29. No 48

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE CIENCIAS

CORRECCION DE LA ESTRUCTURA
POR EDAD DE LA FECUNDIDAD
EMPLEANDO LA FUNCION DE
GOMPERTZ: CASO DE COLOMBIA

TESIS

QUE PARA SUSTENTAR EXAMEN PROFESIONAL DE ACTUARIO Pre senta

ANGELA MARIA TOBON TRUJILLO

MEXICO, D. F.
1 9 8 2.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

		Págino
INTRO	DUCCION.	
1.	PANORAMA DEMOGRAFICO DE COLOMBIA	1
	A. DESCRIPCION DE LA POBLACION	2
1.50	1. Distribución Geográfica	2
	2. Crecimiento Poblacional	5
	3. Estructura por edad de la población	17
-	B. MIGRACIONES INTERNAS Y URBANIZA- CION	24
11.	PRESENTACION DEL MODELO	34
	A. MODELO DEL DOBLE LOGARITMO DE LA FUNCION DE GOMPERTZ	36
	B. COMPROBACION DE LA RELACION LI- NEAL ENTRE V(x) y V ^s (x)	39
	C. SIGNIFICADO DE LOS PARAMETROS	42
	D. AJUSTE DE LA ESTRUCTURA DE LA FE- CUNDIDAD POR EDADES	47
111.	PRESENTACION DE LA INFORMACION	50
IV.	APLICACION DEL MODELO	67
٧.	ALCANCES DEL MODELO BILOGISTICO	77
	APENDICE	89
	BIBLIO GRAFIA	94

INTRODUCCION

La fecundidad es un componente demográfico en cuyo estudio no pueden aplicarse confiadamente los métodos tradicionales de estimación. Esto debido a la insuficien cia e irregularidad de la información, cuyas fuentes son los registros de las estadísticas vitales, las encuestas y los censos.

Por lo anterior, se hace necesario realizar ajustes a la información.

Un procedimiento que puede ser de utilidad para realizar ajustes del patrón de fecundidad, es presentado en
este trabajo; dicho procedimiento fué desarrollado por
Juan Chackiel en 1979 (1), su procedimiento está basado
en ideas de W. Brass (2) y V. Kandiah (3), quienes se apoyaron en la función de Gompertz Linealizada mediante una transformación LogarItmica.

⁽¹⁾ Chackiel , Juan. - Estructura de la Fecundidad por Edades: Ajuste y Proyección mediante la función de Gompertz Linealizada. CELADE.

⁽²⁾ Brass, W.: The Relational Gompertz model of fertility by age of woman (Inédito).

⁽³⁾ Kandiah, V.: The use of the relational fertility model parameters in population projections. EAST-WEST CENTER, Honolulu. (Inédito).

El objetivo del presente trabajo es presentar el modelo del doble logaritmo de la función de Gompertz, aplicándolo a información obtenida de la Encuesta Nacional de Fecundidad de Colombia de 1976, y señalar el empleo de dicho modelo en la desagregación de la estructura de la fecundidad por edad, a edades individuales.

I. PANORAMA DEMOGRAFICO DE COLOMBIA.

Para situar un poco al lector con respecto al païs del cual se va a estudiar la fecundidad, tema de este — trabajo, se inicia con un resumen brevemente comentado de su situación demográfica. El último censo — nacional de población se realizó en 1973 y no existe ninguna publicación oficial del total de los resultados obtenidos.

La división político-administrativa de Colombia ha - cambiado mucho durante este siglo; en la actualidad consta de 24 departamentos y los llamados territorios nacionales, que constan de 4 intendencias y 4 comisartas.

La distribución de la población en el territorio ha sido muy desigual, fenómeno que se ha incrementado a partir de 1951, con la concentración en algunas ciudades: Bogotá, Medellín, Cali y Barranquilla.

En los últimos años el crecimiento de la población ha sido rápido y se han presentado importantes movimientos migratorios entre las zonas rurales y las ciudades.

Enseguida se darán a conocer algunos aspectos demográficos generales del país, y luego se tratará el problema de la migración rural-urbana y su influencia en el proceso de urbanización. Este último problema es de mucha actualidad dadas las implicaciones que trae consigo: por ejemplo, si se compara el flujo migratorio hacia las áreas urbanas con el proceso de industrialización, que se ha dado con un ritmo menor, se observa que la asimilación de los migrantes a la economía urbana no es siempre satisfactoria.

A. DESCRIPCION DE LA POBLACION.

I. DISTRIBUCION GEOGRAFICA:

Como se dijo antes, la población está distribu<u>l</u> da de manera muy desigual en el territorio. Esto puede verse con los datos del cuadro I-1, que muestra como en Bogotá D.E., Antioquia y el Valle, existe una cantidad mayor de personas (son las regiones más industrializadas y con mayor desarrollo económico), en comparación con los territorios nacionales que tienen un mínimo de la población, a pesar de ocupar estos casi la mitad de la superficie.

CUADRO 1-1

COLOMBIA: DISTRIBUCION DE LA POBLACION POR SECCIONES Y AREAS URBANO-RURAL. ESTIMACION EN MILES. 1 9 7 4

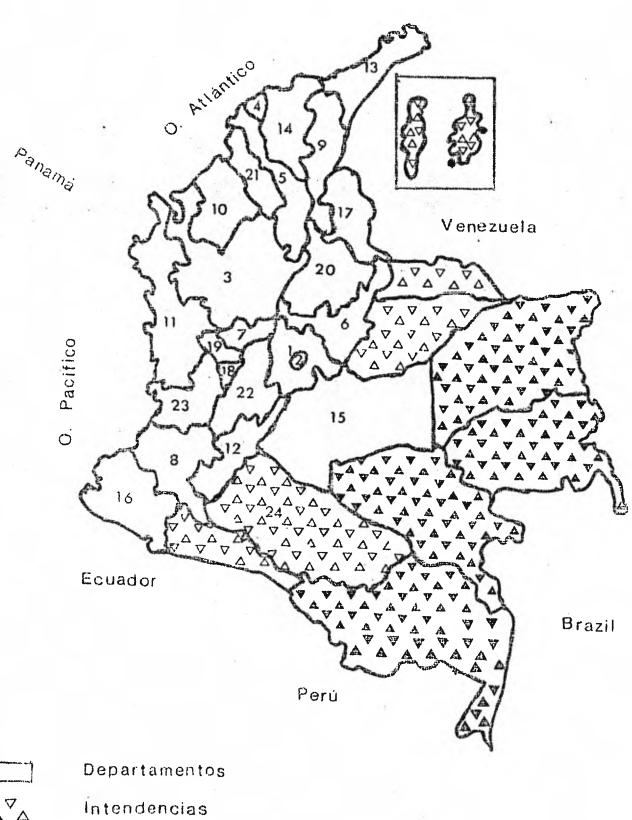
	-	BLACIO	•	PORCENTA	JES
SECCIONES	TOTAL	URBANA	RURAL	URBANO	RURAL
1. Cundinamarca	1 131.7	463.4	868.3	34.8	65.2
2. Bogotá	3 143.4	2 983.4	160.3	94.9	5.1
3. Antioquia	3 436.0	21 133.8	1 302.2	62.1	37.9
4. Atlantico	1 035.6	956.9	78.3	92.4	77.6
5. Boltvar	961.7	583.8	377.9	60.7	39.3
6. Boyacá	1 308.7	399.2	909.5	30.5	69.5
7. Caldas	892.0	553.0	339.0	62.0	38.0
8. Cauca	768.4	205.3	563.2	26.7	73.3
9. Cesar	582.5	182.3	400.2	31.3	68.7
10. Córdoba	886.9	295.3	591.6	33.3	66.7
11. Chocó	232.00	68.4	163.6	29.5	70.5
12. Huila	<i>5</i> 83.5	275.7	262.8	51.2	48.8
13. Guajira	309.9	129.2	180.7	41.7	58.3
14. Magdalena	685.6	338.0	347.6	49.3	50.7
16. Meta	331.9	151.9	162.0	48.4	51.6
17. Nariño	859.9	296.7	563.2	34.5	65.5
18. Quindlo	379.3	322.4	56.9	85.0	15.0
19. Risaralda	566.3	360.2	206.1	63.6	36.4
20. Santander	1 249.2	653.3	595.9	52.3	47.7
21. Sucre	399.0	182.3	216.7	45.7	54.3
22. Tolima	972.1	519.1	453.0	53.4	46.6
23. Valle	2 391.4	1 803.1	588.3	75.4	24.6
T. Nacionales	405.8	126.6	279.2	31.2	68.8
TOTAL:	24 329.3	14 373.6	9 955.7	59.1	40.9

NOTA: Actualmente existe un nuevo Departamento, El Caquetá, señalado en el mapa con el número 24. Fué erigido como tal por el Congreso Nacional a principios de 1982.

Así, teniendo en cuenta que la superficie total del país es de l'138.914 km cuadrados, y su población en 1974 era 24'329,300 habitantes (cuadro 1-1), la densidad sería de 21.36 habitantes por kilómetro cuadrado, pero el 48% de la superficie corresponde a los territorios nacionales que cuentan con el 1.7% de la población. Esto puede tener una explicación en base a las condiciones naturales, pues son grandes zonas selváticas bastante insanas o llanuras que se dedican a la ganadería extensiva.

"En términos de residencia urbana o rural, la población colombiana ha sufrido grandes cambios como consecuencia del proceso de migración rural-urbana paralelo con el proceso de urbanización experimentado por el país. En 1951, solamente el 38.9% de la población vivía en cabeceras municipales, es decir, en centros de 1500 o más habitantes, proporción que pasó a 52.8 en 1964 y que para 1973 era ya de 63.6%. Con comitante con este proceso, se observa una concentración de población en pueblos de más de -

20,000 habitantes. En 1938, sólo el 13% de la población residía en localidades de ese tamaño y para 1973 la proporción había pasado-el 45%. Para este mismo año existían en el país 9 ciudades con más de 200,000 habitantes y 16 con más de 100,000". (Encuesta Nacional de Fecundidad 1973).


2. CRECIMIENTO POBLACIONAL .-

Año con año la población fue incrementándose hasta alcanzar una de las tasas de crecimiento más altas en América Latina.

En el Cuadro 1-2 está calculado el crecimiento anual de la población hasta el censo de
1973 y en la gráfica 1-1, su comportamiento.

Es de observarse que de 1964 en adelante, la tendencia de la tasa es descendente debido a la baja de la fecundiad registrada en este periodo, que ha sido una de las más rápidas de - Suramérica.

COLOMBIA MAPA POLITICO

Comisarias

CUADRO 1-2

RESULTADO DE LOS CENSOS NACIONALES

1905 - 1973

FECHAS.	HABITANTES	% INCREMENTO	PERIODO INTERCENSAI	
15. V. 1905	4 143 632	-	34	-
5. 111. 1912	5 072 604	22.4	7	2.9
14. X. 1918	5 855 077	15.4	6	2.4
17. XI. 1928	7 851 000	34.1	10	3.0
5. 1938	8 701 816	10.8	10	1.03
9. V. 1951	11 548 172	32.7	13	2.2
15. VII. 1964	17 484 508	51.4	13	3.2
24. X. 1973	21 187 115	21.2	9	2.2

% INCREMENTO = $\frac{P1 - P0}{P0} \times 100$

TASA DE CRECIMIENTO ANUAL $(r) = e^{1/t} (InPi-InPo)_{-1}$

donde: Po = población inicial

P1 = poblacion después de transcurrido un tiempo t.

En general, los cambios en las tasas de crecimiento hasta 1964, fueron resultado del juego entre las tasas de fecundidad y de mortalidad. Después de la

GRAFICA 1-1

TASA DE CRECIMIENTO ANUAL DE LA

POBLACION r

1905 1912 1918 1928 1938 1951 1964 1973

Ano

FUENTE: Cuadro 1-z.

%

Segunda Guerra Mundial, como consecuencia de la medicina preventiva y de la ampliación de los servicios de atención materno infantil, empezaron a disminuír las tasas de mortalidad. De acuerdo con algunas estimaciones, la tasa bruta de mortalidad para el período 1938-51, era de 22.4 por mil y para 1951-1964, era de 17.4 por mil. Hacia 1973 según el DANE (Departamento Administrativo Nacional de Estadística), la tasa se sitúa entre 9 y 10 por mil habitantes. Al presentarse este descenso en la mortalidad, especialmente en la infantil, la esperanza de vida se incrementó (cuadro 1-3).

ESTIMACIONES DE LA ESPERANZA DE VIDA AL NACER DE LA POBLACION COLOMBIANA

PERIODO	ESPERANZA DE V	
PERIODO	HOMBRES	MUJERES
1938 - 51	40.0	43.8
1951 - 64	45.4	50.7
1964 - 69	57.1	61.3
1969 - 73	58.3	63.3

Con el crecimiento del país se puede comparar el crecimiento de las ciudades principales, cuyos datos aparecen en cuadro 1-4 y son en todos los casos mayores que la media nacional, aunque siguiendo la misma tendencia; el crecimiento de estas ciudades se debe sobre todo a fenómenos migratorios.

Otra forma de ver como crece la población, es analizando la tasa de crecimiento natural, es decir, la
diferencia entre la tasa bruta de natalidad y la de
mortalidad. Para esto se requiere la información
de los registros vitales y en Colombia es bastante
deficiente. Sin embargo, en el cuadro 1-5 vemos
como desciende la mortalidad. En esto influyen factores como la aplicación de políticas sanitarias que
han atacado sobre todo la mortalidad infantil y el
hecho de que la población cuente con pocos efectivos en edades avanzadas.

La tasa de crecimiento entre los dos últimos censos fue aproximadamente de 2.2%, más baja que la del perfodo anterior, 3.2%, debido a la baja significa-

CUADRO 1-4

CRECIMIENTO DE LA POBLACION EN LAS MAYORES

CIUDADES DE COLOMBIA: 1938 - 1973

CIUDADES	POBL 1938	ACION 1951	1 EN <i>1</i> 1964	MILES 1973	r ₁	r ₂	r 3	PORCENTAJE	DE AUMEI	NTO
BO GOTA	356	715	1697	2855	5.4	6.8	6.0	100.8	137.3	68.2
MEDELLIN	168	358	773	1100	6.1	6.0	4.0	130.1	115.9	42.3
CALI	102	284	638	923	8.3	6.3	4.2	178.4	124.6	44.7
b/QUILLA	152	280	498	661	4.8	4.5	3.2	84.2	77.9	32.7

Las tasas de crecimiento y los porcentajes de aumento fueron calculados respectivamente de 1938 a 1951, de 1951 a 1964, de 1964 a 1973.

FUENTE: Asociación Colombiana para el estudio de la población ACEP. <u>La población de Colombia</u> C.I.C.R.E.D. Series. Ed. L. Canal y Asociados Leda. Bogotá, 1975.

CUADRO 1-5

TASAS DE NATALIDAD, MORTALIDAD

Y CRECIMIENTO NATURAL

REG	ISTROS VITALES AÑOS	TASAS PC Natalidad (1)	R MIL Mortalidad (2)	IMIENTO ATURAL - (2)
	1940	32.2	15.2	17
	1945	31.7	15.7	16
	1950	36.5	14.2	22.3
	1955	38.8	12.3	26.5
	1960	38.8	11.9	26.9
	1965	36.8	9.9	26.9
	1970	39.7	10.5	29.2

tiva de la fecundidad. Esto se muestra en las gráficas 1-2 y 1-3 hechas a partir del cuadro 1-6.

En realidad desde mediados de la década del 60 se presenta un rápido descenso en la fecundidad que se corrobora con los datos obtenidos

CUADRO 1-6

TASAS DE FECUNDIAD: TOTAL Y POR EDAD ESPECIFICA

	TOTAL	PC	OR E	DAD	E S P	ECIF	ICA		
AÑO	TGF	15-19	20-24	25-29	30-34	35-39	40-44	45-49	
1960-1964	7.04	129	299	337	304	230	98	10	
1965-1966	6.51	125	270	321	261	214	95	10	
1967-1968	6.03	110	210	278	277	176	85	10	
1969-1970	5.83	114_	267	283	219	173	110	0	
1971-1972	5.16	111	257	241	193	141	90	0	
1973-1974	4.41	101	227	211	160	118	55	11	
1975-1976	5.47	94	212	221	172	132	53	31	
1977-1978	3.92	54	186	202	156	105	60	20	
1976	4.24	73	209	192	172	133	50	19	

LAS FUENTES:

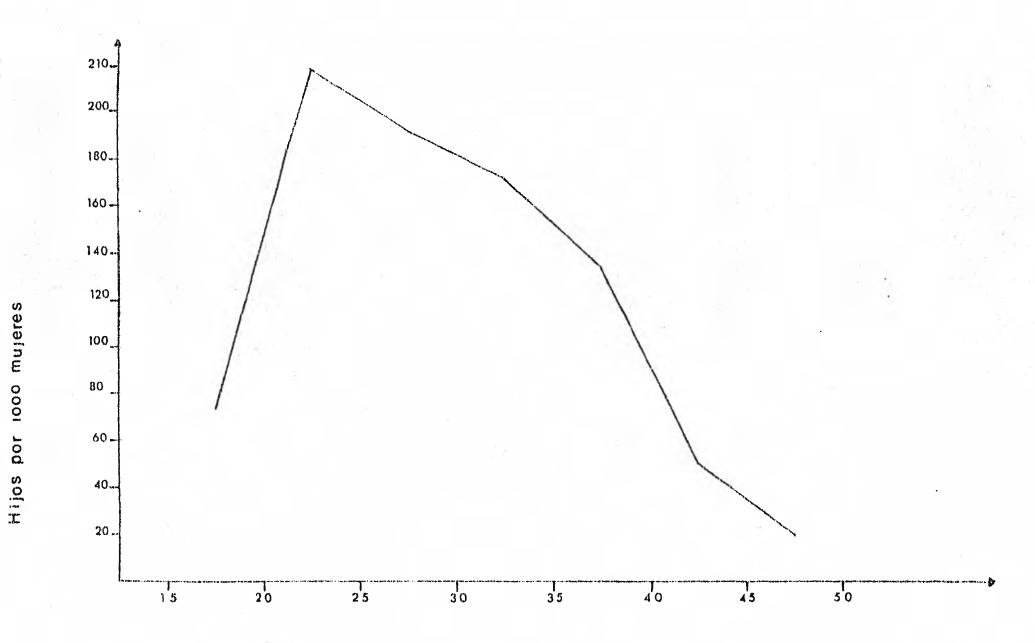
1960 - 1968 Encuesta Nacional de Fecundidad 1969.

1969 - 1978 Folleto de las Naciones Unidas

1976 Encuesta Nacional de Fecundidad 1976. Hogares.

Tasa específica de fecundidad = $5\mathbf{f}_x = \frac{\text{# de hijos tenidos vivos a edad x}}{\text{# de mujeres en edad x}}$

Total o Tasa Global de fecundidad = TGF =


es el número medio de hijos tenidos vivos por cada mujer al terminar su período de reproducción, si el comportamiento a través de él, fuera igual al del momento en el cual se levanta la Encuesta.

GRAFIA 1-2 TASA GLOBAL DE FECUNDIDAD 1976 Total de hijos por mujer 3 ---.1 7.1 72 73 69 70

Tiempo - Calendario

FUENTE: Cuadro 1-6

Grupos de edad años

en el Censo de 1973.

Entre 1960 y 1976 las declinaciones mayores ocurrieron en las edades intermedias del período reproductivo, 25-29 años.

Es importante anotar que en un lapso de 16 años, el número de hijos nacidos vivos por mujer descendió de 7.04 a 4.57, es decir, que ahora, las mujeres tienen 2.4 hijos menos que hace 16 años, factor que influye directamente en el crecimiento de la población.

Estas manifestaciones son fruto de la planificación familiar que comenzó en los 60s, como
una actividad integrada al sector salud y continuó siendo parte de los planes de desarrollo, en
cuanto la fecundidad es un motor para la modificación de las tasas de crecimiento y esto es
un objetivo primordial en las políticas de población.

También mediante la información de la encuesta nacional de fecundidad se observa que a mayores niveles de urbanización, menores son - las tasas de fecundidad, sobre todo en relación con el origen de las mujeres, es decir, del nivel de urbanización donde la mujer pasó sus 15 primeros años de vida.

Se mostraron los principales factores que influyen en el crecimiento de la población, falta
analizar las migraciones internacionales, que se
gún lo investigado hasta 1973, no tentan una in
fluencia considerable.

3. ESTRUCTURA.

Como consecuencia de las características generales de su crecimiento, Colombia presenta la estructura y composición por edades que se pueden observar y analizar en la pirámide adjunta construída con base en los cuadros 1-7 y 1-8.

En 1964 el país tenta una población jóven, con amplia base y una disminución pareja de efectivos con respecto a la edad.

Ya para 1973 se observa una disminución importante de la población de O a 5 años, esto co

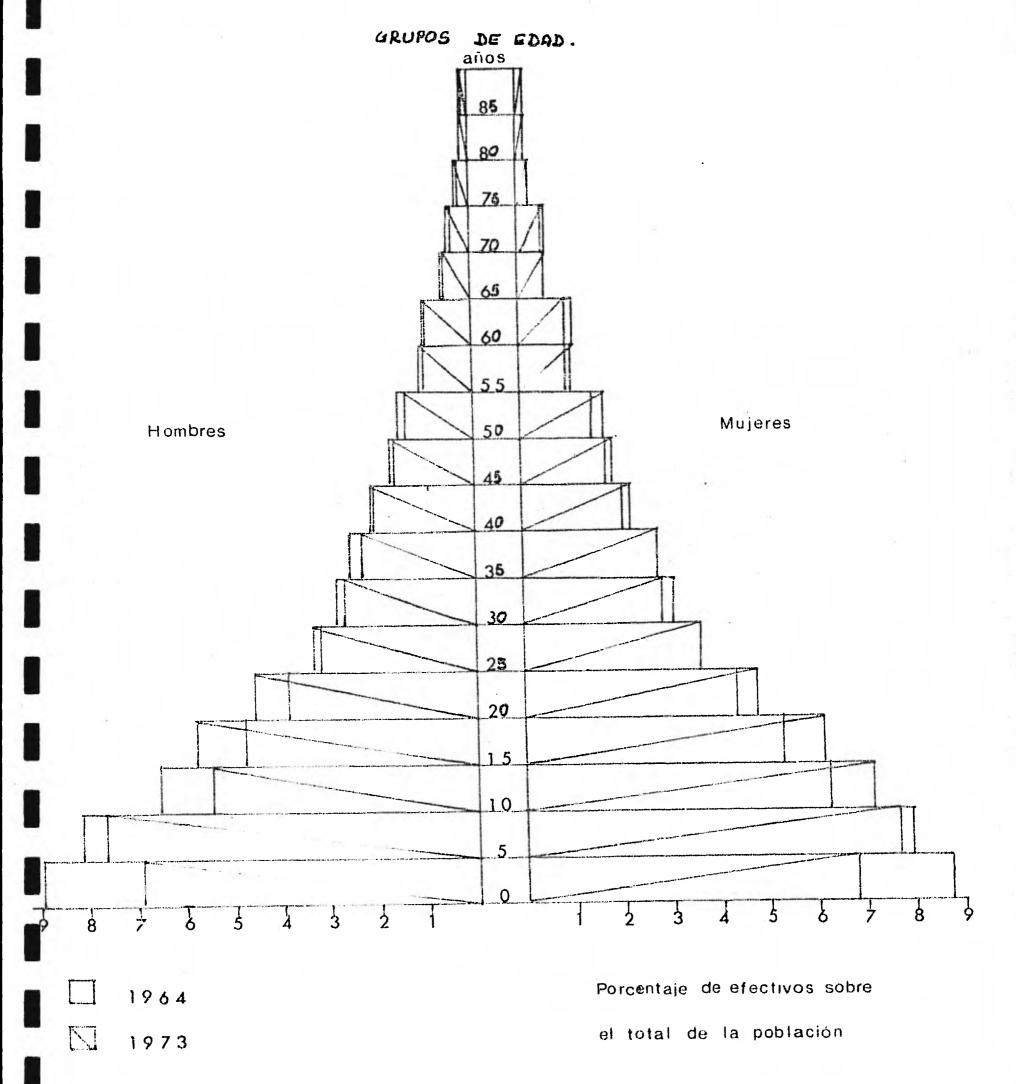
^{1.} Encuesta Nacional de Fecundidad. 1976.

CUADRO 1-7

POBLACION POR SEXO Y GRUPOS DE EDAD 1964.

GRUPOS DE	demokratiske state fra de feredeling de egenesiske milities en een	HOMBRES	MUJERES	TNDICE DE MASCULI-
EDAD	TOTAL	ABSOLUTO/RELATIVO		NIDAD
		%	%	Tringletini Militaria wa katini Arab di Parana ka Militaria ka ma
TOTAL EN				
EL PAIS	17 484 508	8 614 652 49.2	8 869 856 50.7	.97
MENORES				
DE TAÑO	630 494	318 769 1.82	311 725 1.78	1.02
1 a 4	2 455 253	1 243 488 7.11	1 211 765 6.93	•
5 a 9	2 800 739	1 418 522 8.11	1 382 217 7.91	1.03
10 a 14	2 269 043	1 148 494 6.56	1 120 549 6.41	1.02
15 a 19	1 766 040	836 284 4.78	929 756 5.32	.90
20 a 24	1 417 375	671 272 3.83	746.103 4.27	
25 a 29	1 165 820	549 667 3.14	616 153 3.52	.89
30 a 34	1 030 298	500 217 2.86	530 081 3.03	.94
35 a 39	924 416	443 163 2.53	481 253 2.05	1.00
45 a 49	592 224	291 251 1.67	300 973 1.72	.97
50 a 54	518 298	262 251 1.50	256 047 1.46	1.03
55 a 59	331 602	167 127 .96	164 475 .94	1.02
60 a 64	339 967	163 818 .94	176 149 1.01	.93
65 a 69	189 549	92 211 .53	97 338 .56	.95
70 a 74	148 987	68 296 .39	80 691 .46	.85
75 a 79	83 697	39 384 .22	44 313 .25	.88
80 a 84	57 132	23 652 .14	33 480 .19	.74
85 a 90	44 896	16 850 .10	28 046 .16	.63

FUENTE: Censo Nacional de Población y Vivienda 1964.


CUADRO 1-8

POBLACION AJUSTADA POR SEXO Y GRUPOS DE

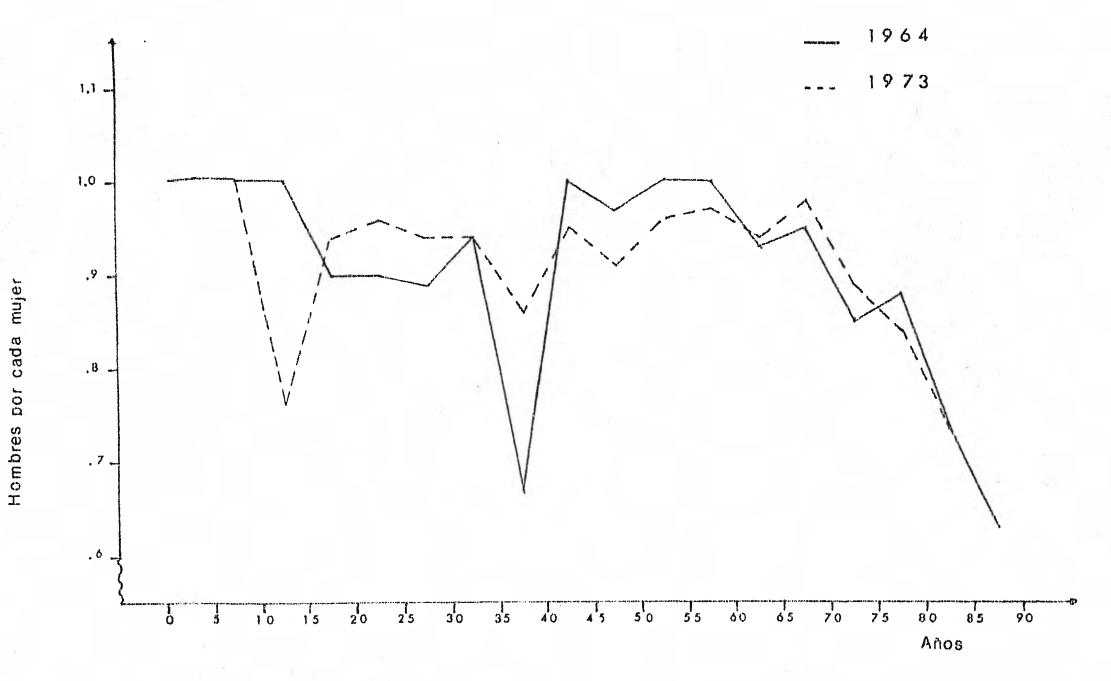
EDAD EN OCTUBRE DE 1973.

GRUPOS DE	номв	RES	MUJE	RES		INDICE DE MASCULI-	
EDAD	ABSOLUTO/	RELATIVO	ABSOLUTO/	RELATIVO	TOTAL	NIDAD	
	(1)	%	(2)	%		(1) / (2)	
0 - 4	1 479 323	6.98	1 439 220	6.79	2 918 534	1.028	
5 - 9	1 624 247	7.67	1 592 391	7,52	3 216 638	1.020	
10 - 14	1 516 189	5.43	1 507 777	7.12	3 023 966	.763	
15 - 19	1 225 800	5.79	1 303 954	6.15	2 529 754	.941	
20 - 24	972 331	4.59	1 007 284	4.75	1 979 615	.966	
25 - 29	716 543	3.38	758 113	3.58	1 474 656	•944	
30 - 34	567 422	2.68	602 767	2.84	1 170 189	.944	
35 - 39	503 801	2.38	576 031	2.72	1 079 832	.875	
40 - 44	442 852	2,10	468 223	2.21	911 075	.950	
45 - 49	350 597	1.65	383 559	1.81	734 156	.912	
55 - 59	215 628	1.02	222 412	1.05	438 040	.967	
60 - 64	195 190	.92	207 181	.98	402 371	.939	
65 - 69	122 399	. 58	125 670	. 59	248 069	.887	
75 - 79	44 257	.21	53 197	.25	97 545	.840	
80 - 90	48 527	.23	72 125	.34	120 652	.676	
TOTAL	10 434 623	49.3	10 752 492	50.75	21 187 115	.972	

BAMONA NUÑEZ. Cobertura del Censo de Población 1973.

FUENTE: Cuadros 1-7, 1-8

mo efecto de la baja en la fecundiad que ha venido dándose desde 1960; pero Colombia sigue siendo un païs de población jóven.


Los menores de 15 años alcanzan en 1973, el 43.22% y sumados a los mayores de 60 años, el 5.1% constituyen un 48.32% de la población y son los llamados dependientes. El indice de dependencia es 93.5, bastante alto, y se agrava además con el desempleo existente y el hecho de que mucha parte de la población femenina no trabaja.

La disminución en las edades jóvenes es compensada sobretodo por el aumento de la población - entre los 15 y los 30 años, es decir, los jóvenes en edad activa. El crecimiento de este grupo - puede ser positivo pues hace que baje el nivel de dependencia. Esto en un tiempo considera- blemente largo, pues en 1964 el indice de dependencia era de 93.8. con un 51.59% de población dependiente.

Con respecto a la composición por sexos, la proporción no ha variado con respecto al 64. Se maniene en un 50.7% de mujeres. Esta compo -- sición para los diversos grupos de edad es muy variable como podemos verlo en la gráfica 1-4, que muestra el comportamiento del índice de mas culinidad, el cual está por debajo de 1.05 es - perado al nacer.

En la gráfica del 64, se observa una descenso pronunciado entre los 35 y los 40 años que
se atribuye a una mala enumeración de los hombres a dicha edad. Esta misma caída se observa
en 1973 pero mucho más leve, por lo que podrían
buscarse las causas en la mala declaración de
la edad de las personas de ese grupo, o a desr
plazamientos de los hombres de dicha edad,

Otro grupo a considerar dada su importancia en el crecimiento de la población, es el de las mujeres en edad reproductiva (15 - 40 años). que alcanzó el 24.1% de la población to - - - tal y el 47.4% de la femenina en 1973. Es -

FUENTE: Cuadros 1-7, 1-8

tas proporciones son mayores que las que se presentaron en 1964: 22.67% del total y 44.68% de la población femenina; situación que era de esperarse como consecuencia del aumento de la población en edades jóvenes a raíz de la baja en la fecundidad.

La alta proporción de mujeres jóvenes, en edad reproductiva lleva consigo un crecimiento potencial de la población significativo, aunque los niveles de fecundidad bajen.

B. MIGRACIONES INTERNAS Y URBANIZACION. -

Como se dijo en un principio, el proceso de urbanización se desarrolla paralelamente a un movimiento de migraciones internas que van cambiando el caracter del país.

Hasta muy avanzada la década del 30, aproxima damente el 70% de la población radicaba en el campo o en núcleos de menos de 5 000 habitantes; pero por diversas causas, entre ellas, el incremento de los medios de comunicación y el deterioro de las -

condiciones de vida en el sector rural (sistema de tenencia de la tierra y conflictos socio políticos), a partir de 1940, se iniciaron los desplazamientos hacia las ciudades, y así, un país que era eminentemente rural inició su marcha hacia la urbanización.

Como podemos observar en los cuadros 1-9 y 1-10 y en la gráfica 1-5, cada vez la concentración urbana es mayor: por ésto, a nivel nacional se han propuesto planes específicos para enfrentar los problemas que trae consigo. Estos planes van inmersos en las políticas de desarrollo regional, urbano y de ciudades intermedias (hacia las que se han dirigido movimientos migratorios importantes); pero la concentración ha crecido principalmente en 4 centros urbanos, como puede verse en el cuadro 1-11.

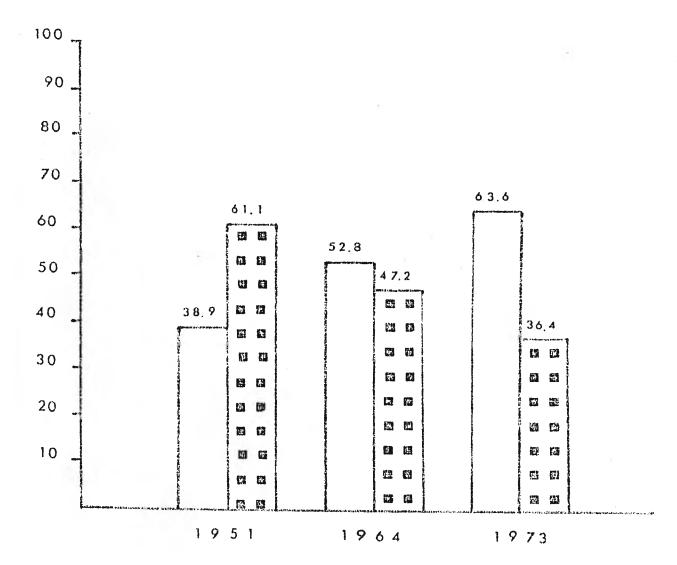
El crecimiento de las grandes ciudades es, pues, motivado en gran parte por la población migrante que se establece en ellas. A pesar de que estas - ciudades son incapaces de satisfacer las demandas - por servicios de esta población, en ellas puede tenerse acceso a servicios de diversa indole en rela-

CUADRO 1-9

POBLACION ABSOLUTA Y RELATIVA, POR CENSOS, SEGUN AREA URBANA-RURAL, 1951-1973

DATO, UNIDAD,	CENSO	DE POBLA	CION	
AREA	9-V-51	15-VII+64	24-X-73	
ABSOLUTOS (Habitantes)		Anni palateria dispensi periodi di April de Santa pira dell'eri spot puperti di terrilla periodi.		
TOTAL	11 548 172	17 484 508	19 735 286	
URBANA	4 492 239	9 239 626	12 550 441	
RURAL	7 055 933	8 244 882	7 184 845	
RELATIVOS (%)				
TOTAL	100	100	100	
URBANA	38.9	52.8	63.6	
RURAL	61.1	47.2	36.4	

FUENTE: XIV Cenco Nacional de Población y III de Vivienda.


Muestra de avance

BOLETIN OGA

GRAFICA 1-5

POBLACION RELATIVA SEGUN AREAS

URBANA RURAL 1951 - 1973

Urbana

Rural

FUENTE: Cuadro 1-9

CUADRO 1-10

POBLACION DEL PAIS SEGUN NUMERO Y MAGNITUD DE LAS LOCALIDADES (1964).

MAGNITUD DE LOS CENTROS POBLADOS		NUMERO DE Centros Pobla	Р	O 8	BLACION
		dos.	TO.	ΓAL	%
TOTA	L	3 218	17	484 50	100.00
500 000 y ma	fs	3	2	889 74	16.53
200 000 a 49	9 999	3		927 76	5.31
100 000 a 19	9 999	6		841 45	6 4.81
50 000 a 9	9 999	13		896 88	5.13
20 000 a 4	19 999	24		767 13	36 4,39
10 000 a 1	9 999	59		833 27	70 4.77
5 000 a	9 999	121		811 32	24 4.64
2 000 a	4 999	335	1	049 42	25 6.00
1 500 a	1 999	129		222 47	73 1.27
1 000 a	1 499	268		327 73	35 1. 87
500 a	999	638		453 21	2 2.59
200 a	499	897		295 20	1.69
Menos de 20	J	722		85 29	.49
LOCALIDADI	SCON				
POBLACION	DISEMIN	ADA.	7	083 59	93 40.51

CENSO DE 1964. (Censo Nacional de Población y Vivienda).

CUADRO 1-11

URBANIZACION Y MIGRACION RURAL URBANA EN

COLOMBIA 1918-1938; 1938-1951; 1951-1964 y 1964-1974.

Ciudades		Tamaño Poblacional (Miles)				CRECIMIENTO (%) 18- 38- 51- 64-				Porcentaje estimado del crecimiento total debi-				
	1918	1938	1951	1964	1974	38	51	64	74	do 6 18- 38	-		y sus h 64- 74	i jos .
BO GOTA	145	330	648	1697	3143	129	96	162	852	62	70	65	54	
MEDELLIN	79	168	358	773	1137	113	113	115	471	57	74	52	17	
CALI	46	101	284	638	1134	122	181	125	777	60	84	55	50	
B/QUILLA	66	152	180	498	752	136	84	78	512	64	86	29	24	
TOTAL COLOMBIA	5852	8 702	11229	17485	24329	49	29	56	391	_	-	Sub	-	,

FUENTE: Tabla 1 p. 207 Cardona, Ramiro y Alan Simons.

Los datos para 1974 los aumenté al cuadro, son de "La población en Colombia" p. 170.

% crecimiento = $\frac{P_1 - P_0}{P_0} \times 100$

% crecimiento debido a la migración: $\frac{P(oc - Ptci)}{Ploc} \times 100$

Ploc y Ptot crecimiento intercensal de la ciudad y del país respectivamente.

Donde: Ploc = población local Prot = población total ción con los lugares de origen: áreas rurales o áreas urbanas menores.

"En la zona rural el 40% de los individuos de 15 años y más, no han recibido instrucción, proporción dos veces mayor que en las ciudades: el 2% ha recibido educación media y superior, proporción 10 veces menor. Las viviendas sin agua, sin disposición de excretas y en malas condiciones generales constituyen alrededor de un 80% en el campo, cuando en las ciudades constituyen entre el 15 y el 30%. Las diferencias entre habitantes rurales y urbanos son esignificativas". (Cuadros 1-12 y 1-13).

Las grandes ciudades tampoco están en capacidad de absorver la población adulta activa que llega a ellas y por ésto se han originado una serie de sub-ocupaciones que por lo general, ofrece mejores gratificaciones que otras formas de empleo en el sector rural y es en parte, por ésto, que no se presenta la migración de retorno.

Sin embargo, parece que las ciudades que más han crecido presentan las más bajas tasas de desem-

CUADRO 1-12
INGRESO MEDIO DE LA FAMILIA POR LUGAR
DE RESIDENCIA Y NIVEL EDUCACIONAL DE
1965 - 1966

NIVEL EDUCACIONAL JEFE DE FAMILIA	RESIDENCIA		DIFERENCIA ABSOLU TA ENTRE INGRESOS
	URBANA	RURAL	RURALES Y URBANOS
NINGUNA	5 139	3 043	2 105
PRIMARIA	7 162	3 401	3 761
SECUNDARIA	12 949	6 088	6 861
BACHILLERATO	30 432	22 342	8 091

Schultz, Paul. - Population Growth and Internal Migration in Colombia. p. 99

CUADRO 1-12

DISTRIBUCION DE LAS PERSONAS EN COLOMBIA POR RESIDENCIA URBANA-RURAL E INGRESO DE LAS FAMILIAS (1964)

INGRESOS DE LAS FAMILIAS (\$)	TOTAL FAMILIAS	RESIDE URBANA	N C I A RURAL
3 600 o menos	39.6	22.6	58.0
3 601 a 6 000	21.9	19.6	24.3
6 001 a 12 000	21.9	31.1	12.0
12 000 o más	16.6	26.7	5 . 7
TOTAL %	100.0	100.0	100.0

Schultz, Paul. - Population Growth and Internal Migration in Colombia.
p. 100

pleo. De ésto podría concluírse que la migración responde en cierta medida a estímulos de empleo y de oportunidad económica, además, "los sueldos y los ingresos están directamente correlacionados con el tamaño de la ciudad", por ejemplo, "hay evidencia de que en el distrito especial de Bogotá el increso percápita es 50% superior al promedio del país" (Cardona Ramiro y Alan Simons. Colombia: Distribución especial de la población. p. 212).

II. PRESENTACION DEL MODELO.-

El modelo que se empleará en el presente estudio, para el ajuste de la estructura de la fecundidad por edades, es la FUNCION DE GOMPERTZ LINEALIZADA*.

Este modelo puede también aportar el criterio para posibles proyecciones y está basado en las ideas de William Brass, quién usa la función de Gompertz linealizada mediante un doble logaritmo.

El caso particular que se trata, es el de la fecundidad en Colombia; la información fue extraïda de la Encuesta Nacional de Fecundidad de 1976.

La fecundidad se expresa fundamentalmente, a través de las "tasas específicas de fecundidad por edades"

(f_x), que indican el número de hijos tenidos vivos por
cada mil mujeres a edad x; también por medio de la
"Tasa Global de Fecundidad" (TGF), que es la suma
de las tasas específicas a lo largo del período reproductivo de la mujer (considerado en este caso de los

^(*) Chackiel, Juan. Estructura de la Fecundidad por edades: Ajuste y-Proyección mediante la Función de Gompertz Linealizada. CELADE.

15 a los 50 años de edad. Este período se fija de acuerdo al país o al tipo de cultura). La TGF puede interpretarse como el número medio de hijos tenidos vivos por mujer al final del período reproductivo, de una cohorte hipotética de mujeres que ha estado sujeta a la fecundidad por edades de un momento determinado; esto debido a quelas tasas específicas son calculadas en un momento dado, en una encuesta o un censo, y se usan para dar una conclusión acerca de un concepto que abarca un período de tiempo.

La distribución relativa de las tasas de fecundidad por edades, indica la forma en que las mujeres han tenido sus hijos a través de la edad.

Al caracterizar la fecundidad como fenómeno demográfico, se diria que la TGF mide la "Intensidad" con que se presentan los hechos, y la distribución relativa de la fecundidad por edades, representa el "calenda-rio", es decir, la forma en que se dan a través del tiempo.

El modelo es útil para ajustar las irregularidades propias de la información, es decir, para realizar un

ajuste del patrón de fecundidad por edades obtenido, a uno que se aproxime más o la situación real del pats o la región en estudio, en base a ésto establecer un criterio para proyectar esa estructura.

A. MODELO DEL DOBLE LOGARITMO DE LA FUNCION DE GOMPERTZ.

Usando la Ley de Gompertz para representar la fecundidad acumulada, se tiene:

$$F(x) = (TGF)A^{B^{X}}$$
 (1)

donde:

× variable edad

F(x) fecundidad acumulada hasta la edad x (Número de hijos tenidos vivos por mujer hasta
la edad x)

TGF Tasa global de fecundidad, valor de F(x) para la edad limite superior

A y B parametros que varian alrededor de 0 y 1 respectivamente.

La distribución relativa acumulada tiene la forma:

$$\frac{F(x)}{TGF} = A^{B^{\times}}$$
 (2)

Aplicando logaritmo natural, se tiene:

$$\frac{\ln F(x)}{TGF} = B^{\times} \ln A$$

Como ambos valores, F(x)/TGF y A, varian entre 0 y 1, los dos miembros de la igualdad son negativos, por lo tanto, si se multiplican por menos uno y se aplica de nuevo el logaritmo natural se llega a:

$$\frac{1}{1GF} \left(- \ln \frac{F(x)}{F(x)} \right) = x \ln B + \ln \left(-\ln A \right) \tag{3}$$

Esta expresión es la de una recta de la forma:

$$\forall (x) = \mathcal{A}_{o} + \beta_{o} \times \tag{4}$$

donde:

$$V(x) = \ln \left(-\ln(F(x)/TGF)\right)$$

$$\alpha = \ln \left(-\ln A\right)$$

$$\beta_0 = \ln B.$$

Al llegar a este punto se toma como Modelo o Standar, una determinada distribución de la fecundidad, y al aplicársele un procedimiento idéntico, se obtiene una recta de la forma:

$$V^{s}(x) = \alpha \zeta_{s} + \beta_{s} x \tag{5}$$

donde:

$$V^{s}(x) = \ln (-\ln (F^{s}(x) / (TGF)^{s})).$$

De (5) se obtiene:

$$x = \frac{1}{\beta s} \vee^{s}(x) - \frac{\alpha s}{\beta s}$$

y sustituyendo en (4):

$$V(x) = \alpha_0 + \beta_0 \left[\frac{1}{\beta_5} V^{s}(x) - \frac{\alpha_s}{\beta_5} \right]$$

$$V(x) = \alpha_0 - \alpha_s \frac{\beta_0}{\beta_5} + \frac{\beta_0}{\beta_5} V^{s}(x),$$

expresión que muestra la relación lineal existente entre V(x) y $V^{S}(x)$,

pues si se hacen

se tiene que

$$\vee (x) = \bowtie + p \vee^{s} (x)$$
 (6)

B. COMPROBACION DE LA RELACION LINEAL ENTRE V(x) y V (x).

A continuación se presenta un ejemplo que permite apreciar esta relación. Es el caso de Colombia; como modelo se toman los valores correspondientes a la encuesta nacional de fecundidad de 1876, y para ajustar, los del período 1960-64.

En el cuadro 2-1 se observa el resultado de los cálculos para obtener la función V(x) y en el cuadro 2-2, se aplican los mismos conceptos a la función estándar. En la gráfica 2-1 puede verse que la relación que existe entre estos valores, verifica la relación (6).

Enseguida se calculan los promedios $\nabla_1(x)$ y $\nabla_2(x)$ y de la misma forma, $\nabla_1^s(x)$ y $\nabla_2^s(x)$.

Los valores de ∞ y β pueden obtenerse mediante las siguientes ecuaciones:

$$\nabla_{1}(x) = \alpha + \beta \nabla_{1}^{s}(x)$$
 (a)

$$\nabla_2(x) = Q + \beta \nabla_2^s(x)$$
 (b)

Restando (b) - (a) se tiene:

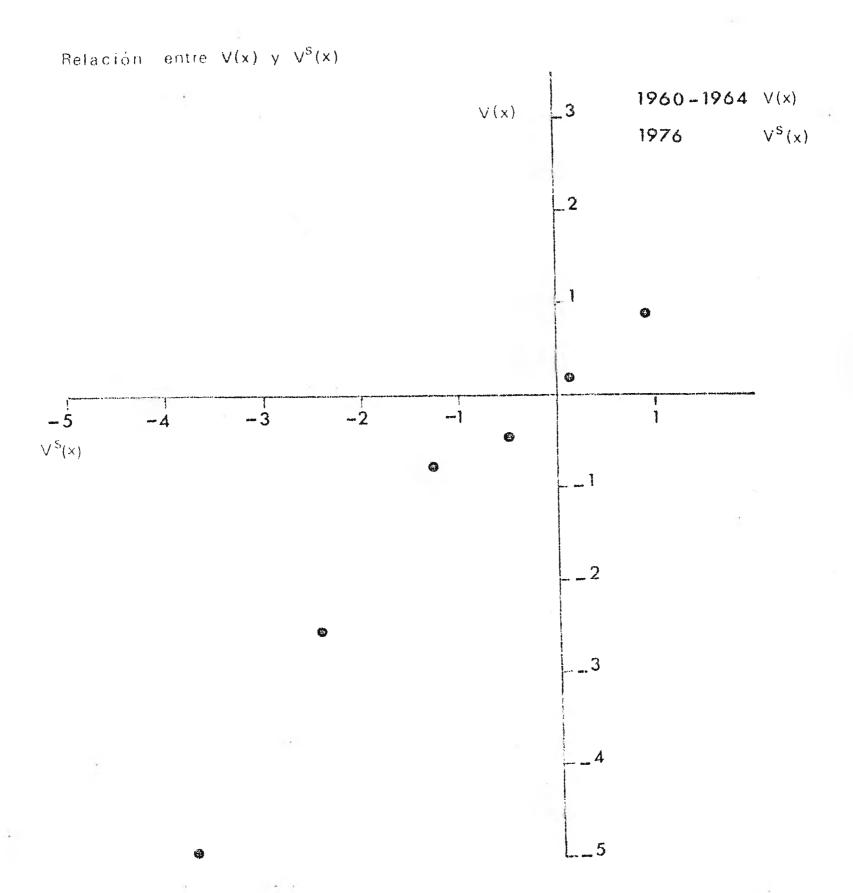
^{1.} Para desarrollar este ejemplo se eligieron arbitrariamente los periódos.

CUADRO 2-1

COLOMBIA: CALCULO DEL DOBLE LOGARITMO DE LA ESTRUCTURA DE FECUNDIDAD ACUMULADA.

	PEF	RIODO	1960 - 1	964	
X	GRUPOS DE EDADES.	5 . ×	F (×)	$V(x) = In \left(-In \frac{F(x)}{TGF}\right)$	
15	15-19	.129	-	Brog.	
20	20-24	.299	.645	.87104	
25	25-29	.337	2.140	.17403	
30	30-34	.304	3.825	49538	
35	35-39	.230	5.345	-1.29194	
40	40-44	.098	6.495	-2.52742	
45	45-49	.010	6.985	-4.94307	
TGF =	7.035	V (x) =	= .54969	$\overline{V}_{2}(x) = 2.92081$	

CUADRO 2-2


ESTANDAR: ENCUESTA NACIONAL DE FECUNDIDAD 1 9 7 6.

X	GRUPO DE EDADES.	5↓ ^s ×	s F (x)	$V^{s}(x) = In \left(-In \frac{F^{s}(x)}{TGF}\right)$	
15	15-19	.073	nagin sa P (n. an-ini pinanggang alikungkanaga nag-daliku nati-	na principalis de la proposició de aprincipa por consumo anticipal magnes, proposicio de como del Hante escoca de apolítica de la principal de	-
20	20-24	.209	.365	.897 08	
25	25-29	.192	1.410	.09618	
30	30-34	.172	2.370	-,54185	
35	35-39	.133	3.230	-1.30165	
40	40-44	.050	3.895	-2.46666	
45	45-49	.019	4.145	-3.78713	
rGF =	4.24	$\nabla_1^s(x) = .4$	5142	$\nabla_2^{\rm s}(x) = 2.51848$	

$$ot = .02220$$

$$\beta$$
 = 1.16850

GRAFICA 2-1

FUENTE: Cuadro 2-1

$$\nabla_2(x) - \nabla_1(x) = \beta (\nabla_2^s(x) - \nabla_1^s(x))$$

de donde

$$\hat{\beta} = \frac{\nabla_2(x) - \nabla_1(x)}{\nabla_2(x) - \nabla_1(x)} \tag{7}$$

Sustituyendo este valor en (a) y despejando se obtiene:

$$\hat{\alpha} = \nabla_1(x) - \hat{\beta} \vee_1^s(x)$$
 (8)

De esta manera se obtienen \propto y β que son los parámetros que diferencian la estructura observada de la estandar.

C. SIGNIFICADO DE LOS PARAMETROS.

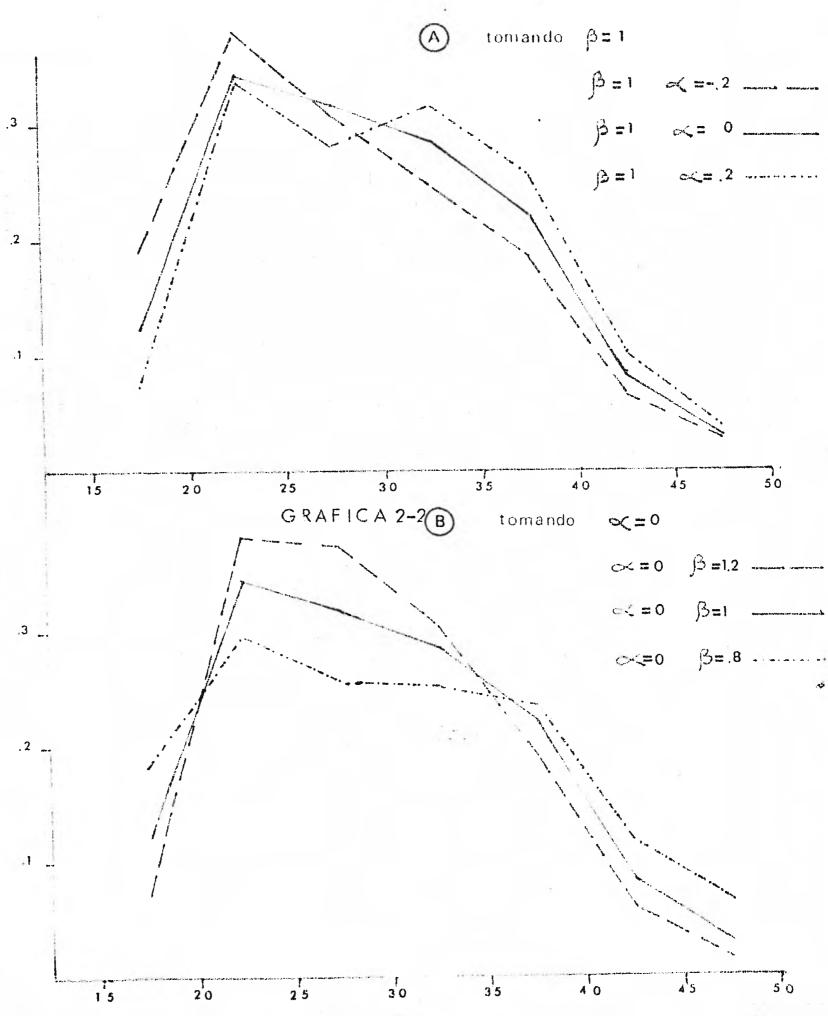
representa la diferencia en la edad media de la fecundidad, y β
 está relacionada con la dispersión de las tasas de fecundidad por edades.

Este significado se aclara analizando las gráficas 2-2A y 2-2B. Primero se toma $\beta=1$ como constante y se hace variar α en la relación $V(x)=\alpha+\beta V^{s}(x)$ se

observa que \ll 0 translada la curva de la estructura de la fecundidad, hacia la izquierda, es decir, la edad media de la fecundidad es menor. Un $\alpha > 0$ conduce a lo contrario.

Cuando se mantiene constante $\alpha = 0$ y se hace variar β (gráfica 2-2B), se observa que un $\beta > 1$ conlle va a una mayor concentración de las tasas con respecto al estandar y en cambio, un $\beta < 1$ representa una menor concentración.

El proceso para realizar las gráficas 2-2A y 2-2B viene adjunto a ellas, en los cuadros 2-2A y 2-2B.


Resúmen:

- lpha
 eq 0 edad media de la fecundidad menor que la standar
- ightrightarrows > 0 edad media de la fecundidad mayor que la standar
 - (3) mayor concentración de las tasas de fecundidad por edades
- didad por edades.

Grupos de edad

GRAFICA 2-2A

Modificaciones de la estructura de la fecundidad:

CUADRO 2-2A

PROCESO PARA OBTENER LOS DATOS DE LA GRAFICA 2-2A

CUADRO 2-2A

PROCESO PARA OBTENER LOS DATOS DE LA GRAFICA 2-2A

2	/5=1	c(= .Z		
X	V(x) = .2 + V(x)	F(x)	5f×	THE TRANSPORT OF THE SAME AND T
15	Red		.07037	The state of the s
20	1.09708	.35186	.33957	
25	.20962	2.04969	.28145	
30	.34185	3.45714	.31775	
35	-1.10165	5.04590	.25928	
40	-2.26666	6.34230	.10013	
45	-3.58713	6.84296	.03841	
	* EDAD MEDIA DE	LA FECUNDIDAD:	30.4 29.3	< 30.4

CUADRO 2-2B

PROCESO PARA OBTENER LOS DATOS DE LA GRAFICA 2-2B

$$V(x) = x + \beta V^{s}(x)$$
 TGF = 7.035
Si $x = 0$ y $\beta = 1$ (se hicieron los cálculos en el cuadro $2-2A$)

Х	$V(x) = 1.2 V^{s}(x)$	F(x)	5 f ×
15	76		.07480
20	1.07650	.37400	.38320
25	.11542	2.29000	.37688
30	65022	4.17438	.30593
35	-1.56198	5.70405	.19514
40	-2.95999	6.67973	.05618
45	-4.54446	6.96065	.01484

EDAD MEDIA DE LA FECUNDIDAD: 28.9

^{*} Edad Media de la fecundidad: $\frac{\sum x s f x}{\sum f x}$, Para el cálculo de la edad media de la fecundidad, se $\frac{\sum s f x}{\sum f x}$ toma la edad media del intervalo correspondiente.

CUADRO 2-2B PROCESO PARA OBTENER LOS DATOS DE LA GRAFICA 2-2B

$Si \alpha = 0$	У	(3 =	.8
-----------------	---	------	----

X	$V(x) = .8V^{s}(x)$	F (x)	5 √ ×
15	••		.18120
20	.71766	.90598	.29663
25	.07694	2.38911	.25798
30	43348	3,67903	.25273
35	-1.04132	4,94269	.23588
40	-1.97333	6.12210	.11620
45	-3.02970	6.70308	.06638

D. AJUSTE DE LA ESTRUCTURA DE LA FECUNDIDAD POR EDADES .-

Debido a que en muchos païses la información a pariir de la cual se obtienen las tasas de fecundidad, proviene de estadísticas insuficientes, al realizar el análisis de algún fenomeno puede llegarse a irregularidades en ciertos casos notorias. Estas irregularidades se deben a la consideración de un número limitado de casos, a la mala declaración de la edad de las mujeres o a la calidad dudosa de las respuestas relacionadas con el número de hijos nacidos vivos y la edad de la madre en el momento de tenerlos.

En estos casos es importante entonces realizar un - ajuste de la distribución relativa de la fecundidad por edades observadas.

PROCEDIMIENTO DE AJUSTE.~

Teniendo ya la estructura estandar $V^s(x)$ y estimados los parámetros $\hat{\mathcal{X}}$ y $\hat{\mathcal{J}}$, se pueden obtener los valores $\hat{\mathcal{V}}(x)$ mediante la relación

$$\widehat{\nabla}(x) = \widehat{\mathcal{L}} + \widehat{\mathcal{L}} \nabla^{s}(x) \tag{9}$$

y luego, siguiendo el proceso inverso al descrito para llegar a V(x), tenemos:

$$\frac{\hat{F}(x)}{TGF} = e^{-e^{x}(x)}$$

La TGF es la misma que obtuvimos en el caso de los valores observados que se están tratando, por tanto podemos llegar a

$$F(x) = (TGF) e^{-e^{x}(x)}$$

y luego desacumular para obtener las tasas específicas de fecundidad ajustadas.

Para el proceso de desacumulación pueden usarse las fórmulas

$$5^{f}x = (F(x+5) - F(x))/5$$
 para $x = 20, 25,...$ (40)
 $5^{f}15 = F(20)/5$ y
 $5^{f}45 = (TGF - F(45))/5$

En el cuadro 2-3 se resume el procedimiento con - los datos del ejemplo que se venía desarrollando, es decir, Colombia en el periodo 1960-64 y como estandar, la fecundidad en 1976.

CUADRO 2-3

AJUSTE DE LA ESTRUCTURA DE LA FECUNDIDAD
POR EDADES.

Λ	· V(v)		
V(x) (+)	$F(x) = TGF e^{-e^{-(x)}}$	5fx	
is de a minimal de qual de suplimitation qualità de constitue de la constitue de la constitue de la constitue En equi	ands 	.07614	
1.07044	.38069	.37202	
.13459	2.24079	.36945	
61095	4.088	.30770	
-1.49878	5.62654	. 20339	
-2.86009	6.64347	.06119	
-4.40306	6.94942	.01712	
	1.07044 .13459 61095 -1.49878 -2.86009	$V(x)$ (+) $F(x) = TGF e^{-e^{-e^{-e^{-e^{-e^{-e^{-e^{-e^{-e^{-$	$V(x)$ $(+)$ $F(x) = TGF e^{-e}$ $5fx$ 076141.07044.38069.37202.134592.24079.36945610954.088.30770-1.498785.62654.20339-2.860096.64347.06119

(+)
$$\hat{\nabla}(x) = \hat{x} + \hat{\beta} \hat{\nabla}^{s}(x)$$

 $\hat{\nabla}(x) = .0222 + 1.16850 \hat{\nabla}^{s}(x)$

III. PRESENTACION DE LA INFORMACION.

La información necesaria para la aplicación del modelo de la función de Gomepertz Linealizada, para ajustar la fecundidad, se reduce a las tasas específicas de fecundida, por grupos quinquenales de edades, de los años o períodos elegidos como objeto de estudio.

Estos datos para el caso de Colombia, fueron obtenidos de la Escuela Nacional de Fecundidad de 1976 y se
presentan en el cuadro 3-1

Según los datos de este cuadro, puede observarse que de 1960 a 1976, las declinaciones más grandes en términos absolutos ocurrieron en las edades intermedias del-período reproductivo, siendo la más significativa la ocurrida en el grupo de 25 a 29 años de edad.

El descenso más rápido en las tasas de fecundidad por edad específica, ocurrió de 1964 a 1973; después se - mantuvo la tendencia, pero de una manera mucho más len-ta.

CUADRO 3.-1

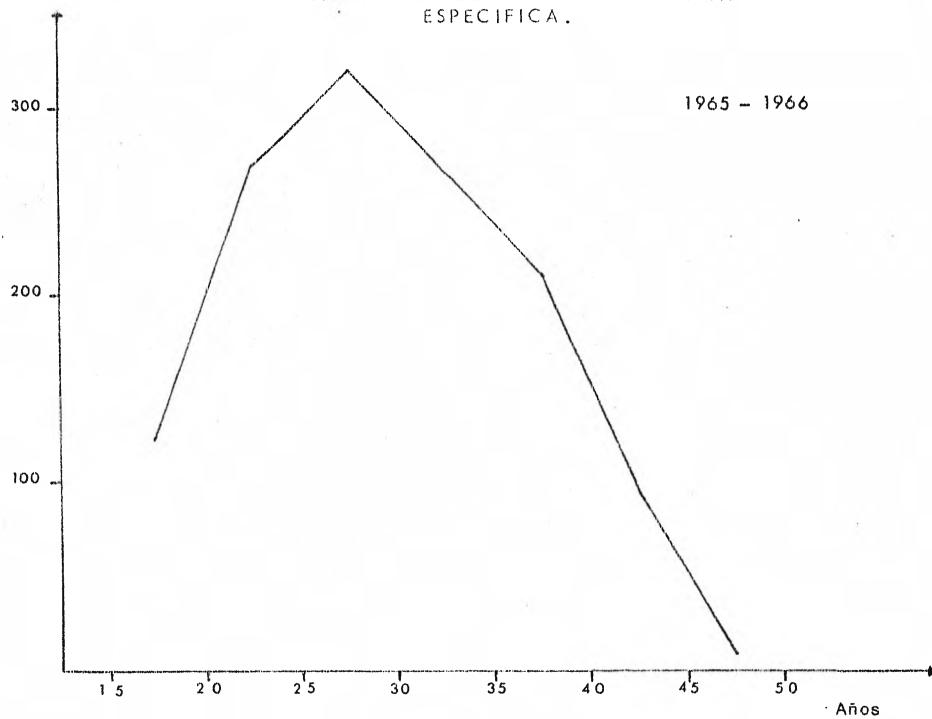
COLOMBIA: TASAS BRUTAS DE NATALIDAD Y TASAS DE FECUNDIDAD: GLOBAL Y POR EDAD ESPECIFICA PARA COLOMBIA DE ACUERDO CON LA ENF/69*, CENSO DE POBLACION DE 1973 Y LA ENF/76.

	TASA BRUTA	TASA GLOBAL		TASA	SDE	FECU	NDIDA	A D	241	
	DE	DE		POR EDAD ESPECIFICA						
FUENTE:	NATALIDAD	FECUNDIDAD	15-19	20-24	25-29	30-34	35-39	40-44	45-49	
ENF/69								-		
1960-1964	48.0	7.04	129	299	337	304	230	98	10	
1965-1966	44.5	6.51	125	270	321	267	214	95	10	
1967-1968	41.3	6.03	110	210	278	277	176	85	10	
CENSO DE 19	73 33.1	4.36	77	207	205	172	130	63	19	
ENF/76	31.1	4.24	73.	209	192	172	133	50	19	
INDIVIDUALES	5	5.83	114	267	283	219	173	110	0	
1969-1970	***									
1971-1972	~	5.16	111	257	241	193	141	90	0	
1973-1974	***	4.41	101	227	211	160	118	55	11	
1975-1976	***	4.57	94	212	221	172	132	53	31	
1977-1978	••	3.92	54	186	202	156	105	60	20	

⁻ NO CALCULADAS

^(*) ENF : ENCUESTA NACIONAL DE FECUNDIDAD.

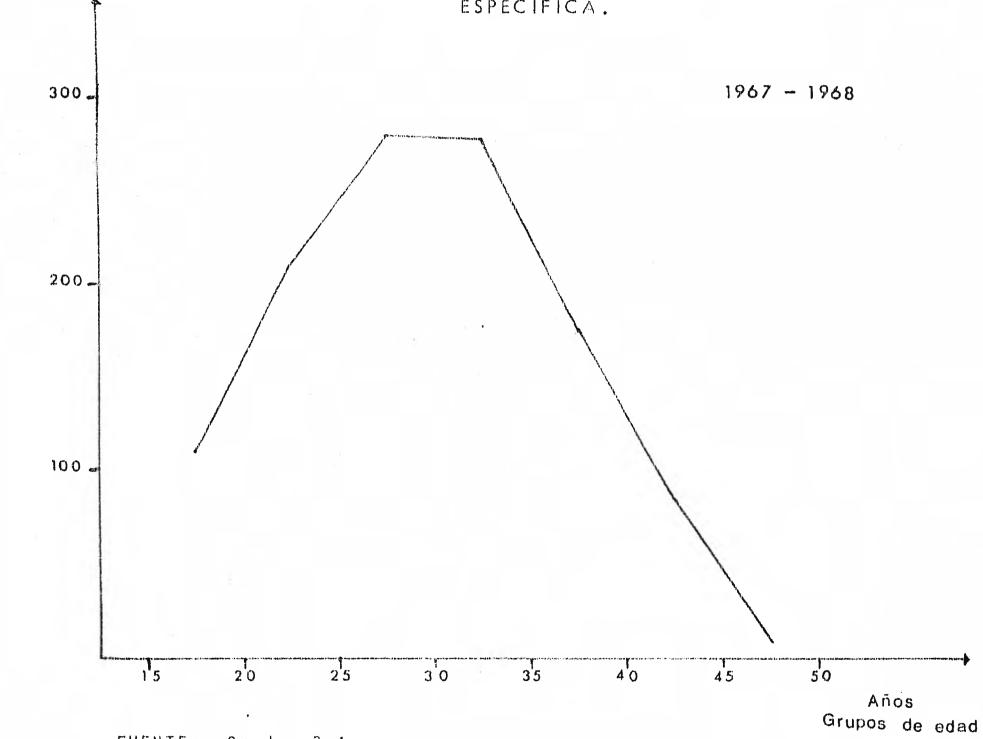
A continuación cabe señalar que la información es observada, es decir, requiere una evaluación para decidir si se lleva a cabo un ajuste que corrija o uno que suavice la información. El primer caso se tomará cuando dicha evaluación arroje una mala captación de la información, es decir, mala calidad de la información captada; y el segundo caso, sería tomado cuando la evaluación de la información arroje resultados positivos acerca de ella, es decir, la información en general fue bien captada.


La evaluación de la información, si bien es cierto, no se llevará a cabo de manera explicita a lo largo del presente trabajo, sí de una manera implícita, ya que se parte del hecho de que la información más recientemente captada en cuanto al fenómeno en estudio, es de mejor calidad que las anteriores, es decir, que a través del tiempo se ha venido superando la calidad en cuanto a la captación de la información, sobre todo en lo que a encuestas se refiere; además, debe recordarse que lo que se intenta en el presente trabajo es ilustrar el uso de la función de Gompertz para corregir, resumir y proyectar las tendencias observadas de la estruc-

tura por edades de la fecundidad para el caso colombiano.

A continuación se presenta gráficamente el comportamiento de las tasas específicas de fecundidad, primero en las gráficas 3-1 a 3-10, para cada año y luego en las gráficas 3-11 y 3-12A y B, se agrupan de acuer do a que su cúspide sea temprana o tardía.

Ç

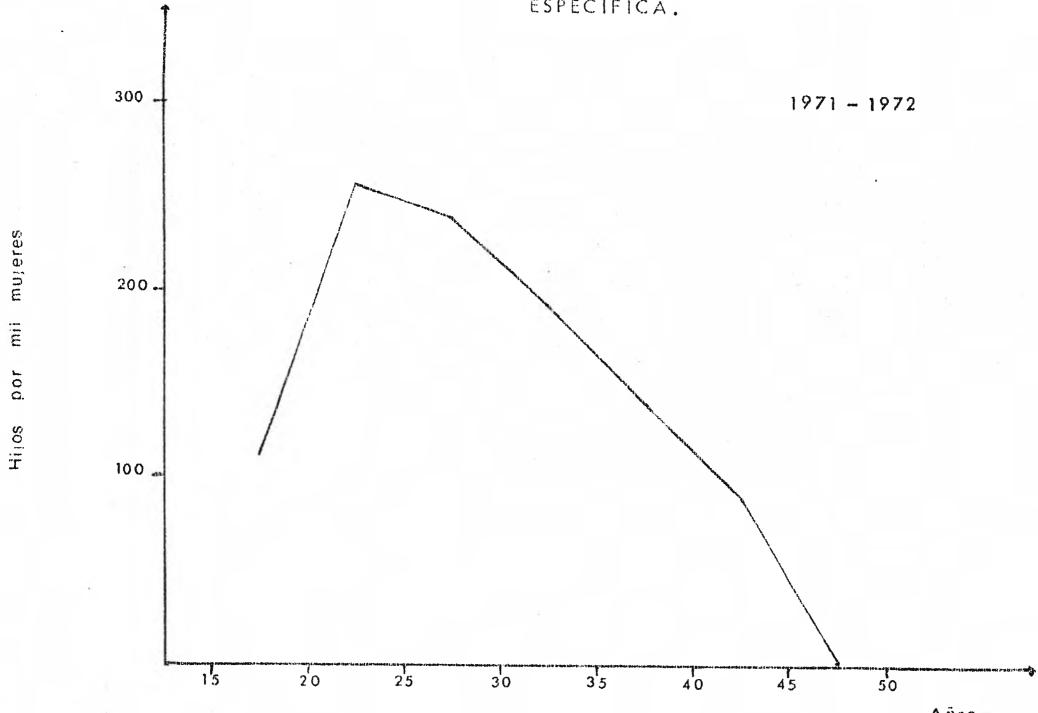

Cuadro 3-1 FUENTE:

por mil mujeres

Hijos

55

Grupos de edad

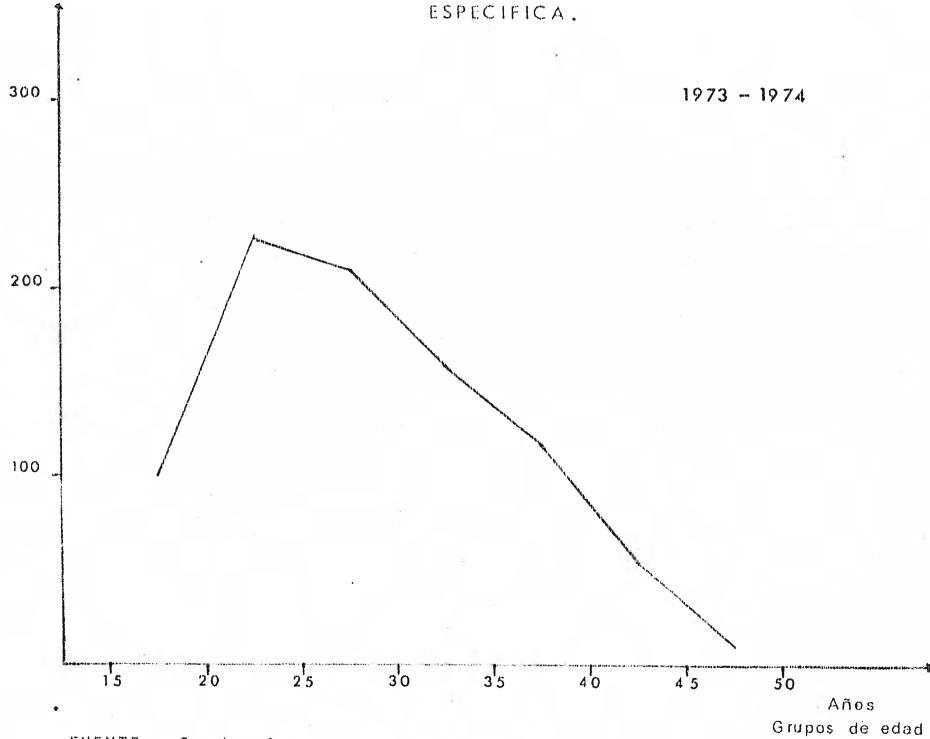


FUENTE: Cuadro 3-1

Hijos por mil mujeres

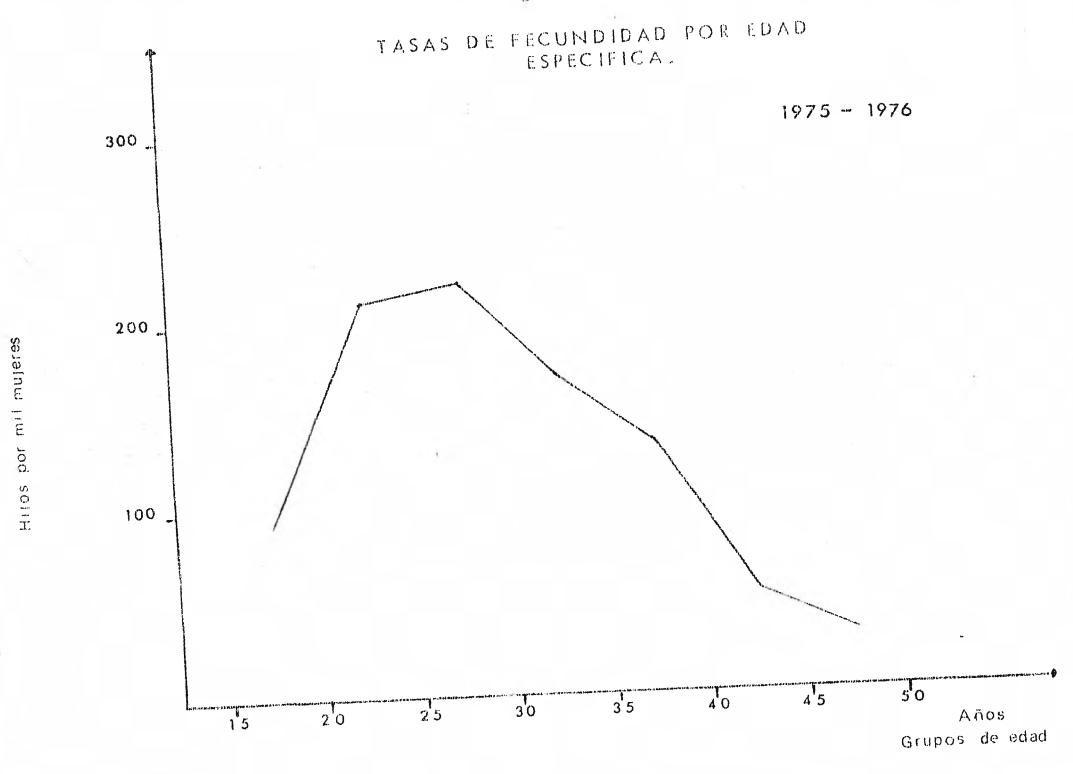
56

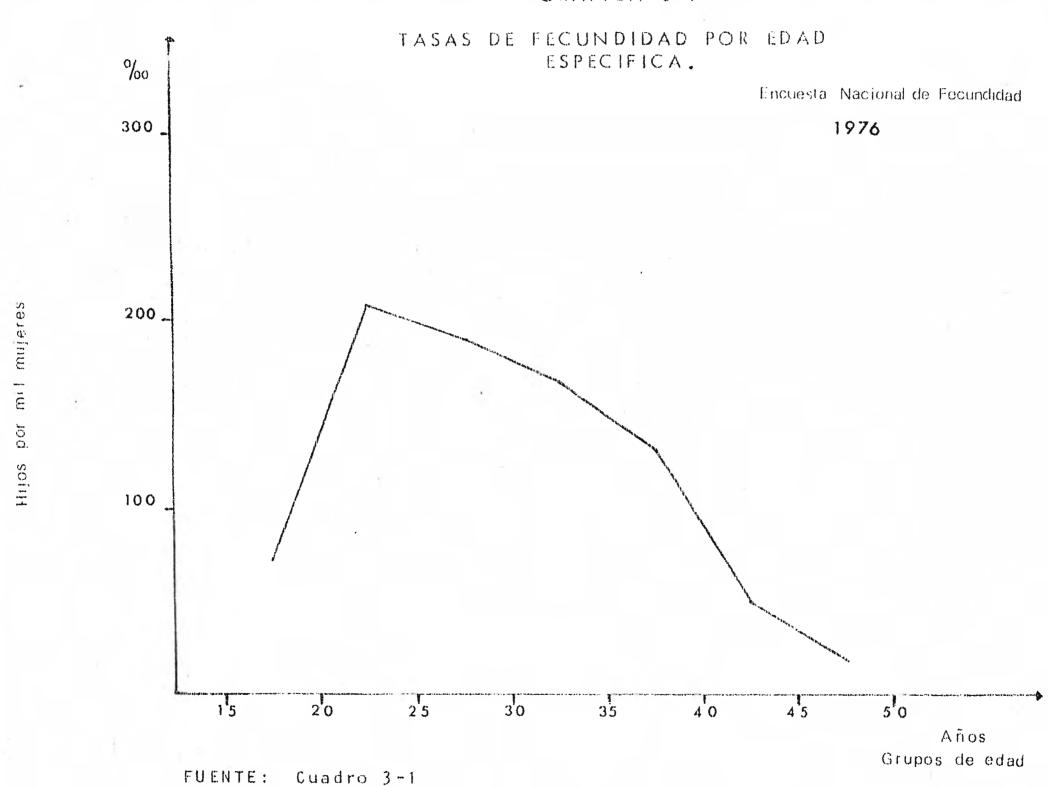
FUENTE: Cuadro 3-1


FUENTE: Cuadro 3-1

ပ်ာ

FUENTE: Cuadro 3-1

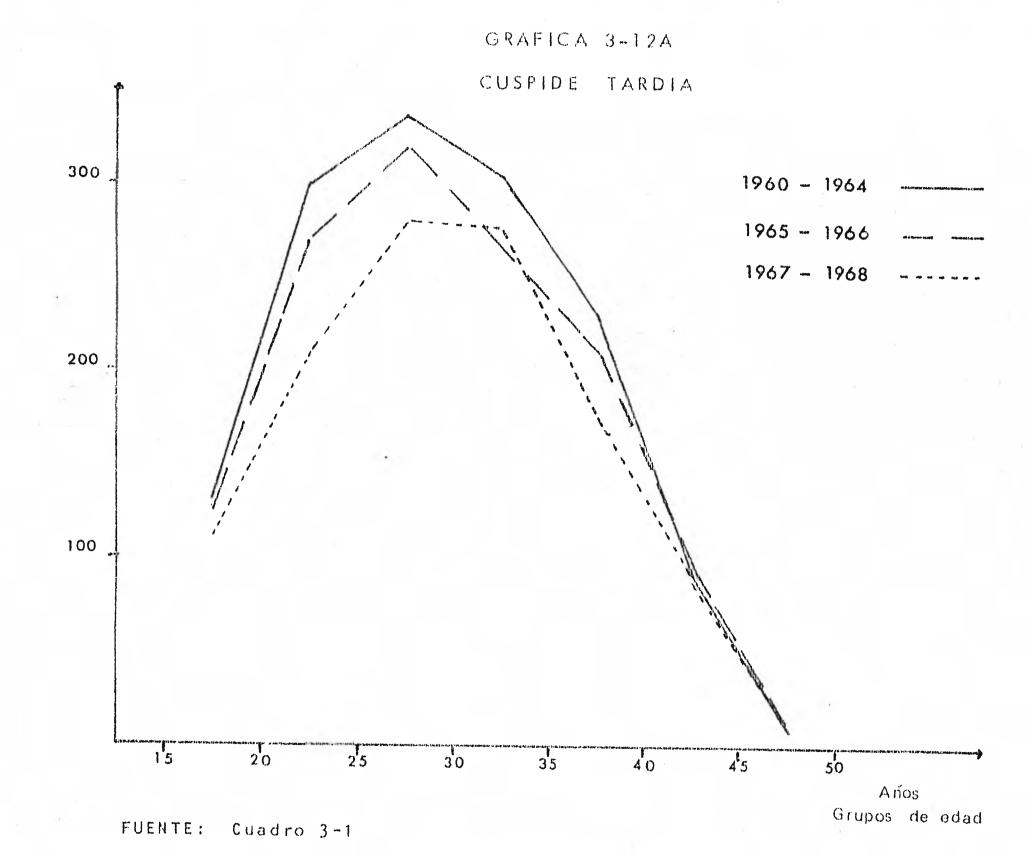

GRAFICA 3-7


FUENTE: Cuadro 3-1

GRAFICA 3-8

FUENTE: Cuadro 3-1

O-



FUENTE: Cuadro 3-1

FUENTE: Cuadro 3-1

Q

FUENTE: Cuadro 3-1

mil myeres

por

Haos

Grupos do edad

IV. APLICACION DEL MODELO .-

El modelo ha sido aplicado en el presente trabajo, a datos a partir de 1960. Se tomó como estándar en cada caso el año posterior al que se quería corregir, siempre y cuando tuvieran ambos la cúspide temprana la cúspide tardía! Inicialmente se tomaran los datos de 1972-1978 para corregir los de 1975-1976 y así sucesivamente, de acuerdo con la condición anterior hasta llegar a ajustar los de 1960-1964. Cuando fué del caso se usó la información corregida en el nuevo proceso de ajuste. A continuación se enumeran los casos tratados:

	E ST AND A R	POR CORREGIR
i	1977-1978	1975-1976
ii	1973-1974	1971-1972
iii	ENF*/76	CENSO 1973
iv	1967-1968	1965-1966
V	1965-1966 (corregido)	1960~1964

Se tomó como estandar, el año posterior al que se quería corregír, pensando en que mientras más actual sea la información, tiene mejor calidad.

CASO ;

COLOMBIA: CALCULO DEL DOBLE LOGARITMO DE LA ESTRUCTURA DE FECUNDIDAD ACUMULADA

	PERI	ODO 1975-197	6	
GRUPOS DE EDADES	5f×	F(x) TGF		
15-19 20-24 25-29 30-34 35-39 40-44 45-49	.09400 .21200 .22100 .17200 .13200 .05300 .03100	.00000 .10273 .33443 .57596 .76393 .90820 .96612	.00000 .82226 .09106 59471 -1.31203 -2.34035 -3.36775	
TGF = 4.575	$\hat{\alpha} = -$.7991	$\hat{\beta} = .94261$	

	PERIODO	1977-19	778
GRUPOS DE EDADES	5f ^s ×	F ^s (x) (TGF) ³	∨ ^s (x)
15-19	.05400	.00000	.00000
20-24	.18600	.06897	.98363
25-29	.20200	.30651	.16763
30-34	.15600	.56450	. 55893
35-39	,10500	.76373	-1.31103
40-44	.06000	.89783	-2.22770
45-49	.02000	.97446	- 3.65449
TGF = 3.91500	°<= .000	i	$\beta = 1.000$

CASO I

COLOMBIA: AJUSTE DE LA ESTRUCTURA DE FECUNDIDAD POR EDADES. 1975-1976

GRUPOS DE EDADES	ESTRUCTURA OBSERVADA.	× (x)	F(x)	ESTRUCTUF A JUST ADA
15-19	.09400	danadahantak kara-pahanga danagahanga perbanagan danagan anggara-anggangahanga danag		.08873
20-24	.21200	.84727	.44367	.2216
25-29	.22100	.07810	1.55174	. 22013
30-34	.17200	60676	2.65247	.16920
35-39	.13200	-1.31570	3.49845	.11749
40-44	.05300	-2.17976	4.08589	.0712
45-49	.03100	-3.52467	4.44218	.0265

CASO 11

COLOMBIA: CALCULO DEL DOBLE LOGARITMO DE LA ESTRUCTURA DE LA FECUNDIDAD ACUMULADA.

	PERI	ODO 1971-1972		
GRUPOS DE EDADES	5f×	F(x) TGF	∨(x)	
15-19	.11100		_	
20-24	.25700	.10745	.80231	
25-29	.24100	.35624	.03163	
30-34	.19300	.58954	63789	
35-39	.14100	.77638	-1.37392	
40-44	.9000	.91288	-2.39518	
45-49	.00001	0.99999	-11.51292	
TGF = 5.16	500 <i>&</i>	=.02984 <i>\beta</i> =	= 1,83254	د. غيسما

CASO II

COLOMBIA: CALCULO DEL DOBLE LOGARITMO DE LA ESTRUCTURA

DE LA FECUNDIDAD ACUMULADA.

	F	PERIODO	1973-1974		
GRUPOS DE EDADES	5f⁵×	-	$\frac{F^{s}(x)}{(TGF)}3$	∨ ^s (x)	
15-19	.10100		889)		
20-24	.22700		.11438	.77390	
2529	.21100		.37146	00974	
30-34	.16000		.61042	70601	
35-39	.11800		.79162	-1.45383	
40-44	.09000		.91288	-2.39518	
45-49	.00001		0.99999	-11.51292	
TGF = 5.	16500	$\hat{\alpha} = .029$	$\beta = 1$.83254	

CASO ii
PERIODO 1971-1972

GRUPOS DE EDADES	ESTRUCTURA OBSERVADA	? (×).	^ F(x)	ESTRUCTURA AJUSTADA
15~19	.11100	phra	enes.	.01466
20-24	.25700	1.44804	.07332	.36080
25-29	.24100	.01199	1.87731	.40329
30-34	.19300	-1.26395	3.89374	.18272
35 ~3 9	.14100	-2.63436	4.80732	.06173
40-44	.09000	-4.65245	5.11597	.00947
45-49	10000,	-8.02500	5.16331	.00034
eadosa (respessor) e osserene e e e sua e e endrinción (ediscuso su fi Be	lit. ykolda, dhorugum nyangu dahuga gayap wasah ng pil himitid, ndi in tordifikapih, sajahi	ny idon'i jelyn jelynianyé ispejény " jergnysé niejt" / niejt ist tit tin teloc	a - Zonnicze z diż wię do ia liędiaczon i za inaki apa do Altarija trię ad o iadbora.	अभिकारम्परिकारम् । स्थापकी वेषा क्षेत्रस्थाते । ५ - १ र ४५० राज्यानम् वेषाक्ष्मिका अधिवास्त्राम्या एका पर्याप (१००४ ५०० ५०० ४००

 $^{\wedge}$ \vee (x) = .02984 + 1.83254 \vee (x)

CASO III

COLOMBIA: CALCULO DEL DOBLE LOGARITMO DE LA ESTRUCTURA DE LA FECUNDIDAD ACUMULADA.

D	ERIC	OC	\circ	C	F	M	SO	1	973
1	Im 1 / 1 /	J 14		·	L.a	1 4		ŀ	1/0

GRUPOS DE EDADES	5fx	F(x) TGF	V (x)	
15-19	.07700	•••	-	,
20-24	.20700	.8820	.88712	
25-29	.20500	.32531	.11597	
30-34	.17200	.56014	54546	
35-39	.13000	.75716	-1.27948	
40-44	.06300	.90607	-2.31630	
45-49	.01900	.97824	-3.81651	
TGF = 4	,36500	° = .00464	$\hat{\beta}$ = .98290	

PERIODO ENF/76

GRUPOS DE EDADES	PERIO DO	F ^s (x) (TGF) ^s	∨ ^s (x)	
15-19	.07300	Many		
20-24	.20900	.08608	.89708	
25-29	.19200	.33255	.09619	
30-34	.17200	.55896	54185	
35-39	.13300	.76179	-1.30166	
40-44	.05000	.91863	-2.46664	
45-49	.01900	.97759	-3,78713	
TGF = 4.2	400	0.000	$\beta = 1.000$	

CASO III

COLOMBIA: CALCULO DEL DOBLE LOGARITMO DE LA ESTRUCTURA DE LA FECUNDIDAD ACUMULADA.

PERIODO

CENSO 1973

15-19 .07700 - - .0 20-24 .20700 .88638 .38570 .2 25-29 .20500 .09919 1.44678 .1 30-34 .17200 52794 2.42008 .1 35-39 .13000 -1.27475 3.30065 .1 40-44 .06300 -2.41982 3.99355 .0	CTUR/
20-24 .20700 .88638 .38570 .2 25-29 20500 .09919 1.44678 .1 30-34 .17200 52794 2.42008 .1 35-39 .13000 -1.27475 3.30065 .1 40-44 .06300 -2.41982 3.99355 .0 45-49 .01900 -3.71773 4.26026 .0	
25-29 20500 .09919 1.44678 .1 30-34 .17200 52794 2.42008 .1 35-39 .13000 -1.27475 3.30065 .1 40-44 .06300 -2.41982 3.99355 .0 45-49 .01900 -3.71773 4.26026 .0	7714
30-34 .17200 52794 2.42008 .1 35-39 .13000 -1.27475 3.30065 .1 40-44 .06300 -2.41982 3.99355 .0 45-49 .01900 -3.71773 4.26026 .0	1222
35-39 .13000 -1.27475 3.30065 .1 40-44 .06300 -2.41982 3.99355 .0 45-49 .01900 -3.71773 4.26026 .0	9466
40-44 .06300 -2.41982 3.99355 .0 45-49 .01900 -3.71773 4.26026 .0	7611
45-49 .01900 -3.71773 4.26026 .0	3858
	5334
A	2095
$V(x) = .00464 + .98290 V^{s}(x)$	

CASO IV

COLOMBIA: CALCULO DEL DOBLE LOGARITMO DE LA ESTRUCTURA

DE LA FECUNDIDAD ACUMULADA.

	3 7	PERIODO	1965-1966		
•	GRADOS DE		F(x)		
	EDADES	5f×	TGF	V (x)	
•	15-19	.09400	-	(i)	
	20-24	.21200	.10273	.82226	
	25-29	.22100	.33443	.09106	
	30-34	.17200	.57596	59471	
	35–39	.13200	.76393	-1.31203	
	40-44	.05300	.90820	-2.34035	
	45 -49	.03100	.96612	-3.36775	
	TGF = 4.575	â	= .7991	$\beta = .94261$	

CASO iv

COLOMBIA: CALCULO DEL DOBLE LOGARITMO DE LA ESTRUCTURA DE LA FECUNDIDAD ACUMULADA.

	PER	NODO 1967-1968		
GRUPOS DE EDADES.	5f ^s ×	F ^s (x) TGF	∨ ^s (x)	
15-19	.05400	-	-	
20-24	.18600	.06897	.98363	
25-29	.20200	.30651	.16763	
30-34	.15600	.56450	55893	
35-39	.10500	.76373	-1.31103	
40-44	.06000	.89783	-2.22770	
45-49	.02000	.97446	-3.65449	
TGF = 3.915	= ().000 ß	= 1.000	

COLOMBIA: AJUSTE DE LA ESTRUCTURA DE LA FECUNDIDAD POR EDADES 1965 - 1966

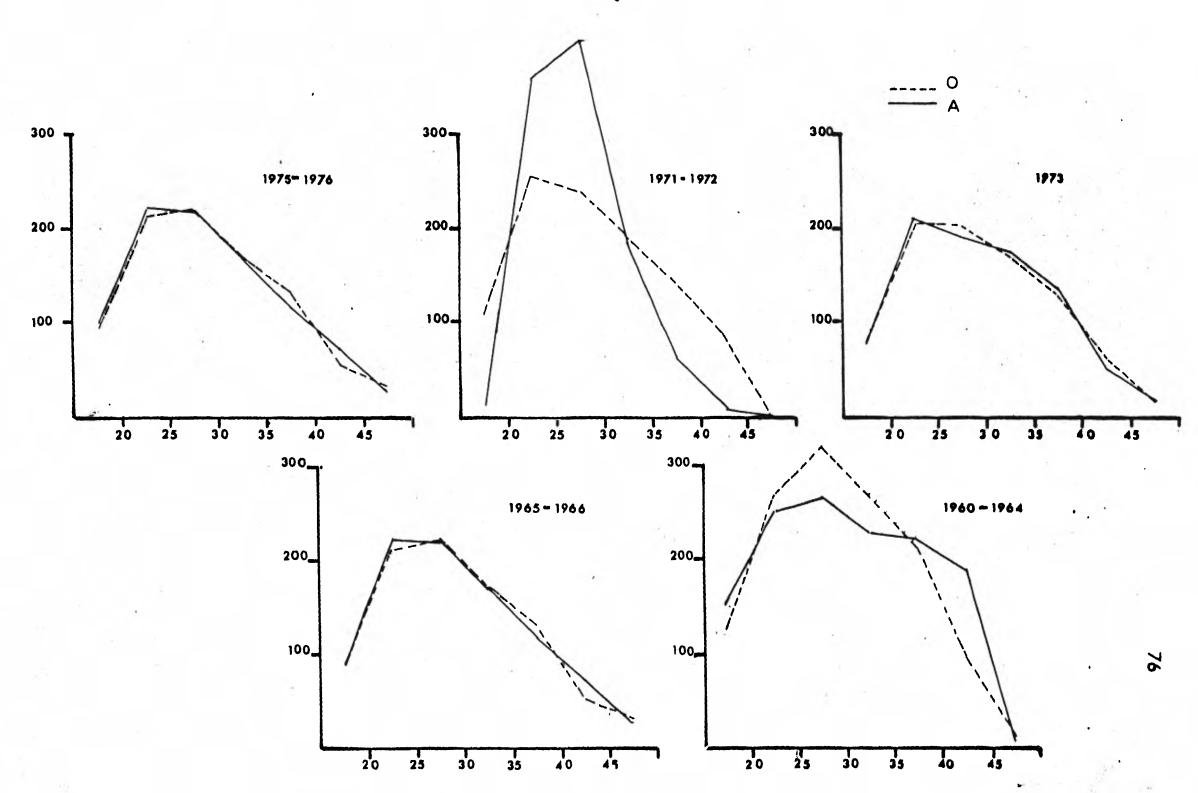
GRUPOS DE EDADES	ESTRUCTURA OBSERVADA	^ \(\times\)	A F (x)	ESTRUCTURA A JUSTADA
15-19	.09400	_	-	.08873
20-24	.21200	.84727	.44367	.22161
25-29	.22100	.07810	1.55174	.22015
30-34	.17200	60676	2.65247	.16920
35-39	.13200	-1.31570	3.49845	.11749
40~44	.05300	-2.17976	4.08589	.07126
45-49	.03100	-3.52467	4.44218	.02656
^ (x) = -	07991 + .9426	l V ^s (x)		

CASO V

COLOMBIA: CALCULO DEL DOBLE LOGARITMO DE LA ESTRUCTURA

DE LA FECUNDIDAD ACUMULADA.

	1 L.	RIODO 1960-1964		
GRUPOS DE	م معر	F (x)	N/ / N	
EDADES	5fx	TGF	V (x)	
15-19	.12500		V	
20-24	.27000	.09601	.85158	
25-29	.32100	.30338	.17628	
30-34	.26700	.54992	51420	
35-39	.21400	.75499	-1.26923	
40-44	.09500	.91935	-2.47595	
45-49	.01000	.99232	-4. 86522	
TGF = 6.51	Å =	04962	$\hat{\beta} = .99619$	


PERIODO 1965-1966 (CORREGIDO)			ORREGIDO)
GRUPOS DE EDADES	5f ^{\$} ×	F (x) (TGF) ^s	∨ ^s (x)
15-19	.11926		ika ka ⁷ Milu Program (Program (British (Mila)) A tanda mataka di nada da kabupatan di nada da mataka da mataka Mila
20-24	.21488	.10407	.81657
25-29	.23649	.29157	.20902
30-34	.20646	.49793	 36055
35-39	.19397	.67809	94552
40-44	.17130	.84735	-1.79791
45-49	.00364	.99682	-5.75044
TGF = 5.73		$\hat{\alpha} = 0.000$ $\hat{\beta} = 1$.000

CASO v

COLOMBIA: AJUSTE DE LA ESTRUCTURA DE LA FECUNDIDAD POR EDADES 1960 - 1964

GRUPOS DE EDADES	OBSERVADA	^ (×)	F (x)	ESTRUCTURA AJUSTADA
15-19	.12500		-	.15219
20-24	.27000	.76384	.76096	.25115
25-29	.32100	.15861	2.01670	.26661
30-34	.26700	40880	3.34977	.22848
35-39	.21400	99154	4.49217	.22149
40-44	.09500	-1.84069	5.55463	.18705
45-49	.01000	-5.77818	6.48989	.00402

GRAFICA 4-1
Estructuras de fecundidad observada y ajustada

V. ALCANCES DEL MODELO BILOGISTICO.-

En el presente trabajo se presentó y sistematizó la técnica del doble logaritmo de la función de Gompertz.

El uso más directo de este modelo es para realizar ajustes de la distribución relativa de la fecundidad por edades observada.

Es común en países como Colombia, cuyas estadisticas son insuficientes obtener las tasas de fecundidad
a partir de datos censales o de encuestas específicas.
Este tipo de información adolece de varios errores que
pueden conducir a irregularidades en muchos casos notorias.

Los errores en la captación de la información obedecen a ciertos motivos como por ejemplo:

las respuestas relacionadas con el estudio de la fecundidad (número total de hijos nacidos vivos de la empadronada; año de nacimiento de esos hijos, etc.), son omitidos. Las causas de esta omisión pueden ser: falta de comprensión de la

pregunta desconocimiento del dato solicitado, omisión voluntaria o involuntaria del propio empadronador.

Existen tipos de error que pueden presentarse en relación con los datos que si fueron declarados:

- Declaración defectuosa por causas voluntarias de la informante o porque no entendió la pregunta o por olvido de los hijos que murieron cuando eran pequeños o la no inclusión de hijos que en el momento del censo o de la encuesta no viven con la madre.
- Dificultad de la madre para ubicar los nacimientos dentro de un período limitado de tiempo.
- Exageración del número de hijos nacidos vivos por la inclusión de hijos nacidos muertos.
- Mala declaración de la edad por parte de las mujeres, afecta la estructura por edad de la fecundidad.

Por todo lo anterior, es necesario realizar una evaluación analítica de los datos obtenidos antes de proce der a elaborar estimaciones que podrian conducir a conclusiones sesgadas por la presencia de errores en los da tos básicos.

De aqui la importancia de modelos como el expuesto en este trabajo.

Entre otras aplicaciones del modelo esta la proyección de la estructura por edad de la fecundidad. proyecciones se fundamentan en la relación que existeentre el nivel y la estructura por edad de la fecundidad: "Aunque para un nivel determinado de fecundidad pueden haber variadas formas de estructura de la fecun didad por edades, es posible establecer algunas ramas generales de comportamiento. En la medida que se con sideran niveles de fecundidad más bajos, la estructura se caracteriza por mayor porcentaje a edades tempranas (reduciéndose la edad media de la fecundidad) y, además, por un mayor grado de concentración de la curva en eda des de alta fecundidad. Esto se debe al descenso más pronunciado de la fecundidad de mujeres de más edad... Si existe asociación entre el nivel general de la fecundidad y su distribución relativa por edades, es de esperar entonces que también haya cierta relación entre el nivel general y los parámetros & y & , dado que estos definen una estructura por edades de la fecundidad determinada a partir de una estructura estándar".*

En el caso de Colombia los parámetros $\not\subset$ y $\not\beta$ no tienen un comportamiento definido, que permita llevar a cabo una proyección con base en este modelo.

Cabría señalar otro uso importante del modelo bilogístico, es La Desagregación de la estructura por edad
de la fecundidad en edades individuales, la cual se tiene para grupos quinquenales una vez hecho el ajuste de las tasas específicas de fecundidad.

El procedimiento para desagregar la estructura de la fecundidad se ilustra tomando la estructura corregida - para el período 1975-1976, la cual se muestra en el cuadro 5-1, que a continuación se detalla:

^(*) Chackiel, Juan. Estructura de la Fecundidad por Edades:
Ajuste y Proyección mediante la función de
Gompertz Linealizada. CELADE p. 23
Notas de población Nº 20-1979.

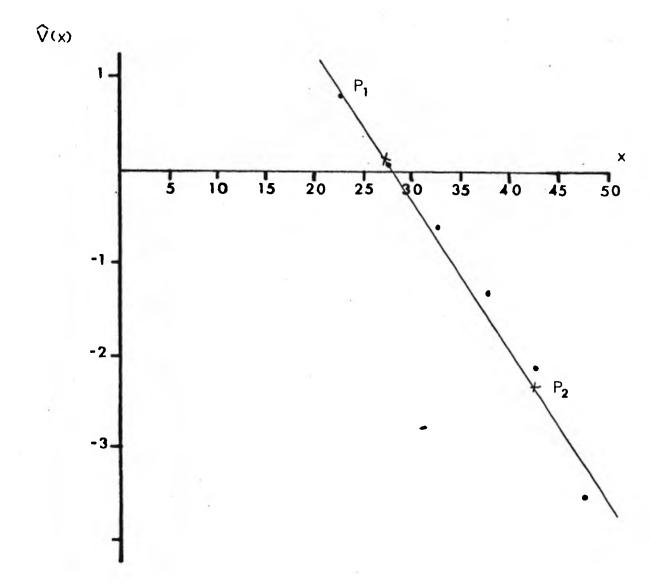
CUADRO 5-1

COLOMBIA: ESTRUCTURA DE LA FECUNDIDAD POR

EDADES. 1975-1976 (AJUSTADA)

GRUPO DE EDADES	^ (x)	ESTRUCTURA AJUSTADA
15-19		.08873
20-24	.84727	.22161
25-29	.07810	.22015
· 30-34	60676	.16920
35–39	-1.31 <i>57</i> 0	.11749
40-44	-2.17976	.07126
45-49	-3.52467	.02656

En el aparecen los valores de \hat{V} (x) para x = 20, 25, 30,35,40 y 45. Graficando estos valores (ver gráfica 5-1), se observa la tendencia lineal de ellos, la cual era de esperarse debido a que como habíamos visto,


$$Ln \left[-Ln \frac{F(x)}{TGF} \right] = XLn + ln (-Ln A)$$

es una recta de la forma

GRAFICA 5-1

Colombia: Distribución de los valores V(x)

1975 - 1976

Los valores de ao y bo se obtienen ajustando los 6 puntos V (x) por el método de promedios:

$$\frac{A}{V_1}(x) = ao + bo X_1$$

$$\frac{A}{V_2}(x) = ao + bo X_2$$

donde:

para los valores del período 1975-1976 se tiene:

$$\hat{\nabla}_{1} = .10620$$
 ; $\hat{\nabla}_{2} = -2.34004$

Con los dos puntos, $P_1 = (25, .10620)$ y $P_2 = (40, -2.34004)$, se obtienen los valores de ao y bo, estimando la recta que pasa por ellas, la cual es:

$$\mathring{\nabla}(x) - \mathring{\nabla}_1 = \frac{\mathring{\nabla}_2 - \mathring{\nabla}_1}{X_2 - X_2} = (X - X_1)$$

y para los valores correspondientes al período considerado se obtiene:

$$^{\wedge}$$
 V(x) = 4.18326 - .16308 X (a)

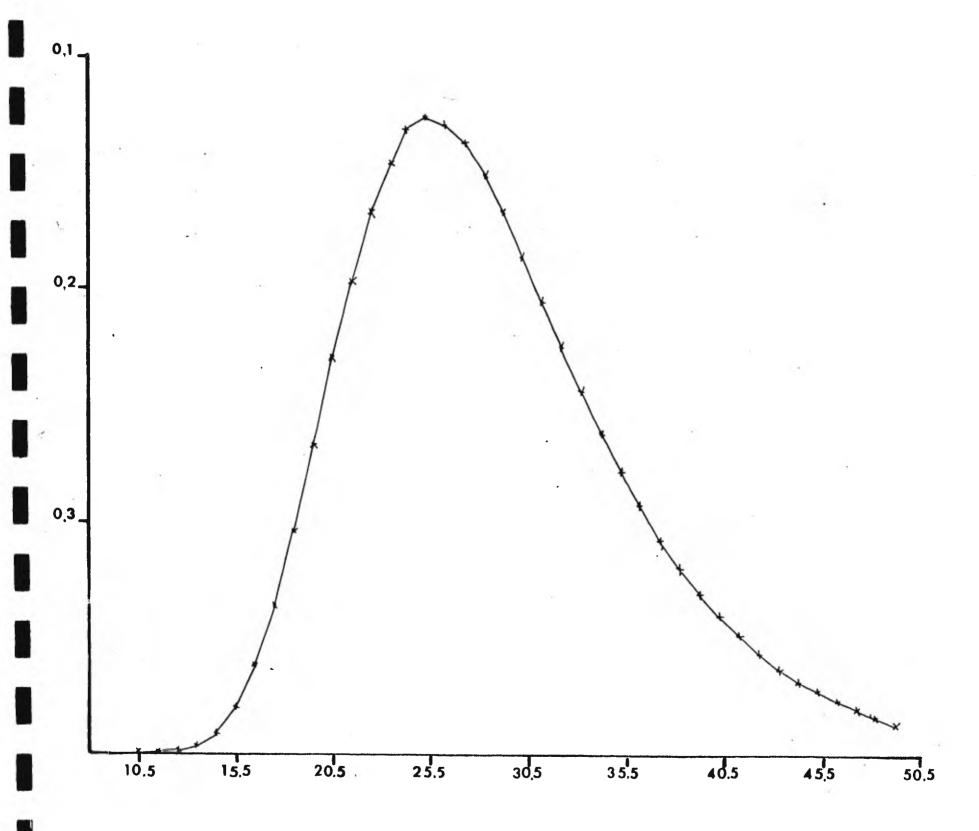
donde

$$ao = 4.18326$$
 y $bo = -.16308$

Evaluando la ecuación (a) para X = 10, 11, 12, 13,..., 50 se obtienen los valores V(x) para dichas edades y empleando la relación

$$\frac{\hat{F}(x)}{TGF} = e^{-e^{v}(x)}$$

se estiman los valores F(x)/TGF. Como la tasa global de Fecundidad para 1975-1976 es 4.575 se calculan los valores F(x) para esas edades. En el cuadro 5-2, se dan los valores obtenidos para el período 1975-1976.


Finalmente, para obtener la estructura por edades individual es, de la fecundidad, se desagrega la función $\hat{F}(x)$ ya que:

$$f(x) = F(x+1) - F(x)$$

GRAFICA 5-2

Colombia : Distribución por edades individuales de las tasas específicas de fecundidad

1975 - 1976

FUENTE: Cuadro 5-2

COLOMBIA: VALORES DE V(x), F(x)/TGF y F(x), POR EDADES INDIVIDUALES, 1975 - 1976

X	♦ (×)	f (x) / TGF	F (x)
10	2.55246	.0000026	.0000121
11	2.38938	.0000183	.0000839
12	2.22630	.0000946	.0004329
13	2.06322	.0003815	.0017456
14	1.90014	.0012472	.0057060
15	1.73706	.0034114	.0156073
16	1.57398	.0080200	.0366915
17	1.41090	.0165785	.0758466
18	1.24782	.030723	.1405577
19	1.08474	.0518878	.2373866
20	.92166	.0809875	.3705178
21	.75858	.1182159	.5408377
22	.59550	.1630109	.7457748
23	.43224	.2141706	.9798304
24	.26934	.2700629	1.2355377
25	.10626	.328864	1.5045528
26	05602	.3887712	1.7786282
27	21990	.4481626	2.0503438
28	38298	.5056925	2,313543
29	54606	.5603311	2.5635146
30	70914	.6113613	2.7969779
31	87222	.6583474	3.0119393
32	-1.03530	.7010894	3.207484
33	-1,19838	.7395728	3.3835455
34	-1.36146	.7739203	3.5406853
35	-1.52454	.8043497	3.6798998
36	-1.68762	.8311381	3.8024568
37	-1.85070	.8545954	3.9097739
38	-2.01378	.8750422	4.003318
39	-2.17686	.8927961	4.0845421
40	-2.33994	.9081611	4.154837
41	-2.50302	.9214217	4.2155042
42	-2.66610	.9328388	4.2677375
43	-2.82918	.942649	4.3126191
44	-2.99226	.951064	4.3511178
45	-3.15534	.9582717	4.384093
46	-3.31842	.9644378	4.4123029
47	-3.48150	.9697071	4.4364099
48	-3.64458	.9742061	4.4569929
49	-3.80766	.9780446	4.474554
50	-3.97074	.9813173	4.4895266

En el cuadro 5-3 se dan los valores de las tasas específicas de fecundidad, por edad individual, y en la gráfica 5-2 la distribución de dichas tasas.

Como conclusión puede decirse, que el modelo del doble logaritmo de la función de Gompertz sirve para realizar ajustes en la estructura por edad de la fecundidas y que el éxito que se tenga al aplicarlo depende de la adecuada estructura por edad del estándar utilizado.

Otra ventaja del modelo, es la de poder desagregar la estructura de la fecundidad en edades individuales.

Y finalmente, se puede señalar que otro uso es el de proyectar la estructura por edad de la fecundidad, observando las tendencias de los parámetros $\propto y \beta$ de la relación $V(x) = \propto + \beta V^{s}(x)$, a través del tiempo.

COLOMBIA: TASAS ESPECIFICAS DE FECUNDIDAD

CUADRO 5-3

POR EDADES INDIVIDUALES 1975-1976

×	f(x)	×	f(x)
10	.0000718	30	.2149614
11	.000349	31	.1955447
12	.0013127	32	.1760615
13	.0039604	33	.1571398
14	.0099013	34	.1392145
15	.0210842	35	.122557
16	.0389316	36	.1073171
17	.0647111	37	.0935441
18	.0968289	38	.0812241
19	.1331312	39	.0702949
20	.1703199	40	.0606672
21	.2049371	41	.0522333
22	. 2340556	42	.0448816
23	.2557073	43	.0384987
24	. 2690151	44	.0329752
25	. 2740754	45	.0282099
26	.2717156	46	.0241961
27	.2631992	47	.020583
28	.249603	48	.0175611
29	. 2334633	49	.0149726

APENDICE

A continuación se presenta una copia del programa usado para realizar los cálculos del ajuste:

CALCULO DEL DOBLE LOGARITMO DE LA ESTRUCTURA DE LA FECUNDIDAD

REAL FX(2,7), FUN(x,7), COC(2,7), VX(2,7), VXE(7), COCE(7),
FUNXE (7), FXA (7), ALFAO, ALFAE, BETAO, BETAE, TGF
(2), VIX(2), V2X(2)

,SUMA,ULTIMO

C FX : TASA ESPECIFICA DE FECUNDIDAD (QUINQUENAL),

C FUNX : FECUNDIDAD ACUMULADA.

C COC : COCIENTE DE LA FECUNDIDAD ACUMULADA ENTRE LA

C TASA GLOBAL DE FECUNDIDAD.

C VX : EL DOBLE LOGARITMO DEL COCIENTE.

C VXE : EL AJUSTE CON LOS PARAMETROS STANDARD.

C COCE : COCIENTE CON LOS VALORES AJUSTADOS.

C FUNXE : LA FECUNDIDAD ACUMULADA AJUSTADA.

C FXA : TASAS ESPECIFICAS DE FECUNDIDAD AJUSTADAS.

C ALFA,

C BETA : PARAMETROS.

```
C TGF
           : TASA GLOBAL DE FECUNDIDAD.
          WRITE (5,1070)
           READ (5,1080)N
C
           DO 9999 NVECE = 1,N
C
          WRITE (5,1090) NVECE
C
           ***** CALCULO DE OBSERVADO Y STANDARD RESPECTIVA-
           MENTE***** DO 99 K=1,2
C
           ***** LECTURA DE DATOS ******
           READ(4,1010) (FX(K,I),I-1,7)
           ***** CALCULO DE 'FUNX' ******
C
           SUMA = FX(K, 1)
           DO 100 I=2,7
           FUNX(K,I)=5,0*SUMA
           SUMA=SUMA+FX(K,I)
100
           CONTINUE
           TGF(K)=5.0*SUMA
C
           ****** CALCULO DEL COCIENTE (COC) ******
C
           DO 200 I=2,7
           COC(K,I)=FUNX(K,I)/TGF(K(
200
           CONTINUE
C
           ****** CALCULO DE LA VX *****
           DO 300 I=2,7
```

```
VX(K,I)=ALOG(=ALOG(COC(K,I)))
          CONTINUE
300
C
C
           ****** CALCULO DE LA RECTA PARA EL AJUSTE ******
          V1X(K)=(VX(K,2)+VX(K,3) + VX(K,4)) / 3.0
          V2X(K)=(VX(K,5) + VX(K,6) + VX(K,7)) / 3.0
C
           CONTINUE
99
C
          ALFAE=0.0
          BETAE=1.0
C
          BETAO = (V2X(1)-V1X(1)) / (V2X(2)-V1X(2))
           ALFAO=VIX(1)-BETAO*VIX(2)
C
           DIFA=ABS(ALFAE-ALFAO)
          DIFB=ABS( BETAE-BETAO )
C
           AQUI DEBERA DE IR LA DECISION DE SI SE AJUSTA O NO
           DO 400 I=1,7
          VXE ( 1 )=ALFAO+BETAO*VX (2,1 )
           COCE (I) \pmXP(-EXP(VXE(I)))
          FUNXE ( | )=TGF ( | )*COCE (I)
400
           CONTINUE
```

```
ULTIMO=TGF ( I )
           FUNXE ( I )+0.0
           DO 500 1=7,1,-1
           FXA (I)=( ULTIMO-FUNXE (I) ) /5.0
           ULTIMO=FUNXE ( I )
500
           CONTINUE
          WRITE (5,1100)
          WRITE (.5,1020) V1X, V2X
           WRITE (5,1060)ALFAO, BETAO, TGF (1), TGF (2)
           WRITE (5,1030)
           DO 710 I=1,7
           WRITE (5,1020) FX (1,1), FUNX (1,1), COC (1,1),
           VX (1,1)
           CONTINUE
710
           WRITE (5,1040)
           DO 720 I=1,7
           WRITE (5,1020)FX (2,1), FUNX(2,1), COC (2,1), VX(2,1)
720
           CONTINUE
           WRITE (5,1050)
           DO 730 I=1,7
           WRITE (5,1020) VXE (1), COCE(1), FUNXE(1), FXA(1)
730
           CONTINUE
           IF(NVECE.GT.3)WRITE(2,1010) FXA
C
```

```
CONTINUE
9999
C
C
           ***** FORMATOS ******
1010
           FORMAT (F10,5)
           FORMAT (4 (2X,F12,5),/)
1020
           FORMAT ( 10X, CALCULO DEL DOBLE LOGARITMO , /)
1030
           FORMAT (10X, CALCULO DEL DOBLE LOGARITMO PARA EL
1040
                   STANTARD', /)
           FORMAT ( 10X, 'AJUSTE DE LA ESTRUCTURA DE LA FECUNDI-
1050
                   DAD', /)
           FORMAT (5X, 'ALFA=', F12.5, 'BETA=', F12.5, 'TGF=', 2F12.5, ')
1060
           FORMAT ( 5X, DAME EL NUMERO DE CASOS A PROCESAR')
1070
           FORMAT (11)
1080
           FORMAT ( //,10X,'****** CASO',12,'*******, //)
1090
           FORMAT (/,
1100
                               VIX
                                             V2X',/)
           CALL EXIT
           END
```

BIBLIOGRAFIA

- ASOCIACION COLOMBIANA PARA EL ESTUDIO DE LA POBLACION.

 ACEP. La Población de Colombia. C.I.C.R.E.D. Series.

 Ed. L. Canal y Asociados Ltda. Bogotá, 1975.
- BAYONA NUÑEZ, ALBERTO. Cobertura del Censo de Población, 1973

 Pontificia Universidad Javeriana. Serie Investigaciones No. 1

 Bogotá, 1977.
- BRASS, W.- The Relational Gompertz model of fertility by age of woman (Inédito).
- CAMISA, ZULMA. Introducción al estudio de la Fecundidad. CELADE,
 Serie B, No. 1007, San José, Costa Rica, 1975.
- CAMISA, ZULMA. Las medidas tradicionales de la Fecundidad. CELADE Serie BS No. 1, 1970.
- CENSO NACIONAL DE POBLACION Y VIVIENDA. 1964. COLOMBIA
- ENCUESTA NACIONAL DE FECUNDIDAD DE COLOMBIA. 1976.
- CHACKIEL, JUAN. Estructura de la Fecundidad por edades: Ajuste y

 Proyección mediante la función de Gompertz Linealizada.

 Notas de Población No. 20, Agosto, 1979. CEZADE.

KANDIAH, V.- The use of the relational fertility model parameters in population projections. East-West Center, Honolulu.

MINA V., ALEJANDRO. - <u>Desagregación de la estrcutura de la población</u>

por edades, mediante la función de Gompertz Linealizada.

Economía y Demografía No. Colegio de México. 1982.