1.3)

Súmando las ecuaciones anteriores se llega a que

por lo tanto

Ì

Ī

$$\frac{a(Z,z)}{a(Z,z+1)} = \frac{\alpha(Z,z)}{C(Z,z)} W(Z,z)$$

y usando (3.1.1) se tiene

$$a(Z,z) = \left[\sum_{i < z} X_{i} + 1 + \sum_{i > z} 1/y_{i}\right]^{-1}$$
(3.1.4)

donde $\chi_i \equiv W(Z,i)W(Z,i+1)...W(Z,z-1)$

 $y_{i} \equiv W(Z,z)W(Z,z+1)...W(Z,i-1)$

si 0≤i≤Z

 $y \chi_i \equiv 0$ si i < 0

y_i ≡ 0 si i > Z

Obsérvese que los resultados no dependen explícit<u>a</u> mente de n_e. Cuando se incluye el intercambio de carga ap<u>a</u>recen en (3.1.3) términos del tipo

n(Z',z')a(Z,z)/n

donde (Z',z') es el ion con el que el ion (Z,z) efectua el in tercambio de carga; por ejemplo en el caso del intercambio en tre OII y HI en el sistema de ecuaciones para el O aparece el término $n_{HO}a(8,1)/n_e$.

Además en un plasma de baja densidad la probabilidad

de ocurrencia de los procesos atómicos más importantes (como los coeficientes de ionización y recombinación) dependen – esencialmente de la temperatura electrónica y sólo muy débil mente de la densidad cuando n_e es menor de 10⁺cm⁻³ (Burgess y Summers, 1969), aunque este valor es una cota inferior. En realidad no se ha establecido con precisión qué tanto afecta la estructura atómica la presencia de los electrones en el – contínuo a densidades mayores y en consecuencia cuánto varían los coeficientes de recombinación. Entonces podemos decir – que a bajas densidades el equilibrio de ionización del plasma está determinado por la temperatura electrónica únicamente. Aparentemente la variación con la densidad es muy peque ña a densidades menores a 10⁸ cm⁻³ (Summers, 1974b).

Los resultados calculados usando las expresiones exactas para α_{n} y α_{d} dadas por (2.2.11), (2.2.24) y (2.3.13) y las fórmulas (2.1.10) y (2.1.11) para C se muestran en las Figs. 3.1.1. a 3.1.15. Un aspecto interesante en las gráficas es el comportamiento de la fracción de iones de la secuen cia del Li a(Z,Z-3) de todos los elementos. Se puede obser var que a temperaturas entre 10⁶ y 10⁷°K (excepto para el Ca, Fe y Ni) la curva correspondiente a esta fracción presenta una meseta debido a que hay una sobreabundancia de los iones del siguiente estado de ionización producida por la dificul tad de ionizarlos dada su configuración de capa cerrada (1s²). Esto origina que haya un incremento de recombinaciones de estos iones que aumenta a(2,2-3). Este mismo efecto se observa en los iones de la secuencia del Na para los elementos más pe sados que el N a temperaturas más bajas. Este detalle tiene importancia para la interpretación del espectro del Sol (Mc-Whirter, 1975).

Muchos autores han realizado el cálculo del equil<u>i</u>brio de ionización de plasmas cósmicos de baja densidad como

Fig. 3.1.4. Equilibrio de ionización para los iones de N.

usando las fórmulas de bajo consumo de tiempo y memoria de computadora (2.1.10) ó (2.1.11), (2.2.25) y (2.3.17).

Fig. 3.1.6. Equilibrio de ionización para los iones de Ne.

Fig. 3.1.7. Equilibrio de ionización para los iones de Mg.

Fig. 3.1.8. Equilibrio de ionización para los iones de Si.

Fig. 3.1.9. Equilibrio de ionización para los iones de S.

Fig. 3.1.10. Equilibrio de ionización para los iones de Ca I a Ca X.

de Ca X a Ca XXI.

Fig. 3.1.12. Equilibrio de ionización para los iones de Fe I a Fe XII.

V

Fig. 3.1.13. Equilibrio de ionización para los iones de Fe XII a Fe XXVII.

Fig. 3.1.15. Equilibrio de ionización para los iones de Ni X a Ni XXIX.

Jordan (1969, 1970), Cox (1970), Landini y Monsignori Fossi (1972), Summers (1974b), Shapiro y Moore (1976), Raymond y Smith (1977) y Shull y Van Steenberg (1982). En particular se compararon los resultados de este trabajo con los de Jordan, Summers, Shull y Van Steenberg y se encontró que los resul – tados de estos autores entre sí y con este trabajo difieren por factores entre 0.8 y 1.3 en general. Los resultados de Summers son los más parecidos a los de este trabajo. Para el Ne los resultados de Summers aún difieren por factores pequeños a las temperaturas en que la fracción del iom a(Z,z) es mayor de ~10⁻³ mientras que se encuentran diferencias por factores de 1.6 a 0.6 con los resultados de Shull y Van Steenberg y por factores de 2 a 0.5 o más con los de Jordan.

Para el Mg, Si, S y Ca las diferencias con los resultados de estos autores son por factores de 1.4 a 0.6 o más en la mayoría de los iones y para el Fe y Ni en casi todos los iones las diferencias son mayores por factores 3 a 0.4 llegando hasta factores de 8 ó 9 en algunos iones. Hay que notar que en general se encuentran este tipo de diferencias entre los resultados de los distintos autores señalados arriba que se deben a la gran incertidumbre que hay en los datos y fórmulas empleadas en los cálculos. En general se debe esperar que los resultados de Shull y Van Steenberg sean mejores dado que usan los nuevos resultados obtenidos por Jacobs et al, (1977a,b, 1978,1980) para la recombinación dielectrónica, los cuales están basados en cálculos atómicos más precisos, (véase la sección 2.3). Es to hace que las diferencias entre sus resultados y los de otros autores sean mayores en la región de altas temperaturas principalmente. En general las curvas de las Figs. 3.1.1 a 3.1.15 están corridas hacia la derecha con respecto a las de Shull y Van Steenberg.

Cuando se hace el cálculo del equilibrio de ioniza-

ción usando las fórmulas paramétricas (2,2,25) v (2,3,17) hay que hacer el ajuste de los parámetros A_r, n, A_d, B_d, T_o y T₁ en un intervalo adecuado ya que no es posible que dichas fórmulas conserven su exactitud en un intervalo arbitrariamen te grande. Como los coeficientes de recombinación radiativa y dielectrónica totales sólo sirven para calcular las fraccio nes de ionización a(Z,z) es conveniente ajustar sus fórmulas paramétricas en un intervalo tal que asegure la precisión al realizar el cálculo de a(Z,z). Para tratar el problema se puede suponer en una primera aproximación que estamos en un rango de temperaturas en que sólo son importantes dos iones 👘 adyacentes, o sea que a(Z,z)≅a(Z,z+1) de forma que el resto de los iones representa fracciones muchos menores. Este es el caso de la mayoría de los iones de los elementos más lige-Entonces (3.1.1) y (3.1.4) se reducen a ros.

a(Z,z)+a(Z,z+1)=1

$$a(Z,z) = \frac{W(Z,z)}{1+W(Z,z)}$$
(3.1.5)

$$a(Z,z+1) = \frac{1}{1+W(Z,z)}$$
(3.1.6)

donde $W(Z,z) = \alpha(Z,z)/C(Z,z)$

У

El error en el ajuste en α se reflejará en a(Z,z) y a(Z,z+1)a través del error en W(Z,z). Entonces hay que obtener el error $\delta a(Z,z)$ y $\delta a(Z,z+1)$ en función del error $\delta W(Z,z)$ dif<u>e</u>renciando (3.1.5) y (3.1.6):

$$|\delta a(Z,z)| = |\delta a(Z,z+1)| = f(W(Z,z))\delta W(Z,z)$$

donde $f(W(Z,z)) \equiv 1/(1+W(Z,z))^2$ determina el efecto de δW en

 $|\delta a|$. f(W(Z,z)) tiene un máximo en W(Z,z)=1, o sea que para tener un error mínimo $|\delta a(Z,z)|$, el error en $\delta W(Z,z)$ debe ser mínimo cuando a(Z,z)=a(Z,z+1) así que el ajuste de las fórmu las se debe hacer alrededor de la temperatura en que se da es ta condición. En los casos en que no es válida nuestra aproximación de dos iones porque hay 3 ó 4 iones con fracciones parecidas intervienen varios coeficientes W(Z,z-1), W(Z,z)W(Z,z+1) con valores semejantes así que la exactitud de los cálculos depende en menor medida de la exactitud de cada uno de los coeficientes. Los errores tienden a compensarse y el resultado es una mejor exactitud en el cálculo de a(Z,z).

Los resultados obtenidos para el equilibrio de ioni zación con las fórmulas de bajo consumo de tiempo y memoria de computadora (2.1.10) ó (2.1.11), (2.2.25) y (2.3.17) difieren en menos del 1% de los obtenidos con las fórmulas exactas excepto para los iones de las secuencias del H y el He en que la curva de a(Z,z) no cae tan rápido como los demás y en consecuencia se aleja del intervalo alrededor del cual se hicieron los ajustes; en estos casos las diferencias son del 10% o menos (Fig. 3.1.5).

3.2. Importancia de la fotoionización en el plasma.

Cuando se tiene un plasma cerca de una estrella ca liente, el plasma puede llegar a recibir una fuerte radiación de fotones de alta energía si no hay un medio suficientemente absorbente entre el plasma y la estrella. Esta situación se da en muchos casos además de las regiones HII. Por ejemplo, las estrellas OB en general tienen fuertes vientos que produ cen choques en un medio circundante. Se forma así un cascarón de plasma chocado a temperaturas muy altas y densidades bajas o moderadas. Estos cascarones reciben por lo tanto la radiación fotoionizante de la estrella. Otro ejemplo es el -

de las remanentes de supernovas que se encuentran próximas a estrellas jovenes como el caso de N70 en la nube mayor de M<u>a</u> gallanes. Los modelos teóricos de cuasares para sistemas en absorción con z en absorción menor que z en emisión pueden ser otro caso ya que algunos suponen vientos supersónicos que producen cascarones de plasma chocado que absorbe y aun es im pulsado por la radiación del cuasar (Beltrametti y Perry,1979; Dyson, Falle y Perry, 1980 y Falle, Perry y Dyson, 1981).

En todos los casos anteriores hay varias caracterís ticas comunes:

- I. En general se trata de plasmas de baja densi dad (<10⁴ cm⁻³).
- II. Su temperatura no está determinada como en una región HII por la radiación de la fuente unicamente sino por la potencia del choque (>10⁵°K).
- III. En general el material absorbente ha sido barri do y evaporado por la eyección de material y en los casos de vientos, éstos son ópticamente del gados en primera aproximación. Entonces la radiación es recibida casi sin absorción por el plasma chocado.

En estas circunstancias no es posible asegurar que el principal mecanismo de ionización sea por fotones. La figura 2.1.4 muestra que en un corto rango de temperatura la ionización colisional aumenta muchos ordenes de magnitud. En el caso de algunas regiones HII, la presencia de iones con al tos grados de ionización no corresponde a la temperatura de la estrella o estrellas ionizantes pero la existencia de un vien to estelar puede resolver el problema. Este sería también el caso de las estrellas T Tauri con coronas extendidas altamente ionizadas. La consideración de la fotoionización en el plasma implica elimiar la suposición de plasma ópticamente delgado a todas las frecuencias y por ende los resultados de la sección anterior no son consistentes con un plasma en posibilidad de ser fotoionizado. La razón es que no se considera la absorción de la radiación difusa del plasma. Ahora bién, se puede comparar sin embargo la fotoionización con la ioniza ción colisional para determinar cuál es el proceso determinan te en la ionización del plasma. La fotoionización como proce so importante en el plasma haría depender las fracciones de ionización del plasma con la temperatura de la estrella.

Para determinar la importancia de la fotoionización con respecto a la ionización colisional se deben comparar la tasa de ionización colisional dada por el número de ionizacio nes colisionales por unidad de tiempo por ion en cada unidad de volumen:

$n_{o}C(Z, z, T)$

donde n_e es la densidad electrónica y C(Z,z) el coeficiente de ionización colisional, con la tasa de fotoionización en -las mismas unidades:

$$P(Z,z) = \int_{v_{T}}^{\infty} 4\pi J_{v}(R,*)a(v)/(hv)dv \qquad (3.2.1)$$

donde hv_T es el potencial de ionización, $J_v(R,*)$ es la intens<u>i</u> dad media (energía por unidad de área, tiempo, ángulo solido y por intervalo de frecuencia) que depende de la distancia R a la estrella y del tipo espectral y clase de luminosidad de la estrella (denotado con *) y a(v) es la sección recta de fotoionización. En términos del flujo de la estrella F_v (ener gía por unidad de área, tiempo y por intervalo de frecuencia) se tiene

$$4\pi J_{v}(R, *) = F_{v}(T_{*})(R_{*}/R)^{2} \exp(-\tau_{v}(R))$$
(3.3.2)

donde $\tau_{v}(R)$ es la profundidad óptica y R_{*} y T_{*} son el radio y la temperatura de la estrella. Tomando a T_{*} como la temp<u>e</u> ratura efectiva se puede establecer con buena aproximación p<u>a</u> ra estrellas calientes que

$$F_{v}(T_{n}) = \frac{2\pi\hbar v^{3}}{C^{2}} \frac{1}{\exp(\hbar v/kT_{n}) - 1}$$
(3.3.3)

es decir que emiten como un cuerpo negro a temperatura T.

Entonces sustituyendo (3.3.3) y (3.3.4) en (3.2.2)

 $P(Z,z) = K(R_{*}/R)^{2} \int_{v_{T}}^{\infty} a(v)v^{2} \exp(-\tau_{v}(R))/(\exp(hv/kT_{*}) - 1)dv$

$$\operatorname{con} K = \frac{2\pi}{c^2}$$

Como se ha argumentado arriba, se puede suponer en muchos casos que

así que se tomará $exp(-\tau_v(R)) \approx 1$. Se tomará para a(v) la ex-presión (2,2.17) con los valores de la tabla 2.2.1. Entonces

$$P(Z,z) = K'(R_{*}/R)^{2}T_{*}^{3} \times S(P_{1}+P_{2})$$
 (3.3.4)

donde
$$P_1 = \beta \int_X y^{2-S} / (\exp(y) - 1) dy$$

 $P_2 = (1 - \beta) \times \int_X^{\infty} y^{1-S} / (\exp(y) - 1) dy$
 $x = hv_T / kT_{*}$
 $K! = 6.324 \times 10^{10} \text{ seg} / K^3$

Con un 13% de error máximo (para x>4 el error es prácticamente nulo) se puede usar la aproximación de Wien en (3.3.4) y enton ces

$$P_{1} = \beta \Gamma'(3-5,x)$$
$$P_{2} = (1-\beta) \times \Gamma(2-5,x)$$

donde F(a,x) es la función gama incompleta. En los casos en que no es aplicable la aproximación de Wien la integración numérica de (3.3.5) de x a 6x para 1[<]x^{<4} y de x a 2.5x para x>4 asegura 3 cifras significativas.

Definiremos un radio crítico R en que

$$n_{e}C(Z,z) = P(Z,z) = (R_{e}/R_{e})^{2} p(Z,z)$$

donde $p(Z,z) = K'T_*^3 \times^{S}(P_1 + P_2)$

 $R_{c} = [p(Z,z)/n_{e}C(Z,z,T)]^{\frac{1}{2}}R_{*}$.:.

Podemos expresar nuestros resultados con más generalidad en términos del radio

$$r_{c} = n_{e}^{\frac{1}{2}}R_{c} = [p(Z,z)/C(Z,z,T)]^{\frac{1}{2}}R_{+}$$
 (3.3.5)

que se escala como $n_e^{\frac{1}{2}}$. Obsérvese que p(Z,z) depende de T_# que a su vez esta relacionada con R_# (es decir, R_# y T_# varian con el tipo espectral y clase de luminosidad de la estrella) por lo que no podemos escalar nuestros resultados con 1/R_#. Sin embargo cuando la temperatura T_# permanece constante y sólo cambia el radio R_# (al pasar de una clase de luminosidad a otra sin cambiar de temperatura) es posible usar los resultados ya calculados escalando a r_c con R¹₄/R_#. Asi por ejem= plo, cel radio r¹_c a una cierta temperatura electrónica T para una estrella 06.5 que tiene T_#=40 000°K y log(R_#/R₀)=0.91 se obtiene del radio r_c calculado para una estrella con T_#=40000°K y log(R_#/R₀)=1.06 a la misma T mediante la relación

 $r_{C}^{\dagger} = (10^{0.91} - 1.0^{6})r_{C}$

En las Figs. 3.2.1 a 3.2.4 se da r_c para varios valores de R_a y T_a tomados de Panagia (1973) en función de la temperatura electrónica T para todos los iones del N y O excep to para los de las secuencias del H y del He que prácticamente no se fotoionizan por sus altos potenciales de ionización. Los puntos (r,T) situados sobre las curvas corresponden a radios r>r_c(T) en que la ionización colisional domina a la foto ionización mientras que los puntos (r,T) abajo de las curvas son radios r<r_c(T) en que la fotoionización domina a la ion<u>i</u>zación colisional.

La ionización colisional presenta un máximo a una – cierta temperatura electrónica (Fig. 2.1.4) y hay un cierto – radio r^{*} suficientemente chico y fuera de la estrella para ca da ion en que la fotoionización iguala a este máximo. Entonces para r<r^{*} la fotoionización domina a la ionización colisio nal a cualquier temperatura electrónica. Por otro lado el máximo radio r que se debe considerar alrededor de la estrella

Fig. 3.2.1. r_c para el N y el O para una estrella 04ZAMS (T_{ii} =50000°K, log (R_{ii}/R_{ii})=1.18). Se muestran r_c^{ii} y Tⁱ para el OIII.

Fig. 3.2.2. r_c para el N y el O para una estrella O6III, (T*=40 000°K, log (R_{\star}/R_{\odot})=1.06).

está dado aproximadamente por el radio de la región de ion<u>i</u>zación del elemento en cuestión. Por ejemplo, si el radio de la región de ionización del OI es R_{or} el rango a considerar para r_c está entre $n_c^{\frac{1}{2}}$ R_{*} y $n_e^{\frac{1}{2}}$ R_{or}.

Como el potencial del HI es menor que la mayoría de los iones de otros elementos, podemos sustituir los radios de ionización de cada ion mencionado arriba, por el radio de --Stromgren como una cota inferior para dichos radios. El radio de Stromgren señalado en las Fig. 3.2.1 a 3.2.4 está dado por

$R_{s} = \left(\frac{4}{3}\pi\alpha^{(2)}(1,0)n_{e}^{2}N_{L}^{-1}\right)^{-\frac{1}{3}}$

donde $N_L = \int_{V_L}^{-L_V/(hV)dV} es el flujo de fotones en el contínuo$ $de Lymann y <math>\alpha^{(2)}(1,0)$ es el coeficiente de recombinación del HI a todos los niveles con n22. Obsérvese que R_s se escala como $n_e^{-2/3}$ y no como $n_e^{-1/3}$ como es el caso de r_c. En las figuras 3.2.1. a 3.2.8. se señala R_s para cada caso. La limitación del rango de variación de r_c fija ahora una temperatura T^{*}_c tal que si T<T^{*}_c la fotoionización domina a la ionización colisional para toda r. Las regiones HII (T=8000°K) están en es te caso. En la Fig. 3.2.1 se muestran r^{*}_c y T^{*}_c para el OIII.

CONCLUSIONES

Las fórmulas de bajo consumo de tiempo y memoria de computadora que se han propuesto en este trabajo para el cálculo de los coeficientes de ionización colisional y recombinación radiativa y dielectrónica total son aplicables a cualquier plasma de baja densidad (<10⁶ partículas/cm³) para obtener su estado de ionización en estado estacionario o fue ra de él.

En el caso de la ionización colisional se encontró que la fórmula empírica de Cantó y Daltabuit (1974) (Ecs. -2.1.10 ó 2.1.11) resulta muy sencilla para el cálculo y considerablemente más exacta que otras fórmulas sencillas que han propuesto otros autores.

Para la recombinación radiativa total la fórmula de dos parámetros (2.2.25)

 $\alpha_{r} = A_{r} \left(\frac{T}{10^{4}}\right)^{-\eta}$

puede proporcionar una exactitud adecuada (10%) en un interva lo de temperaturas restringido pero suficientemente ancho para considerar una desviación del estado estacionario de las fracciones de ionización equivalente a un corrimiento de las curvas de ionización alrededor de 1.3 en logT respecto a su posición en equilibrio. Esta fórmula representa un ahorro de tiempo de computadora de más del 99% con respecto a las fórmu las teóricas exactas.

Para la recombinación dielectrónica total la fórmula de cuatro parámetros (2.3.17)

 $\alpha_{d} = A_{d}T^{-3} \exp(-T_{O}/T)[1+B_{d}\exp(-T_{1}/T)]$

da una exactitud del 10% en la mayoría de los casos en el in tervalo de temperaturas donde este proceso es igual o más im portante que la recombinación radiativa total de forma que la exactitud en el cálculo del estado de ionización del plasma prácticamente no se ve afectado por el uso de la fórmula para métrica (2.3.17). El uso de dicha fórmula representa un aho rro considerable de tiempo y memoria de computadora ya que evita el almacenamiento de una gran cantidad de datos atómicos.

Ahora bién, el trabajo de Jacobs et al (1977a, b, 1978, 1980) ha mostrado que se tienen que revisar los resultados relativos a la recombinación dielectrónica. Según estos autores, sólo algunas de las transiciones que se suman pa ra obtener el coeficiente de recombinación dielectrónica han sido incorrectamente tratados hasta ahora. Esto implica que las correcciones que hay que hacer son más importantes en el coeficiente de recombinación dielectrónica de transiciones se paradas (necesario para calcular la emisión del plasma por lí neas de recombinación dielectrónica) que en el coeficiente de recombinación dielectrónica total.

Las diferencias más importantes en el cálculo del equilibrio de ionización entre este trabajo y otros autores se deben a la fórmula usada para la ionización colisional y a la cantidad de datos atómicos de que se dispusieron para el cálculo de la recombinación dielectrónica. En general dichas diferencias aumentan conforme aumenta el peso del elemento en cuestión. Así para los elementos más ligeros (H, He, C, N, O y Ne) los cálculos no difieren prácticamente con los de otros autores mientras que para los elementos más pesados (Ca, Fe y Ni) las diferencias son considerables y la exactitud de este trabajo y en general de los otros autores es muy incierta.

Por otro lado, un cálculo más preciso del estado de ionización del plasma debe incluir los procesos de autoioniza ción e intercambio de carga además de los de ionización coli sional y recombinación. Sin embargo, no son las unicas adiciones posibles. En la literatura diversos autores han mencionado la posibilidad de que haya efectos de interferencia entre los procesos de recombinación radiativa y dielectrónica en aquellos iones en que ambos procesos son comparables. En general este es el caso de los iones de alta carga.

El límite de aplicabilidad de los resultados de la sección 3.1 sobre el equilibrio de ionización del plasma está dado por la densidad y por el campo de radiación externo. A densidades mayores de 10^6 cm⁻³ los efectos de los electrones en el contínuo se empiezan a notar. Por otra parte, un campo de radiación externo suficientemente intenso puede hacer que la fotoionización supere a la ionización colisional como se mostró en la sección 3.2 Al ocurrir esto el equilibrio de - ionización se vería fuertemente alterado.

REFERENCIAS

"Numerical Methods Fhat Work" Harper & Row Pub. ACTON, F.S. 1970. AITKEN, K.L., Harrison, M.F. y Rundel, R.D. 1971. J. Phys. B, 4, 1189 ALDROVANDI, S.M.V. y Péquignot, D. 1973 Ast. Ap. 25, 137 ALLEN, C.W. 1963 "Astrophysical Quantities" 2a. Ed. London Athlone Press (A) BATES, D.R. 1962 Sp. Sci. 9, 77 BATES, D.R. Buckingham, R., Massey, H. y Unwin, J. 1939 Proc. Roy. Soc. London A 170 , 322. BATES, D.R. y Dalgarno, A. 1962 en "Atomic and Molecular Processes", p. 245, Ed. D.R. Bates, Academic Press, Inc. BATES, D.R. y Kingston, A.E. 1963 Pl. Sp. Sci. 11, 1 BELTRAMEITI, M. y Perry, J.J. 1979 Ast. Ap. 82, 99 BELY, D. 1968 J. Phys. B 1, 23 BERGERON, J. y Souffrin, S. 1971 Ast. Ap. 14, 167. BEIHE, H. y Salpeter, E. 1957 "Quantum Mechanics of One and Two-Electron Systems", Sec. 71 BHATNAGAR, D.L., Gross, E.P. y Krook, M. 1954 Phys. Rev. 94, 511 BLAHA, M. 1972, Ap. Lett. 10, 179 BROCKLEHURST, M., 1970 M.N.R.A.S. 148, 417 BURBIDGE, G. Gould, R. y Pottasch, S. 1963 Ap. J. 138, 945 BURGESS, A. 1958 M.N.R.A.S. 118, 477 BURGESS, A. 1964a Proc. Symp. Atomic Collision Processes in Plasmas, Culham AERE Rep. 4818, 63. BURGESS, A., 1964b Mem. R.A.S. 69, 1 BURGESS, A., 1964c Ap. J. 139, 776 BURGESS, A., 1965a Ann. D'Astrophysique 28, 774 BURGESS, A., 1965b Ap. J. 141, 1588 BURGESS, A. y Percival, I.C. 1968 en "Advances in Atomic and Molecular Physics" 4, 109, Ed. D.R. Bates e I.Estermann, Academic, Press. BURGESS, A. y Seaton, M.J. 1960 M.N.R.A.S. 120, 121. BURGESS, A. y Summers, H.P. 1969 Ap. J. 157, 1007.

BURGESS, A. y Tworkowski, A.S. 1976 Ap. J. Lett. 205, L 105. CAMERON, A.G.W. 1973. Sp.Sci. Rev. 15, 121. CANTO, J. y Daltabuit, E. 1974 "Rev. Mex. Astron. y Astrof, 1, 5 COX, D.P. 1970 Ph. D. Thesis, Univ. of California at San Diego. COX, D.P. y Tucker, W.H. 1969 Ap. J. 157, 1157. CHAFMANN, R.D. 1969 Ap. J. 156, 87 (Ch). DITCHBURN, R.W. y Opik, U. 1962 en "Atomic and Molecular Processes", Ed. D.R. Eates, Academic Press. DYSON, J.E., Falle, S.A. E. G. y Perry, J.J. 1980 M.N.R.A.S. 191, 785. FALLE, S.A.E.G., Perry, J.J. y Dyson, J.E. 1981, M.N.R.A.S. 195, 397. FAWCETT, B.C., Peacock, J.J. y Cowan, R.D. 1968 J. Phys. B (Proc. Phys. Soc.) Ser. 2, 1 (FP). FRANCO, J. 1981 Rev. Mex. de Física 27, 475. FRANCO, J. y Daltabuit, E., 1978 Rev. Mex. Ast. Astrofis. 1, 5. GARSTANG, R.H. 1962 Ann D'Astrophysique 25, 109 (Ga). GARSTANG, R.H. 1966 Pub. Ast. Soc. Pacific 78, 399 (Gb). COLDBERG, L. , 1968 en "Interstellar Ionized Hidrogen: Proc. of NRAO-ATO HII Regions Symp." Ed. Y. Terzian, W.A. Benjamin, Inc. GRIEM, H.R., 1964 "Plasma Spectroscopy", McGraw-Hill. (Gr). GRYZINSKI, M., 1959 Phys. Rev. 115, 374. HOUSE, L.L. 1963 Ap. J. Suppl. 8, 307. JACOBS, V.L. Davis, J. Keeple, P.C. y Blaha, M. 1977a Ap. J. 211, 605. JACOBS, V.L. Davis, J., Kepple, P.C. y Blaha, M. 1977b, Ap. J. 215, 690. JACOBS, V.L. Davis, J., Rogerson, J.E. y Blaha, M. 1978 J. Quant Spectrosc. Rad. Transf. 19, 591. JACOBS, V.L. Davis, J., Rogerson, J.E., Blaha, M. Cain, J. y Davis, M. 1980 Ap. J. 239, 1119. JORDAN, C. 1969, M.N.R.A.S. 142, 501. JORDAN, C. 1970, M.N.R.A.S. 148, 17 LANDINI, M. y Monsignori Fossi, B.C. 1972, Ast. Ap. Suppl. 7, 291. MAC ALPINE, G.M. 1972 Ph. D. Thesis, Univ. of Wisconsin. MASSEY, H.S.W. y Bates, D.R. 1942 Rep. Prog. Phys. 9, 62. MoWHIRTER, R.W.P. 1968 en "A Survey of Phenomena in Ionized Gases", International Atomic Energy. Agency.

MCWHIRTER, R.W.P. 1975 en "Atomic and Molecular Processes in Astrophysics". Ed. M.C.E. Huber, A. Nussbaumer, Geneva Observatory. McWHIRTER, R.W.P. y Hearn, A.G. 1963 Proc. Phys. Soc. 82, 641. MENZEL, D.H. y Pekeris, C.L., 1935 M.N.R.A.S. 96, 77. MOORE, C.E. 1949 "Atomic Energy Levels", Vol. 1, N.B.S. Circ. 467, US Government Printing Office (M). MOORE, C.E. 1952 "Atomic Energy Levals", Vol. 2, N.B.S. Circ. 467, US Coverment Printing Office. (\overline{M}) . OSTERBROCK, D.E. 1974 "Astrophysics of Gaseous Nebulae", W.H. Freeman. PANAGIA, N., 1973 Ap. J. 78, 929. PEART, B. y Dolder, K.T. 1968a J. Phys. B. 1, 240. PEART, B. y Dolder, D.T. 1968b J. Phys. B. 1, 872. PETERKOP, R.K. 1977 "Theory of Ionization of Atoms by Electron Impact", Colorado Associated Univ. Press. RAYMOND, J. Ch. 1976 Ph. D. Thesis, Univ. of Wisconsin-Madison. RAYMOND, J. Ch. y Smith, B.W. 1977 Ap. J. Suppl. 35, 419. REILMAN, R.F. y Manson, S.T. 1978. Phys. Rev. A 18, 2124. RUDKJOBING, M. 1940 Pub. Copenhagen Obs. No. 124, SEATON, M.J. 1958, Rev. Mod. Phys. 30, 979. SEATON, M.J. 1959 M.N.R.A.S. 119, 81. SEATON, M.J. 1962 The Observatory 82, 111. SEATON, M.J. 1964 Pl. Sp. Sci. 12, 55. SHAPIRO, P.L. y Moore, R.T. 1976 Ap. J. 207, 460. SHULL, J.M. y Van Steenberg, M. 1982, Ap. J. 48, 95. SMITH, M.W. y Wiese, W.L. 1971 Ap. J. Suppl. 23, 103 (SW). SPITZER, L. Jr. 1948, Ap. J. 107, 6. SPITZER, L. Jr. 1978 "Physical Processes in the Interestellar Medium". John Wiley & Sons, Inc. STABLER, R.C., 1964, Phys. Rev. 133, A1268. STOREY, J.R. 1981 Comunicación Privada. SUMMERS, H.P. 1979a M.N.R.A.S. 169, 663. SUMMERS, H.P. 1979b International Memo. 367, Appleton Lab., Culham Lab. TARTER, C.B. 1971 Ap. J. 168, 313. THOMAS, L.H. 1927 Proc. Cambridge Phil. Soc. 23, 829.

THOMPSON, J.J. 1912, Phil. Mag. 23, 419

TUCKER, W. H. 1975 "Radiation Processes in Astrophysics", MIT Press.

TUCKER, W. H. y Gould, R. 1966 Ap. J. 144, 244.

VARSAVSKY, C., 1962 Ap. J. Suppl. 6, 75 (V).

WIESE, W. L., Smith, M.W. y Glenon, B.N. 1966 "Atomic Transition Probabilities", Vol. 1, N S R D S - N B S Circ. 4, U.S. Government Printing Office (WS).

WIESE, W. L., Smith, M.W. y Miles, B.M. 1969 "Atomic Transition Probabilities", Vol. 2, N. S R D - N B S Circ. 22, U.S. Government Printing Office (WS).

WOODS, D.T. Shull, J.M. y Sanazin, C.L. 1981 Ap. J. 249, 399

APENDICE I,

VALIDEZ DE LA EXPANSION ASINTOTICA PARA EL FACTOR DE GAUNT LIBRE-LIGADO, USADA EN LA SECCION 2.2

Al calcular el coeficiente de recombinación radiativa al nivel de número cuántico principal n se requiere calcular la integral

$$S_{n}(\lambda) = \int_{0}^{\infty} g_{II}(n,u) \exp(-x_{n}u) / (1+u) du \qquad (A.1.1.)$$

donde $x_{n} \equiv \lambda/n^{2}$

 $y \qquad \lambda \equiv 157890z^2/T$

y g_{II}(n,u) es el factor de Gaunt para transiciones libre-lig<u>a</u> do. Su valor medio efectivo

$$g_{II} = \frac{\int_{0}^{\infty} g_{II} \exp(-x_{n}u)/(1+u)du}{\int_{0}^{\infty} \exp(-x_{n}u)/(1+u)du}$$

es aproximadamente igual a 1.

Cuando se requiere una mayor exactitud se puede usar la expansión asintótica (2.2.14) que da

$$S_{n}(\lambda) = \exp(x_{n})E1(x_{n}) + 0.1728n^{-\frac{2}{3}}X_{1}(x_{n}) -$$

$$-0.0496n^{-\frac{4}{3}}X_{2}(x_{n}) + \dots$$
(A.1.2)

donde $E1(x_n)$ es la función exponencial integral y

$$X_{1} \equiv \int_{0}^{\infty} (u-1) \exp(-x_{n}u) / (u+1)^{-\frac{5}{3}} du$$
$$X_{2} \equiv \int_{0}^{\infty} (u^{2} + \frac{4}{3}u + 1) \exp(-x_{n}u) / (u+1)^{-\frac{7}{3}} du$$

Las integrales X_1 y X_2 se pueden calcular fácilmente en términos de funciones gama incompleta.

La expansión asintótica para g_{II} es válida para u<1. Para u>1 se aleja considerablemente del valor de g_{II} y comienza a tener fuertes oscilaciones debido a los términos al - ternantes asintóticos que dependen de u y n en dicha expan - sión. Estos términos dan lugar a los dos términos conteniendo a X_1 y X_2 en (A.1.2). Entonces para estimar el error que implica incluir a los dos términos asintóticos en (A.1.1) se puede calcular su contribución a dicha integral en la parte en que no son válidos, o sea en el intervalo de u de ~1 a ∞ . En realidad la expansión asintótica es buena aun para u $\gtrsim 1$ (Fig. 2.2.1) por lo que la contribución del intervalo de 0 a ∞ a la integral (A.1.1) es sólo una cota superior al error que intro-ducen estos términos.

De acuerdo a lo dicho arriba debemos calcular

$$\delta S_n(\lambda) = S_n'(\lambda)/S_n(\lambda) \qquad (A.1.3)$$

donde $S_n'(\lambda) \equiv 0.1728n^{-\frac{2}{3}}X_1'(x_n) - 0.0496n^{-\frac{4}{3}}X_2'(x_n)$

I

$$\begin{array}{l} X_{1}'(x_{n}) & \int_{1}^{\infty} (u-1) \exp(-x_{n}u) / (u+1)^{-\frac{5}{3}} du \\ y & X_{2}'(x_{n}) & \int_{1}^{\infty} (u^{2} + \frac{4}{3}u + 1) \exp(-x_{n}u) / (u+1)^{-\frac{7}{3}} du \end{array}$$

163

У

La expresión (A.1.3) se grafica en la Fig. A.1.1. Como era de esperarse, $\delta S_n(\lambda)$ disminuye rápidamente conforme x_n aumenta y n disminuye debido al factor exponencial en (A.1.1) y a las potencias negativas de n en la expansión asintótica. Antes de tender a cero asintóticamente, δS_n llega a ser cero (o sea que S'_n(λ)/S_n(λ) cambia de signo y produce los rebotes de la curva en el eje horizontal de la Fig. A.1.1) debido a los signos distintos de los dos términos de S'_n(λ).

Para evitar que esta contribución de los términos asintóticos introduzca un error importante en el cálculo de $S_n(\lambda)$ se puede definir un x_n^* tal que si $x_n > x_n^*$ δS_n sea menor que un cierto valor arbitrario que sería la cota máxima admitida para el error. Si esta cota se toma igual a 0.1 (10%) por ejemplo, es posible encontrar a x_n^* como función de n. Se encontró que n y x_n^* cumplen con muy buena aproximación la siguiente relación:

$$x_n^* = 0.127n^{-1.19}$$

(A.1.4)

o bien $\lambda^{\dagger} = 0.127 n^{0.81}$

que da un error menor al 10% para n de 2 a 500 y del 20% para n=1.

Es útil conocer también cuál es la contribución de los dos términos que contienen a X_1 y X_2 en $S_n(\lambda)$ dada por (A.1.2). En las Fig. A.1.2 y A.1.3, se grafica esta contribución calc<u>u</u> lada de la siguiente manera:

$$\Delta S_{n}(\lambda) = S''_{n}(\lambda)/S_{n}(\lambda) \qquad (A.1,5)$$

donde $S''_{n}(\lambda) = 0.1728n^{-\frac{2}{3}}X_{1}(x_{n}) - 0.0496^{-\frac{4}{3}}X_{2}(x_{n})$

Fig. A.1.1. $|\delta S_n|$ para distintos valores de n. ----, $\delta S_n^{<0}$; ----, $\delta S_n^{>0}$.

Fig. A.1.2 $|\Delta S_n|$ para distintos valores de n en el in tervalo de log x_n de -6.4 a -2.4. ----, $\Delta S_n^{<0}$; ----, $\Delta S_n^{>0}$.

Fig. A.1.3. $|\Delta S_n|$ para distintos valores de n en el intervalo de log x_n de -2.5 a 1.5.----, $\Delta S_n < 0$; ----, $\Delta S_n > 0$. Nótese el cambio de escala respecto a la Fig. A.1.2.

Excepto para n=1, todas las curvas cambian de signo dos veces excepto si n=1 debido a los signos opuestos de los términos en (A.1.5). Como se ve en la figura, estos dos términos contribuyen en menos del 10% en un cierto intervalo de x_n cuya extensión depende de n. Es interesante observar que la contribución $\Delta S_n(\lambda)$ es pequeña precisamente en un rango de x_n en que $\delta S_n(\lambda)$, el error debido a los términos asitnóticos fuera de su rango de validez, es grande. Esto esencialmente hace que los resultados finales sean un poco más insensibles a la elección de x_n^* . De hecho, el error causado por estos términos se notará de manera importante para x_n^* mucho menor que la dada por (A.1.4).

La Fig. A.1.3 también muestra que conforme n aumenta, ΔS_n disminuye cuando x_n >1 lo cual puede ser útil si se quieren simplificar los cálculos tomando $g_{II} \equiv 1$ a partir de una cierta n[#] ya que para n>n^{*} la contribución de los términos asint<u>ó</u> ticos ΔS_n sería despreciable.